Tests for Normal Mean Vectors with Monotone Incomplete Data

Ayaka Yagi and Takashi Seo

Department of Mathematical Information Science Tokyo University of Science 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

In this article, we consider tests for mean vectors when each data set has a monotone missing data pattern. We obtain the simplified Hotelling's T^2 -type statistics and their approximate upper percentiles in the case of data with general k-step monotone missing data patterns. We also consider multivariate multiple comparisons for mean vectors with general k-step monotone missing data. Approximate simultaneous confidence intervals for pairwise comparisons among mean vectors and comparisons with a control are obtained using Bonferroni's approximation procedure. Finally, the accuracy and asymptotic behavior of the approximations are investigated by Monte Carlo simulation.

Key Words and Phrases: Comparisons with a control, Hotelling's T^2 -type statistic, Maximum likelihood estimator, One-sample problem, Pairwise comparisons, Two-sample problem.

1 Introduction

The one-sample and two-sample problems of testing for mean vectors with monotone missing data are considered in this study. The case in which the missing observations are of the monotone type has been considered by several authors, including Rao (1956), Anderson (1957), and Bhargava (1962). The closed form expressions for the maximum likelihood estimators (MLEs) of the mean vector and the covariance matrix in the case of k-step monotone missing data under multivariate normality were derived by Jinadasa and Tracy (1992). Kanda and Fujikoshi (1998) discussed the distribution of the MLEs in the case of k-step monotone missing data. These results were derived for the one-sample problem. In the case of a two-step monotone missing data pattern, the usual Hotelling's T^2 statistic and various properties were derived by Chang and Richards (2009) and Seko, Yamazaki and Seo (2012), among others. Further, for the case of a three-step monotone missing data pattern, Krishnamoorthy and Pannala (1999) derived the Hotelling's T^2 statistic and F approximation, and Yagi and Seo (2014) gave a simplified Hotelling's T^2 -type statistic and its approximation to the upper percentiles under the one-sample problem. In the two-sample problem in a case of a two-step monotone missing data pattern, Seko, Kawasaki and Seo (2011) derived a Hotelling's T^2 statistic, the likelihood ratio test statistic, and their approximate upper percentiles. In addition, Yu, Krishnamoorthy and Pannala (2006) derived the Hotelling's T^2 statistic and its approximate distribution using another approach. Seko (2012) discussed tests for mean vectors with two-step monotone missing data for the *m*-sample problem. In the case of three-step monotone missing data, Yagi and Seo (2015b) used the concepts of Yagi and Seo (2014) to determine the approximate upper percentiles of the simplified Hotelling's T^2 -type statistic for the two-sample problem. In this article, for the two-sample and *m*-sample problems, we propose a simplified Hotelling's T^2 -type statistic and its approximate upper percentile in the case of general *k*-step monotone missing data. This result is an extension of Yagi and Seo (2014, 2015b).

The remainder of this article is organized as follows. In Section 2, some preliminary notations, the MLEs of the mean vectors, and the common covariance matrix for the *m*sample problem are given in the case of *k*-step monotone missing data. In Section 3, for the one-sample problem, we discuss the test for the mean vector in the case of *k*-step monotone missing data. Further, we give the Hotelling's T^2 -type statistic to test the equality of two mean vectors and their approximate upper percentiles in the case of *k*-step monotone missing data. In addition, we discuss the Hotelling's T^2 -type statistics when two data sets have unequal monotone missing data patterns. We also present simultaneous confidence intervals for multiple comparisons among mean vectors under the two-sample and *m*sample problems. In order to obtain the simultaneous confidence intervals, we derive the approximate upper percentiles of the T^2_{max} -type statistics by Bonferroni's approximation. Finally, in Section 4, we give the simulation results and state our conclusions.

2 Monotone missing data and MLEs

In this section, we consider the MLEs of the mean vectors and the covariance matrix for the m-sample problem in the case of k-step monotone missing data. We assume that m covariance matrices are equal and unknown. We first present some notations, definitions, and the setting in this aricle. Then, we derive the MLEs using the derivation of Yagi and Seo (2015b).

2.1 k-step monotone missing data

Let \boldsymbol{x} be distributed as $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let $\boldsymbol{x}_i = (\boldsymbol{x})_i$ be the subvector of \boldsymbol{x} containing the first p_i components of \boldsymbol{x} . Then, $\boldsymbol{x}_i (= (x_1, x_2, \dots, x_{p_i})')$ is distributed as $N_{p_i}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$, $i = 1, 2, \dots, k$, with $p = p_1 > p_2 > \dots > p_k > 0$, where $\boldsymbol{\mu}_i = (\boldsymbol{\mu})_i = (\mu_1, \mu_2, \dots, \mu_{p_i})'$ and $\boldsymbol{\Sigma}_i$ is the $p_i \times p_i$ principal submatrix of $\boldsymbol{\Sigma}(= \boldsymbol{\Sigma}_1)$. Suppose we have n_1 observations on \boldsymbol{x}_1, n_2 observations on $\boldsymbol{x}_2, \dots, n_k$ observations on \boldsymbol{x}_k . If \boldsymbol{x}_{ij} denotes the *j*th observation on \boldsymbol{x}_i , then the *k*-step monotone missing data set is of the form

where "*" indicates a missing observation. We now define $N_1 = 0$ and $N_{i+1} = \sum_{j=1}^{i} n_j$, $i = 1, 2, \ldots, k$.

Further, for the covariance matrix, let $\Sigma_1 = \Sigma$ and, for $1 \le i < j \le k$, let $(\Sigma_i)_j$ be the principal submatrix of Σ_i of order $p_j \times p_j$; we define

$$\boldsymbol{\Sigma}_{i+1} = (\boldsymbol{\Sigma}_1)_{i+1}, \ \boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{i+1} & \boldsymbol{\Sigma}_{i+1,2} \\ \boldsymbol{\Sigma}_{i+1,2}' & \boldsymbol{\Sigma}_{i+1,3} \end{pmatrix}$$

and

$$\boldsymbol{\Sigma}_{i} = \begin{pmatrix} \boldsymbol{\Sigma}_{i+1} & \boldsymbol{\Sigma}_{(i,2)} \\ \boldsymbol{\Sigma}'_{(i,2)} & \boldsymbol{\Sigma}_{(i,3)} \end{pmatrix}, \ i = 1, 2, \dots, k-1.$$

We use these notations, which are based on Jinadasa and Tracy (1992) and Yagi and Seo (2015b), throughout this article.

2.2 The MLEs of the mean vectors and the covariance matrix

Using the notations in Subsection 2.1, we consider the MLEs of the mean vectors and the common covariance matrix for the m-sample problem.

Let $\boldsymbol{x}_{i1}^{(\ell)}, \boldsymbol{x}_{i2}^{(\ell)}, \dots, \boldsymbol{x}_{in_i^{(\ell)}}^{(\ell)}$ be distributed as $N_{p_i}(\boldsymbol{\mu}_i^{(\ell)}, \boldsymbol{\Sigma}_i)$ for $i = 1, 2, \dots, k$ and $\ell = 1, 2, \dots, m$, where $\boldsymbol{\mu}_i^{(\ell)} = (\mu_1^{(\ell)}, \mu_2^{(\ell)}, \dots, \mu_{p_i}^{(\ell)})'$ and $\boldsymbol{\Sigma}_i$ is the $p_i \times p_i$ covariance matrix, where $p = p_1 > p_2 > \dots > p_k > 0$, $\sum_{\ell=1}^m n_1^{(\ell)} - m \ge p \ge k$. Let

$$\overline{\boldsymbol{x}}_{i}^{(\ell)} = \frac{1}{n_{i}^{(\ell)}} \sum_{j=1}^{n_{i}^{(\ell)}} \boldsymbol{x}_{ij}^{(\ell)},$$

$$\boldsymbol{E}_{i}^{(\ell)} = \sum_{j=1}^{n_{i}^{(\ell)}} (\boldsymbol{x}_{ij}^{(\ell)} - \overline{\boldsymbol{x}}_{i}^{(\ell)}) (\boldsymbol{x}_{ij}^{(\ell)} - \overline{\boldsymbol{x}}_{i}^{(\ell)})', \ i = 1, 2, \dots, k.$$

Further, we define

$$N_{1}^{(\ell)} = 0, \ N_{i+1}^{(\ell)} = \sum_{j=1}^{i} n_{j}^{(\ell)}, \ i = 1, 2, \dots, k,$$

$$\nu_{i \cdot m} = \sum_{\ell=1}^{m} n_{i}^{(\ell)}, \ i = 1, 2, \dots, k, \ M_{i \cdot m} = \sum_{\ell=1}^{m} N_{i}^{(\ell)}, \ i = 1, 2, \dots, k+1$$

$$d_{1}^{(\ell)} = \overline{x}_{1}^{(\ell)}, \ d_{i}^{(\ell)} = \frac{n_{i}^{(\ell)}}{N_{i+1}^{(\ell)}} \left[\overline{x}_{i}^{(\ell)} - \frac{1}{N_{i}^{(\ell)}} \sum_{j=1}^{i-1} n_{j}^{(\ell)} (\overline{x}_{j}^{(\ell)})_{i} \right], \ i = 2, 3, \dots, k,$$

$$f_{1}^{(\ell)} = d_{1}^{(\ell)}, \ f_{i}^{(\ell)} = U_{i} d_{i}^{(\ell)}, \ i = 2, 3, \dots, k,$$

$$U_{1} = T_{1}, \ U_{i} = U_{i-1} T_{i}, \ i = 2, 3, \dots, k,$$

$$T_{1} = I_{p_{1}}, \ T_{i+1} = \left(\sum_{\Sigma_{(i,2)}^{\prime} \sum_{i+1}^{i-1}}^{I_{p_{i+1}}} \right), \ i = 1, 2, \dots, k-1.$$

The MLEs of $\mu^{(\ell)}$ and Σ are given in the following theorem.

Theorem 1. Let $\mathbf{x}_{ij}^{(\ell)}$ $i = 1, 2, ..., k, j = 1, 2, ..., n_i^{(\ell)}, \ell = 1, 2, ..., m$ be the *j*-th random vector of the *i*-th step from the ℓ -th population distributed as $N_{p_i}(\boldsymbol{\mu}_i^{(\ell)}, \boldsymbol{\Sigma}_i)$. Then, the MLEs of $\boldsymbol{\mu}^{(\ell)}, \ell = 1, 2, ..., m$ are given by

$$\widehat{oldsymbol{\mu}}^{(\ell)} = \sum_{i=1}^k \widehat{oldsymbol{f}}_i^{(\ell)},$$

where

$$\widehat{\boldsymbol{f}}_{1}^{(\ell)} = \boldsymbol{d}_{1}^{(\ell)}, \ \widehat{\boldsymbol{f}}_{i}^{(\ell)} = \widehat{\boldsymbol{U}}_{i}^{[pl]} \boldsymbol{d}_{i}^{(\ell)}, \ i = 2, 3, \dots, k,$$

$$\widehat{\boldsymbol{U}}_{1}^{[pl]} = \boldsymbol{T}_{1}, \quad \widehat{\boldsymbol{U}}_{i}^{[pl]} = \widehat{\boldsymbol{U}}_{i-1}^{[pl]} \widehat{\boldsymbol{T}}_{i}^{[pl]}, \quad i = 2, 3, \dots, k,$$
$$\boldsymbol{T}_{1} = \boldsymbol{I}_{p_{1}}, \quad \widehat{\boldsymbol{T}}_{i+1}^{[pl]} = \begin{pmatrix} \boldsymbol{I}_{p_{i+1}} \\ \widehat{\boldsymbol{\Sigma}}_{(i,2)}^{[pl]^{-1}} \widehat{\boldsymbol{\Sigma}}_{i+1}^{[pl]^{-1}} \end{pmatrix}, \quad i = 1, 2, \dots, k-1;$$

then, the MLE of the covariance matrix is given by

$$\widehat{\boldsymbol{\Sigma}}^{[pl]} = \frac{1}{M_{2 \cdot m}} \sum_{\ell=1}^{m} \boldsymbol{H}_{1}^{(\ell)} + \sum_{\ell=1}^{m} \sum_{i=2}^{k} \frac{1}{M_{i+1 \cdot m}} \boldsymbol{F}_{i}^{[pl]} \left[\boldsymbol{H}_{i}^{(\ell)} - \frac{\nu_{i \cdot m}}{M_{i \cdot m}} \boldsymbol{L}_{i-1,1}^{(\ell)} \right] \boldsymbol{F}_{i}^{[pl]'},$$

where

$$\begin{aligned} \boldsymbol{H}_{1}^{(\ell)} &= \boldsymbol{E}_{1}^{(\ell)}, \ \boldsymbol{H}_{i}^{(\ell)} &= \boldsymbol{E}_{i}^{(\ell)} + \frac{N_{i}^{(\ell)} N_{i+1}^{(\ell)}}{n_{i}^{(\ell)}} \boldsymbol{d}_{i}^{(\ell)} \boldsymbol{d}_{i}^{(\ell)'}, \ i = 2, 3, \dots, k, \\ \boldsymbol{L}_{1}^{(\ell)} &= \boldsymbol{H}_{1}^{(\ell)}, \ \boldsymbol{L}_{i}^{(\ell)} &= (\boldsymbol{L}_{i-1}^{(\ell)})_{i} + \boldsymbol{H}_{i}^{(\ell)}, \ i = 2, 3, \dots, k, \\ \boldsymbol{L}_{i1}^{(\ell)} &= (\boldsymbol{L}_{i}^{(\ell)})_{i+1}, \ \boldsymbol{L}_{i}^{(\ell)} &= \begin{pmatrix} \boldsymbol{L}_{i1}^{(\ell)} & \boldsymbol{L}_{i2}^{(\ell)} \\ \boldsymbol{L}_{i2}^{(\ell)'} & \boldsymbol{L}_{i3}^{(\ell)} \end{pmatrix}, \ i = 1, 2, \dots, k-1 \end{aligned}$$

and

$$\boldsymbol{F}_{1}^{[pl]} = \boldsymbol{G}_{1}, \quad \boldsymbol{F}_{i}^{[pl]} = \boldsymbol{F}_{i-1}^{[pl]} \boldsymbol{G}_{i}^{[pl]}, \quad i = 2, 3, \dots, k,$$
$$\boldsymbol{G}_{1} = \boldsymbol{I}_{p_{1}}, \quad \boldsymbol{G}_{i+1}^{[pl]} = \left(\begin{pmatrix} \boldsymbol{I}_{p_{i+1}} \\ \left(\sum_{\ell=1}^{m} \boldsymbol{L}_{i2}^{(\ell)}\right)' \left(\sum_{\ell=1}^{m} \boldsymbol{L}_{i1}^{(\ell)}\right)^{-1} \right), \quad i = 1, 2, \dots, k-1.$$

The above result of Theorem 1 is an extension of Theorem 1 in Yagi and Seo (2015b). Further, we note that this result can be applied to the case in which the data sets have unequal monotone missing data patterns.

