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Abstract. An observation is to be classified into one of two multivariate
normal populations with equal covariance matrix. In this paper, we consider
the confidence intervals for expected probability of misclassification (EPMC) for
improved linear discriminant rule in two types of data:namely, large sample data
and high dimensional data. Our approximate confidence interval is based on the
asymptotic normality of consistent estimator of EPMC. We obtain new results
of stochastic expression for two bilinear forms and two quadratic forms which
are important for our asymptotic evaluation of EPMC. We prove asymptotic
normality under two different frameworks which could be convenient in different
situations based on these results. Through simulation study, it is observed that
our approximate confidence interval has a good performance not only in high
dimensional and large sample settings, but also in large sample settings.
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§1. Introduction

We consider the problem of classifying a future observation vector into one of
the two population groups II; and Il,. For each ¢« = 1,2, II; denotes a popula-
tion from a multivariate normal distribution N, (u;, X), and it is supposed that
xij, j = 1,...,N;, are observed from the population II;. Here, pu; (i = 1,2)
and ¥ are unknown parameters, and they are estimated by the sample mean
vectors T; = N; ! Zjvz‘l x;; (¢ = 1,2) and the pooled sample covariance matrix

S =n"1 212:1 Z;V:Zl(mlj — El)(:vw — fl')/ for n = Ny 4+ No — 2.
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The linear discriminant function is defined as

T(:I)) = (51 — 532)/571{213 — %(i1 + iﬁg)}

Observe however that the linear discriminant function 7'(x) has a bias. In
fact,

n(—1)1 A2 n(Ny — Na)p 1

E[T(x)’wenz] 2(n_p_1) 2(n—p—1)N1N2’ t=1,2

where A2 = (puq — o)’ S ' (1 — o). For this reason, we use the bias-corrected
discriminant function defined as

n(N1 — Na)p
2(n ey 2 1)N1N2,

(1.1) T(:I:) = (:f?l — @2)/571{56 — %(531 + 532)} —

where the subtraction of n(N; — No)p/{2(n —p—1)N1 N2} in (1.1) is to guar-
antee that E[T(x)|z € II;] = n/{2(n —p—1)}(=1)""'A2, i = 1,2. Now using
T(x), a new observation x is to be assigned to Iy if T'(x) > 0, and to Il
otherwise.

The performance of this discriminant rule is evaluated by its probabilities
of misclassification. The probabilities of misclassification have been obtained
with respect to the distribution of the linear discriminant function T'(z). There
are different types of misclassification probability associated with T (). These
are the conditional probabilities of misclassification (CPMC) and expected
probabilities of misclassification (EPMC). The CPMC is defined by

(1.2) Ly = P[T(x) < 0|z € Iy, X], Ly = P[T(x) > 0|z € Iy, X],

where X = (x11,...,Z1N,, T21, ..., XTaN,). We note that the CPMC is the con-
ditional probability of misclassifying an observation « from II; into II;, 4, j =
1,2, i # j. On the other hand, the EPMC is defined by

(1.3) Ry = E[Ly], Ry =E[Ly].

We note that the EPMC is the unconditional probability of misclassifying an
observation z from II; into 11, 4, j = 1,2, i # j. Since the exact expression for
the EPMC is very complicated, there are much works for the approximation
of EPMC. The asymptotic approximation of EPMC under a framework such
that N1 and Ny are large with p is fixed has been studied. This approximation
is called “large sample approximation”. For a review of these results, see, e.g.,
Okamoto (1963, 1968) and Siotani (1982). Further, asymptotic approxima-
tion of EPMC under a framework that Ni, No and p are all large have also
been studied (see, e.g., Lachenbruch (1968) and Fujikoshi and Seo (1998)).
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This approximation is called “high dimensional and large sample approxima-
tion”. In addition, Fujikoshi (2000) gave an explicit formula of error bounds
for a high dimensional and large sample approximation of EPMC proposed
by Lachenbruch (1968). However, as their approximations are functions of
unknown parameters, it must be estimated in practice. Based on the large
sample approximation, Lachenbruch and Mickey (1968) proposed the asymp-
totic unbiased estimator of EPMC. On the other hand, Kubokawa, Hyodo and
Srivastava (2013) proposed the second order asymptotic unbiased estimator of
the EPMC in high dimensional and large sample framework.

In this paper, we consider the interval estimations for the EPMC. Since the
exact interval estimations for the EPMC are very difficult problem, there are
some works for the approximate confidence interval. McLachlan (1975) pro-
posed an approximate confidence interval for the CPMC based on the large
sample approximation. Recently, Chung and Han (2009) proposed the jack-
knife confidence interval and the bootstrap confidence interval for the CPMC.
The problems with these methods are listed below.

(A) Since CPMC is conditional probability, it is more desirable to derive in-
terval estimation of EPMC.

(B) Since these methods are based on large sample asymptotic results, these
methods do not perform well in high dimensional settings.

For the problems (A) and (B), we derive the asymptotic distribution of the
estimator of EPMC under the high dimensional and large sample frame works,
and propose the approximate confidence interval for the EPMC. For that pur-
pose, we derive explicit expression of stochastic for two bilinear forms and two
quadratic forms. The method used in this paper is to express based on eight
primitive random variables, namely four random variables having the standard
normal distribution and four random variables having chi-square distributions.
This approach not only makes it easier to derive asymptotic distribution of
estimator of EPMC, but also enables us to show the asymptotic normality of
CPMC. As a by product, we show asymptotic normality of CPMC.

The organization of this paper is as follows. In Section 2, we propose consis-
tent estimator of EPMC. In Section 3, we propose new approximate confidence
interval of EPMC and show the asymptotic normality of CPMC. In Section
4, we investigate the performances of our approximate confidence intervals
through the numerical studies. The conclusion of our study is summarized in
Section 5. Some preliminary results are given in Appendix.

82. The consistent estimator of EPMC

In this section, we propose the consistent estimator of the EPMC. Since Ro
can be obtained from R; simply by interchanging N; and N>, we only deal
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with Ry. Let ¢ = p/n, 41 = Ni/n, 42 = Ny/n. We assume the following
asymptotic frameworks, in order to derive limiting value of Rj.

