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Abstract

The purpose of this paper is to clarify the conditions for consistency of the log-
likelihood-based information criteria in canonical correlation analysis of q- and p-dimensional
random vectors when the dimension p is large but does not exceed the sample size. Al-
though the vector of observations is assumed to be normally distributed, we do not know
whether the underlying distribution is actually normal. Therefore, conditions for con-
sistency are evaluated in a high-dimensional asymptotic framework when the underlying
distribution is not normal.
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1 Introduction

Canonical correlation analysis (CCA) is a statistical method employed to investigate the
relationships between a pair of q- and p-dimensional random vectors, x = (x1, . . . , xq)

′ and
y = (y1, . . . , yp)

′, respectively. Introductions to CCA are provided in many textbooks for
applied statistical analysis (see, e.g., Srivastava, 2002, chap. 14.7; Timm, 2002, chap. 8.7),
and it has widespread applications in many fields (e.g., Doeswijk et al., 2011; Khalil et al.,
2011; Vahedi, 2011; Sweeney et al., 2013; Vilsaint et al., 2013). Let z = (x′,y′)′ be a
(p+ q)-dimensional vector with

E[z] =

(
µx

µy

)
= µ, Cov[z] =

(
Σxx Σxy

Σ′
xy Σyy

)
= Σ,

where µx and µy are mean vectors of q- and p-dimensions, respectively; Σxx and Σyy are q×q
and p×p covariance matrices of x and y, respectively; and Σxy is the q×p covariance matrix
of x and y. The square of the correlation between a pair of canonical correlation variables is
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obtained as the eigenvalue of Σ−1
xxΣxyΣ

−1
yy Σ

′
xy and the root of the k-th largest eigenvalue is

called the k-th canonical correlation.
In an actual data analysis, it is important to remove the irrelevant variables for analysis.

In CCA, the problem of removing irrelevant variables can be regarded as the selection of the
redundancy model, and thus it has been widely investigated by many authors (e.g., McKay,
1977; Fujikoshi, 1982, 1985; Ogura, 2010). Suppose that j denotes a subset of ω = {1, . . . , q}
containing qj elements, and xj denotes the qj-dimensional vector consisting of the elements
of x indexed by the elements of j, where qA denotes the number of elements in a set of A,
i.e., qA = #(A). For example, if j = {1, 2, 4}, then xj consists of the first, second, and fourth
elements of x. Without loss of generality, x can be divided into x = (x′

j ,x
′
j̄
)′, where xj and

xj̄ are qj- and qj̄-dimensional vectors, respectively. Note that Ā denotes the compliment of
the set A. Another expressions of µx, Σxy and Σxx corresponding to the divisions of x are

µx =

(
µj

µj̄

)
, Σxy =

(
Σjy

Σj̄y

)
, Σxx =

(
Σjj Σjj̄

Σ′
jj̄ Σj̄j̄

)
.

We are interested in whether the elements of xj̄ are irrelevant variables in CCA. Let z1, . . . , zn

be n independent random vectors from z, and let z̄ be the sample mean of z1, . . . , zn given by
z̄ = n−1

∑n
i=1 zi and S be the usual unbiased estimator ofΣ given by S = (n−1)−1

∑n
i=1(zi−

z̄)(zi − z̄)′, divided in the same way as we divided Σ, as follows:

S =

(
Sxx Sxy

S′
xy Syy

)
=

 Sjj Sjj̄ Sjy

S′
jj̄ S j̄j̄ S j̄y

S′
jy S′

j̄y Syy

 .

Suppose that z1, . . . , zn ∼ i.i.d. Np+q(µ,Σ). Following Fujikoshi (1985), the candidate model
that xj̄ is irrelevant is expressed as

Mj : (n− 1)S ∼ Wp+q(n− 1,Σ)

s.t. tr(Σ−1
xxΣxyΣ

−1
yy Σ

′
xy) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy).