3 A simplified Hotelling's T^2 -type statistic

In this section, we first consider the one-sample problem of the test for the mean vector with k-step monotone missing data. We present the simplified Hotelling's T^2 -type statistic and its approximate upper percentiles using the MLEs in the previous section. As in the case of the one-sample problem, we also consider the tests for the equality of two mean vectors and the simultaneous confidence intervals for any and all linear compounds of the mean. Further, we consider the simultaneous confidence intervals for the pairwise comparisons and the comparisons with a control under the *m*-sample problem with *k*-step monotone missing data.

3.1 One-sample problem

In this subsection, we consider the following hypothesis test with a k-step monotone missing data pattern:

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0 \text{ vs. } H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0,$$

where μ_0 is known. Without loss of generality, we can assume that $\mu_0 = 0$. To test the hypothesis H_0 , we consider the simplified Hotelling's T^2 -type statistic given by

$$\widetilde{T}_1^2 = \widehat{\boldsymbol{\mu}}' \ \widetilde{\boldsymbol{\Gamma}}^{-1} \widehat{\boldsymbol{\mu}},$$

where $\widehat{\boldsymbol{\mu}} = \sum_{i=1}^{k} \widehat{\boldsymbol{f}}_{i}$, $\widetilde{\boldsymbol{\Gamma}} = \widehat{\operatorname{Cov}}[\widetilde{\boldsymbol{\mu}}]$, and $\widetilde{\boldsymbol{\mu}} = \sum_{i=1}^{k} \boldsymbol{f}_{i}$. In this article, we use the Hotelling's T^{2} -type statistic with $\widetilde{\boldsymbol{\Gamma}}$ instead of $\widehat{\boldsymbol{\Gamma}}(=\widehat{\operatorname{Cov}}[\widehat{\boldsymbol{\mu}}])$ since $\operatorname{Cov}[\widehat{\boldsymbol{\mu}}]$ is complicated and $\widetilde{\boldsymbol{\Gamma}}$ and $\widehat{\boldsymbol{\Gamma}}$ are asymptotically equivalent. Then, we have the following theorem.

Theorem 2. If the data have a k-step monotone pattern of missing observations, then the covariance matrix of $\tilde{\mu}$ is given by

$$\operatorname{Cov}[\widetilde{\boldsymbol{\mu}}] = \frac{1}{N_2} \boldsymbol{\Sigma}_1 - \sum_{i=2}^k \frac{n_i}{N_i N_{i+1}} \boldsymbol{U}_i \boldsymbol{\Sigma}_i \boldsymbol{U}'_i.$$

Proof. First, since $\operatorname{Cov}[\widetilde{\boldsymbol{\mu}}] = \operatorname{E}[\widetilde{\boldsymbol{\mu}}\widetilde{\boldsymbol{\mu}}'] - \boldsymbol{\mu}\boldsymbol{\mu}'$ and $\widetilde{\boldsymbol{\mu}} = \sum_{i=1}^{k} \boldsymbol{f}_{i}$, we have

$$\mathbf{E}[\widetilde{\boldsymbol{\mu}}\widetilde{\boldsymbol{\mu}}'] = \mathbf{E}[\boldsymbol{f}_1\boldsymbol{f}_1'] + \sum_{r=2}^k \mathbf{E}[\boldsymbol{f}_r\boldsymbol{f}_r'] + 2\bigg[\sum_{s=2}^k \mathbf{E}[\boldsymbol{f}_1\boldsymbol{f}_s'] + \sum_{\substack{r=2\\r< s}}^k \sum_{s=3}^k \mathbf{E}[\boldsymbol{f}_r\boldsymbol{f}_s']\bigg].$$

Further, using the following results,

$$E[\boldsymbol{f}_{1}\boldsymbol{f}_{1}'] = \frac{1}{n_{1}}\boldsymbol{\Sigma}_{1} + \boldsymbol{\mu}_{1}\boldsymbol{\mu}_{1}',$$
$$E[\boldsymbol{f}_{r}\boldsymbol{f}_{r}'] = \frac{n_{r}}{N_{r}N_{r+1}}\boldsymbol{U}_{r}\boldsymbol{\Sigma}_{r}\boldsymbol{U}_{r}', \quad r = 2, 3, \dots, k,$$
$$E[\boldsymbol{f}_{1}\boldsymbol{f}_{s}'] = -\frac{n_{s}}{N_{s}N_{s+1}} \begin{pmatrix}\boldsymbol{\Sigma}_{s}\\\boldsymbol{\Sigma}_{s2}'\end{pmatrix}\boldsymbol{U}_{s}', \quad s = 2, 3, \dots, k,$$

and

$$\operatorname{E}[\boldsymbol{f}_r \boldsymbol{f}'_s] = \boldsymbol{O}, \ 2 \le r < s \le k,$$

we obtain

$$\operatorname{Cov}[\widetilde{\boldsymbol{\mu}}] = \frac{1}{N_2} \boldsymbol{\Sigma}_1 + \sum_{r=2}^k \frac{n_r}{N_r N_{r+1}} \left[\boldsymbol{U}_r \boldsymbol{\Sigma}_r - 2 \begin{pmatrix} \boldsymbol{\Sigma}_r \\ \boldsymbol{\Sigma}_{r2}' \end{pmatrix} \right] \boldsymbol{U}_r'.$$

Therefore,

$$\operatorname{Cov}[\widetilde{\boldsymbol{\mu}}] = \frac{1}{N_2} \boldsymbol{\Sigma}_1 - \sum_{r=2}^k \frac{n_r}{N_r N_{r+1}} \boldsymbol{U}_r \boldsymbol{\Sigma}_r \boldsymbol{U}_r'$$

since $\boldsymbol{U}_r \boldsymbol{\Sigma}_r = \begin{pmatrix} \boldsymbol{\Sigma}_r \\ \boldsymbol{\Sigma}_{r2}' \end{pmatrix}$. \Box

For a two-step monotone missing data pattern, Yagi and Seo (2015a) gave $\text{Cov}(\widehat{\boldsymbol{\mu}})$ as well as $\text{Cov}(\widetilde{\boldsymbol{\mu}})$, and Seko et al. (2012) discussed the usual Hotelling's T^2 statistic, $T_1^2 = \widehat{\boldsymbol{\mu}}' \ \widehat{\boldsymbol{\Gamma}}^{-1} \widehat{\boldsymbol{\mu}}$, and its null distribution using other definitions.

We note that under H_0 , the T^2 -type statistic is asymptotically distributed as a χ^2 distribution with p degrees of freedom when $n_1, N_{k+1} \to \infty$ with $n_1/N_{k+1} \to \delta \in (0, 1]$. However, it has been noted that the χ^2 approximation is not a good approximation to the upper percentile of the T^2 -type statistic when the sample is not large. Using the same concept for three-step monotone missing data used by Yagi and Seo (2014), we propose the approximate upper percentile of the \tilde{T}_1^2 statistic since it is difficult to find the exact upper percentiles of the \tilde{T}_1^2 statistic.

Theorem 3. If the data have a k-step monotone pattern of missing observations, then the two kinds of approximate upper 100 α percentiles of the \widetilde{T}_1^2 statistic are given by

$$t_{\text{YS-L1}}^2(\alpha) = (1 - \omega_1)T_{n_1,\alpha}^2 + \omega_1 T_{N_{k+1},\alpha}^2,$$

$$t_{\text{YS-F1}}^2(\alpha) = \frac{n_1^* p_1}{n_1^* - p_1} F_{p_1,n_1^* - p_1,\alpha},$$

where

$$T_{n_{1},\alpha}^{2} = \frac{n_{1}p_{1}}{n_{1} - p_{1}}F_{p_{1},n_{1} - p_{1},\alpha}, \ T_{N_{k+1},\alpha}^{2} = \frac{N_{k+1}p_{1}}{N_{k+1} - p_{1}}F_{p_{1},N_{k+1} - p_{1},\alpha},$$
$$\omega_{1} = \frac{\sum_{i=2}^{k}n_{i}p_{i}}{p_{1}\sum_{i=2}^{k}n_{i}}, \ n_{1}^{*} = \frac{1}{p_{1}}\sum_{i=1}^{k}n_{i}p_{i},$$

and $F_{p,q,\alpha}$ is the upper 100 α percentile of the F distribution with p and q degrees of freedom.

Further, we consider the simultaneous confidence intervals for any and all linear compounds of the mean when the data have k-step monotone missing observations. Using the approximate upper percentiles of \widetilde{T}_1^2 , for any nonnull vector $\boldsymbol{c} = (c_1, c_2, \ldots, c_p)'$, the approximate simultaneous confidence intervals for $\boldsymbol{c'\mu}$ are given by

$$\boldsymbol{c}'\boldsymbol{\mu} \in \left[\boldsymbol{c}'\widehat{\boldsymbol{\mu}} \pm t_{\mathrm{app}\cdot 1}(\alpha) \{\boldsymbol{c}'\widetilde{\boldsymbol{\Gamma}}\boldsymbol{c}\}^{\frac{1}{2}}\right], \quad \forall \boldsymbol{c} \in \boldsymbol{R}^p - \{\boldsymbol{0}\},$$

where $t_{app\cdot 1}^2(\alpha)$ is the value of $t_{YS\cdot L1}^2(\alpha)$ or $t_{YS\cdot F1}^2(\alpha)$. For three-step monotone missing data, see Yagi and Seo (2014).

3.2 Two-sample problem

In this section, we test the equality of two mean vectors with k-step monotone missing data. We give the simplified T^2 -type statistic and its approximate upper percentiles in the case of unequal monotone missing data. Further, we consider multiple comparisons among mean vectors with k-step monotone missing data.

To test the hypothesis $H_0: \mu^{(1)} = \mu^{(2)}$ vs. $H_1: \mu^{(1)} \neq \mu^{(2)}$ when two data sets have the same k-step monotone missing data pattern, we adopt the Hotelling's T^2 -type statistic given by

$$\widetilde{T}_2^2 = (\widehat{\boldsymbol{\mu}}^{(1)} - \widehat{\boldsymbol{\mu}}^{(2)})' \ \widetilde{\boldsymbol{\Gamma}}^{[pl]^{-1}} (\widehat{\boldsymbol{\mu}}^{(1)} - \widehat{\boldsymbol{\mu}}^{(2)}),$$

where $\widehat{\mu}^{(\ell)} = \sum_{i=1}^{k} \widehat{f}_{i}^{(\ell)}$, $\ell = 1, 2$, and $\widetilde{\Gamma}^{[pl]}$ is an estimator of $\operatorname{Cov}[\widetilde{\mu}^{(1)} - \widetilde{\mu}^{(2)}]$, $\widetilde{\mu}^{(\ell)} = \sum_{i=1}^{k} f_{i}^{(\ell)}$, $\ell = 1, 2$. Then, using the result for the one-sample problem in the previous subsection, we have

$$\widetilde{\boldsymbol{\Gamma}}^{[pl]} = \frac{n_1^{(1)} + n_1^{(2)}}{n_1^{(1)} n_1^{(2)}} \widehat{\boldsymbol{\Sigma}}_1^{[pl]} - \sum_{\ell=1}^2 \sum_{i=2}^k \frac{n_i^{(\ell)}}{N_i^{(\ell)} N_{i+1}^{(\ell)}} \widehat{\boldsymbol{U}}_i^{[pl]} \widehat{\boldsymbol{\Sigma}}_i^{[pl]} \widehat{\boldsymbol{U}}_i^{[pl]'},$$

where $\widehat{\boldsymbol{\Sigma}}^{[pl]}$ is the MLE when m = 2 in Theorem 1.