(A1) n, p — oo with n(¢ — ¢) — 0 for some ¢ € (0,1),
(A2) n, Ny, Ny — oo with n(51 — 1) = 0, n(32 —y2) = 0
for some 1,72 € (0,1),
(A3) n — oo with n(A% — A2%) — 0 for some A? € (0, c0).
Suppose that @ € II;. Under these conditions, a conditional distribution of

T(x) given (T1, T2, S) is distributed as N'(—=U, V), where

1 N; — N.
U =@~ 3)'S" @ — ) = 5@~ 3)'S" (@1~ %) + 2(:(_;_ 1)5\){]\;27

|4 :(51 —EQ)/S_IES_l(fl —52).

Then, R; can be expressed as
Ry =E o (v=12)],

where ®(-) denotes the cumulative distribution function of (0, 1). We rewrite
U and V by using

N1 N-
7= V(NiNy)/(n+ 2572 (py — ), wy = (| oSV - E),
U
2 vn+2

It is seen that ui, us and W are mutually independently and distributed as
uy ~ Np(7, 1), us ~ Np(0,1,) and W ~ Wy(n, I,), respectively. Using these
variables, we can rewrite U and V as

STYV2(NE + NoTy — Nipy — Nopy), W = nX~ /250712,

(2.1) U=- Wuﬁwlul +
n(N1 — Ng)p
2(n—p—1)N1Ny’
_n*(n+2) ,

2.2 = “2u;.
(2.2) V NN uy W™y

n _ n _
W W ug — — 7' Wty
N1N2 Nl

Applying Lemma A.1 to (2.1) and (2.2), we obtain the constants Uy and V} as

A2
= lim E[U]=—
UO n,plgloo [U] 2(1 — C) ’

1 c
Vo= lim E[V]= Ay — ).
0= ppoeo V] (1—0)3< +’Yﬂ2)
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Also, the expectations E[(U — Up)?] and E[(V — Vj)?] can be evaluated as

(23) E[U-0)Y = Ml_)?,{A+FY2<7+A>
cln =)\, o
e

4+2{(c—l—1)2—|—c}A2

(24) E[(V-W)?] = pow

(c+4)A

n(l—c)?

c{(c+1)?+c}
+ 2.2
Y172

+o(n™h).

under the asymptotic frameworks (A1)-(A3). (See details in Appendix B and
C.) Thus, using (2.3), (2.4) and Chebyshev’s inequality, we have that U £ U

and V' & V,. Furthermore, using continuous mapping theorem, we obtain
that

(2.5) \q) (vv=2) — o (v ?) \ 20
under the asymptotic frameworks (A1)-(A3). On the other hand, it holds that
(2.6) }@(UV*”)—@(ww;”ﬁ‘<1a&

Combining (2.5), (2.6) and dominated convergence theorem, we obtain the
following lemma.
Lemma 2.1. Under the asymptotic frameworks (A1)-(A3), it holds that

(1—c)l/2A2 >
2/ A2+ c/(m2) )

R1—>(I)<—

Since the limiting value of R; is a function of A%, we begin by obtaining
its consistent estimator.

Lemma 2.2. The estimator of A? is defined by

~g n—p-—1

Under the asymptotic frameworks (A1)-(A3), it holds that A2 B A2
(Proof) We can rewrite the estimator A?

n—p—1)(n+2)
N1 N,

(n+2)p
NNy -~

(2.7) A? = ( wy Wy —
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Applying Lemma A.1 to (2.7), we have

~5 oo 1 4 4A%7 2¢ ,1
(2.8) E[(A —A)]n(l_c)<2A +m+%>+o(n )
under the asymptotic frameworks (A1)-(A3). (See details in Appendix D.)
Thus, using (2.8) and Chebyshev’s inequality, we have A2 2 A? ynder the
asymptotic frameworks (A1)-(A3). O
Substituting the consistent estimator A2 into the limiting term <I>(U0V071/ 2)7
the consistent estimator of R is obtained by

o~ ~ ~_1
Ri=9 (Uov0 ) ,

where Uy = —271(1—c) 'A% and Vj = (1—c)3{A2+¢/(7172)}. The following
corollary is obtained from continuous mapping theorem and consistency of
estimator A2,

Corollary 2.1. Under the asymptotic frameworks (Al)-(A3), it holds that
Ry % Ry

§3. Approximate interval estimation for EPMC and asymptotic
normality of CPMC

In Section 3.1, we show the asymptotic normality of the estimator of EPMC
under two different frameworks, and propose the approximate confidence in-
terval. In Section 3.2, we also show the asymptotic normality of CPMC.

3.1. The asymptotic normality of the estimator of EPMC

At first, we derive the asymptotic distribution of the studentized statistics
under the high dimensional frameworks (A1)-(A3). We consider the following
random variable

To show the asymptotic normality of the above random variable, we consider
the stochastic expansions of U and V. Since the statistics U and V are the
functions of 82, it is essential to derive the stochastic expansion of A2, By
using w1 and W, we rewrite A2 as

N

vn (ﬁl - (Uov0

~ —p—1)(n+2) _ (n+2)p
AQ — (7’L p 1 _ .
N1N> W N1N»
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Define the variables

o1 — (p—2 by—(n—p+1
o= =2) - (-ptl)

-2 Sh-ptD)

where
~ 2 ~ 2
U1~ Xp—27 Vg ~ Xn—p+1'

Here, x2 (a € N) means chi-square distribution with a degrees of freedom.
The estimator A? is expanded as

~ D
(3.1) A? =A% + \/—% + 0,(n"1/?),
where D1 = g1v1 + govo + gsui. Here,
2 V2 (c + A2 2A
(73] NN(O,l), QIZQ; g = — ( 7172)’ g3 = ——
Y172 V1—cyiye V172
and v, vo and u; are mutually independent. From (3.1), it is noted that
~ D ~ D
(3.2) Uo =Up + 01\/—% +o,(n Y2, Vo= Vo + CQ\/—% + 0p(n"1?),

for ¢; = —{2(1 —¢)} ! and ¢ = (1 — ¢)~3. Using (3.2) and Taylor series
expansion, it follows that

~ ~_1 _1 _1 D U, D
Gty b =vy F 40 (@Dt = SR e L) o071

Vi 2V
_1 1 -
=UoVy * + %Q1 + 0,(n"1?),
where
Q1 =q1v1 + q2v2 + g3us.
Here
q Vel =) (2c+ A?y) q 2c + A%y
=7 s 2 = ,
2V29193 {e(mne) 7L + A2}/ 2V2y17921/c(172) 7L + A2
VI~ ¢ (268 + Ay
Q3 = - )
2 (c+ A2y1y0)*?

