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Abstract

The Euclidean distance-based classifier is often used to classify an observation
into one of several populations in high-dimensional data. One of the most
important problems in discriminant analysis is estimating the probability of
misclassification. In this paper, we propose a consistent estimator of mis-
classification probabilities when the dimension of the vector, p, may exceed
the sample size, N , and the underlying distribution need not necessarily be
normal. A new estimator of quadratic form is also obtained as a by-product.
Finally, we numerically verify the high accuracy of our proposed estimator
in finite sample applications, inclusive of high-dimensional scenarios.
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1. Introduction

In this paper, we focus on a discrimination problem that is concerned
with the allocation of a given object, x, a random vector represented by a
set of features (x1, . . . , xp), to one of two populations, Π1 and Π2. Let x
be an observation vector into one of the two population groups Π1 and Π2.
Then, we assume that

x = Γ(g)z + µ(g) (g = 1, 2).
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Further, let x
(g)
1 ,x

(g)
2 , . . . ,x

(g)
Ng

be p-dimensional observation vectors from the
g-th population Πg such that

x
(g)
j = Γ(g)z

(g)
j + µ(g) (j = 1, . . . , Ng, g = 1, 2).

Here, Γ(g)Γ(g)′ = Σ(g)(≥ O) and z = (z1, . . . , zp)
′ and z

(g)
j = (z

(g)
1j , . . . , z

(g)
pj )

′

are independent and identically distributed (i.i.d.) random vectors such that

E[z] = E[z
(g)
j ] = 0 and Var[z] = Var[z

(g)
j ] = Ip.

In our study, we consider two cases, (C1) and (C2), as follows.

(C1) ∃κ
(g)
4i , κ4i, κ

(g)
4max, κ4max ∈ (0,∞) such that

E[z4i ] = κ4i + 3 ≤ κ4max + 3,

E[z
(g)4

ij ] = κ
(g)
4i + 3 ≤ κ

(g)
4max + 3 (i = 1, . . . , p),

E[z2i z
2
k] = E[z

(g)2

ij z
(g)2

kj ] = 1,

E[zizkzlzm] = E[z
(g)
ij z

(g)
kj z

(g)
lj z

(g)
mj ] = 0 (i ̸= k, l,m).

(C2) zij and z
(g)
ij are independent for i, j, g, and ∃κ

(g)
4i , κ4i, κ

(g)
4max, κ4max ∈

(0,∞) such that

E[z4i ] = κ4i + 3 ≤ κ4max + 3 and E[z
(g)4

ij ] = κ
(g)
4i + 3 ≤ κ

(g)
4max + 3.

Here, (C1) is a weaker condition than (C2). However, under (C2), assump-
tions about the mean vector and covariance become weak.

We are interested in investigating the discrimination procedure that can
accommodate p > max{N1, N2} cases, with the main focus on the perfor-
mance accuracy in the asymptotic framework that allows p to grow together
with N1 and N2. Recently, Aoshima and Yata (2014) considered the Eu-
clidean distance-based classifier for the high-dimensional multi-class problem
with different class covariance matrices. Aoshima and Yata (2014) proposed
the Euclidean distance discriminant function as

W =
{
2x−

(
x(1) + x(2)

)}′ (
x(1) − x(2)

)
− 1

N2

trS(2) +
1

N1

trS(1),(1.1)

where

x(g) =
1

Ng

Ng∑
i=1

x
(g)
i , S(g) =

1

Ng − 1

Ng∑
i=1

(x
(g)
i − x(g))(x

(g)
i − x(g))′ (g = 1, 2).
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Then, the Euclidean distance discriminant rule given by W assigns a new
observation x to Π1 if W > c, and to Π2 otherwise, where c is an appropri-
ate cut-off point. In particular, Aoshima and Yata (2014) derived asymp-
totic conditions to ensure that the expected misclassification error converges
to zero and obtained an asymptotic approximation of the misclassification
probability.

In this study, we focus on the misclassification probability of the Eu-
clidean distance discriminant rule. For a specific c, the performance accuracy
of the Euclidean distance discriminant rule will be represented by the result-
ing pair of misclassification error probabilities. More specifically, we define
the misclassification probability of the Euclidean distance discriminant rule
by

e(2|1) = Pr(W ≤ c|x ∈ Π1), e(1|2) = Pr(W > c|x ∈ Π2).

Our main objective is to derive the limiting value of the misclassification
probability and propose a consistent and asymptotically unbiased estimator
in high-dimensional settings. In general, it is difficult to obtain the exact
value of the misclassification probability. Many studies have attempted to
obtain asymptotic approximations for the misclassification probability of the
Fisher linear discriminant rule when p < N1 + N2 − 2 under a framework
where N1 and N2 are large and p is fixed. For a review of these results,
see, e.g., Okamoto (1963, 1968) and Siotani (1982). An asymptotic approx-
imations under a framework where N1, N2, and p are all large have also
been studied (see, e.g., Lachenbruch (1968) and Fujikoshi and Seo (1998)).
Fujikoshi (2000) obtained an explicit formula of error bounds for an approx-
imation of the misclassification probability. Further, Konishi and Honda
(1990) and Kubokawa et al. (2013) deal with estimation of misclassification
error probabilities of the Fisher linear discriminant rule. Recently, Aoshima
and Yata (2014) showed the asymptotic normality of the Euclidean distance
discriminant rule under the high-dimensional asymptotic framework

(A0) N1, N2, p→ ∞

and some assumptions, which represents the relationship between the quadratic
forms δ′Σ(g)δ and the sum of traces (see (A2’) in Section 2 for details). Here,
δ = µ1 − µ2. In this paper, we derive the limiting value of the misclassifi-
cation probability under (C1) and the above assumptions or under (C2) and
assumptions that are weaker than the above assumptions. By deriving an
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estimator of unknown values among the limiting values of misclassification
probabilities, we propose a consistent and asymptotically unbiased estimator
of misclassification probabilities. Further, we derive the unbiased estimator
of δ′Σ(g)δ as a by-product.