We note that under H_0 , \tilde{T}_2^2 is asymptotically distributed as a χ^2 distribution with p degrees of freedom when $n_1^{(\ell)}, N_{k+1}^{(\ell)} \to \infty$ with $n_1^{(\ell)}/N_{k+1}^{(\ell)} \to \delta^{(\ell)} \in (0, 1], \ \ell = 1, 2$. However, as with the one-sample problem, we note that the χ^2 approximation is not a good approximate upper percentile of the \tilde{T}_2^2 statistic when the sample size is not large. To obtain an approximation that is accurate even for a small sample, we use the following theorem. **Theorem 4.** Suppose that two data sets have the same k-step monotone missing data pattern. Then, the two approximate upper 100α percentiles of the \widetilde{T}_2^2 statistic are given by

$$t_{\text{YS}\cdot\text{L2}}^{2}(\alpha) = (1 - \omega_{2})T_{\nu_{1}\cdot_{2},\alpha}^{2} + \omega_{2}T_{M_{k+1}\cdot_{2},\alpha}^{2}$$
$$t_{\text{YS}\cdot\text{F2}}^{2}(\alpha) = \frac{n_{2}^{*}p_{1}}{n_{2}^{*} - p_{1} - 1}F_{p_{1},n_{2}^{*} - p_{1} - 1,\alpha},$$

where

$$\omega_2 = \frac{\sum_{i=2}^k \nu_{i\cdot 2} p_i}{p_1 \sum_{i=2}^k \nu_{i\cdot 2}}, \ n_2^* = \frac{1}{p_1} \sum_{i=1}^k \nu_{i\cdot 2} p_i,$$
$$T_{\nu_{1\cdot 2},\alpha}^2 = \frac{\nu_{1\cdot 2} p_1}{\nu_{1\cdot 2} - p_1 - 1} F_{p_1,\nu_{1\cdot 2} - p_1 - 1,\alpha}, \ T_{M_{k+1\cdot 2},\alpha}^2 = \frac{M_{k+1\cdot 2} p_1}{M_{k+1\cdot 2} - p_1 - 1} F_{p_1,M_{k+1\cdot 2} - p_1 - 1,\alpha},$$

and $F_{p,q,\alpha}$ is the upper 100 α percentile of the F distribution with p and q degrees of freedom.

Figure 1: Unequal two-step monotone missing data patterns

Further, we test the equality of two mean vectors when two data sets have unequal general step monotone missing data patterns. For example, the two data sets Π_1 and Π_2 are of the forms given in Figure 1. Then, we can apply the results of Theorem 1 if we put $n_3^{(1)} = 0$ and $n_2^{(2)} = 0$. For details, see Yagi and Seo (2015b).

Next, under the two-sample problem, we consider the simultaneous confidence intervals when each data set has k-step monotone missing observations.

For any nonnull vector $\boldsymbol{c} = (c_1, c_2, \dots, c_p)'$, the simultaneous confidence intervals for $\boldsymbol{c}'(\boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(2)})$ with the confidence level $(1 - \alpha)$ are given by

$$\boldsymbol{c}'(\boldsymbol{\mu}^{(1)}-\boldsymbol{\mu}^{(2)}) \in \left[\boldsymbol{c}'(\widehat{\boldsymbol{\mu}}^{(1)}-\widehat{\boldsymbol{\mu}}^{(2)}) \pm t_2(\alpha) \{\boldsymbol{c}'\widehat{\boldsymbol{\Gamma}}^{[pl]}\boldsymbol{c}\}^{\frac{1}{2}},\right], \ \forall \boldsymbol{c} \in \boldsymbol{R}^p - \{\boldsymbol{0}\},$$

where $t_2^2(\alpha)$ is the upper 100 α percentile of the $T_2^2(=(\widehat{\mu}^{(1)} - \widehat{\mu}^{(2)})'\widehat{\Gamma}^{[pl]^{-1}}(\widehat{\mu}^{(1)} - \widehat{\mu}^{(2)}))$ statistic and $\widehat{\Gamma}^{[pl]}$ is an estimator of $\operatorname{Cov}[\widehat{\mu}^{(1)} - \widehat{\mu}^{(2)}]$. However, it is not easy to obtain $t_2^2(\alpha)$. Therefore, using the approximate upper percentiles of the \widetilde{T}_2^2 statistic, $t_{\operatorname{Ys},\operatorname{L2}}^2(\alpha)$ or $t_{\operatorname{Ys},\operatorname{F2}}^2(\alpha)$, for any nonnull vector $\mathbf{c} = (c_1, c_2, \ldots, c_p)'$, the approximate simultaneous confidence intervals for $\mathbf{c}'(\mu^{(1)} - \mu^{(2)})$ can be obtained by

$$\boldsymbol{c}'(\boldsymbol{\mu}^{(1)}-\boldsymbol{\mu}^{(2)}) \in \left[\boldsymbol{c}'(\widehat{\boldsymbol{\mu}}^{(1)}-\widehat{\boldsymbol{\mu}}^{(2)}) \pm t_{\mathrm{app}\cdot 2}(\alpha) \{\boldsymbol{c}'\widetilde{\boldsymbol{\Gamma}}^{[pl]}\boldsymbol{c}\}^{\frac{1}{2}}\right], \ \forall \boldsymbol{c} \in \boldsymbol{R}^{p} - \{\boldsymbol{0}\}$$

where the value of $t^2_{\text{app}\cdot 2}(\alpha)$ is $t^2_{\text{YS}\cdot\text{L}2}(\alpha)$ or $t^2_{\text{YS}\cdot\text{F}2}(\alpha)$.

3.3 Simultaneous confidence intervals for multiple comparisons among mean vectors

Under the *m*-sample problem, we consider the simultaneous confidence intervals for pairwise multiple comparisons among mean vectors when each data set has *k*-step monotone missing observations. We also consider and construct the simultaneous confidence intervals for comparisons with a control. Let $\boldsymbol{x}_{i1}^{(\ell)}, \boldsymbol{x}_{i2}^{(\ell)}, \ldots, \boldsymbol{x}_{in_i^{(\ell)}}^{(\ell)}$ be distributed as $N_{p_i}(\boldsymbol{\mu}_i^{(\ell)}, \boldsymbol{\Sigma}_i)$ for $i = 1, 2, \ldots, k$ and $\ell = 1, 2, \ldots, m$. Further, we define the T_{\max}^2 statistic as

$$T_{\max \cdot p}^2 = \max_{1 \le a < b \le m} T_{ab}^2,$$

where $T_{ab}^2 = (\widehat{\boldsymbol{\mu}}^{(a)} - \widehat{\boldsymbol{\mu}}^{(b)})' \widehat{\boldsymbol{\Gamma}}_{ab}^{[pl]^{-1}} (\widehat{\boldsymbol{\mu}}^{(a)} - \widehat{\boldsymbol{\mu}}^{(b)})$ and $\widehat{\boldsymbol{\Gamma}}_{ab}^{[pl]}$ is an estimator of $\operatorname{Cov}[\widehat{\boldsymbol{\mu}}^{(a)} - \widehat{\boldsymbol{\mu}}^{(b)}]$. Then, for the case of pairwise multiple comparisons, the simultaneous confidence intervals for $\boldsymbol{c}'(\boldsymbol{\mu}^{(a)} - \boldsymbol{\mu}^{(b)}), 1 \leq a < b \leq m$ are given by

$$\boldsymbol{c}'(\boldsymbol{\mu}^{(a)} - \boldsymbol{\mu}^{(b)}) \in \left[\boldsymbol{c}'(\widehat{\boldsymbol{\mu}}^{(a)} - \widehat{\boldsymbol{\mu}}^{(b)}) \pm t_{\max \cdot p}(\alpha) \{\boldsymbol{c}' \widehat{\boldsymbol{\Gamma}}_{ab}^{[pl]} \boldsymbol{c}\}^{\frac{1}{2}}\right],$$
$$1 \le a < b \le m, \ \forall \boldsymbol{c} \in \boldsymbol{R}^{p} - \{\boldsymbol{0}\},$$

where $t_{\max \cdot p}^2(\alpha)$ is the upper percentile of the $T_{\max \cdot p}^2$ statistic.

Similarly, for the case of comparisons with a control, let $\mu^{(1)}$ be a control and define the $T^2_{\text{max-c}}$ statistic as

$$T_{\max \cdot c}^2 = \max_{2 \le b \le m} T_{1b}^2,$$

where $T_{1b}^2 = (\widehat{\boldsymbol{\mu}}^{(1)} - \widehat{\boldsymbol{\mu}}^{(a)})' \widehat{\boldsymbol{\Gamma}}_{1b}^{[pl]^{-1}} (\widehat{\boldsymbol{\mu}}^{(1)} - \widehat{\boldsymbol{\mu}}^{(b)})$ and $\widehat{\boldsymbol{\Gamma}}_{1b}^{[pl]}$ is an estimator of $\operatorname{Cov}[\widehat{\boldsymbol{\mu}}^{(1)} - \widehat{\boldsymbol{\mu}}^{(b)}].$

Then, the simultaneous confidence intervals for $c'(\mu^{(1)} - \mu^{(b)}), 2 \le b \le m$ are given by

$$\boldsymbol{c}'(\boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(b)}) \in \left[\boldsymbol{c}'(\widehat{\boldsymbol{\mu}}^{(1)} - \widehat{\boldsymbol{\mu}}^{(b)}) \pm t_{\max \cdot \mathbf{c}}(\alpha) \{\boldsymbol{c}' \widehat{\boldsymbol{\Gamma}}_{1b}^{[pl]} \boldsymbol{c}\}^{\frac{1}{2}}\right],$$
$$2 \le b \le m, \ \forall \boldsymbol{c} \in \boldsymbol{R}^p - \{\boldsymbol{0}\},$$

where $t_{\max \cdot c}^2(\alpha)$ is the upper percentile of the $T_{\max \cdot c}^2$ statistic.

However, it is not easy to obtain $t_{\max \cdot p}^2(\alpha)$ and $t_{\max \cdot c}^2(\alpha)$ even under non-missing multivariate normality (see Seo and Siotani (1992), Seo, Mano and Fujikoshi (1994)). Therefore, in this article, we adopt Bonferroni's approximation, which is one of the solutions to this problem. Let $n_i^{(1)} = n_i^{(2)} = \cdots = n_i^{(m)}$, $i = 1, 2, \ldots, k$; then, the null distributions of T_{ab}^2 and T_{1b}^2 are identical. Their approximate simultaneous confidence intervals for pairwise comparisons and comparisons with a control are given by

$$\boldsymbol{c}'(\boldsymbol{\mu}^{(a)} - \boldsymbol{\mu}^{(b)}) \in \left[\boldsymbol{c}'(\boldsymbol{\widehat{\mu}}^{(a)} - \boldsymbol{\widehat{\mu}}^{(b)}) \pm t_{\text{Bon}}(\alpha_{\text{p}}) \{\boldsymbol{c}' \boldsymbol{\widetilde{\Gamma}}_{ab}^{[pl]} \boldsymbol{c}\}^{\frac{1}{2}}\right],$$
$$1 \le a < b \le m, \ \forall \boldsymbol{c} \in \boldsymbol{R}^{p} - \{\boldsymbol{0}\},$$

and

$$\boldsymbol{c}'(\boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(b)}) \in \left[\boldsymbol{c}'(\widehat{\boldsymbol{\mu}}^{(1)} - \widehat{\boldsymbol{\mu}}^{(b)}) \pm t_{\text{Bon}}(\alpha_{\text{c}}) \{\boldsymbol{c}' \widetilde{\boldsymbol{\Gamma}}_{1b}^{[pl]} \boldsymbol{c}\}^{\frac{1}{2}}\right],$$
$$2 \leq b \leq m, \ \forall \boldsymbol{c} \in \boldsymbol{R}^{p} - \{\boldsymbol{0}\}$$

respectively, where the value of $t_{\text{Bon}}^2(\alpha_p)$ is $t_{\text{YS}\cdot\text{L}m}^2(\alpha_p)$ or $t_{\text{YS}\cdot\text{F}m}^2(\alpha_p)$ and the value of $t_{\text{Bon}}^2(\alpha_c)$ is $t_{\text{YS}\cdot\text{L}m}^2(\alpha_c)$ or $t_{\text{YS}\cdot\text{F}m}^2(\alpha_c)$, which are given in the following Theorem 5, and

$$\alpha_{\rm p} = \frac{2\alpha}{m(m-1)}, \ \alpha_{\rm c} = \frac{\alpha}{m-1}.$$

We note that $\widetilde{\Gamma}_{ab}^{[pl]}$ and $\widetilde{\Gamma}_{1b}^{[pl]}$ are estimated by the use of $\widehat{\Sigma}^{[pl]}$ in Theorem 1.