[N

From the stochastic expansion of [70‘7;)_ , we have

(3.3)

~ B (1—¢)/2A2 - (1—)/2A? Q -
Rl_q}( 2 A2+C/(7172))+¢< 2 A2+c/(7172)>\/ﬁ+ p( ),
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where ¢(-) is the p.d.f. of the standard normal distribution. Note that u;
is distributed as N'(0,1), v; and vy are asymptotically distributed as N (0,1)
under the asymptotic framework (A1), and these variables are mutually inde-
pendent. Hence, under the asymptotic frameworks (A1)-(A3), it holds that

~ _)1/2A2
Vn (R1 - & (—(1)>)
A24c
24/ A2%+c/(7172) i} N(O, 1)’

(3.4) o (A2)
where

2y _ B (1- 0)1/2A2 2 2 2
g.(A%) = ¢< 5 A2—|—C/(’)/1’72)) Vai T 43+ a3

_ (- (1—¢)/2A2 (2c + A%y172) Ve + A%y (A% + 2)
2/ A%+ ¢/(n72) 2V 2717z (e + A2y172)* '

Now turn to evaluate the difference of the limiting value of R; and R;. The
remainder after using first term of the Taylor series of ®(-) at UV /2 =

2
@) (U U
21 V1/2 %1/2

for some value d between UV 2 and UOVOA/Q, and |®®)(d)]| is equal or
smaller than 1/(v/2me) uniformly in d € (—o00,00). Here, ®?)(.) is second
derivative function of ®(-). Hence, we have that

Ugvofl/2 is given by

—1/2 —-1/2 U Uo
(3.5) Ry — <<I’ (UOVO ) +¢ (Uovo )E Viz i )'
0
1 U U ’

) -2

> 2\/% <V1/2 VE)I/Q>
We note that

U Uo 1 UO
3.6 - = U—=Uo)+ —7(Vo -V
( ) V1/2 ‘/01/2 /Vb( 0) 2‘/03/2( 0 )

o | V% (Vo — V)’
+ 32 + 2 v
v\ 2 (Vv +1) 2V (VT/V +1)
1 (U —Up)(Vo—V)

+\/V0+V0/\/V |4
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From (A.8) and (A.11)

1 A? _
67 Bl =00] = g e
Ui U 4
o 2%3/2%_‘/) B _2n(1—2)3V03/2 {<1—6_1) ol

c 4
+ +1) 38 +o(nh.
Y172 (1—0 )} (™)

Since \/Vo/V +1 > 1 and \/17(«/1/0/1/+ 1)2 > 2T,

Uo 1 N Vo (Vo —V)?
W\ (Viav ) e (i)

3100 . [(VO - V)T
4V03/2 %

(3.9) |E

By using Lemma A.1, we obtain that

g [V W

(3.10) % ] =0(n™)

under the asymptotic frameworks (A1)-(A3). (See details in Appendix E.)
From (3.9) and (3.10),

(3.11)

U VVo (Vo—V)?

1
vy'? 2(W+1)+2W(W+1)2 v

By using vVo + Vo/ VV > /Vi > 0 and Cauchy Schwarz inequality,

(3.12)‘]3{ ! (U_UO)%_V)”

VVo + Vo /VV |4

<E[¢170U—Uog%—w]SJ%\/E[\U—VUOP]\/E{%;V?

By using Lemma A.1, we obtain that

E [<U _VUO)Z] =0(n™")

(3.13)
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under the asymptotic frameworks (A1)-(A3). (See details in Appendix F.)
From (3.12) and (3.13),
VVo + Vo/VV 14

Combining (3.7),(3.8),(3.11) and (3.14), under the asymptotic frameworks
(A1)-(A3), it holds that

(3.14)

| o),

3.15 gl Y _ Yl om
(3.15) i~ | =0
Since VoV + Vo > Vo > 0,
U Uo U—Uy U Vo—V\?
(Vl/Q_VOl/z> - < WV 1 W)
(U - Up)? Us Vo—V)?
v VWV + Vo2V
ho U (U-U)(o-V)
VIOV + Vo 4
<(U—%V QﬁV—%F+ﬂ%W—UWV—%
= v ViV Vo % '

By using Cauchy Schwarz inequality, we obtain that

2
v U
V1/2 VO1/2

_|_2|‘[/£0 <E [(U —VUO)QDV2 <E [(V_VVO)QDI/Q'

From (3.10),(3.13) and (3.16), we obtain that

2
u Uy
V1/2 V01/2

(3.16) E

(3.17) =0

under the asymptotic frameworks (A1)-(
(3.17), under the asymptotic frameworks (

3). Combining (3.5),(3.15) and
1)-(A3), it holds that

' 2\/A% 1 ¢/ (172) '

By using (3.4) and (3.18), we obtain the following theorem.

A
A

(3.18)
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Theorem 3.1. Under the asymptotic frameworks (A1)-(A3), it holds that

(i)

e 4 N0, 1).

T, =

To propose the interval estimation of the EPMC, we need to estimate
o.(A?). We use truncated estimator

A? = max(A2,0),
so that the estimator of o.(A?) may be negative. Then it holds that
(3.19) | max(A2,0) — A?| < |A? — A?] a.s.

By using Markov’s inequality, (2.8) and (3.19), we obtain A2 £ A2 under the
asymptotic frameworks (A1)-(A3). Hence, A? is a consistent estimator of A2,
Assigning the truncated estimator A2 to the portion of o.(A?) which may be
negative, we propose

(1- 0)1/2A§ (20 + Az’hW) \/c + A2~17, (szm + 2)

Ue(Ag) =9 |-

= R 3/2
2/ A2 +¢/(n72) 22 (e + A2y )

~

By using the consistent estimator o.(A2), we obtain the following statistics of
T,

*7

NG (ﬁzl - Rl)
SO
Therefore we can obtain the following corollary.
Corollary 3.1. Under the asymptotic frameworks (A1)-(A3), it holds that
T 4 N(0,1).