(1)

The candidate model is called the redundancy model. If the model Mj is selected as the best
model, then we regard that xj̄ is irrelevant. An estimator of Σ under model Mj in (1) is
given by

Σ̂j = argmin
Σ

{F (S,Σ) s.t. tr(Σ−1
xxΣxyΣ

−1
yy Σ

′
xy) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy)}, (2)

where F (S,Σ) is the Kullback-Leibler (KL) discrepancy function (see Kullback & Leibler,
1951) assessed by the Wishart density, and it is given by

F (S,Σ) = (n− 1){tr(Σ−1S)− log |Σ−1S| − (p+ q)}, (3)

except for the constant term. In the covariance structure analysis, the above discrepancy
function is frequently called the maximum likelihood discrepancy function (see Jöreskog,
1967) or Stein’s loss function (see James & Stein, 1961). From Fujikoshi and Kurata (2008)
or Fujikoshi et al. (2010, chap. 11.5), we can see that an explicit form of Σ̂j in (2) is given by

Σ̂j =

 Sjj Sjj̄ Sjy

S′
jj̄ S j̄j̄ S′

jj̄S
−1
jj Sjy

S′
jy S′

jyS
−1
jj Sjj̄ Syy

 . (4)
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Choosing the model by minimization of an information criterion is one of the primary
selection methods. The most famous information criterion is Akaike’s information criterion
(AIC), which was proposed by Akaike (1973, 1974). Fujikoshi (1985) identified that the
selection of the redundancy model in CCA is the selection of the covariance structure, and
proposed using the AIC to select these structure for CCA. Many other information criteria
have been proposed for CCA (see, e.g., Fujikoshi, 1985; Fujikoshi et al., 2008; Hashiyama
et al. 2011). The AIC is included in the family of log-likelihood-based information criteria
(LLBICs); these are defined by adding a penalty term that expresses the complexity of the
model for a negative twofold maximum log-likelihood. The family of LLBICs includes the
bias-corrected AIC (AICc) proposed by Fujikoshi (1985), the Bayesian information criterion
(BIC) proposed by Schwarz (1978), the consistent AIC (CAIC) proposed by Bozdogan (1987),
and the Hannan-Quinn information criterion (HQC) proposed by Hannan and Quinn (1979).
The LLBIC for CCA is written as

ICm(j) = F (S, Σ̂j) +m(j)

= (n− 1) log
|Syy·j |
|Syy·x|

+m(j),
(5)

where Syy·ℓ = Syy − S′
ℓyS

−1
ℓℓ Sℓy (ℓ = j, x) and m(j) is a positive penalty term that ex-

presses the complexity of the model (1). The relations between LLBIC and most well-known
information criteria are as follows:

AIC : m(j) = p2 + q2 + p+ q + 2pqj ,

AICc : m(j) = (n− 1)2
(

p+ qj
n− p− qj − 2

+
q

n− q − 2
− qj

n− qj − 2
− p+ q

n− 1

)
,

BIC : m(j) =

{
(p+ q)(p+ q + 1)

2
− p(q − qj)

}
log n, (6)

CAIC : m(j) =

{
(p+ q)(p+ q + 1)

2
− p(q − qj)

}
(1 + log n),

HQC : m(j) = 2

{
(p+ q)(p+ q + 1)

2
− p(q − qj)

}
log log n.

When the asymptotic probability of an information criteria selecting the true model ap-
proaches 1, it is said to be consistent; this is one of its most important properties. In model
selections, the true model is the candidate model with the set of true variables. The set of true
variables is the smallest subset of variables which satisfies the condition in (1). In general,
AIC is not consistent under the large-sample (LS) asymptotic framework in which only the
sample size approaches ∞ (see e.g., Shibata, 1976; Nishii, 1984; Fujikoshi, 1982, 1985). When
the AIC is used for model selection, its lack of consistency sometimes becomes a target for
criticism, even though its purpose is not necessary to choose the true model.

Recently, the consistencies of various information criteria have been reported for mul-
tivariate models under a high-dimensional (HD) asymptotic framework. A HD asymptotic
framework is one in which the sample size and dimension p simultaneously approach ∞ under
the condition that cn,p = p/n → c0 ∈ (0, 1] (for simplicity, we will write this as “cn,p → c0”).
Yanagihara et al. (2012) derived the conditions for consistency of the LLBIC for model se-
lection in a multivariate linear regression model under the HD asymptotic framework, and
they found that the AIC meets these conditions. Since, by definition, HD data have a large
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dimension p, evaluating the consistency of an information criterion under the HD asymp-
totic framework is more natural for HD data than evaluating it under the LS asymptotic
framework.