Theorem 5. Suppose that m data sets have the same k-step monotone missing data pattern. Then, the two approximate upper 100α percentiles of the $T_{\text{max-p}}^2$ and $T_{\text{max-c}}^2$ statistics are given by

$$t_{\text{YS-Lm}}^2(\alpha_{\text{p}}) = (1 - \omega_m) T_{\nu_{1\cdot m}, \alpha_{\text{p}}}^2 + \omega_m T_{M_{k+1\cdot m}, \alpha_{\text{p}}}^2,$$

$$t_{\text{YS-Fm}}^2(\alpha_{\text{p}}) = \frac{n_m^* p_1}{n_m^* - p_1 - (m-1)} F_{p_1, n_m^* - p_1 - (m-1), \alpha_{\text{p}}}$$

and

$$t_{\text{YS-}Lm}^2(\alpha_{\text{c}}) = (1 - \omega_m) T_{\nu_{1\cdot m}, \alpha_{\text{c}}}^2 + \omega_m T_{M_{k+1\cdot m}, \alpha_{\text{c}}}^2,$$

$$t_{\text{YS-}Fm}^2(\alpha_{\text{c}}) = \frac{n_m^* p_1}{n_m^* - p_1 - (m-1)} F_{p_1, n_m^* - p_1 - (m-1), \alpha_{\text{c}}}$$

respectively, where

$$\alpha_{\rm p} = \frac{2\alpha}{m(m-1)}, \ \alpha_{\rm c} = \frac{\alpha}{m-1}, \ \omega_m = \frac{\sum_{i=2}^k \nu_{i\cdot m} p_i}{p_1 \sum_{i=2}^k \nu_{i\cdot m}}, \ n_m^* = \frac{1}{p_1} \sum_{i=1}^k \nu_{i\cdot m} p_i,$$
$$T_{\nu_{1\cdot m},\alpha}^2 = \frac{\nu_{1\cdot m} p_1}{\nu_{1\cdot m} - p_1 - (m-1)} F_{p_1,\nu_{1\cdot m} - p_1 - (m-1),\alpha},$$
$$T_{M_{k+1\cdot m},\alpha}^2 = \frac{M_{k+1\cdot m} p_1}{M_{k+1\cdot m} - p_1 - (m-1)} F_{p_1,M_{k+1\cdot m} - p_1 - (m-1),\alpha},$$

and $F_{p,q,\alpha}$ is the upper 100 α percentile of the F distribution with p and q degrees of freedom.

4 Simulation studies

In this section, we investigate the accuracy and asymptotic behavior of the approximations for the upper percentiles of Hotelling's T^2 -type statistic for one-sample, two-sample, and *m*-sample problems by Monte Carlo simulation. We provide the simulated upper percentiles and their approximations for selected parameters.

4.1 One-sample problem

For the one-sample problem, we compute the upper percentiles of the Hotelling's T^2 type statistic with k-step monotone missing data using Monte Carlo simulation (10⁶ runs). That is, the \tilde{T}_1^2 statistic is computed 10⁶ times based on the normal random vectors generated from $N_p(\mathbf{0}, \mathbf{I}_p)$. Note that the Hotelling's T^2 -type statistics with monotone missing data are asymptotically invariant under the nonsingular transformation. In particular, we evaluate the accuracy of the proposed approximations in Theorem 3 for the one-sample problem.

Tables 1 and 2 give the simulated upper 100 α percentiles of the \tilde{T}_1^2 statistic with fivestep and ten-step monotone missing data patterns. That is, we provide $\tilde{t}_{\text{simu}\cdot 1}^2(=\tilde{t}_{\text{simu}\cdot 1}^2(\alpha))$ for the following cases:

Five-step Case:
$$(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3),$$

 $n_1 = 25(5)50, 100, 200, 400, 800, n_2 = n_3 = \dots = n_5 = 5, 10,$
 $\alpha = 0.05, 0.01.$
Ten-step Case: $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2),$
 $n_1 = 25(5)50, 100, 200, 400, 800, n_2 = n_3 = \dots = n_{10} = 5, 10,$
 $\alpha = 0.05, 0.01.$

These tables also give the approximations to the upper percentiles of the \tilde{T}_1^2 statistic, that is, $t_{\text{YS-L1}}^2(=t_{\text{YS-L1}}^2(\alpha))$ and $t_{\text{YS-F1}}^2(=t_{\text{YS-F1}}^2(\alpha))$ in Theorem 3. In addition, we provide the simulated coverage probabilities for the approximate upper percentiles in Tables 1 and 2, which are given by

$$\begin{split} \widetilde{\mathrm{CP}}(t_{\mathrm{YS}\cdot\mathrm{L1}}^2(\alpha)) &= 1 - \mathrm{Pr}\{\widetilde{T}_1^2 > t_{\mathrm{YS}\cdot\mathrm{L1}}^2(\alpha)\},\\ \widetilde{\mathrm{CP}}(t_{\mathrm{YS}\cdot\mathrm{F1}}^2(\alpha)) &= 1 - \mathrm{Pr}\{\widetilde{T}_1^2 > t_{\mathrm{YS}\cdot\mathrm{F1}}^2(\alpha)\},\\ \widetilde{\mathrm{CP}}(\chi_{p,\alpha}^2) &= 1 - \mathrm{Pr}\{\widetilde{T}_1^2 > \chi_{p,\alpha}^2\}. \end{split}$$

It may be noted from Tables 1 and 2 that the simulated values, $\tilde{t}_{\text{simu-1}}^2(\alpha)$, are closer to the upper percentiles of the χ^2 distribution when the sample size n_1 becomes large. However, the upper percentiles of the χ^2 distribution, $\chi^2_{p,\alpha}$, are not good approximations to those of the \tilde{T}_1^2 statistic for small sample sizes. At the same time, the proposed approximate upper percentiles $t^2_{\text{YS-L1}}$ and $t^2_{\text{YS-F1}}$ are good even for small sample sizes; in particular, $t^2_{\text{YS-L1}}$ is considerably good for all cases.

4.2 Two-sample problem

To investigate the accuracy of some of the approximations under the two-sample and *m*sample problems, we compute the upper percentiles of the \tilde{T}_2^2 , $\tilde{T}_{\text{max-p}}^2$ and $\tilde{T}_{\text{max-c}}^2$ statistics by Monte Carlo simulation (10⁶ runs). As with the one-sample problem in Subsection 4.1, the \tilde{T}_2^2 , $\tilde{T}_{\text{max-p}}^2$, and $\tilde{T}_{\text{max-c}}^2$ statistics are computed 10⁶ times for each set ($\alpha, p_i, n_i^{(\ell)}$) of parameters based on the normal random vectors $\boldsymbol{x}_{ij}^{(\ell)}$ generated from $N_{p_i}(\boldsymbol{0}, \boldsymbol{I}_{p_i})$. The simulation results related to the upper percentiles of the \tilde{T}_2^2 statistic and their approximations in the cases of five-step and ten-step monotone missing data are summarized in Tables 3 and 4. Computations are carried out for the following two cases:

Five-step Case:
$$(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3),$$

 $n_1^{(1)} = n_1^{(2)} = 25(5)50, 100, 200, 400, 800,$
 $n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_5^{(\ell)} = 5, 10, \ \ell = 1, 2,$
 $\alpha = 0.05, 0.01.$
Ten-step Case: $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2)$
 $n_1^{(1)} = n_1^{(2)} = 25(5)50, 100, 200, 400, 800,$
 $n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_{10}^{(\ell)} = 5, 10, \ \ell = 1, 2,$
 $\alpha = 0.05, 0.01.$

Tables 3 and 4 give the simulated upper 100 α percentiles of the \tilde{T}_2^2 statistic ($\tilde{t}_{simu\cdot 2}^2(\alpha)$), the approximate upper 100 α percentiles of \tilde{T}_2^2 ($t_{YS\cdot L2}^2(\alpha)$, $t_{YS\cdot F2}^2(\alpha)$), and the upper 100 α percentiles of the χ^2 distribution with p degrees of freedom ($\chi^2_{p,\alpha}$). In the tables, we denote $\tilde{t}_{simu\cdot 2}^2(\alpha)$, $t_{YS\cdot L2}^2(\alpha)$, and $t_{YS\cdot F2}^2(\alpha)$ as $\tilde{t}_{simu\cdot 2}^2$, $t_{YS\cdot L2}^2$, and $t_{YS\cdot F2}^2$, respectively. In addition, we provide the simulated coverage probabilities for the approximate upper 100 α percentiles given by

$$\begin{split} \widetilde{\mathrm{CP}}(t_{\mathrm{YS}\cdot\mathrm{L2}}^2(\alpha)) &= 1 - \mathrm{Pr}\{\widetilde{T}_2^2 > t_{\mathrm{YS}\cdot\mathrm{L2}}^2(\alpha)\},\\ \widetilde{\mathrm{CP}}(t_{\mathrm{YS}\cdot\mathrm{F2}}^2(\alpha)) &= 1 - \mathrm{Pr}\{\widetilde{T}_2^2 > t_{\mathrm{YS}\cdot\mathrm{F2}}^2(\alpha)\},\\ \widetilde{\mathrm{CP}}(\chi_{p,\alpha}^2) &= 1 - \mathrm{Pr}\{\widetilde{T}_2^2 > \chi_{p,\alpha}^2\}. \end{split}$$

It may be noted from Tables 3 and 4 that the simulated values are not close to the upper percentiles of the χ^2 distribution even when the sample size $n_1^{(\ell)}$ is moderately large. However, the proposed approximations are accurate even for cases in which $n_1^{(\ell)}$ is not large. In particular, the values of $t_{\text{YS-L2}}^2(\alpha)$ are highly accurate for all cases. In other words, the simulated coverage probabilities for $t_{\text{YS-L2}}^2(\alpha)$ are considerably close to the nominal level $1 - \alpha$. For simulation results in the case of three-step monotone missing

data, see Yagi and Seo (2015b). Thus, it can be concluded that the approximation $t_{\text{YS-L2}}^2(\alpha)$ is highly accurate even for small samples and unbalanced cases when the data have a k-step monotone pattern of missing observations.

Next, in order to compare the approximate values with the simulated values in the cases of pairwise comparisons and comparisons with a control, we compute for the following case:

Five-step Case: m = 6, 10,

$$(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3),$$

 $n_1^{(\ell)} = 25(5)50, 100, 200, 400, 800, \ \ell = 1, 2, \dots, m,$
 $n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_5^{(\ell)} = 5, 10, \ \ell = 1, 2, \dots, m,$
 $\alpha = 0.05, 0.01.$

Tables 5 and 6 give the simulated upper 100 α percentiles of the $\widetilde{T}_{\max\cdot p}^2$ statistic ($\widetilde{t}_{simu\cdot p}^2(\alpha)$), the simulated upper 100 α_p percentiles of the \widetilde{T}_{ab}^2 statistic ($\widetilde{t}_{simu\cdot Bon}^2(\alpha_p)$), the approximate upper 100 α_p percentiles of the \widetilde{T}_{ab}^2 statistic ($t_{YS\cdot Lm}^2(\alpha_p)$, $t_{YS\cdot Fm}^2(\alpha_p)$), and the upper 100 α_p percentiles of the χ^2 distribution with p degrees of freedom (χ^2_{p,α_p}). The values of $\widetilde{t}_{simu\cdot Bon}^2(\alpha_p)$ are simulated values obtained via Monte Carlo simulation. In the tables, we denote $\widetilde{t}_{simu\cdot p}^2(\alpha)$, $\widetilde{t}_{simu\cdot Bon}^2(\alpha_p)$, $t_{YS\cdot Lm}^2(\alpha_p)$, and $t_{YS\cdot Fm}^2(\alpha_p)$ as $\widetilde{t}_{simu\cdot p}^2$, $\widetilde{t}_{simu\cdot Bon}^2$, $t_{YS\cdot Lm}^2$, and $t_{YS\cdot Fm}^2$, respectively. In addition, we provide the simulated coverage probabilities given by

$$\begin{split} \widetilde{\mathrm{CP}}(t_{\mathrm{YS}\text{-}Lm}^2(\alpha_{\mathrm{p}})) &= 1 - \mathrm{Pr}\{\widetilde{T}_{\mathrm{max}\text{-}\mathrm{p}}^2 > t_{\mathrm{YS}\text{-}Lm}^2(\alpha_{\mathrm{p}})\},\\ \widetilde{\mathrm{CP}}(t_{\mathrm{YS}\text{-}Fm}^2(\alpha_{\mathrm{p}})) &= 1 - \mathrm{Pr}\{\widetilde{T}_{\mathrm{max}\text{-}\mathrm{p}}^2 > t_{\mathrm{YS}\text{-}Fm}^2(\alpha_{\mathrm{p}})\},\\ \widetilde{\mathrm{CP}}(\chi_{p,\alpha_{\mathrm{p}}}^2) &= 1 - \mathrm{Pr}\{\widetilde{T}_{\mathrm{max}\text{-}\mathrm{p}}^2 > \chi_{p,\alpha_{\mathrm{p}}}^2\}. \end{split}$$

As Tables 5 and 6 show, the simulated values for $\tilde{t}_{simu\cdot Bon}^2(\alpha_p)$ are larger than the simulated values for $\tilde{t}_{simu\cdot p}^2(\alpha)$. It may be seen from the tables that the approximate values of $t_{YS\cdot Lm}^2(\alpha_p)$ and $t_{YS\cdot Fm}^2(\alpha_p)$ are closer to the simulated values of $\tilde{t}_{simu\cdot p}^2(\alpha)$ when the sample size becomes large. The simulation studies show that $t_{YS\cdot Lm}^2(\alpha_p)$ is close to $\tilde{t}_{simu\cdot p}^2(\alpha)$ and is a conservative approximation.