Next, we show that asymptotic normality of 77 is also established under
the large sample framework

(A1) : p is fixed and n — oo
or

(A"1) : n, p— oo with p/v/n — 0.
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Under the frameworks (A’l) and (A2) or the frameworks (A”1), (A2) and
(A3), it holds that

(320) Ry =9 <—§> +o(n~Y?), ® (\7%) = <_§> +o(n1/?),
(321) (A% =6 <_§) \/W +o(1),
0e(A2) B g (—?) @’
2v/2
0(=3) (A 1

(3.22) T, = oo (A2) <2ﬂv2 — 2(%7”1/2111) +0p(1).

From (3.20)-(3.22), we have that

(p— ( 2 : )1/2u1> + 0p(1).

v J—
¢ /a2 1 \2v2 2 2y
8 4y172

Therefore we can obtain the following corollary.

Corollary 3.2. Assume the conditions (A'l) and (A2) or the conditions
(A”1), (A2) and (A3). Then, it holds that

T % N(0,1).

Remark 3.1. From Corollary 3.1 and 3.2, T} has a asymptotic normality not
only under high dimensional and large sample frame work, but also under the
large sample framework.

Based on Corollary 3.1 and 3.2, we propose an approximate 100(1 — «)
percentile confidence interval for EPMC as following;:

Ue(ﬁi) Je(zi) N
Vi v 5]

where y, denotes upper 100« percentile of standard normal distribution.

(3.23) Cr, = §1 + Yi-g, §1 +

3.2. Asymptotic normality of CPMC

In this section, we show asymptotic normality of CPMC. The CPMC can be
expressed as

L= (Uv—%) .
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Applying Lemma A.1 to (2.1) and (2.2), we obtain

A2 N — N. N — N.
o= A [ Mo Ny) o n( ~2)(2+u%+@1)
21)2 2N1N2(n —p— 1) 2N1N21}2

2
nus ~ [N1No -
+ A + + 2 +
172\/]\712\/2 ( n+ 2 U1> 2 U1

2
+U2+171
UQ\/Nl \/ < V n ) 2
U3
Niug + Nou
(n+2)N1N2 ( H 2 4)

A2p? U3 n2(n +2) 9 9
vV = 14+ = ——2 1 U
{ @% ( + 174) + NlNgv% ( + = > (ul + uj + ’Ul)

where

w; ~ N(0,1) (i =1,2,3,4), ¥ ~ x2_q, U2 ~ X B3 ~ X2_q, Da~ X2

% ; y 4y, ), Ul Xp—27 2 Xn—p+17 3 Xp—17 4 Xn—p+27
and these variables are mutually independent. Define the variables

01— (p—2) p—(n—p+1)  T3—(p—1) Uy —(n—p+2)

_u Vo = V3 = ———, U4 = .
T Rr-2 T VD T V-1 Ven-p12)

Note that

(p—2)+v2(p—2)v1,

9 = (n—p+1)++/2(n—p+1)ve,
(p—1)++2(p— v,
(

04 = (n—p+2)++/2(n—p+2)vy,

and vy, vg, v and vy are asymptotically distributed as A(0,1) under the
asymptotic framework (Al). By using Taylor series expansion based on these
variables, we can expand U stochastically,

1
(3.24) U=U+ %Ul + 0p(n"Y?),
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where
1
= — A2
Vo 20 —c) "
U, Vel —m) _ (c(y1 —72) + A%y172) vy — VA w
V2(1 = )y V2(1 = )32y (1-c)yvr2

 J/oRA u2+\/C+A2’Yl’72u3_ﬁ\/C‘f‘AQ’YﬂQ
(1-cp2ym (=g~ (-2 ymn

Using similar arguments, we can expand V' stochastically,

U4.

V;
(3.25) V=Vo+ 7% +op(n"1/2),
where
1 c
Vo = ——(—+ A2> :
P 1P <m
Voo V2e o W2(c+ M) o V2e(et Alying)
' I-cPnre  1-0Pyuyn 1-Pny
B V2e (c + A27172) 2A

V4 U1.
(1 =) 29172 (1 —c)* 72

By using (3.24), (3.25) and Taylor series expansion, it follows that

UVl o= UVt {U, - Yoy, }+op(n™1/?)
0T U e T
1w B
= UV, > + 7 + op(n 1/2),
where
Wi = wivy + wavg + w3vs + wavg + wsug + weug + wrus + weuy.
Here,
c(1-c)A? c(I—c)(v2—m)
W= 3/2 + i 2’
2v27172 {c(1172) "1 + A%} V2yive/e(nye) T+ A
B (1 —=2v)c
wy =

V2172 e(ny2) Tt + AZ’
Ve(l —e)A? cA?

w3 = , Wq = — )
2v2\/c(1172) "1 + A2 2v2\/c(1172) 1 + A2

w V1 —cA® V1 —cAy

5 = - )
277 {e(n) L+ A2 A/ e(nye) T+ A2

we = VeAT, wr = V1 —c, wg=—c.

- Vzy/e(ry2) Tt + A
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Using the Taylor series expansion, L; is expressed as

_ -3 - —1/2
Ly =2(UpV, ?) + ¢(UoVj )\/ﬁ‘f'op(” )-

Since the random variables vy, vo, vs, U4, U1, Uz, ug and uy in Wi are mutually
independent and asymptotically (or exactly) distributed as N'(0, 1), we obtain
the following theorem.

Theorem 3.2. Under the asymptotic frameworks (A1)-(A3), it holds that
Vi(Ly — Ri) % N(0,02(A%)),

where go(A?)? = {¢(U0V07%)}2 Z?:l w;.

Next, we evaluate asymptotic property of L; under the large sample frame-
work. We assume the conditions (A’1) and (A2) or the conditions (A”1), (A2)
and (A3). Then it holds that

_ _é _é L 2N —1/2
= (I)< 2>+¢< 2>\/ﬁ<2\/7172m+ug>+0p(n )

Thus, we obtain the following corollary.