The purpose of this paper is to clarify the conditions under which the LLBIC is consistent
for model selection in CCA when the HD asymptotic framework is used. In previous works,
many results were obtained under the assumption that the true distribution of the observation
vector was the normal distribution (e.g., Shibata, 1976; Nishii, 1984; Yanagihara et al., 2014;
Fujikoshi et al., 2014). However, we are not able to determine whether this assumption is
actually correct. Hence, a natural assumption for the generating mechanism of the true model
of y is

y = µy +Σ′
j∗yΣ

−1
j∗j∗

(xj∗ − µj∗) +Σ
1/2
yy·j∗ε, (7)

where ε is a p-dimensional vector with E[ε] = 0p, Cov[ε] = Ip, 0p is a p-dimensional vector
of zeros, xj∗ is a qj∗-dimensional vector with E[xj∗ ] = µj∗ , Cov[xj∗ ] = Σj∗j∗ and j∗ denotes
the set of the true variables.

In deriving the conditions for consistency under the HD asymptotic framework, a primary
problem is to prove the convergence in probability of the two log-determinants of estimators
of Σ, because the size of the matrix increases with an increase in the dimensions. Yanagihara
et al. (2012, 2014) avoided this problem by using a property of a random matrix distributed
according to the Wishart distribution (see Fujikoshi et al., 2010, chap. 3.2.4, p. 57). In the
present study, this method is unavailable, because the true distribution of the observations
in (7) is nonnormal.

Yanagihara (2013) derived the conditions under the LLBIC is consistent in multivariate
linear regression models with the assumption of a normal distribution when the HD asymp-
totic framework is used, even though the distribution on the true model is not normal. In
Yanagihara (2013), the moments of a specific random matrix and the distribution of the max-
imum eigenvalue of the estimator of the covariance matrix were used for assessing consistency.
In CCA, it is important to note that x is a random vector, which is different in the case of a
multivariate linear regression model. Hence, the conditions for consistency in this study are
derived under the assumption that x is a random vector.

This paper is organized as follows: In Section 2, we present the necessary notations and
assumptions, and then we obtain sufficient conditions to ensure consistency under the HD
asymptotic framework. In Section 3, we verify our claim by conducting numerical experiments.
In Section 4, we discuss our conclusions. Technical details are provided in the Appendix.

2 Main result

In this section, we show the sufficient conditions for consistency of ICm in (5). First, we
present the necessary notations and assumptions for assessing the consistency of an infor-
mation criterion for the model Mj in (1). Let y1, . . . ,yn, x1, . . . ,xn and ε1, . . . , εn be n
independent vectors from y, x and ε, respectively. Then, the Y , X and E are the n × p,
n× q and n× p matrices given by

Y = (In − Jn)(y1, . . . ,yn)
′,

X = (In − Jn)(x1, . . . ,xn)
′,

E = (In − Jn)(ε1, . . . , εn)
′,
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where Jn = 1n(1
′
n1n)

−11′n and 1n is an n-dimensional vector of ones. Suppose that Xj

denotes the n × qj matrix consisting of the columns of X indexed by the elements of j. By
using these matrices, the matrix form of the true model (7) is expressed as

Y = Xj∗Σ
−1
j∗j∗

Σj∗y + EΣ1/2
yy·j∗ . (8)

Henceforth, for simplicity, Xj∗ and qj∗ are represented as X∗ and q∗, respectively. From the
above expression, it can be seen that we can regard the true model (8) as a multivariate linear
model by considering the conditional distribution of Y given X.

We now describe two classes of j that express subsets of X in the candidate model. Let
J be the set of K candidate models denoted by J = {j1, . . . , jK}. We then separate J into
two sets: the overspecified models, in which the set of variables contain all variables of the
true model j∗ in (8), that is, J+ = {j ∈ J |j∗ ⊆ j} and the underspecified models, which are
the models that are not overspecified model, that is, J− = J̄+ ∩J . In particular, we express
the minimum overspecified model that includes j ∈ J− as j+, and so

j+ = j ∪ j∗. (9)

By using ICm in (5), the best subset of ω, which is chosen by minimizing ICm, is written as

ĵm = argmin
j∈J

ICm(j).

Let a p× p noncentrality matrix be denoted by

ΓjΓ
′
j = Σ

−1/2
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗

X ′
∗(In − P j)X∗Σ

−1
j∗j∗

Σj∗yΣ
−1/2
yy·j∗ , (10)

where Γj is a p × γj matrix with rank(Γj) = γj and P j = Xj(X
′
jXj)

−1X ′
j . It should be

noted that ΓjΓ
′
j = Op,p holds if and only if j ∈ J+, where On,p is an n× p matrix of zeros.