Tables 7 and 8 list the results for the case of comparisons with a control. We provide $\tilde{t}_{simu\cdot c}^2(\alpha)$, $\tilde{t}_{simu\cdot Bon}^2(\alpha_c)$, $t_{YS\cdot Lm}^2(\alpha_c)$, $t_{YS\cdot Fm}^2(\alpha_c)$, and χ^2_{p,α_c} as well as $\widetilde{CP}(t_{YS\cdot Lm}^2(\alpha_c))$,

 $\widetilde{CP}(t_{YS}^2 R_m(\alpha_c))$, and $\widetilde{CP}(\chi^2_{p,\alpha_c})$. The accuracy of the approximations is similar to that in the case of pairwise comparisons. Additional simulation results are given in Yagi and Seo (2015b).

In conclusion, we developed the approximate upper percentiles of the Hotelling's T^2 type statistic for tests of mean vectors with k-step monotone missing data under onesample and two-sample problems. Further, we presented the approximate simultaneous confidence intervals for pairwise comparisons among mean vectors and comparisons with a control using Bonferroni's approximation. The proposed approximate values can be easily calculated, and the accuracy of the approximations is considerably higher than that of the χ^2 approximations in almost all cases.

	Sample Size	Upper Percentile			Coverage Probability			
n_1	$n_2 = n_3 = \dots = n_5$	$\widetilde{t}_{\mathrm{simu}\cdot 1}^2$	$t_{\rm YS\cdot L1}^2$	$t_{\mathrm{YS}\cdot F1}^2$	$\widetilde{\mathrm{CP}}_{\mathrm{YS}\cdot\mathrm{L1}}$	$\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot F1}$	$\widetilde{\operatorname{CP}}_{\chi^2}$	
			$\alpha = 0.05$	<u>6</u>				
25	5	90.68	76.01	57.84	.915	.825	.295	
30	5	63.22	57.08	50.13	.927	.885	.429	
35	5	52.04	48.76	45.33	.934	.911	.527	
40	5	46.20	44.02	42.06	.938	.924	.598	
45	5	42.46	40.91	39.69	.940	.931	.652	
50	5	39.74	38.71	37.90	.943	.937	.693	
100	5	31.03	30.86	30.79	.948	.948	.850	
200	5	27.77	27.76	27.75	.950	.950	.908	
400	5	26.34	26.34	26.34	.950	.950	.931	
800	5	25.71	25.66	25.66	.949	.949	.940	
25	10	84.33	71.59	45.33	.919	.743	.336	
30	10	59.05	53.73	42.06	.929	.837	.470	
35	10	49.08	46.13	39.69	.934	.881	.564	
40	10	43.95	41.90	37.90	.937	.903	.630	
45	10	40.66	39.17	36.49	.940	.916	.680	
50	10	38.35	37.25	35.36	.942	.925	.716	
100	10	30.69	30.43	30.22	.947	.945	.856	
200	10	27.72	27.64	27.61	.949	.949	.908	
400	10	26.36	26.31	26.31	.949	.949	.931	
800	10	25.65	25.65	25.65	.950	.950	.941	
			$\alpha = 0.01$	_				
25	5	145.85	115.84	81.06	.978	.930	.432	
30	5	91.99	80.66	68.40	.982	.964	.588	
35	5	72.12	66.53	60.75	.985	.976	.692	
40	5	62.48	58.84	55.65	.986	.981	.759	
45	5	56.34	53.96	52.01	.987	.984	.806	
50	5	52.17	50.57	49.28	.988	.985	.840	
100	5	39.19	38.89	38.78	.989	.989	.946	
200	5	34.52	34.45	34.44	.990	.990	.974	
400	5	32.45	32.45	32.45	.990	.990	.983	
800	5	31.54	31.50	31.50	.990	.990	.987	
25	10	137.95	109.05	60.75	.978	.872	.480	
30	10	85.96	75.57	55.65	.982	.937	.633	
35	10	67.84	62.58	52.01	.985	.962	.727	
40	10	59.06	55.68	49.28	.986	.972	.788	
45	10	53.65	51.37	47.17	.987	.978	.829	
50	10	49.96	48.41	45.48	.988	.981	.858	
100	10	38.48	38.27	37.95	.990	.989	.949	
200	10	34.34	34.28	34.24	.990	.990	.974	
400	10	32.48	32.41	32.40	.990	.990	.983	
800	10	31.50	31.49	31.49	.990	.990	.987	

Table 1: Simulated and approximate values and coverage probabilities when $(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3)$

Note. $\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot\mathrm{L1}} = \widetilde{\operatorname{CP}}(t_{\mathrm{YS}\cdot\mathrm{L1}}^2(\alpha)), \ \widetilde{\operatorname{CP}}_{\mathrm{YS}\cdotF1} = \widetilde{\operatorname{CP}}(t_{\mathrm{YS}\cdotF1}^2(\alpha)), \ \widetilde{\operatorname{CP}}_{\chi^2} = \widetilde{\operatorname{CP}}(\chi_{p,\alpha}^2), \ \chi_{15,0.05}^2 = 25.00, \ \chi_{15,0.01}^2 = 30.58.$

	Sample Size	ble Size Upper Percentile			Coverage Probability			
n_1	$n_2 = n_3 = \dots = n_{10}$	$\widetilde{t}_{\mathrm{simu}\cdot 1}^2$	$t_{\rm YS\cdot L1}^2$	$t_{{\rm YS}\cdot F1}^2$	$\widetilde{\mathrm{CP}}_{\mathrm{YS}\cdot\mathrm{L1}}$	$\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot F1}$	$\widetilde{\operatorname{CP}}_{\chi^2}$	
			$\underline{\alpha = 0.05}$					
25	5	333.46	252.88	67.91	.918	.447	.082	
30	5	119.90	107.28	61.48	.929	.697	.209	
35	5	83.24	77.62	56.96	.934	.805	.323	
40	5	68.57	65.16	53.61	.936	.858	.418	
45	5	60.78	58.28	51.03	.938	.886	.493	
50	5	55.71	53.88	48.99	.940	.904	.554	
100	5	40.94	40.49	40.01	.946	.942	.795	
200	5	35.79	35.71	35.66	.949	.949	.886	
400	5	33.52	33.53	33.52	.950	.950	.921	
800	5	32.48	32.46	32.46	.950	.950	.936	
25	10	316.56	248.27	49.96	.924	.355	.126	
30	10	108.26	103.34	48.12	.943	.609	.277	
35	10	74.53	74.21	46.61	.949	.743	.400	
40	10	62.19	62.18	45.35	.950	.812	.491	
45	10	55.62	55.65	44.29	.950	.853	.561	
50	10	51.68	51.55	43.37	.949	.878	.612	
100	10	39.78	39.54	38.40	.948	.937	.815	
200	10	35.55	35.39	35.22	.948	.947	.890	
400	10	33.47	33.43	33.41	.950	.949	.922	
800	10	32.46	32.44	32.43	.950	.950	.936	
			$\underline{\alpha = 0.01}$					
25	5	761.78	509.35	90.38	.978	.602	.141	
30	5	194.43	162.55	80.52	.982	.840	.329	
35	5	119.24	107.98	73.73	.984	.919	.477	
40	5	93.25	87.16	68.77	.985	.951	.588	
45	5	80.10	76.24	64.99	.986	.965	.667	
50	5	72.07	69.48	62.03	.987	.973	.726	
100	5	50.47	49.97	49.29	.989	.988	.915	
200	5	43.45	43.37	43.29	.990	.990	.965	
400	5	40.40	40.41	40.40	.990	.990	.980	
800	5	38.96	38.97	38.97	.990	.990	.986	
25	10	744.34	502.77	63.43	.979	.488	.202	
30	10	179.29	156.96	60.77	.985	.762	.414	
35	10	107.25	103.17	58.61	.988	.875	.565	
40	10	84.32	82.97	56.81	.989	.924	.663	
45	10	73.04	72.55	55.30	.990	.948	.732	
50	10	66.36	66.21	54.00	.990	.961	.779	
100	10	48.87	48.66	47.05	.990	.986	.927	
200	10	43.10	42.93	42.70	.990	.989	.967	
400	10	40.33	40.28	40.24	.990	.990	.981	
800	10	38.97	38.94	38.93	.990	.990	.986	

Table 2: Simulated and approximate values and coverage probabilities when $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2)$

Note. $\widetilde{CP}_{YS\cdot L1} = \widetilde{CP}(t_{YS\cdot L1}^2(\alpha)), \ \widetilde{CP}_{YS\cdot F1} = \widetilde{CP}(t_{YS\cdot F1}^2(\alpha)), \ \widetilde{CP}_{\chi^2} = \widetilde{CP}(\chi_{p,\alpha}^2), \ \chi_{20,0.05}^2 = 31.41, \ \chi_{20,0.01}^2 = 37.57.$

	Sample Size	Upper Percentile			Coverage Probability			
$n_1^{(\ell)}$	$n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_5^{(\ell)}$	$\widetilde{t}_{\mathrm{simu}\cdot 2}^2$	$t_{\rm YS\cdot L2}^2$	$t_{{\rm YS}\cdot F2}^2$	$\widetilde{\mathrm{CP}}_{\mathrm{YS}\cdot\mathrm{L2}}$	$\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot F2}$	$\widetilde{\operatorname{CP}}_{\chi^2}$	
			$\underline{\alpha = 0.05}$					
25	5	39.37	38.20	36.09	.942	.923	.697	
30	5	36.16	35.39	34.23	.944	.933	.754	
35	5	34.14	33.61	32.91	.945	.939	.790	
40	5	32.78	32.38	31.91	.946	.941	.815	
45	5	31.77	31.46	31.14	.947	.944	.835	
50	5	30.98	30.76	30.52	.948	.945	.850	
100	5	27.83	27.78	27.75	.949	.949	.907	
200	5	26.39	26.38	26.37	.950	.950	.930	
400	5	25.66	25.68	25.68	.950	.950	.941	
800	5	25.33	25.34	25.34	.950	.950	.945	
25	10	37.50	36.76	32.91	.944	.905	.730	
30	10	34.77	34.23	31.91	.945	.921	.778	
35	10	33.03	32.66	31.14	.947	.931	.810	
40	10	31.90	31.58	30.52	.947	.936	.831	
45	10	31.07	30.79	30.02	.947	.939	.848	
50	10	30.44	30.18	29.60	.947	.941	.859	
100	10	27.67	27.59	27.50	.949	.948	.909	
200	10	26.33	26.32	26.31	.950	.950	.931	
400	10	25.67	25.67	25.67	.950	.950	.941	
800	10	25.36	25.34	25.34	.950	.950	.945	
			$\underline{\alpha = 0.01}$					
25	5	51.50	49.73	46.46	.987	.981	.844	
30	5	46.64	45.48	43.72	.988	.984	.886	
35	5	43.50	42.85	41.79	.989	.987	.910	
40	5	41.57	41.03	40.35	.989	.987	.926	
45	5	40.15	39.71	39.23	.989	.988	.938	
50	5	38.96	38.69	38.35	.989	.989	.946	
100	5	34.48	34.46	34.42	.990	.990	.974	
200	5	32.54	32.49	32.49	.990	.990	.983	
400	5	31.54	31.53	31.53	.990	.990	.987	
800	5	31.05	31.05	31.05	.990	.990	.989	
25	10	48.73	47.66	41.79	.988	.973	.869	
30	10	44.52	43.82	40.35	.989	.980	.903	
35	10	41.93	41.49	39.23	.989	.984	.924	
40	10	40.23	39.91	38.35	.989	.986	.936	
45	10	39.03	38.75	37.63	.989	.987	.945	
50	10	38.09	37.87	37.03	.990	.987	.951	
100	10	34.26	34.19	34.06	.990	.989	.975	
200	10	32.42	32.41	32.39	.990	.990	.984	
400	10	31.46	31.51	31.51	.990	.990	.987	
800	10	31.11	31.05	31.05	.990	.990	.988	

Table 3: Simulated and approximate values and coverage probabilities when $(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3)$