Corollary 3.3. Assume the conditions (A’l) and (A2) or the conditions
(A"1), (A2) and (A3). Then, it holds that

n-s(2)) #4025 ()

Remark 3.2. We consider the relation between the optimal rule

(3.26) Topt(x) >(resp.<)0 = « € II;(resp.Ily),

and our suggested rule

(3.27) T(x)>(resp.<)0 = x € IIj(resp.Ily),
where
Tope() = (1= po)'S™Ha — 511 + o)},
T(x) = (&1 —%2)S Y — 3(21 +32)}.

From Corollary 3.3, we note that the distribution of the CPMC' of the rule
(3.27) under the condition (A’l) or (A”1) approaches a normal distribution

with standard deviation shrinking in proportion to 1/y/n around the error rate
of the optimal rule (3.26).



16 M. HYODO, T. MITANI, T. HIMENO AND T. SEO

84. Simulation study

In this section, we investigate the performance of proposed approximate con-
fidence intervals (3.23). In order to evaluate coverage probabilities of the
approximate confidence intervals and the expected lengths, a Monte Carlo
study is conducted. Without loss of generality, multivariate normal random
samples are generated from Iy : N,(0,,) and s : N,((V/5, b—1)'sIp). The
values of N1, N2 and p are chosen as follows:

2
(CaseA) p = 100,200, ”; =2,3,4, (Ny: No) = (1:1),(3:1),(1:3),

(CaseB) p =25, n+2=100,300,500, (N;:Ny)=(1:1),(3:1),(1:3).
In above configuration, we calculate the following coverage probabilities

ﬁ{(ﬁl, ﬁi)lRl € [ﬁl + n_l/zde(zz)w—a/% Ry + n_l/QUe(ﬁi)ya/ﬂ}

. I

s1m

CP =

and the following expected lengths of approximate confidence interval
EL = E[n_l/go—e(Az)(ya/Q - yl—a/Q)]a

where #{-} denotes number of element of set {-}, sim denotes replication num-
ber of simulation. We also estimate the exact expected length by using Monte
Carlo simulation as follows:

EFEL = El(a/stim) - El((lfa/Q)Xsim)a

where El(i) denotes i-th largest value among the sim values. Tables 1-3 give
the coverage probabilities when p = 100,200 and 5, respectively. Tables 4-6
give the expected lengths of approximate confidence interval and exact ex-
pected length when p = 100,200 and 5, respectively. As can be seen from
the Tables 1-3, when the sample size or dimension is increased, probability
for approximate confidence interval is close to confidence level. In addition,
we observe that our approximations have a high level of accuracy in different
situations: large sample settings (Table 3), high dimensional and large sample
settings (Table 1-2). From Tables 4-6, when the sample sizes increase, the
expected lengths become narrower for each case. Through these simulation
results, we can see that our approximate confidence interval has a good per-
formance not only in high dimensional and large sample settings, but also in
large sample settings.

The asymptotic normality obtained by Corollary 3.3 is also demonstrated.
Let

2y/N1No/n(Ly — ®(—A/2)) _ V(L — Ry)
o(~A/2) T Ay

By, N, =
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Then Corollary 3.3 (Theorem 3.2) show that By, n, (Hp N, nN,) converges in
distribution to standard normal distribution as n — oo (n,p — o). To check
for asymptotic normality make By, n, (Hp N, N,) Vs standard normal Q-Q
plot in Case A. The straight line y = z represents where asymptotic normality
holds. Figure 1 display the Q-Q plots of By, n, in Case B, and Figure 2, 3
display the Q-Q plots of Hy v, n, in Case A. From figures, it is confirmed that
CPMC has normality when sample size is large enough compared with the
dimension.

§5. Conclusion

The performance of classification procedure is evaluated by its error probabil-
ity which usually depends on unknown parameters. In practice, we considered
the interval estimation for EPMC of improved linear discriminant rule. To
derive an approximate confidence interval, we obtained the explicit expression
of stochastic for two bilinear forms and two quadratic forms, and derived the
asymptotic distribution for the studentized statistics of estimator of EPMC
under the high dimensional and large sample frame work. Our approximate
confidence interval not only has been established in high dimensional and large
sample settings, but also has been established in large sample settings. Also,
we confirmed that the superiority of our approximate confidence intervals have
been verified in the sense of the coverage probability and expected length by
using Monte Carlo simulation.

Appendix
A. Stochastic expression quadratic form

We present here the preliminary results about the quadratic form.

Lemma A. 1. Let z ~ Ny(v,1p), g ~ Np(0,1,), W ~ W,(n,I,) and v =
VV'v. Assume thatn —p+1>0 and p > 2. Then, it holds that

() Zwiz = WV U E D
V2 ’
2 2 5 >

(i) JW 2y — (ur +v) N;" uj + U1 (1 I 133) 7
’1)2 V4

b\ 2
(iit) YWz = z {1/ +ur + u2 <1~)3> } 5
V9 V4

2 2 ~ ~ 3
(iv) Zw-1g = YO F VP i+ {u3_u4 <v3) }

V2 V4

o
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where
u; ~ N(0,1) (i =1,2,3,4), 51 ~ x2_o, Ug ~ X2 U3 ~ X2_q, T4~ X2
% ) y 4y 9y x), Ul Xp—Qa 2 Xn—p+17 3 Xp—l: 4 Xn—p+27

and these variables are mutually independent. Here, XI% means chi-square dis-
tribution with p degrees of freedom.

(Proof) The proof of assertions (i)-(iv) follows directly by applying the tech-
nique derived in Lemma 1, in Yamada et al. (2015).