Moreover, for j ∈ J−, we define

Aj = (In − P j)X∗Σ
−1
j∗j∗

Σj∗yΣ
−1/2
yy·j∗ .

It is easy to see from the definition of the noncentrality matrix in (10) that A′
jAj = ΓjΓ

′
j .

By using a singular value decomposition, Aj can be rewritten as

Aj = HjL
1/2
j G′

j , (11)

where Hj = (hj,1, . . . ,hj,γj ) and Gj = (gj,1, . . . , gj,γj ) are n × γj and γj × γj matrices,

that satisfy H ′
jHj = Iγj and G′

jGj = Iγj , respectively, and Lj = diag(αj,1, . . . , αj,γj ) is a
diagonal matrix of order γj whose diagonal elements αj,k are the squared singular values of
Aj , which are assumed to be αj,1 ≥ · · · ≥ αj,γj .

Furthermore, let ||a|| denote the Euclidean norm of the vector a. Then, in order to assess
the consistency of ICm, the following assumption are necessary:

A1. The true model is included in the set of candidate models, that is, j∗ ∈ J .

A2. E[||ε||4] exists and has the order O(p2) as p → ∞.
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A3. E[||x||4] exists.

A4. ∀j ∈ J−, limp→∞ p−1Σj∗yΣ
−1
yy·j∗Σ

′
j∗y = Ψj exists and

tr(Σ−1
j∗

Σj∗j∗·jΣ
−1
j∗

Ψj) > 0.

A1 is the basic assumption for evaluating the consistency of an information criterion, because
the probability of selecting the true model becomes 0 if it does not hold. A2 and A3 are
assumptions about the moments of the distribution of the true model, although ε and x are not
assumed to represent a specific distribution. It is easy to see that A2 holds if maxa=1,...,pE[ε4a]
is bounded. A4 is used in assessing the noncentrality matrix. In the multivariate linear
regression model, Xj in ΓjΓ

′
j is not random. However in CCA, Xj in ΓjΓ

′
j is random.

Hence, a different assumption from the multivariate linear regression model is required in A4.
If A2 is satisfied, the multivariate kurtosis proposed by Mardia (1970) exists as

κ
(1)
4 = E[||ε||4]− p(p+ 2) =

p∑
a,b

κaabb + p(p+ 2), (12)

where the notation
∑p

a1,a2,...
means

∑p
a1=1

∑p
a2=1 · · · , and κabcd is the fourth-order multivari-

ate cumulant of ε, defined as

κabcd = E[εaεbεcεd]− δabδcd − δadδbd − δadδbc.

Here, δab is the Kronecker delta (i.e., δaa = 1, and δab = 0 for a ̸= b). It is well known that

κ
(1)
4 = 0 when ε ∼ Np(0p, Ip). In general, the order of κ

(1)
4 is

κ
(1)
4 = O(ps) as p → ∞, s ∈ [0, 2]. (13)

By using these notations and assumptions, we derived the following theorem for the suf-
ficiency conditions for the consistency of the penalty term m(j) (the proof was given in the
Appendix A2).

Theorem 1 Suppose that assumptions A1-A4 hold. Variable selection using ICm is consis-
tent when cn,p → c0 if the following conditions are satisfied simultaneously:

(C1) ∀j ∈ J+ \ {j∗}, limcn,p→c0{m(j)−m(j∗)}/p > −c−1
0 (qj − q∗) log(1− c0).

(C2) ∀j ∈ J−, limcn,p→c0{m(j)−m(j∗)}/(n log p) > −1/2.

We can see from Theorem 1 that the conditions for consistency are similar to those in
the multivariate regression model derived by Yanagihara and colleagues (Yanagihara et al.,
2012; Yanagihara, 2013). This is because the CCA can be regarded as an extension of the
multivariate regression model. Futhermore, the conditions for consistency in Theorem 1 is
also similar to those in Yanagihara et al. (2014), which is derived for a CCA when a normal
distribution is assumed to the true model. This indicates that the conditions for consistency
are free of the influence of nonnormality in the distribution of the true model.