The remainder of this paper is organized as follows. In Section 2, we show
the asymptotic normality of the Euclidean distance discriminant rule. In
Section 3, we derive a consistent estimator of misclassification probabilities.
Further, the limiting approximations of the defined cut-off point are estab-
lished by using this estimator. Section 4 summarizes the results of numerical
experiments conducted to verify the validity of the proposed estimators along
with a number of high-dimensional scenarios where p far exceeds the sample
size. Finally, we conclude the paper in Section 5 and present some auxiliary
lemmas in the Appendix.

2. Asymptotic normality of Euclidean distance-based classifier

In this section, we show the asymptotic normality of the Euclidean distance-
based classifier W . It is difficult to obtain the exact distribution of the
Euclidean distance-based classifier. We assume the high-dimensional asymp-
totic framework (A0) and also make the following assumptions:

(A1) lim
p→∞

trΣ(g)4

(trΣ(g)2)
2 → 0, 0 < lim

p→∞

trΣ(h)Σ(i)

trΣ(g)2
<∞ (g, h, i = 1, 2),

(A2) lim
N1,N2,p→∞

δ′Σ(g′)δ

Ng′σ2
g

→ 0 (g, g′ = 1, 2, g ̸= g′),

(A3) lim
p,N1,N2→∞

max{γ(g)
2

1 , . . . , γ
(g)2

p }δ′Σ(g)δ

σ4
g

→ 0 (g = 1, 2),

where γ
(g)
i (i = 1, . . . , p) denotes i-th element of Γ(g)′δ, and

σ2
g = 4δ′Σ(g)δ + 4

1

Ng

trΣ(g)2 + 4
1

Ng′
trΣ(1)Σ(2) ( g, g′ = 1, 2, g ̸= g′).

Aoshima and Yata (2014) proved asymptotic normality by assuming (C1),
(A0), (A1) and

(A2’) lim
p,N1,N2→∞

δ′Σ(g)δ

δ2g
→ 0 (g = 1, 2)
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instead of (A2) and (A3). Here,

δ2g =
4trΣ(g)2

Ng

+
4trΣ(1)Σ(2)

Ng′
+

2trΣ(1)2

N1(N1 − 1)
+

2trΣ(2)2

N2(N2 − 1)

for g, g′ = 1, 2, g ̸= g′. Note that assumptions (A2) and (A3) are weaker
than assumption (A2’). Assuming stronger condition (C2) than the condition
(C1), we can relax the assumption (A2’). The following theorem establishes
the asymptotic normality of W not only under (C1), (A0), (A1) and (A2’),
but also under (C2), (A0)-(A3).

Theorem 2.1. Under assumptions (C1),(A0),(A1) and (A2’) or assump-
tions (C2),(A0)-(A3), it holds that

W + (−1)gδ′δ

σg

d→ N (0, 1).

Proof. Let T = W + (−1)gδ′δ and decompose T as T = T1 + T2, where

T1 = 2(x− µ(g))′δ + 2(x− µ(g))′{(x(1) − µ(1))− (x(2) − µ(2))},

T2 = − 1

N1(N1 − 1)

N1∑
j,k=1
j ̸=k

(x
(1)
j − µ(1))′(x

(1)
k − µ(1))

+
1

N2(N2 − 1)

N2∑
j,k=1
j ̸=k

(x
(1)
j − µ(1))′(x

(1)
k − µ(1))− 2δ′(x(g′) − µ(g′)).

First, we show the asymptotic normality of T under (C1),(A0),(A1) and
(A2’). From Lemma A.2, it holds that

T =

N1+N2∑
i=1

ψi + op(σg),

where

ψi =
2

N1

(x− µ(g))′(x
(1)
i − µ(1)) (i = 1, . . . , N1),

ψi = − 2

N2

(x− µ(g))′(x
(2)
i−N1

− µ(2)) (i = N1 + 1, . . . , N1 +N2).
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Define F0 = {∅,Ω}, F1 = σ{ψ1}, Fi−1 = σ{ψ1, ψ2, . . . , ψi−1}. Then it
is straightforward to show that E[ψi] = 0 and E[ψi|Fi−1] = 0. Thus, ψi

is a martingale difference sequence. Since δ2g/σ
2
g → 1 and Theorem 3 in

Aoshima and Yata (2014), we show the asymptotic normality of T under
(C1),(A0),(A1) and (A2’).

Next, we show the asymptotic normality of T under (C1),(A0)-(A3).
From Lemma A.2, T = T1 + o(σg) under (C1),(A0)-(A3). Let y(g) =

x(g)−µ(g), y(g) = Γ(g)z(g) and Γ(g) = H(g)Λ(g)1/2 . Here, H(g) is an orthogonal
matrix such that H(g)Λ(g)H(g)′ = Σ(g), where Λ(g) = diag(λ

(g)
1 , . . . , λ

(g)
p ) and

λ
(g)
i is i-th eigenvalues of Σ(g). Then T1 can be factorized as T1 =

∑p
i=1 ϵi,

where

ϵi = 2γ
(g)
i zi + 2λ

(g)
i ziz

(g)
i − 2λ

(g)1/2

i zih
(g)
i

′y(g′).

Define F0 = {∅,Ω}, F1 = σ{ϵ1}, Fi−1 = σ{ϵ1, . . . , ϵi−1}. Then it is straight-
forward to show that E[ϵi] = 0 and E[ϵi|Fi−1] = 0. Thus, ϵi is a martingale
difference sequence. To apply the martingale central limit theorem, we need
to show that ∑p

i=1 σ
2
g,i

σ2
g

p→ 1 and

∑p
i=1 E[ϵ

4
i ]

σ4
g

→ 0, (2.1)

where σ2
g,i = E[ϵ2i |Fi−1].