B. Derivation of (2.3)

By using Lemma A.1, U can be rewritten as

(A. 1)

A2p np(N1 — Na) n(N1—Na) o o
U = - D
+ {2N1N2(7’L—p—1) 2N1N2’L~)2 (’LL1+U2+U1)

20y
N1 N-: ?
nus X 14V2 -
+—= Ay tur| +ud+o
U9v/ N1 N9 ( n+2 1) 2 !
Y N1 N 2
nuy U3 e 14V2 ~
— 4/ — A +u +u2+v
B9/ N1 N3 04 ( n+ 2 1) 2T
A —
- " N1u1+NQUQ ? .
() (n+2)N1N2 V U4

By using above expression, we calculate the expectation of U as

no A2 A
(A.2) E[U] = —myz_g(lfg) (1_n(16)>
A2 1 _
T g <1+n(1—0)> o),

The expectation of U? is obtained by calculating the second moment of each
term in (A.1). The second moment of each term in (A.1) is calculated as
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follows:

E

~ 2
A2n np(Ny — V. n(Ny — N; -
_A%  np(N = Na) (N1 — Ny (2 + 2 + )

2U2 2N1N2(7’L e 2 1) 2N1N2’U2

_ n? Aty n’p(Ny — Ny) A2
dn—p=3)(n—-p-1) NiNa(n—p—3)(n—p—1)?
(n — 1)n?p(Ny — Ny)?
2NENZ(n —p—3)(n—p—1)2
_ooA (1 L4 > N cA?(y1 — 72) el —72)?
©4(1 - ¢)? n(l—c) n(l—c)3yye - 2n(l —c)?y392

+o(n™),

2
2

nus ~ N1N2 ~
172\/N1N2\J ( n—+ 2 +UI> Tup T
n’ A? 4 np
n+2)n—p—-3)(n—p—1) NiNa(n—p—3)(n—p—1)

1 c
— AQ —1

n— o™ T =ormm )

2
nu4 ’L~}3 ~ N1N2 ~
E|{-—— 2 /2 (A tur | +ud+7D
U2/ N1 N> U4J ( n+2 1) 2 !

_ n?*(p—1) A2
(n+2)(n—p=3)(n—p—1)(n—p)
n’(p—1)p
NiNay(n—p—3)(n—p—1)(n—p)

2
+o(n™h),

2

_|_

— ¢ 2
T on(l - 0)3A +

n(l—c)’yve

~ 2
An U3
. Hf@ (n+ 2N, s (N”“ " Nm\/;> } ]

_ n? {N{(n—p)+ N (p—1)} A2
(n+2)N1Nz(n—p—3)(n—p—1)(n—p)

. (’Y%_’Y%C""Y%C) 2 -1

— omye(l - A%+ oln™)
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Summarizing these results, we obtain that

Al 4 A?
(A.3)  E[U7] = 4(1_C)2<1+n(1—c)>+n(1—0)372

2
c (’71 — ’72) C -1
+ + + o(n .
2n(1 —c)3yy3  n(l =)y (™)

From (A.2) and (A.3), we obtain that

E[(U-U)*] = E[U?-20,E[U]+U§

1 2 (¢ c(y1 —72)? _
- A4+( +A2>+ +o(n™").
2n(1 — ¢)3 { Y2 \n i3 ™)

C. Derivation of (2.4)

By using Lemma A.1, V' can be rewritten as

A?p? U3 n?(n 4+ 2) U3
A4V = 1+ —= —= |14+ = 2 24%
A { v3 < +754>+ N Nao3 ( +174> (4 4 01)

By using above expression, we calculate the expectation of V' as

(A. 5)
B A%n? o3\ | n*(n+2) B\ (2 121
E[V] = E 7 <1+64>+N1N217§ <1+a4)( 1+u3+01)
_ (n— ) A2
(n—p-— 3( )(n—p)

N12N2(n p— 3)(n p—1)(n—p)
- ety
+(1_CC)37W2{1+1<1f+ >}+o(n_1).

The expectation of V2 is obtained by calculating the second moment of each
term in (A.4). The second moment of each term in (A.4) is calculated as
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~ 2
AZp? U3 n?(n + 2) U3
E 1+ = —— 1+ =) (Wil +
{ U3 < +174)+ N Nao3 ( +’l74> (w4 w2+ 01)

B 2
4 2 2
n{(AN1N2+(n+2)p) +2(n+2)P} P2-1 2p—2 1
= NPN3 Yl

Uy U] UyU4 Uy
2An2\/n + 2 D ?
n\v/n U3
E —_— (1 4+ = | u
{ 03/ N1 Ny ( U4> l}

4A%n*(n + 2) [p2—1+2p—2 1}

+ -
~4~2 ~4~ ~1
N1Ns Uy UF Vg4 05

We note that

1 16
E|=|= -5
K (1—c)*n* (1 —¢)®nd o(n™),
[ 1 2
Bl = -3
7] =T T Ao T
L[ 1
g  (1—é&n’
Thus we obtain that
2
p—1 2p—2 1 1 2(2¢+7) _5
A.8) E Lz ,
(A8 B\ T T om, TE| T aooed T g o)

Substitute (A.8) into (A.6) and (A.7), we obtain that

1 2c 9 ?

(A.9) E[V?] = 1- C)6A4 + (1-— 6)67172A " (1—c)by242
1 <2(2c + DAY 4fc(c+7) + 1}A?
n\ (1—of (1 =)

2¢(8¢c+1) o(n-1
a—aw&Q*‘( s
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From (A.5) and (A.9), we obtain that

E[(V-W)?’] = E[V?-2WE[V]+V§

iy 2{(c+ 1)2+C}A2

(c+4)A
Y172

n(l—c)7

c{(c+1)*+c}
+ 2.2
Y172

+o(n™h).

D. Derivation of (2.8)

By using Lemma A.1, A% can be rewritten as

(n—p—1)(n+2)(ug +7)%+u3+0 _(n+2)p

A.10) A% =
( 0) N1N2 V2 N]_N2

By using above expression, we calculate the expectation of A? as

(A. 11)
BA?] — (n—p—l)(n+2)E (ug +7)2+ud+ 0 _(n+2)p
N1N2 172 NlNg
_ (m—p-1n+2) NiNA? + (n+2)p  (n+2)p
N1Ny (n+2)(n—p-1) N1Ny

= A%

Also, we calculate the second moment of A? as

(A. 12)
" n—p—1)72%n 2 U V4 Ui+ 2
STORMEELES LS E!(( XSS )]

2(n+2)%(n —p— 1)pE [(ul + 7')2~+ u3 + 171] (n+ 2)2p2.