Note. $\widetilde{CP}_{YS\cdot L2} = \widetilde{CP}(t_{YS\cdot L2}^2(\alpha)), \ \widetilde{CP}_{YS\cdot F2} = \widetilde{CP}(t_{YS\cdot F2}^2(\alpha)), \ \widetilde{CP}_{\chi^2} = \widetilde{CP}(\chi_{p,\alpha}^2), \ \chi_{15,0.05}^2 = 25.00, \ \chi_{15,0.01}^2 = 30.58.$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Sample Size	Upper Percentile			Coverage Probability			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$n_1^{(\ell)}$	$n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_{10}^{(\ell)}$	$\widetilde{t}_{simu,2}^2$	$t_{\rm YS,L2}^2$	$t_{\rm YS, F2}^2$	$\widetilde{CP}_{YS\cdot L2}$	$\widetilde{\mathrm{CP}}_{\mathrm{YS}\cdot F2}$	$\widetilde{CP}_{\gamma^2}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2 0 10	Sinu-2	$\alpha = 0.05$	1012			λ	
25 5 60.51 60.50 44.11 948 902 670 35 5 44.74 44.50 41.19 .948 .902 .670 35 5 44.74 44.50 41.19 .948 .926 .758 40 5 42.78 42.47 40.20 .948 .926 .758 45 5 41.34 41.03 39.40 .947 .932 .786 50 5 40.19 39.94 .887 .948 .926 .758 400 5 35.69 35.56 35.39 .949 .947 .887 200 5 33.56 33.51 33.49 .950 .949 .921 400 5 32.48 32.47 .950 .950 .936 25 10 48.81 51.37 39.05 .963 .847 .661 30 10 44.62 46.14 38.43 .960 </td <td>25</td> <td>5</td> <td>53 21</td> <td><u>a – 0.05</u> 53.05</td> <td>44 01</td> <td>949</td> <td>872</td> <td>589</td>	25	5	53 21	<u>a – 0.05</u> 53.05	44 01	949	872	589	
35 5 44.74 44.50 41.19 9.48 .916 .771 40 5 42.78 42.47 40.20 .948 .926 .758 45 5 41.34 41.03 39.40 .947 .932 .786 50 5 40.19 39.94 38.72 .948 .936 .805 100 5 33.56 33.51 33.49 .950 .949 .921 400 5 32.48 32.48 32.47 .950 .950 .936 800 5 31.95 31.95 .951 .950 .943 25 10 48.81 51.37 39.05 .963 .847 .661 30 10 44.62 46.14 38.43 .960 .884 .727 35 10 39.58 39.98 37.06 .953 .924 .818 50 10 38.77 39.00 36.72 .952 .929 .832 100 10 32.43 32.43 32	20 30	5	47.921	47.61	49.01	948	902	.585 670	
35 5 42.78 42.47 40.20 .948 .926 .758 45 5 41.34 41.03 39.40 .947 .932 .786 50 5 40.19 39.94 38.72 .948 .936 .805 100 5 35.69 35.56 35.39 .949 .947 .887 200 5 33.56 33.51 33.49 .950 .949 .921 400 5 32.48 32.48 32.47 .950 .950 .936 800 5 31.95 31.95 .950 .950 .943 25 10 44.81 51.37 39.05 .963 .847 .661 30 10 44.62 46.14 38.43 .960 .884 .727 35 10 42.30 43.20 37.91 .956 .904 .767 40 10 40.72 41.31 37.46 .953 .924 .818 50 10 35.20 35.14 34	35	5	41.52	44.50	42.42	048	018	.010	
45 5 41.13 42.10 40.20 .947 .932 .786 50 5 40.19 39.94 38.72 .948 .936 .805 100 5 35.69 35.56 35.39 .949 .947 .887 200 5 33.56 33.51 33.49 .950 .949 .921 400 5 32.48 32.48 32.47 .950 .950 .936 800 5 31.95 31.95 .943 .950 .943 25 10 48.81 51.37 39.05 .963 .847 .661 30 10 44.62 46.14 38.43 .960 .84 .727 35 10 42.30 43.20 37.91 .956 .904 .767 40 10 40.72 41.31 37.46 .955 .916 .797 45 10 39.58 39.98 37.06 .953 .924 .818 50 10 32.43 32.43 32		5	49.74	44.00	40.20	048	026	758	
10 5 41.04 41.03 50.40 .941 .932 .180 50 5 40.19 39.94 38.72 .948 .936 .805 100 5 35.69 35.56 35.39 .949 .947 .887 200 5 33.56 33.51 33.49 .950 .949 .921 400 5 32.48 32.48 32.47 .950 .950 .936 800 5 31.95 31.95 .950 .950 .943 25 10 48.81 51.37 39.05 .963 .847 .661 30 10 44.62 46.14 38.43 .960 .884 .727 35 10 42.30 43.20 37.91 .956 .904 .767 40 10 40.72 41.31 37.46 .955 .916 .797 45 10 38.77 39.00 36.72 <t< td=""><td>40</td><td>5</td><td>42.70</td><td>42.41</td><td>30.40</td><td>.940 947</td><td>0320</td><td>786</td></t<>	40	5	42.70	42.41	30.40	.940 947	0320	786	
100 5 35.69 35.56 35.32 .949 .947 .887 200 5 33.56 33.51 33.49 .950 .949 .921 400 5 32.48 32.48 32.47 .950 .950 .936 800 5 31.95 31.95 31.95 .950 .950 .943 25 10 48.81 51.37 39.05 .963 .847 .661 30 10 44.62 46.14 38.43 .960 .884 .727 35 10 42.30 43.20 37.91 .956 .904 .767 40 10 40.72 41.31 37.46 .955 .916 .797 45 10 39.58 39.98 37.06 .953 .924 .818 50 10 38.77 39.00 36.72 .952 .929 .832 100 10 32.43 32.43 .32.42 .950 .950 .937 800 10 31.97	40 50	5	41.54	30.04	38.72	0/8	036	805	
100530.5050.5030.349.940.941200533.5633.5133.49.950.949.921400532.4832.4832.47.950.950.936800531.9531.9531.95.950.950.943251048.8151.3739.05.963.847.661301044.6246.1438.43.960.884.727351042.3043.2037.91.956.904.767401040.7241.3137.46.955.916.797451039.5839.9837.06.953.924.818501038.7739.0036.72.952.929.8321001032.4332.43.32.42.950.950.9378001031.9731.94.31.93.950.950.9378001031.9731.94.31.93.950.950.943 $\alpha = 0.01$ 25568.7068.3354.82.990.972.82835555.8755.6550.87.990.972.82835550.8850.6948.39.990.984.91050549.2849.1747.46.990.986.923100543.2143.1442.90.990<	100	5	35.60	35.54	35 30	0/0	.330 047	.805 887	
100 5 32.48 32.47 950 950 936 800 5 31.95 31.95 31.95 950 950 943 25 10 48.81 51.37 39.05 963 847 661 30 10 44.62 46.14 38.43 960 884 727 35 10 42.30 43.20 37.91 $.956$ $.904$ $.767$ 40 10 40.72 41.31 37.46 $.955$ $.916$ $.797$ 45 10 39.58 39.98 37.06 $.953$ $.924$ $.818$ 50 10 38.77 39.00 36.72 $.952$ $.929$ $.832$ 100 10 32.43 32.43 32.42 $.950$ $.950$ $.937$ 400 10 32.43 32.42 $.950$ $.950$ $.937$	200	5	33.56	33.51	33 49	950	949	.001	
100551.1552.1551.171.9501.9501.950251048.8151.3739.05.963.847.661301044.6246.1438.43.960.884.727351042.3043.2037.91.956.904.767401040.7241.3137.46.955.916.797451039.5839.9837.06.953.924.818501035.2035.1434.71.949.945.8952001033.4133.3633.29.949.949.9234001032.4332.4332.42.950.950.9378001031.9731.9431.93.950.950.943 $\alpha = 0.01$ 25568.7068.3354.82.990.958.76030560.4060.1852.59.990.972.82835555.8755.6550.87.990.979.86840553.0952.7449.50.989.982.89345550.8850.6948.39.990.984.91050549.2849.1747.46.990.986.923100543.2143.1442.90.990.986.923100543.2143.1442.90.990	400	5	32.48	32.48	32.47	950	950	936	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800	5	31.95	31.95	31.95	950	950	943	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	10	10 01	51.97	20.05	.000	.550	661	
30 10 44.02 40.14 38.43 $.900$ $.384$ $.121$ 35 10 42.30 43.20 37.91 $.956$ $.904$ $.767$ 40 10 40.72 41.31 37.46 $.955$ $.916$ $.797$ 45 10 39.58 39.98 37.06 $.953$ $.924$ $.818$ 50 10 38.77 39.00 36.72 $.952$ $.929$ $.832$ 100 10 35.20 35.14 34.71 $.949$ $.945$ $.895$ 200 10 33.41 33.36 33.29 $.949$ $.949$ $.923$ 400 10 32.43 32.43 32.42 $.950$ $.950$ $.937$ 800 10 31.97 31.94 31.93 $.950$ $.950$ $.943$ $ac = 0.01$ 25 5 68.70 68.33 54.82 $.990$ $.972$ $.828$ 35 55.87 55.65 50.87 $.990$ $.972$ $.828$ 35 50.88 50.69 48.39 $.990$ $.984$ $.910$ 50 5 49.28 49.17 47.46 $.990$ $.986$ $.923$ 100 5 40.43 40.37 40.34 $.990$ $.990$ $.986$ 200 5 40.43 40.37 40.34 $.990$ $.990$ $.986$ 800	20 20	10	40.01	01.07 46.14	09.00 20 42	.905	.041	$.001 \\ 797$	
551042.3043.20 37.91 $.950$ $.904$ $.707$ 401040.7241.31 37.46 $.955$ $.916$ $.797$ 4510 39.58 39.98 37.06 $.953$ $.924$ $.818$ 5010 38.77 39.00 36.72 $.952$ $.929$ $.832$ 10010 35.20 35.14 34.71 $.949$ $.945$ $.895$ 20010 33.41 33.36 33.29 $.949$ $.949$ $.923$ 40010 32.43 32.43 32.42 $.950$ $.950$ $.937$ 80010 31.97 31.94 31.93 $.950$ $.950$ $.943$ $\alpha = 0.01$ 255 68.70 68.33 54.82 $.990$ $.958$ $.760$ 305 60.40 60.18 52.59 $.990$ $.972$ $.828$ 355 55.87 55.65 50.87 $.990$ $.972$ $.828$ 405 53.09 52.74 49.50 $.989$ $.982$ $.893$ 455 50.88 50.69 48.39 $.990$ $.986$ $.923$ 1005 43.21 43.14 42.90 $.990$ $.986$ $.923$ 1005 38.96 38.99 38.98 $.990$ $.990$ $.986$ 2005 40.43 40.37 40.34 $.990$ $.990$ $.986$ 20	30 25	10	44.02 42.20	40.14	38.43 27.01	.900	.004	.121	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	42.50 40.72	45.20 41.21	37.91 27.46	.950	.904	.707	
451039.3839.9837.00.933.324.8185010 38.77 39.00 36.72 .952.929.83210010 35.20 35.14 34.71 .949.945.89520010 33.41 33.36 33.29 .949.949.92340010 32.43 32.43 32.42 .950.950.93780010 31.97 31.94 31.93 .950.950.943 $\alpha = 0.01$ 255 68.70 68.33 54.82 .990.958.760305 60.40 60.18 52.59 .990.972.828355 55.87 55.65 50.87 .990.979.868405 53.09 52.74 49.50 .989.982.893455 50.88 50.69 48.39 .990.984.910505 49.28 49.17 47.46 .990.986.9231005 43.21 43.14 42.90 .990.989.9862005 40.43 40.37 40.34 .990.990.9862005 38.96 38.99 38.98 .990.990.9868005 38.36 38.28 38.28 .990.990.9882510 62.84 66.03 47.90 .993.944.	40 45	10	40.72	41.31 20.09	37.40 27.06	.955	.910	.191 010	
30 10 36.77 39.00 30.72 $.952$ $.929$ $.832$ 100 10 35.20 35.14 34.71 $.949$ $.945$ $.895$ 200 10 33.41 33.36 33.29 $.949$ $.949$ $.923$ 400 10 32.43 32.43 32.42 $.950$ $.950$ $.937$ 800 10 31.97 31.94 31.93 $.950$ $.950$ $.943$ $\alpha = 0.01$ $\alpha = 0.01$ $\alpha = 0.01$ $\alpha = 0.01$ 25 5 68.70 68.33 54.82 $.990$ $.958$ $.760$ 30 5 60.40 60.18 52.59 $.990$ $.972$ $.828$ 35 5 55.87 55.65 50.87 $.990$ $.972$ $.828$ 40 5 53.09 52.74 49.50 $.989$ $.982$ $.893$ 45 5 50.88 50.69 48.39 $.990$ $.984$ $.910$ 50 5 49.28 49.17 47.46 $.990$ $.986$ $.923$ 100 5 43.21 43.14 42.90 $.990$ $.989$ $.966$ 200 5 40.43 40.37 40.34 $.990$ $.990$ $.986$ 800 5 38.96 38.99 38.98 $.990$ $.990$ $.986$ 800 5 38.36 38.28 38.28 $.990$ $.990$ $.988$ 25 10 6	40 50	10	39.38 29.77	39.98 20.00	37.00 26.79	.905	.924	.010	
100 10 33.20 33.14 34.71 $.949$ $.945$ $.895$ 200 10 33.41 33.36 33.29 $.949$ $.949$ $.923$ 400 10 32.43 32.43 32.42 $.950$ $.950$ $.937$ 800 10 31.97 31.94 31.93 $.950$ $.950$ $.943$ $\underline{\alpha} = 0.01$ 25 5 68.70 68.33 54.82 $.990$ $.958$ $.760$ 30 5 60.40 60.18 52.59 $.990$ $.972$ $.828$ 35 5 55.87 55.65 50.87 $.990$ $.979$ $.868$ 40 5 53.09 52.74 49.50 $.989$ $.982$ $.893$ 45 5 50.88 50.69 48.39 $.990$ $.984$ $.910$ 50 5 49.28 49.17 47.46 $.990$ $.986$ $.923$ 100 5 43.21 43.14 42.90 $.990$ $.980$ $.980$ 400 5 38.96 38.99 38.98 $.990$ $.990$ $.986$ 800 5 38.36 38.28 38.28 $.990$ $.990$ $.988$ 25 10 62.84 66.03 47.90 $.993$ $.944$ $.820$	00 100	10	30.11 25.20	39.00 25.14	30.72 24.71	.932	.929	.032	
200 10 33.41 33.30 33.29 $.949$ $.949$ $.923$ 400 10 32.43 32.43 32.42 $.950$ $.950$ $.937$ 800 10 31.97 31.94 31.93 $.950$ $.950$ $.943$ $\underline{\alpha} = 0.01$ $\underline{\alpha} = 0.01$ $\underline{\alpha} = 0.01$ $\underline{\alpha} = 0.01$ 255 68.70 68.33 54.82 $.990$ $.958$ $.760$ 305 60.40 60.18 52.59 $.990$ $.972$ $.828$ 35 5 55.87 55.65 50.87 $.990$ $.979$ $.868$ 40 5 53.09 52.74 49.50 $.989$ $.982$ $.893$ 45 5 50.88 50.69 48.39 $.990$ $.984$ $.910$ 50 5 49.28 49.17 47.46 $.990$ $.986$ $.923$ 100 5 43.21 43.14 42.90 $.990$ $.989$ $.986$ 200 5 40.43 40.37 40.34 $.990$ $.990$ $.980$ 400 5 38.96 38.99 38.98 $.990$ $.990$ $.986$ 800 5 38.36 38.28 38.28 $.990$ $.990$ $.988$ 25 10 62.84 66.03 47.90 $.993$ $.944$ $.820$	100	10	33.20 22.41	30.14 22.26	34.71	.949	.945	.895	
40010 32.43 32.43 32.42 $.950$ $.950$ $.951$ 80010 31.97 31.94 31.93 $.950$ $.950$ $.943$ $\alpha = 0.01$ $\alpha = 0.01$ 255 68.70 68.33 54.82 $.990$ $.958$ $.760$ 305 60.40 60.18 52.59 $.990$ $.972$ $.828$ 35 5 55.87 55.65 50.87 $.990$ $.979$ $.868$ 405 53.09 52.74 49.50 $.989$ $.982$ $.893$ 455 50.88 50.69 48.39 $.990$ $.984$ $.910$ 505 49.28 49.17 47.46 $.990$ $.986$ $.923$ 1005 43.21 43.14 42.90 $.990$ $.989$ $.986$ 2005 40.43 40.37 40.34 $.990$ $.990$ $.986$ 8005 38.96 38.28 38.28 $.990$ $.990$ $.988$ 2510 62.84 66.03 47.90 $.993$ $.944$ $.820$	200	10	33.41	33.30 20.42	33.29	.949	.949	.923	
80010 31.97 31.94 31.93 $.950$ $.950$ $.943$ $\alpha = 0.01$ 255 68.70 68.33 54.82 $.990$ $.958$ $.760$ 305 60.40 60.18 52.59 $.990$ $.972$ $.828$ 355 55.87 55.65 50.87 $.990$ $.979$ $.868$ 405 53.09 52.74 49.50 $.989$ $.982$ $.893$ 455 50.88 50.69 48.39 $.990$ $.984$ $.910$ 505 49.28 49.17 47.46 $.990$ $.986$ $.923$ 1005 43.21 43.14 42.90 $.990$ $.989$ $.966$ 2005 40.43 40.37 40.34 $.990$ $.990$ $.986$ 8005 38.96 38.28 38.28 $.990$ $.990$ $.988$ 2510 62.84 66.03 47.90 $.993$ 944 820	400	10	32.43	32.43	32.42	.950	.950	.937	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	800	10	51.97	$\alpha = 0.01$	51.95	.900	.900	.945	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	5	68 70	$\frac{\alpha - 0.01}{68.33}$	54 89	000	058	760	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 20	5	60.40	60.18	52.62	.990	.900	.100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 25	5	55 97	55.65	50.87	.990	.972	.020	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 40	5	53.00	50.00 50.74	40.50	.990	.919	.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	5	50.88	50.60	49.00	.989	.982	.895	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 50	5	40.28	40.17	40.33	.990	.904	.910	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	5	49.20	49.17	47.40	.990	.980	.925	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	5	40.43	40.37	40.34	990	000	980	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400	5	38.06	38.00	38.08	990	000	.380	
25 10 62.84 66.03 47.90 $.993$ 944 820	400 800	5	38.36	38.28	38.28	.990	.990	.988	
	25	10	62.84	66.03	47 90	993	944	820	
30 10 5576 5817 47.06 993 965 870	30	10	55 76	58.00	47.06	993	965	.020 870	
35 10 52.34 53.87 46.34 992 973 809	35	10	50.10 52 34	53.87	46.34	992	.505 973	899	
40 10 50.17 51.16 45.72 902 978 017	40	10	52.04 50.17	51.16	45.72	992	978	.000 917	
45 10 4857 4028 4518 001 081 030	45	10	48 57	49.28	45.12	001	981	930	
50 10 47.40 47.90 44.71 901 983 038	40 50	10	47.40	45.20	40.10	001	083	038	
100 10 4255 4258 41.98 900 080 070	100	10	42 55	42.58	41.08	990	989	970	
200 10 40.24 40.17 40.07 000 001 081	200	10	40.24	42.00 40.17	41.30	000	.303 000	081	
400 10 38.95 38.02 38.01 000 000 086	200 400	10	40.24 38.05	38 09	38 01	000	.990 000	.301 086	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400 800	10	38.36	38.92	38.26	.990	.990	.988	