We show the first part of (2.1). Note that

σ2
g,i = 4γ

(g)2

i +
4λ

(g)2

i

Ng

+ 4λ
(g)
i y(g′)′h

(g)
i h

(g)
i

′y(g′) − 8γiλ
(g)1/2

i h
(g)
i

′y(g′),

and

E

[
p∑

i=1

σ2
g,i

]
= σ2

g .

We need to show that Var[R1] = o(σ4
g) and Var[R2] = o(σ4

g), where

R1 = y(g′)′Σ(g)y(g′), R2 = δ′Σ(g)y(g′).

Var[R1] is given by

Var[R1] = E[R2
1]−

1

N2
g′
{tr(Σ(1)Σ(2))}2

≤ 1

N2
g′

(
κ
(g′)
4max

Ng′
+ 2

)
tr(Σ(1)Σ(2))2 = o(σ4

g).
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By applying the Cauchy-Schwarz inequality,

δ′Σ(g)Σ(g′)Σ(g)δ ≤ δ′Σ(g)δ
√

tr(Σ(1)Σ(2))2.

Thus, Var[R2] is given by

Var[R2] = E[R2
2] =

1

Ng′
δ′Σ(g)Σ(g′)Σ(g)δ = o(σ4

g).

Hence, the proof for the first part of (2.1) is complete.
To show the second part of (2.1) we decompose ϵi into the sum of three

parts,

ϵi = ϵi1 + ϵi2 + ϵi3,

where

ϵi1 = γ
(g)
i zi, ϵi2 = 2λ

(g)
i ziz

(g)
i , ϵi3 = 2λ

(g)1/2

i zih
(g)
i

′y(g′).

By applying Hölder’s inequality, E[ϵ4i ] ≤ 27E[ϵ4i1 + ϵ4i2 + ϵ4i3]. Thus, we need
to show that

∑p
i=1 E[ϵ

4
iℓ] = o(σ4

g) for ℓ = 1, 2, 3. Note that

p∑
i=1

E[ϵ4i1] ≤ 16(κ
(g)
4max + 3)max{γ(g)

2

1 , . . . , γ(g)
2

p }δ′Σ(g)δ = o(σ4
g),

p∑
i=1

E[ϵ4i2] ≤ 16

N2
g

(κ
(g)
4max + 3)

(
κ
(g)
4max

Ng

+ 3

)
trΣ(g)4 = o(σ4

g),

p∑
i=1

E[ϵ4i3] ≤ 16

N2
g′
(κ

(g)
4max + 3)

(
κ
(g′)
4max

Ng′
+ 3

)
p∑

i=1

λ
(g)2

i (h
(g)
i

′Σ(g′)h
(g)
i )2

≤ 16

N2
g′
(κ

(g)
4max + 3)

(
κ
(g′)
4max

Ng′
+ 3

)
tr(Σ(1)Σ(2))2 = o(σ4

g).

This proves the second part of (2.1) and completes the proof of the asymptotic
normality of W under (C2),(A0)-(A3). □

3. Estimation of misclassification probability

By using Theorem 2.1, we obtain the limiting values of misclassification
probabilities as

e(g′|g) = Φ (wg) + o(1), (3.1)
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where

wg = −δ′δ + (−1)gc

σg
(g, g′ = 1, 2, g ̸= g′).

The limiting values (3.1) include the unknown values δ′δ and σg. We use an
unbiased estimator of δ′δ:

δ̂′δ = (x(1) − x(2))′(x(1) − x(2))− trS(1)

N1

− trS(2)

N2

.

The unbiased estimator δ̂′δ has been used in two sample tests (Chen and Qin
(2010), Aoshima and Yata (2011)). Now consider the estimator of σg. We
define the unbiased estimators of trΣ(1)Σ(2), trΣ(g)2 and δ′Σ(g)δ as follows:

̂trΣ(1)Σ(2) = trS(1)S(2),

t̂rΣ(g)2 =
Ng − 1

Ng(Ng − 2)(Ng − 3)

{
(Ng − 1)(Ng − 2)trS(g)2 + (trS(g))2

−NgQ
(g)
}

(g = 1, 2),

δ̂′Σ(g)δ =
1

(Ng − 1)(Ng − 2)

{
(Ng − 2)V (g) − 2U (g)

}
− 1

Ng′
trS(g)S(g′)

+
1

Ng(Ng − 2)(Ng − 3)

{
2NgQ

(g) − (Ng − 1)
(
trS(g)

)2
−(Ng − 1)2trS(g)2

}
(g, g′ = 1, 2, g ̸= g′),

where

Q(g) =
1

Ng − 1

Ng∑
j=1

{
(x

(g)
j − x(g))′(x

(g)
j − x(g))

}2

,

V (g) =

Ng∑
j=1

{
(x(g) − x(g′))′(x

(g)
j − x(g))

}2

,

U (g) =

Ng∑
j=1

(x(g) − x(g′))′(x
(g)
j − x(g))(x

(g)
j − x(g))′(x

(g)
j − x(g)).