NINZ 7 NINZ
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The expected term in (A.12) can be calculated as

(A. 13)
E[(ul—l—T)Q—l—u%—l—f)f B N1N2A2+(n—|—2)p
0y | (n+2)n—-p-1)"
(A. 14)
(w+72+ud+5\’| 1
E[( i )| = e=vesrvary

{NZNZA" +2(n + 2)(p + 2) N1 NoA?
+(n+2)°p(p +2)}-

Substitute (A.13) and (A.14) into (A.12), we obtain that

(A. 15)

g 2 N, An—D@+2) 55 20n+2)%p(n—1)
AT = <1+n—p—3>A F—p-9MN" T NN -p-3)

From (A.11) and (A.15), we obtain that

E[(A? — A%)?] = E[AY-2A%E[A% + A?

1 4N 2
= g (2 ) ey,
n(l - C) 72 YiYa

E. Derivation of (3.10)

From Lemma A.1, we note that

(V —Vp)? Ny No3

0< < 2t 205, (V = Vo)? a.s.
So, we consider to evaluate
(A. 16)
[ ] - a2t
8% e
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The each term on right hand side in (A.16) is evaluated as

Ny Nows
Al E|—1"22
( 7) |:7’LZ(7"L + 2)171
n(Bs +00) {A2NIN + (0 +2) (w3 + 3 + 1) }
- V(14 2) N1 No/T1 5204
~ 2
+2nAu1 (173 + 174)
V010204

(n —3)(n — 1)n> Ny Ny A*
(n+2)(n—p=3)(n—p-2)(n—p—1)(n—p)(p—4)
2(n — 3)(n — 1)n?pA*
(n—p=3)n—p=2)(n—p—1)(n—p)p—4)
N (n—3)(n—1)n*(n+2)(p — 2)p
NiNa(n—=p—=3)(n—p—=2)(n—p—1)(n—p)(p—4)
172 2(3¢% — 2c+ 2)7172
= {(17—1)4@ 24 1 —6)5027)17 s }A4
2 4022 —c+ 2
+{<1—c>4+ (<1—c>5cn)}A2
c 2(*+c+1)
(L= (1—c)nnre

_|_

+o(n™h),

and
Ny Noi3
(A. 18)E {M }
(03 + q) {AQJ\HNQ + (n+2) (uf +uj + 771)}
- (n +2)0104
+2\/WAU1(1~13 +174)
VN + 29104
__ (=DNNy 5y (n=Dp-2)
- (n+2)(n—p)(p—4)A * (n—p)(p—4)

- (@ g (T ) oo™
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Combining (A.16)-(A.18), we obtain that

A R (NP LSS ESU

n?(n+ 2)0; (1—c)oc (1—c)c
clc+3)+1 _
1Y
(1=¢)’nr

F. Derivation of (3.13)
From Lemma A.1, it holds that
(U — Up)? N1 N2©32 5
0 U - U .S.
< 14 n?(n+2)0; ( 0)" a5
So, we consider to evaluate
(A. 19)

N Nyi? ) NiN,#3 N1 N>v3
———— (U - U, = BE|———F-U"| -2U00E | =——FF=U
n?(n+ 2)0; ( 0) n2(n + 2)0; O™ 1 n2(n + 2)5,

N1N,53
UE | ——2—|.
U | o]

We evaluate the first term on right hand side of (A.19).
The random variable /Ny No93/{n2(n + 2)@; }U can be rewritten as

(A. 20)
<NN>/U [ Gwrn (b eden)
n2(n + 2)d; 2¢/(n+ 2)N1Noy/t, \n—p—1 02

. N1N2 A 2

2(n +2)1/2/0y

w5 N
Vn + 2401 n+2

2
Uy U3 ~ [N1Ny -

- —| [ A/ +up | +uz+0
vn—+2YV v10g ( n—+ 2 1) 2 !

A [ U3
_m <N1U1 + Nousg 774) .

The expectation of (N1N293)/{(n + 2)5;}U? is obtained by calculating the
second moment of each term on right hand side of (A.20). These second

2
+U1> +ul + 01
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moments can be calculated as follows:

~ u?+u2+o 2
((Nl — N2)vs (n—f»—l -5 1) VNN, AQ> ]

(A.21) E

2v/(n + 2)N1 No\/31 S 2n+2)125
_ N1N2 A4 (n—l) (Nl —Ng) A2
4(n+2)(p—4) (n+2)(p—4)(n-p-1)

(n—1)(n—p+3)(N1 — Na)*p
2(n+2)(n—p—1)2N1Na(p — 4)’

+
2
(A.22) E {(n fi)@l {(A, /giNQQ —|—u1> + 3 +61}]

NNy <9 p—2

T 0-0" T -9

_ (n+2)Ni = N 1, p—2

 (n+2)2(p—4) (n+2)(p—4)

u2v -~ |N.N. 2 5
(A. 23)E {(WF‘;)ZM {(A,/ n1+22 +u1> +u§+m”

_ NiNp(p—1) X (p—1(p—2)
(n+2)2(p—4)(n —p) (n+2)(p—4)(n—p)

_{(n+2)Ny — N3} (p - 1) 55 (p—1D(p—2)
(n+2)%(p —4)(n —p) (n+2)(p—4)(n—p)’

~ 2
A? V3

A2E|— [ NV - —

( ) |:(n + 2)261 < 1U1 + 2U2 'D4>

From (A.21)-(A.24), we can obtain that

_ N —p)+ Ni(p—1) 5
(n+2)2(p—-4)(n—p)

-9
(A.25) E [m 2]
NNy <4 Nlp(p—n)+N2{(n—1)2—p2+p}~2
TAn -9 T A -Hn-p-Dn—p
n n—1 {p(n—p+3)(N1—N2)2 2(p—2)}
2(n+2)(p—4) NiNa(n —p—1)? n—p
_ Al 41 [(2 — o)A A%{en — (e +1)ye}
4c n 2¢2 (1-2c¢)c
2 | 2
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Also, we have that

(A. 26) E[ N1 N3 ]

n2(n + 2)0;
_ _NlNQ(TL —p+ 1)52 " (Nl — NQ)(TL —p+ 1)(n+p— 1)
2n(n +2)(p — 4) n(n+2)(n—p—1)(p—4)
2
- —;va A2yt [{(5 - 20)02;24}A 172

_|_(C+ 1)(’71 _72):| +O(TL_1),

Cc

and
Ny Nyv32
(A. 27) B [nQ(n + 2)61]
_ NiNz(n—p+1)(n—p+3)
- n?(n+2)(p —4)
(1 -’y L 2H2- (A9l —onm
c cn

Combining (A.25)-(A.27), we obtain that

+o(n7t).