Table 4: Simulated and approximate values and coverage probabilities when $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2)$

Note. $\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot\mathrm{L2}} = \widetilde{\operatorname{CP}}(t_{\mathrm{YS}\cdot\mathrm{L2}}^2(\alpha)), \ \widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot\mathrm{F2}} = \widetilde{\operatorname{CP}}(t_{\mathrm{YS}\cdot\mathrm{F2}}^2(\alpha)), \ \widetilde{\operatorname{CP}}_{\chi^2} = \widetilde{\operatorname{CP}}(\chi_{p,\alpha}^2), \ \chi_{20,0.05}^2 = 31.41, \ \chi_{20,0.01}^2 = 37.57.$

	Sample Size	Upper Percentile			Coverage Probability			
$n_1^{(\ell)}$	$n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_5^{(\ell)}$	$\widetilde{t}_{\rm simu \cdot p}^{2}$	$\widetilde{t}_{\rm simu\cdot Bon}^{2}$	$t_{\rm YS\cdot L6}^2$	$t_{{\rm YS}\cdot F6}^2$	$\widetilde{\mathrm{CP}}_{\mathrm{YS}\cdot\mathrm{L6}}$	$\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot F6}$	$\widetilde{\mathrm{CP}}_{\chi^2}$
25	5	39.86	40.62	40.48	39.78	.957	.949	.828
30	5	38.82	39.40	39.40	38.98	.957	.952	.855
35	5	38.04	38.56	38.65	38.37	.957	.954	.873
40	5	37.52	38.04	38.09	37.89	.957	.954	.886
45	5	37.08	37.65	37.65	37.51	.957	.955	.895
50	5	36.76	37.34	37.31	37.20	.957	.955	.902
100	5	35.24	35.77	35.73	35.71	.956	.956	.931
200	5	34.42	34.87	34.91	34.91	.957	.957	.945
400	5	34.04	34.55	34.49	34.49	.956	.956	.950
800	5	33.78	34.21	34.28	34.28	.957	.957	.954
25	10	38.92	39.50	39.77	38.37	.959	.943	.852
30	10	38.09	38.73	38.82	37.89	.958	.947	.872
35	10	37.48	38.02	38.16	37.51	.958	.950	.886
40	10	37.03	37.62	37.67	37.20	.958	.952	.896
45	10	36.72	37.18	37.30	36.94	.957	.953	.903
50	10	36.44	36.97	37.00	36.72	.957	.954	.909
100	10	35.10	35.65	35.62	35.57	.957	.956	.934
200	10	34.38	34.83	34.88	34.87	.957	.956	.945
400	10	33.98	34.49	34.48	34.48	.957	.957	.951
800	10	33.80	34.30	34.28	34.28	.957	.957	.954
			$\underline{\alpha} = 0.$	01				
25	5	46.58	46.98	46.88	45.99	.991	.988	.938
30	5	45.25	45.41	45.52	44.98	.991	.989	.951
35	5	44.31	44.29	44.57	44.22	.991	.990	.959
40	5	43.62	43.92	43.87	43.63	.991	.990	.965
45	5	43.06	43.36	43.33	43.15	.991	.990	.969
50	5	42.65	43.18	42.90	42.77	.991	.990	.971
100	5	40.73	41.01	40.94	40.92	.991	.991	.982
200	5	39.71	40.08	39.93	39.93	.991	.991	.987
400	5	39.23	39.55	39.41	39.41	.991	.991	.989
800	5	38.89	39.27	39.15	39.15	.991	.991	.990
25	10	45.36	45.85	45.99	44.22	.992	.987	.950
30	10	44.30	44.85	44.79	43.63	.991	.988	.959
35	10	43.54	43.61	43.96	43.15	.991	.989	.965
40	10	42.99	43.30	43.36	42.77	.991	.989	.969
45	10	42.65	42.75	42.89	42.44	.991	.989	.972
50	10	42.21	42.42	42.51	42.17	.991	.990	.974
100	10	40.61	40.76	40.80	40.74	.991	.990	.983
200	10	39.66	39.64	39.89	39.88	.991	.991	.987
400	10	39.14	39.44	39.40	39.40	.991	.991	.989
800	10	38.92	39.01	39.15	39.15	.991	.991	.990

Table 5: Simulated and approximate values and coverage probabilities for pairwise comparisons when m = 6 and $(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3)$

Note. $\widetilde{CP}_{YS\cdot L6} = \widetilde{CP}(t_{YS\cdot L6}^2(\alpha_p)), \ \widetilde{CP}_{YS\cdot F6} = \widetilde{CP}(t_{YS\cdot F6}^2(\alpha_p)), \ \widetilde{CP}_{\chi^2} = \widetilde{CP}(\chi_{p,\alpha_p}^2), \ \alpha_p = \alpha/15, \ \chi_{15,0.05/15}^2 = 34.07, \ \chi_{15,0.01/15}^2 = 38.89.$

	Sample Size	Upper Percentile				Coverage Probability			
$n_1^{(\ell)}$	$n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_5^{(\ell)}$	$\widetilde{t}_{\rm simu \cdot p}^{2}$	$\widetilde{t}_{\rm simu\cdot Bon}^{2}$	$t_{\rm YS\cdot L10}^2$	$t_{{\rm YS}\cdot F10}^2$	$\widetilde{CP}_{\mathrm{YS}\cdot\mathrm{L10}}$	$\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot F10}$	$\widetilde{\operatorname{CP}}_{\chi^2}$	
			$\underline{\alpha} =$	0.05					
25	5	41.42	41.91	42.14	41.66	.959	.953	.865	
30	5	40.74	41.44	41.38	41.08	.958	.954	.883	
35	5	40.21	40.74	40.84	40.64	.958	.955	.896	
40	5	39.78	40.36	40.43	40.29	.958	.956	.905	
45	5	39.52	40.26	40.11	40.01	.958	.956	.911	
50	5	39.26	39.94	39.85	39.78	.958	.957	.917	
100	5	38.14	38.82	38.67	38.66	.957	.957	.938	
200	5	37.49	37.94	38.04	38.04	.958	.958	.948	
400	5	37.21	37.59	37.72	37.72	.957	.957	.953	
800	5	37.06	37.66	37.55	37.55	.957	.957	.955	
25	10	40.72	41.30	41.61	40.64	.960	.949	.884	
30	10	40.16	40.75	40.94	40.29	.960	.952	.897	
35	10	39.73	40.30	40.47	40.01	.959	.954	.907	
40	10	39.42	39.97	40.12	39.78	.959	.955	.913	
45	10	39.20	39.81	39.84	39.58	.958	.955	.918	
50	10	38.98	39.63	39.62	39.42	.958	.956	.922	
100	10	38.05	38.43	38.58	38.55	.957	.957	.939	
200	10	37.48	38.05	38.02	38.01	.957	.957	.949	
400	10	37.18	37.71	37.71	37.71	.957	.957	.953	
800	10	37.06	37.63	37.55	37.55	.957	.957	.955	
			$\underline{\alpha} =$	0.01					
25	5	47.37	47.72	47.75	47.18	.991	.989	.957	
30	5	46.47	46.93	46.83	46.47	.991	.990	.965	
35	5	45.87	46.13	46.18	45.94	.991	.990	.970	
40	5	45.36	45.40	45.69	45.52	.991	.990	.973	
45	5	45.05	45.41	45.30	45.18	.991	.990	.975	
50	5	44.75	45.20	44.99	44.90	.991	.990	.977	
100	5	43.34	43.74	43.57	43.55	.991	.991	.985	
200	5	42.60	42.50	42.82	42.82	.991	.991	.988	
400	5	42.18	42.55	42.43	42.43	.991	.991	.989	
800	5	42.00	42.48	42.23	42.23	.991	.991	.990	
25	10	46.47	46.82	47.12	45.94	.992	.988	.965	
30	10	45.77	46.13	46.31	45.52	.992	.989	.970	
35	10	45.30	45.62	45.74	45.18	.991	.990	.974	
40	10	44.91	45.17	45.31	44.90	.991	.990	.976	
45	10	44.61	44.81	44.98	44.67	.991	.990	.978	
50	10	44.43	44.87	44.71	44.47	.991	.990	.979	
100	10	43.24	43.29	43.46	43.42	.991	.991	.985	
200	10	42.59	43.27	42.79	42.78	.991	.991	.988	
400	10	42.17	42.29	42.42	42.42	.991	.991	.990	
800	10	41.96	42.11	42.23	42.23	.991	.991	.990	