The unbiased estimator t̂rΣ(g)2 was proposed by Himeno and Yamada (2014)
and Srivastava et al. (2014), and they showed the consistency of this esti-

mator. Further, note that t̂rΣ(g)2 is the same as that proposed by Chen et
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al. (2010). In this paper, we derive the unbiased estimator δ̂′Σ(g)δ, and we
investigate the leading term of variance of these estimators (see Appendix).
By using these estimators, we propose the estimator of σg. We provide the
truncated estimator

max

{
δ̂′Σ(g)δ +

t̂rΣ(g)2

Ng

, 0

}
(3.2)

so that the estimator of σg may be negative. Then it holds that∣∣∣∣∣max

{
δ̂′Σ(g)δ +

t̂rΣ(g)2

Ng

, 0

}
−

(
δ′Σ(g)δ +

trΣ(g)2

Ng

)∣∣∣∣∣
≤

∣∣∣∣∣
(
δ̂′Σ(g)δ +

t̂rΣ(g)2

Ng

)
−

(
δ′Σ(g)δ +

trΣ(g)2

Ng

)∣∣∣∣∣ a.s. (3.3)

From (iii) and (iv) in Lemma A.3, it holds that∣∣∣∣(δ̂′Σ(g)δ +
̂

trΣ(g)2

Ng

)
−
(
δ′Σ(g)δ + trΣ(g)2

Ng

)∣∣∣∣
σg

p−→ 0 (3.4)

under (C1), (A0) and (A1) or (C2), (A0) and (A1). From (3.3) and (3.4), it
holds that∣∣∣∣max

{
δ̂′Σ(g)δ +

̂
trΣ(g)2

Ng
, 0

}
−
(
δ′Σ(g)δ + trΣ(g)2

Ng

)∣∣∣∣
σg

p−→ 0 (3.5)

under (C1), (A0) and (A1) or (C2), (A0) and (A1). By assigning the trun-
cated estimator (3.2) to the portion of σg that may be negative, we propose

σ̂2
g = 4max

{
δ̂′Σ(g)δ +

t̂rΣ(g)2

Ng

, 0

}
+

4

Ng′

̂trΣ(g)Σ(g′).

From (ii) in Lemma A.3 and (3.5), under (C1), (A0) and (A1) or (C2), (A0)
and (A1),

σ̂2
g

σ2
g

p→ 1. (3.6)
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By replacing the unknown values in (3.1) with their estimators δ̂′δ and σ̂2
g ,

we can propose ê(g′|g) = Φ (ŵg) (g, g′ = 1, 2, g ̸= g′), where

ŵg = − δ̂′δ + (−1)gc

σ̂g
.

The following lemma provides the asymptotic properties of the estimator

ê(g′|g).

Lemma 3.1. Under (C1), (A0) and (A1) or (C2), (A0) and (A1), it holds
that

ê(g′|g)− Φ (wg) = op(1).

Proof. First, we show statement when limN1,N2,p→∞ |wg| = ∞. Then, from
(i) in Lemma A.3,

δ̂′δ + (−1)gc

δ′δ + (−1)gc

p→ 1 (3.7)

under (C1), (A0) and (A1) or (C2), (A0) and (A1). From (3.6) and (3.7),

|ŵg − wg|
|wg|

p→ 0.

For∀ε ∈ (0,∞),

P (|Φ(ŵg)− Φ(wg)| > ε) = J1 + J2,

where

J1 = P ({|ŵg − wg| > ξ|wg|} ∩ {|Φ(ŵg)− Φ(wg)| > ε}),
J2 = P ({|ŵg − wg| ≤ ξ|wg|} ∩ {|Φ(ŵg)− Φ(wg)| > ε}).

Here, ξ is some positive constant that satisfies ξ ∈ (0, 1). Then, J1 → 0
under (C1), (A0) and (A1) or (C2), (A0) and (A1). Now, we evaluate J2
when w > 0. It can be expressed as

|Φ(ŵg)− Φ(wg)| ≤ ξ|wg|
1√
2π

exp

[
−1

2
(wg − ξ|wg|)2

]
=

ξ√
2π

|wg| exp
[
−1

2
(1− ξ)2|wg|2

]
.
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The right-hand side of the above inequality converges to 0. Thus, J2 → 0
under (C1), (A0) and (A1) or (C2), (A0) and (A1). Similarly, we can prove
that J2 → 0 when wg ≤ 0. Thus, we get |Φ(ŵg)− Φ(wg)| = op(1).

Next, we show statement when limN1,N2,p→∞ |wg| < ∞. From (i)-(iv) in
Lemma A.3, under (C1), (A0) and (A1) or (C2), (A0) and (A1),

− δ̂′δ + (−1)gc

σg

p→ w∗
g ,

σ̂2
g

σ2
g

p→ 1,

where w∗
g = limN1,N2,p→∞wg. From the above results, we get ŵg

p→ w∗
g . Then,

by using the continuous mapping theorem, we get Φ (ŵg)
p→ Φ

(
w∗

g

)
. Thus,

the proof is complete. □
Using Lemma 3.1 and (3.1), we obtain the following theorem.

Theorem 3.1. Under (C1),(A0),(A1) and (A2’) or (C2),(A0)-(A3), it holds
that

ê(g′|g)− e(g′|g) = op(1).

Proof. From Lemma 3.1 and (3.1), under (C1),(A0),(A1) and (A2’) or
(C2),(A0)-(A3), it holds that

|e(g′|g)− Φ (ŵg)| = |(e(g′|g)− Φ (wg))− (Φ (ŵg)− Φ (wg))|
≤ |e(g′|g)− Φ (wg)|+ |Φ (ŵg)− Φ (wg)|
= op(1).

Thus, the proof is complete. □
We assume limN1,N2,p→∞ |wg| < ∞. By applying Lebesgue’s dominated con-
vergence theorem to Theorem 3.1 since∣∣∣ê(g′|g)− e(g′|g)

∣∣∣ < 1 a.s.,

we get the following corollary.

Corollary 3.1. Under (C1), (A0), (A1), (A2’) and limN1,N2,p→∞ |wg| < ∞
or (C2), (A0)-(A3) and limN1,N2,p→∞ |wg| <∞, it holds that

E
[
ê(g′|g)

]
= e(g′|g) + o(1).
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In many practical problems, certain types of misclassification probabilities
are generally regarded as more serious than others, e.g., medical applications
associated with the diagnosis of diseases. In such cases, it might be desirable
to determine the cut-off c to obtain a specified probability of error, or at least
to approximate a specified probability. Then, one might base the choice of
c on the misclassification probability. This method, denoted in what follows
by M, proposes that the cut-off point c be set such that

M : e(g′|g) = α,

where α is a value derived experimentally. From the results of Theorem 3.1,
the M-based cut-off point for the Euclidean distance discriminant rule using
W is given by

ĉg = (−1)−g−1
(
σ̂gzα + δ̂′δ

)
,

where zα is the α-percentile of N (0, 1) and α ∈ (0, 1). Then the following
theorem holds.