1
2n(1 — ¢)eyrye2
+e(yf +93)} +o(n ).

N1 Ny o3

nZ(n + 2),51 (U - UO)2

{AM]3 + 2A%F 7,
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Table 1. The coverage probabilities (p = 100)

a\n+2 (Ni:Ny) 200 300 400
(1:1) 0.987 0.988 0.989
0.01 (1:3)  0.987 0.987 0.988
(3:1)  0.98 0.987 0.988
(1:1) 0946 0.948 0.948
0.05 (1:3) 0947 0.947 0.947
(3:1)  0.945 0.947 0.948
(1:1) 0898 0.899 0.898
0.10 (1:3)  0.899 0.897 0.898
(3:1)  0.896 0.897 0.899

Table 2. The coverage probabilities (p = 200)

a\n+2 (Ni:N3) 400 600 800
(1 0.988 0.989 0.989

—_

)
0.01 (1:3)  0.989 0.988 0.989
(3:1)  0.988 0.989 0.989
(1:1) 0948 0.949 0.949
0.05 (1:3)  0.949 0.948 0.950
(3:1)  0.949 0.949 0.949
(1:1) 0899 0.899 0.900
0.10 (1:3)  0.900 0.899 0.900
(3:1)  0.900 0.899 0.900

Table 3. The coverage probabilities (p = 5)

a\n+2 (Ni:Ny) 100 300 500
(1:1) 0984 0.987 0.989
0.01 (1:3) 0983 0.987 0.989
(3:1)  0.982 0.987 0.989
(1:1) 0944 0.947 0.950
0.05 (1:3) 0943 0.947 0.948
(3:1)  0.941 0.947 0.949
(1:1) 0.896 0.897 0.901
0.10 (1:3)  0.893 0.897 0.900
(3:1)  0.894 0.898 0.900
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Table 4. The expected lengths (p = 100)

n+2 200 300 400
«a (N1:N2) | EL EEL EL EEL EL EEL
(1:1) | 0.170 0.173]0.122 0.124 | 0.097 0.098
0.01 (1:3) 0.195 0.199 | 0.140 0.143 | 0.112 0.114
(3:1) 0.195 0.198 | 0.140 0.142 | 0.111 0.114
(1:1) 0.129 0.131 | 0.093 0.094 | 0.074 0.075
0.05 (1:3) 0.149 0.152 | 0.106 0.108 | 0.085 0.086
(3:1) 0.149 0.151 | 0.106 0.107 | 0.085 0.085
(1:1) 0.109 0.110 | 0.078 0.078 | 0.062 0.062
0.10 (1:3) 0.125 0.127 | 0.089 0.090 | 0.071 0.072
(3:1) 0.125 0.127 | 0.089 0.089 | 0.071 0.071

Table 5. The expected lengths (p = 200)

n+2 400 600 800
a (Ni:N») | EL EEL | EL EEL | EL EEL
(1:1) 0.120 0.122 | 0.086 0.086 | 0.069 0.069
0.01 (1:3) 0.138 0.140 | 0.099 0.100 | 0.079 0.080
(3:1) 0.139 0.141 | 0.099 0.101 | 0.079 0.079
(1:1) 0.092 0.092 | 0.065 0.066 | 0.052 0.053
0.05 (1:3) 0.105 0.106 | 0.075 0.076 | 0.060 0.060
(3:1) 0.105 0.107 | 0.075 0.076 | 0.060 0.060
(1:1) 0.077 0.077 | 0.055 0.055 | 0.044 0.044
0.10 (1:3) 0.088 0.089 | 0.063 0.064 | 0.050 0.050
(3:1) 0.088 0.089 | 0.063 0.064 | 0.050 0.051

Table 6. The expected lengths (p = 5)

n+2 100 300 500
« (N1:Ny) | EL EEL EL EEL EL EEL
(1:1) 0.151 0.163 | 0.103 0.107 | 0.083 0.085
0.01 (1:3) 0.168 0.174 | 0.114 0.118 | 0.092 0.094
(3:1) 0.169 0.174 | 0.114 0.119 | 0.092 0.094
(1:1) 0.115 0.119 | 0.078 0.080 | 0.063 0.064
0.05 (1:3) 0.128 0.134 | 0.087 0.089 | 0.070 0.071
(3:1) 0.128 0.134 | 0.087 0.089 | 0.070 0.071
(1:1) 0.097 0.099 | 0.066 0.067 | 0.053 0.054
0.10 (1:3) 0.108 0.110 | 0.073 0.074 | 0.059 0.059
(3:1) 0.108 0.110 | 0.073 0.074 | 0.059 0.059
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(N1, N2) = (25,75) (N1, N2) = (50, 50) (N1, Na) = (75,25)

e
,72—/
3 3 2

(N1, No) = (75,225)  (Ny,Na) = (150,150)  (Ny, Na) = (225, 75)

-3 2 o1 o 1 2 3 3 2 1 [ 1 2 3 -3 -2 -1 o 1 2 3

(N1, Np) = (125,375) (N1, N2) = (250,250)  (Np, No) = (375,125)

Figure 1. Q-Q plots of By, n, for Case B
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(N1, Np) = (50,150)  (Ny, N) = (100,100)  (Ny, N3) = (150, 50)

(N1, No) = (75,225)  (Ny,Na) = (150,150)  (Ny, Na) = (225, 75)

(N1, N3) = (100,300)  (Ny,N3) = (200,200)  (Ny, Np) = (300, 100)

Figure 2. Q-Q plots of H, n, n, in Case A (p = 100)
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(N1, Np) = (100,300)  (Ny, Na) = (200,200)  (Ny, N3) = (300, 100)

(N1, Na) = (150,450) (N1, Na) = (300,300) (N7, Np) = (450, 150)

(N1, Np) = (200,600) (N1, N2) = (400,400)  (Ny, Na) = (600, 200)

Figure 3. Q-Q plots of H, n, n, in Case A (p = 200)
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