Table 6: Simulated and approximate values and coverage probabilities for pairwise comparisons when m = 10 and $(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3)$

Note. $\widetilde{CP}_{YS\cdot L10} = \widetilde{CP}(t_{YS\cdot L10}^2(\alpha_p)), \ \widetilde{CP}_{YS\cdot F10} = \widetilde{CP}(t_{YS\cdot F10}^2(\alpha_p)), \ \widetilde{CP}_{\chi^2} = \widetilde{CP}(\chi_{p,\alpha_p}^2), \ \alpha_p = \alpha/45, \ \chi_{15,0.05/45}^2 = 37.39, \ \chi_{15,0.01/45}^2 = 42.03.$

	Sample Size	Upper Percentile				Coverage Probability			
$n_1^{(\ell)}$	$n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_5^{(\ell)}$	$\widetilde{t}_{\rm simu \cdot c}^2$	$\widetilde{t}_{\mathrm{simu}\cdot\mathrm{Bon}}^2$	$t_{\rm YS\cdot L6}^2$	$t_{{\rm YS}\cdot F6}^2$	$\widetilde{\mathrm{CP}}_{\mathrm{YS}\cdot\mathrm{L6}}$	$\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot F6}$	$\widetilde{\operatorname{CP}}_{\chi^2}$	
			$\underline{\alpha} = 0.$.05					
25	5	35.54	36.06	35.96	35.38	.955	.948	.857	
30	5	34.59	35.15	35.06	34.71	.955	.951	.878	
35	5	33.96	34.47	34.43	34.20	.955	.953	.891	
40	5	33.54	33.99	33.96	33.80	.955	.953	.900	
45	5	33.19	33.66	33.60	33.48	.955	.954	.906	
50	5	32.89	33.35	33.31	33.22	.955	.954	.912	
100	5	31.60	32.03	31.98	31.97	.955	.955	.935	
200	5	30.86	31.29	31.29	31.29	.955	.955	.946	
400	5	30.54	30.89	30.94	30.94	.955	.955	.951	
800	5	30.34	30.74	30.76	30.76	.956	.956	.953	
25	10	34.72	35.20	35.36	34.20	.957	.944	.875	
30	10	34.04	34.55	34.57	33.80	.956	.947	.890	
35	10	33.52	33.97	34.02	33.48	.956	.949	.900	
40	10	33.11	33.62	33.61	33.22	.956	.951	.908	
45	10	32.82	33.30	33.30	33.00	.956	.952	.913	
50	10	32.62	33.06	33.05	32.82	.955	.953	.917	
100	10	31.46	31.85	31.89	31.85	.955	.955	.937	
200	10	30.85	31.29	31.26	31.26	.955	.955	.946	
400	10	30.53	30.94	30.93	30.93	.955	.955	.951	
800	10	30.37	30.75	30.76	30.76	.955	.955	.953	
~ ~	_	10.01	$\underline{\alpha = 0}$. <u>01</u>	44 F O	000	0.00		
25	5	42.34	42.64	42.53	41.78	.990	.989	.951	
30	5	41.16	41.50	41.37	40.91	.991	.989	.961	
35	5	40.31	40.55	40.55	40.25	.991	.990	.967	
40	5	39.74	39.96	39.95	39.74	.991	.990	.970	
45	5	39.35	39.44	39.48	39.33	.990	.990	.973	
50	5	38.91	39.17	39.11	39.00	.991	.990	.976	
100	5	37.31	37.42	37.41	37.40	.990	.990	.984	
200	5	36.43	36.62	36.54	36.53	.990	.990	.987	
400	5	35.93	36.04	36.09	36.09	.991	.991	.989	
800	5	35.63	35.84	35.86	35.86	.991	.991	.990	
25	10	41.37	41.54	41.76	40.25	.991	.987	.960	
30	10	40.45	40.70	40.74	39.74	.991	.988	.966	
35	10	39.73	39.82	40.03	39.33	.991	.989	.971	
40	10	39.17	39.34	39.50	39.00	.991	.989	.974	
45	10	38.84	39.08	39.10	38.72	.991	.990	.976	
50	10	38.60	38.79	38.77	38.48	.991	.990	.977	
100	10	37.13	37.30	37.29	37.24	.991	.990	.984	
200	10	36.34	36.46	36.50	36.49	.990	.990	.987	
400	10	35.95	36.13	36.08	36.08	.990	.990	.989	
800	10	35.65	35.82	35.86	35.86	.991	.991	.990	

Table 7: Simulated and approximate values and coverage probabilities for comparisons with a control when m = 6 and $(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3)$

Note. $\widetilde{CP}_{YS\cdot L6} = \widetilde{CP}(t_{YS\cdot L6}^2(\alpha_c)), \ \widetilde{CP}_{YS\cdot F6} = \widetilde{CP}(t_{YS\cdot F6}^2(\alpha_c)), \ \widetilde{CP}_{\chi^2} = \widetilde{CP}(\chi_{p,\alpha_c}^2), \ \alpha_c = \alpha/5, \ \chi_{15,0.05/5}^2 = 30.58, \ \chi_{15,0.01/5}^2 = 35.63.$

	Sample Size	Upper Percentile				Coverage Probability			
$n_1^{(\ell)}$	$n_2^{(\ell)} = n_3^{(\ell)} = \dots = n_5^{(\ell)}$	$\widetilde{t}_{\rm simu \cdot c}^{2}$	$\widetilde{t}_{\mathrm{simu}\cdot\mathrm{Bon}}^2$	$t_{\rm YS\cdot L10}^2$	$t_{{\rm YS}\cdot F10}^2$	$\widetilde{\mathrm{CP}}_{\mathrm{YS}\cdot\mathrm{L10}}$	$\widetilde{\operatorname{CP}}_{\mathrm{YS}\cdot F10}$	$\widetilde{\mathrm{CP}}_{\chi^2}$	
			$\underline{\alpha} =$	0.05					
25	5	35.64	36.24	36.29	35.91	.957	.953	.894	
30	5	35.07	35.71	35.68	35.44	.957	.954	.906	
35	5	34.65	35.28	35.25	35.09	.957	.955	.914	
40	5	34.33	34.88	34.92	34.81	.957	.956	.920	
45	5	34.07	34.66	34.66	34.58	.957	.956	.925	
50	5	33.92	34.54	34.46	34.40	.957	.956	.927	
100	5	32.96	33.52	33.50	33.49	.957	.957	.943	
200	5	32.43	32.98	33.00	33.00	.958	.958	.951	
400	5	32.19	32.72	32.74	32.74	.957	.957	.954	
800	5	32.10	32.65	32.60	32.60	.957	.957	.955	
25	10	35.06	35.63	35.86	35.09	.959	.950	.906	
30	10	34.59	35.23	35.33	34.81	.959	.953	.915	
35	10	34.32	34.91	34.95	34.58	.958	.953	.920	
40	10	34.05	34.67	34.67	34.40	.957	.954	.925	
45	10	33.84	34.43	34.45	34.24	.957	.955	.928	
50	10	33.67	34.25	34.27	34.11	.957	.956	.931	
100	10	32.87	33.40	33.43	33.41	.957	.957	.944	
200	10	32.44	32.99	32.98	32.97	.957	.957	.950	
400	10	32.23	32.76	32.73	32.73	.957	.957	.953	
800	10	32.07	32.64	32.60	32.60	.957	.957	.955	
			$\underline{\alpha} =$	0.01					
25	5	41.78	41.96	42.14	41.66	.991	.990	.968	
30	5	41.19	41.60	41.38	41.08	.991	.990	.972	
35	5	40.57	40.91	40.84	40.64	.991	.990	.976	
40	5	40.12	40.33	40.43	40.29	.991	.990	.978	
45	5	39.85	39.97	40.11	40.01	.991	.990	.980	
50	5	39.60	39.88	39.85	39.78	.991	.990	.981	
100	5	38.45	38.67	38.67	38.66	.991	.991	.986	
200	5	37.78	38.02	38.04	38.04	.991	.991	.989	
400	5	37.45	37.82	37.72	37.72	.991	.991	.990	
800	5	37.34	37.44	37.55	37.55	.991	.991	.990	
25	10	41.07	41.21	41.61	40.64	.991	.989	.973	
30	10	40.48	40.76	40.94	40.29	.991	.989	.976	
35	10	40.12	40.32	40.47	40.01	.991	.990	.978	
40	10	39.82	39.98	40.12	39.78	.991	.990	.980	
45	10	39.52	39.76	39.84	39.58	.991	.990	.981	
50	10	39.32	39.43	39.62	39.42	.991	.990	.982	
100	10	38.36	38.64	38.58	38.55	.991	.991	.987	
200	10	37.79	38.04	38.02	38.01	.991	.991	.989	
400	10	37.51	37.69	37.71	37.71	.991	.991	.990	
800	10	37.30	37.62	37.55	37.55	.991	.991	.990	

Table 8: Simulated and approximate values and coverage probabilities for comparisons with a control when m = 10 and $(p_1, p_2, p_3, p_4, p_5) = (15, 12, 9, 6, 3)$

Note. $\widetilde{CP}_{YS-L10} = \widetilde{CP}(t_{YS-L10}^2(\alpha_c)), \ \widetilde{CP}_{YS-F10} = \widetilde{CP}(t_{YS-F10}^2(\alpha_c)), \ \widetilde{CP}_{\chi^2} = \widetilde{CP}(\chi_{p,\alpha_c}^2), \ \alpha_c = \alpha/9, \ \chi_{15,0.05/9}^2 = 32.47, \ \chi_{15,0.01/9}^2 = 37.39.$

Acknowledgments

The second author's research was in part supported by Grant-in-Aid for Scientific Research (C) (26330050).

References

- Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. *Journal of the American Statistical Association*, 52, 200–203.
- [2] Bhargava, R. (1962). Multivariate tests of hypotheses with incomplete data. Technical report No.3, Applied Mathematics and Statistics Laboratories, Stanford University, Stanford, California.
- [3] Chang, W. -Y. and Richards, D. St. P. (2009). Finite-sample inference with monotone incomplete multivariate normal data, I. *Journal of Multivariate Analysis*, 100, 1883–1899.
- [4] Jinadasa, K. G. and Tracy, D. S. (1992). Maximum likelihood estimation for multivariate normal distribution with monotone sample. *Communications in Statistics – Theory and Methods*, 21, 41–50.
- [5] Kanda, T. and Fujikoshi, Y. (1998). Some basic properties of the MLE's for a multivariate normal distribution with monotone missing data. American Journal of Mathematical and Management Sciences, 18, 161–190.
- [6] Krishnamoorthy, K. and Pannala, M. K. (1999). Confidence estimation of a normal mean vector with incomplete data. *The Canadian Journal of Statistics*, 27, 395–407.
- [7] Rao, C. R. (1956). Analysis of dispersion with incomplete observations on one of the characters. Journal of the Royal Statistical Society: Series B, 18, 259–264.
- [8] Seko, N. (2012). Tests for mean vectors with two-step monotone missing data for the k-sample problem. SUT Journal of Mathematics, 48, 213–229.
- [9] Seko, N., Kawasaki, T. and Seo, T. (2011). Testing equality of two mean vectors with two-step monotone missing data. American Journal of Mathematical and Management Sciences, 31, 117–135.

- [10] Seko, N., Yamazaki, A. and Seo, T. (2012). Tests for mean vector with two-step monotone missing data. SUT Journal of Mathematics, 48, 13–36.
- [11] Seo, T., Mano, S. and Fujikoshi, Y. (1994). A generalized Tukey conjecture for multiple comparisons among mean vectors. *Journal of the American Statistical Association*, 89, 676–679.
- [12] Seo, T. and Siotani, M. (1992). The multivariate Studentized range and its upper percentiles. Journal of the Japan Statistical Society, 22, 123–137.
- [13] Yagi, A. and Seo, T. (2014). A test for mean vector and simultaneous confidence intervals with three-step monotone missing data. *American Journal of Mathematical* and Management Sciences, **33**, 161–175.
- [14] Yagi, A. and Seo, T. (2015a). Tests for mean vectors with two-step and three-step monotone samples. *Josai Mathematical Monographs*, 8, 49–71.
- [15] Yagi, A. and Seo, T. (2015b). Tests for equality of mean vectors and simultaneous confidence intervals with two-step or three-step monotone missing data patterns. to appear in American Journal of Mathematical and Management Sciences.
- [16] Yu, J., Krishnamoorthy, K. and Pannala, K. M. (2006). Two-sample inference for normal mean vectors based on monotone missing data. *Journal of Multivariate Analysis*, 97, 2162–2176.