Corollary 3.2. Let us consider the classification rule

W (x)>(resp.≤)ĉg ⇒ x ∈ Π1(resp.Π2).

Then, under assumptions (C1),(A0),(A1) and (A2’) or assumptions (C2),(A0)-
(A3), and δ′δ/σg <∞, it holds that e(g′|g) → α.

Proof. Under assumptions (C1),(A0),(A1) and (A2’) or assumptions
(C2),(A0)-(A3) and δ′δ/σg <∞, it holds that

ĉg
σg

p−→ (−1)−g−1

(
zα − δ′δ

σg

)
.

The above result and Theorem 2.1 imply that e(g′|g) → α. □

4. Numerical results

Now, we investigate the numerical performance of the approximation
which is based on (3.1) and the consistent estimator Φ(ŵg), via Monte Carlo
simulation.
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First, we investigate the accuracy of the asymptotic approximations

(YHS) : e(2|1) ≈ Φ

(
−δ′δ

σ1

)
, (AY) : e(2|1) ≈ Φ

(
−δ′δ

δ1

)
.

Here, the approximation (YHS) represents our proposed method based on
(3.1), and the approximation (AY) represents the method proposed by Aoshima
and Yata (2014). The misclassification probability e(2|1) is calculated via
simulation with 100,000 replications, where in each step, the data sets are
generated as

(Case I) : x
(g)
1 ,x

(g)
2 , . . . ,x

(g)
Ng

i.i.d.∼ Np(µ
(g),Σ(g)) (g = 1, 2),

(Case II) : x
(g)
1 ,x

(g)
2 , . . . ,x

(g)
Ng

i.i.d.∼ tp(µ
(g),Σ(g), ν) (g = 1, 2),

where tp(µ,Σ, ν) denotes a p-variate t-distribution with mean µ, covariance
matrix Σ and degrees of freedom ν, µ(1) = 0 and µ(2) = (1, . . . , 1, 0, . . . , 0)′

the first ⌈
√
trΣ(1)2⌉ elements of which are 1 or µ(2) = (

√
10/p, . . . ,

√
10/p)′.

Here,

Σ(1) = B
(
(0.3)|i−j|1/3

)
B, Σ(2) = 1.2B

(
(0.3)|i−j|1/3

)
B,

where

B = diag

({
0.5 +

1

p+ 1

} 1
2

,

{
0.5 +

2

p+ 1

} 1
2

, . . . ,

{
0.5 +

p

p+ 1

} 1
2

)
.

We set p = 100, 250, 500, 1000, (N1, N2) = (20, 40), (40, 60), (60, 120) and
ν = 10. Then we compare the true value e(2|1), the approximation (YHS)
and the approximation (AY) on the basis of these settings. The results are
shown in Table 1 and 2. By comparing the approximations listed in Table 1
and 2, it can be seen that the approximation (YHS) is closer to the true value
e(2|1) than (AY) in most cases. In addition, the approximation (YHS) has
stably good result when varying the population distribution and the value of
the mean vector µ(2).

Next we investigate the bias and mean squared error (MSE) of the consis-
tent estimator Φ (ŵ1) on the basis of the same settings. For comparison, we
consider the leave-one-out cross-validation method (CV), which is a popular

13



method for estimating prediction errors for small samples. For j = 1, . . . , N1,
consider the set

X
(−j)
1 = (x

(1)
1 , · · · ,x(1)

j−1,x
(1)
j+1, · · · ,x

(1)
N1
).

This set represents the leave-one-out learning set, which is a collection of
data with observation x

(1)
j removed. In a prediction problem, it calculates

the probability of misclassification for a sample using all other observations
in the sample. Using the learning set, we define the discriminant function by

W (−j) = ∥x(1)
j − x(2)∥2 − ∥x(1) − x

(1)
(−j)∥

2 − tr

[
S(2)

N2

−
S
(1)
(−j)

N1 − 1

]
,

where x
(1)
(−j) and S

(1)
(−j) are calculated using procedures based on (1.1) and the

learning set X
(−j)
1 . Then the CV estimator of e(2|1) is given by

CV (2|1) = 1

N1

N1∑
j=1

I{W (−j)<0}(W
(−j)),

where the function IA(x) is the indicator function defined as

IA(x) =

 1, x ∈ A,

0, x /∈ A.

The biases and MSEs of the estimators CV (2|1) and Φ (ŵ1) are listed in
Table 3-6. From these tables, the both estimators have small biases, and the
estimator Φ (ŵ1) has smaller MSEs than the estimator CV (2|1) in all cases.
Thus, through these simulation experiments, we recommend our suggested
estimator in high-dimensional cases.

Finally, we apply our results to a microarray dataset analyzed by Dudoit
et al. (2002). The dataset includes information on 72 patients suffering
from either Π1:acute lymphoblastic leukemia (ALL, 47 cases) or Π2:acute
myeloid leukemia (AML, 25 cases), and it was obtained using affymetrix
oligonucleotide microarrays. We preprocess the dataset by using the protocol
described by Dudoit et al. (2002). The preprocessed dataset comprises 3571
variables. We apply the Euclidean distance discriminant rule with cut-off

0 to this dataset. Using the estimators ê(1|2) and ê(2|1), we calculate the
estimator of misclassification probabilities. The estimate of e(1|2) and e(2|1)
is 0.026 and 0.022, respectively.
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5. Concluding remarks

We considered the classification problem for high-dimensional data. For
high-dimensional data classification, owing to the small number of observa-
tions and large number of dimensions, the Fisher linear discriminant rule
provides sub-optimal performance corresponding to the singularity and in-
stability of the pooled sample covariance matrix. In such cases, the Euclidean
distance-based classifier is often employed. In this paper, we proposed consis-
tent and asymptotically unbiased estimators of misclassification probabilities
in high-dimensional settings. Our proposed method has the advantage of es-
tablishing under variance heterogeneity and nonnormality. In addition, we
performed numerical simulations, which confirmed that this estimator pro-
vides accurate approximations.

Appendix

In this section, we state some results on the moments of a random vector
z(g) = N−1

g

∑Ng

j=1 z
(g)
j , the variance of W , and the variances of unbiased

estimators δ̂′δ, ̂trΣ(1)Σ(2), t̂rΣ(g)2 and δ̂′Σ(g)δ.

Lemma A. 1 (Some results on the moments of a random vector z(g)). Let

z
(g)
j (j = 1, . . . , Ng) be i.i.d. random vectors that satisfy (C1) or (C2). Then

for any p× p positive semidefinite matrices A = (aij) and B = (bij), it holds
that

(i) E[z
(g)4

i ] =
κ
(g)
4i + 3Ng

N3
g

,

(ii) E[(z(g)′Az(g))2] ≤ κ
(g)
4max + 2Ng

N3
g

trA2 +
1

N2
g

(trA)2,

(iii) E[(z
(g)
j

′Az
(g)
j )2] ≤ (κ

(g)
4max + 2)trA2 + (trA)2,

(iv) E[(z
(g)
j

′Az
(g)
k )4] ≤ (κ

(g)
4max + 3)

{
(κ

(g)
4max + 2)trA4 + (trA2)2

}
.

Proof. The proof of Lemma A.1 is routine and hence omitted here.

Lemma A. 2 (The variance of W ). The variance of W is

Var[W ] = σ2
g +

2∑
g=1

2trΣ(g)2

Ng(Ng − 1)
+

4δ′Σ(g′)δ

Ng′
,
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where

σ2
g = 4δ′Σ(g)δ +

4

Ng

trΣ(g)2 +
4

Ng′
trΣ(1)Σ(2).

Proof. Let x ∈ Πg; then, W can be expressed as

W = (−1)g−1δ′δ + 2(x− µ(g))′δ

+2(x− µ(g))′{(x(1) − µ(1))− (x(2) − µ(2))}

− 1

N1(N1 − 1)

N1∑
j,k=1
j ̸=k

(x
(1)
j − µ(1))′(x

(1)
k − µ(1))

+
1

N2(N2 − 1)

N2∑
j,k=1
j ̸=k

(x
(2)
j − µ(2))′(x

(2)
k − µ(2))− 2δ′(x(g′) − µ(g′)).

It is easy to show that E[W ] = (−1)g−1δ′δ. Let T = W − (−1)g−1δ′δ and
decompose T as T = T1 + T2, where

T1 = 2(x− µ(g))′δ + 2(x− µ(g))′{(x(1) − µ(1))− (x(2) − µ(2))},

T2 = − 1

N1(N1 − 1)

N1∑
j,k=1
j ̸=k

(x
(1)
j − µ(1))′(x

(1)
k − µ(1))

+
1

N2(N2 − 1)

N2∑
j,k=1
j ̸=k

(x
(2)
j − µ(2))′(x

(2)
k − µ(2))− 2δ′(x(g′) − µ(g′)).

It can be shown that

Var [T1] = 4δ′Σ(g)δ +
4

Ng

trΣ(g)2 +
4

Ng′
trΣ(1)Σ(2),

Var [T2] =
2

N1(N1 − 1)
trΣ(1)2 +

2

N2(N2 − 1)
trΣ(2)2 +

4

Ng′
δ′Σ(g′)δ

and Cov(T1, T2) = 0. From the above results, the proof of Lemma A.2 is
complete. □
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Lemma A. 3 (The variance of some estimators). We assume that (C1),
(A0), (A1), (A2’) or (C2), (A0)-(A3). Then it holds that

(i) Var[δ̂′δ] =
2

N1(N1 − 1)
trΣ(1)2 +

2

N2(N2 − 1)
trΣ(2)2

+
4

N1N2

trΣ(1)Σ(2) +
4

N1

δ′Σ(1)δ +
4

N2

δ′Σ(2)δ,

(ii) Var[ ̂trΣ(1)Σ(2)] = O

((
1

Ng

+
1

Ng′

)
tr(Σ(g)Σ(g′))2

+
1

NgNg′
(trΣ(g)Σ(g′))2

)
,

(iii) Var[t̂rΣ(g)2 ] = O

(
1

Ng

trΣ(g)4 +
1

N2
g

(trΣ(g)2)2
)
,

(iv) Var[δ̂′Σ(g)δ] = O

(
1

Ng

(
1

Ng

+
1

Ng′

)2

(trΣ(g)2)2

+
1

Ng

(
1

Ng

+
1

Ng′

)
δ′Σ(g)δtrΣ(g)2

+
1

Ng

(δ′Σ(g)δ)2
)

+o

((
1

Ng

+
1

Ng′

)2

(trΣ(g)2)2

+

(
1

Ng

+
1

Ng′

)
δ′Σ(g)δtrΣ(g)2

)
.

Proof. For the proof of (i), see e.g. Chen and Qin (2010). The proof of (ii)

follows the same approach. Note that the estimator t̂rΣ(g)2 is the same as
that is proposed by Chen et al. (2010). For the details of (iii), see e.g. Chen

et al. (2010). We give the proof of (iv). Let y
(g)
j = x

(g)
j − µ(g). From the

definition of δ̂′Σ(g)δ, this statistic can be expressed as δ̂′Σ(g)δ =
∑12

α=1Wα,
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where

W1 =
1

Ng(Ng − 1)(Ng − 2)

Ng∑
j,k,ℓ=1

j ̸=k,k ̸=ℓ,ℓ ̸=j

y
(g)
j

′y
(g)
k y

(g)
j

′y
(g)
ℓ ,

W2 = − 1

Ng(Ng − 1)(Ng − 2)(Ng − 3)

Ng∑
j,k,ℓ,m=1
j ̸=k ̸=ℓ ̸=m
ℓ ̸=j ̸=m̸=k

y
(g)
j

′y
(g)
k y

(g)
ℓ

′y(g)
m ,

W3 = − 2

NgNg′(Ng − 1)

Ng∑
j,k=1
j ̸=k

Ng′∑
ℓ=1

y
(g)
j

′y
(g)
k y

(g)
j

′y
(g′)
ℓ ,

W4 =
2

NgNg′(Ng − 1)(Ng − 2)

Ng∑
j,k,ℓ=1

j ̸=k,k ̸=ℓ,ℓ ̸=j

Ng′∑
m=1

y
(g)
j

′y
(g)
k y

(g)
ℓ

′y(g′)
m ,

W5 =
2

NgNg′(Ng′ − 1)

Ng∑
j=1

Ng′∑
k,ℓ=1
k ̸=ℓ

y
(g)
j

′y
(g′)
k y

(g)
j

′y
(g′)
ℓ ,

W6 = − 2

Ng(Ng − 1)Ng′(Ng′ − 1)

Ng∑
j,k=1
j ̸=k

Ng′∑
ℓ,m=1
ℓ ̸=m

y
(g)
j

′y
(g′)
ℓ y

(g)
k

′y(g′)
m ,

W7 =
2

Ng(Ng − 1)

Ng∑
j,k=1
j ̸=k

(
µ(g) − µ(g′)

)′
y
(g)
j y

(g)
j

′y
(g)
k ,

W8 = − 2

Ng(Ng − 1)(Ng − 2)

Ng∑
j,k,ℓ=1

j ̸=k,k ̸=ℓ,ℓ ̸=j

(
µ(g) − µ(g′)

)′
y
(g)
j y

(g)
k

′y
(g)
ℓ ,

W9 = − 2

NgNg′

Ng∑
j=1

Ng′∑
k=1

(
µ(g) − µ(g′)

)′
y
(g)
j y

(g)
j

′y
(g′)
k ,

W10 =
2

NgNg′(Ng − 1)

Ng∑
j,k=1
j ̸=k

Ng′∑
ℓ=1

(
µ(g) − µ(g′)

)′
y
(g)
j y

(g)
k

′y
(g′)
ℓ ,
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W11 =
1

Ng

Ng∑
j=1

(
µ(g) − µ(g′)

)′
y
(g)
j y

(g)
j

′
(
µ(g) − µ(g′)

)
,

W12 = − 1

Ng(Ng − 1)

Ng∑
j,k=1
j ̸=k

(
µ(g) − µ(g′)

)′
y
(g)
j y

(g)
k

′
(
µ(g) − µ(g′)

)
.

The variances of Wα(for α = 1, . . . , 12) are derived as

Var[W1] = O

(
1

N3
g

(trΣ(g)2)2 +
1

N2
g

trΣ(g)4
)
,

Var[W2] = O

(
1

N4
g

(trΣ(g)2)2
)
,

Var[W3] = O

(
1

N2
gNg′

(trΣ(g)2)2 +
1

NgNg′
trΣ(g)3Σ(g′)

)
,

Var[W4] = O

(
1

N3
gNg′

(trΣ(g)2)2
)
,

Var[W5] = O

(
1

NgN2
g′
(trΣ(g)Σ(g′))2 +

1

N2
g′
tr(Σ(g)Σ(g′))2

)
,

Var[W6] = O

(
1

N2
gN

2
g′
(trΣ(g)Σ(g′))2

)
,

Var[W7] = O

(
1

N2
g

δ′Σ(g)δtrΣ(g)2 +
1

N3
g

δ′Σ(g)δ
(
trΣ(g)4

)1/2)
,

Var[W8] = O

(
1

N3
g

δ′Σ(g)δtrΣ(g)2 +
1

N3
g

δ′Σ(g)δ
(
trΣ(g)4

)1/2)
,

Var[W9] = O

(
1

NgNg′
δ′Σ(g)δtrΣ(g)2 +

1

Ng′
δ′Σ(g)δ

(
tr(Σ(g)Σ(g′))2

)1/2)
,

Var[W10] = O

(
1

N3
gNg′

δ′Σ(g)δtrΣ(g)Σ(g′)

)
,

Var[W11] = O

(
1

Ng

(δ′Σ(g)δ)2
)
,

Var[W12] = O

(
1

N2
g

(δ′Σ(g)δ)2
)
.

From the above results, the proof is complete. □
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Table 1: Comparison of approximations where µ(2) = (
√

10/p, . . . ,
√
10/p)′

(N1, N2)
p (20,40) (40,80) (60,120)

100 e(2|1) Case I 0.2700 0.2626 0.2611
Case II 0.2586 0.2480 0.2436

approx YHS 0.2744 0.2641 0.2604
AY 0.0883 0.0273 0.0092

250 e(2|1) Case I 0.3071 0.2886 0.2817
Case II 0.2908 0.2731 0.2673

approx YHS 0.3076 0.2903 0.2835
AY 0.1984 0.1141 0.0696

500 e(2|1) Case I 0.3354 0.3118 0.2996
Case II 0.3229 0.2973 0.2838

approx YHS 0.3349 0.3113 0.3009
AY 0.2751 0.1977 0.1485

1000 e(2|1) Case I 0.3653 0.3356 0.3229
Case II 0.3574 0.3219 0.3090

approx YHS 0.3646 0.3363 0.3220
AY 0.3365 0.2742 0.2308
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Table 2: Comparison of approximations where µ(2) = (1, . . . , 1, 0, . . . , 0)′

(N1, N2)
p (20,40) (40,80) (60,120)

100 e(2|1) Case I 0.1360 0.1125 0.1020
Case II 0.1257 0.1018 0.0918

approx YHS 0.1369 0.1120 0.1026
AY 0.0395 0.0062 0.0011

250 e(2|1) Case I 0.1152 0.0840 0.0740
Case II 0.1042 0.0783 0.0698

approx YHS 0.1125 0.0837 0.0730
AY 0.0376 0.0057 0.0010

500 e(2|1) Case I 0.1008 0.0677 0.0551
Case II 0.0891 0.0618 0.0516

approx YHS 0.0969 0.0658 0.0544
AY 0.0365 0.0054 0.0009

1000 e(2|1) Case I 0.0877 0.0537 0.0407
Case II 0.0823 0.0494 0.0406

approx YHS 0.0861 0.0525 0.0406
AY 0.0382 0.0059 0.0010
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Table 3: Comparison of Biases and MSEs where µ(2) = (
√
10/p, . . . ,

√
10/p)′ in Case I

(N1, N2)
p (20,40) (40,80) (60,120)

100 Bias Φ(ŵ1) 0.0062 0.0018 -0.0008
CV (2|1) 0.0020 -0.0006 -0.0025

MSE Φ(ŵ1) 0.0046 0.0019 0.0012
CV (2|1) 0.0073 0.0033 0.0022

250 Bias Φ(ŵ1) 0.0042 0.0030 0.0023
CV (2|1) 0.0007 0.0002 0.0004

MSE Φ(ŵ1) 0.0055 0.0022 0.0013
CV (2|1) 0.0084 0.0037 0.0024

500 Bias Φ(ŵ1) 0.0029 0.0013 0.0021
CV (2|1) 0.0010 -0.0006 0.0003

MSE Φ(ŵ1) 0.0063 0.0025 0.0015
CV (2|1) 0.0095 0.0042 0.0026

1000 Bias Φ(ŵ1) 0.0026 0.0027 0.0006
CV (2|1) 0.0019 0.0013 -0.0007

MSE Φ(ŵ1) 0.0069 0.0030 0.0018
CV (2|1) 0.0102 0.0047 0.0030
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Table 4: Comparison of Biases and MSEs where µ(2) = (1, . . . , 1, 0, . . . , 0)′ in Case I

(N1, N2)
p (20,40) (40,80) (60,120)

100 Bias Φ(ŵ1) -0.0005 -0.0010 0.0003
CV (2|1) 0.0027 0.0000 0.0010

MSE Φ(ŵ1) 0.0028 0.0011 0.0007
CV (2|1) 0.0048 0.0020 0.0012

250 Bias Φ(ŵ1) -0.0030 -0.0001 -0.0007
CV (2|1) 0.0004 0.0007 -0.0004

MSE Φ(ŵ1) 0.0024 0.0009 0.0005
CV (2|1) 0.0043 0.0016 0.0010

500 Bias Φ(ŵ1) -0.0032 -0.0011 0.0000
CV (2|1) 0.0002 -0.0007 0.0001

MSE Φ(ŵ1) 0.0022 0.0007 0.0004
CV (2|1) 0.0039 0.0014 0.0008

1000 Bias Φ(ŵ1) -0.0002 -0.0002 0.0007
CV (2|1) 0.0028 0.0002 0.0004

MSE Φ(ŵ1) 0.0020 0.0005 0.0003
CV (2|1) 0.0037 0.0012 0.0006
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Table 5: Comparison of Biases and MSEs where µ(2) = (
√
10/p, . . . ,

√
10/p)′ in Case II

(N1, N2)
p (20,40) (40,80) (60,120)

100 Bias Φ(ŵ1) 0.0143 0.0149 0.0158
CV (2|1) -0.0017 -0.0015 -0.0007

MSE Φ(ŵ1) 0.0052 0.0024 0.0016
CV (2|1) 0.0071 0.0033 0.0021

250 Bias Φ(ŵ1) 0.0171 0.0167 0.0156
CV (2|1) 0.0031 0.0008 -0.0004

MSE Φ(ŵ1) 0.0062 0.0027 0.0017
CV (2|1) 0.0084 0.0037 0.0024

500 Bias Φ(ŵ1) 0.0131 0.0142 0.0169
CV (2|1) 0.0011 -0.0004 0.0018

MSE Φ(ŵ1) 0.0068 0.0030 0.0019
CV (2|1) 0.0093 0.0042 0.0026

1000 Bias Φ(ŵ1) 0.0075 0.0149 0.0134
CV (2|1) -0.0016 0.0023 -0.0001

MSE Φ(ŵ1) 0.0071 0.0034 0.0021
CV (2|1) 0.0101 0.0047 0.0029
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Table 6: Comparison of Biases and MSEs where µ(2) = (1, . . . , 1, 0, . . . , 0)′ in Case II

(N1, N2)
p (20,40) (40,80) (60,120)

100 Bias Φ(ŵ1) 0.0074 0.0086 0.0099
CV (2|1) 0.0008 0.0009 0.0021

MSE Φ(ŵ1) 0.0034 0.0015 0.0010
CV (2|1) 0.0046 0.0019 0.0012

250 Bias Φ(ŵ1) 0.0062 0.0049 0.0031
CV (2|1) 0.0019 -0.0004 -0.0016

MSE Φ(ŵ1) 0.0030 0.0011 0.0007
CV (2|1) 0.0041 0.0016 0.0009

500 Bias Φ(ŵ1) 0.0071 0.0045 0.0032
CV (2|1) 0.0035 0.0011 0.0006

MSE Φ(ŵ1) 0.0028 0.0009 0.0005
CV (2|1) 0.0038 0.0013 0.0007

1000 Bias Φ(ŵ1) 0.0035 0.0040 0.0007
CV (2|1) 0.0006 0.0018 -0.0002

MSE Φ(ŵ1) 0.0025 0.0007 0.0004
CV (2|1) 0.0035 0.0011 0.0006
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