Using Theorem 1, the conditions for consistency of specific criteria can be clarified by the
following corollary (the proof is given in the Appendix A3):
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Corollary 1 Suppose that assumptions A1-A4 are satisfied. Then we have

1. A model selection using the AIC is consistent when cn,p → c0 if c0 ∈ (0, ca] holds, where
ca(≈ 0.797) is a constant satisfying

log(1− ca) + 2ca = 0. (14)

2. Model selections using the AICc and HQC are consistent when cn,p → c0.

3. Model selections using the BIC and CAIC are consistent when cn,p → c0 if c0 ∈ (0, cb/2]
holds, where cb = min{1,minj∈F− 1/{2(q∗ − qj)}} and F− is a set of candidate models
given by

F− = {j ∈ J |q∗ − qj > 0}. (15)

Corollary 1 shows that, when cn,p → c0, the AICc and HQC are always consistent in model
selection, whereas the AIC, BIC, and CAIC are not always consistent. The consistency of the
BIC and CAIC is strongly dependent on values of parameters in the true model, but this is
not true for the AIC. This sets the BIC and CAIC at a great disadvantage compared to the
AIC, because the real values of parameters in the true model is unknowable. Table 1 lists the
conditions required for consistency for each of the following criteria: AIC, AICc, BIC, CAIC,
and HQC.

Table 1: Conditions for consistency

Criterion Consistency Conditions

AIC Conditionally holds c0 ∈ [0, ca)

AICc & HQC Holds - - - -

BIC & CAIC Conditionally holds c0 ∈ [0, cb)

Note) ca and cb are given in Corollary 1.

3 Numerical Study

In this section, we conduct numerical studies to examine the validity of our claim. The
probabilities of selecting the true model by the AIC, AICc, BIC, CAIC, and HQC were
evaluated by Monte Carlo simulations with 10,000 iterations each.

Let ν1 = (ν1,1, . . . , ν1,p)
′ ∼ Np(0p, Ip), ν2 = (ν2,1, . . . , ν2,q)

′ ∼ Nq(0q, Iq), δ1, δ2 ∼ χ2
6,

ω1,1, . . . , ω2,p ∼ i.i.d.χ2
5 and ω2,1, . . . , ω2,q ∼ i.i.d.χ2

5 be mutually independent random vectors
and variables. Then, ε = (ε1, . . . , εp)

′ and x = (x1, . . . , xq)
′ were generated from the following

five distributions, as in Yanagihara (2013):

• Distribution 1 (the multivariate normal distribution).

ε = ν1, x = ν2.
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• Distribution 2 (a scale mixture of the multivariate normal distribution).

ε =

√
δ1
6
ν1, x =

√
δ2
6
ν2.

• Distribution 3 (a location-scale mixture of the multivariate normal distribution).

ε = B
−1/2
1

{
10

(√
δ1
6

− η

)
1p +

√
δ1
6
ν1

}
,

x = B
−1/2
2

{
10

(√
δ2
6

− η

)
1q +

√
δ2
6
ν2

}
,

where η = 15
√

π/3/16, B1 = Ip + 100(1− η2)1p1
′
p, and B2 = Iq + 100(1− η2)1q1

′
q.

• Distribution 4 (the independent t-distribution).

εa =

√
3ν1,a√
5ω1,a

, xa =

√
3ν2,a√
5ω2,a

.

• Distribution 5 (the independent log-normal distribution).

εa =
log ν1,a −

√
e√

e(e− 1)
, xa =

log ν2,a −
√
e√

e(e− 1)
.

It is easy to see that distributions 1, 2, and 4 are symmetric, and distributions 3 and 5 are
skewed.

The mean vectors µy and µj∗ were generated from U(−4, 4) and U(−3, 3), respectively,
and j∗ = 3. Then, y was obtained from the true model (7). The structure of Σ was prepared
for the following four cases (cases 1 and 2 are the same settings as in Fujikoshi, 2014):

Case 1.

Σ =

(
I5 R′

R Ip

)
, R = (R1,O5,p−q)

′, R1 = diag(ρ1, . . . , ρ5),

ρ1 = 2ρ, ρ2 = 3ρ/2, ρ3 = ρ, ρ4 = ρ5 = 0, ρ =

√
(4p/21)

p+ 1 + (4p/21)
.

Case 2 (the structure of Σ is the same as in Case 1).

ρ1 = ρ̃, ρ2 = 3ρ̃/4, ρ3 = ρ̃/2, ρ4 = ρ5 = 0, ρ̃ =

√
p

p+ 1

√
(4p/21)

1 + (4p/21)
.

Case 3. Σ = ΦΦ′, where Φ is a (p + 5) × (p + 5) matrix whose elements are distributed
from U(0, 1/p+ 5).
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Case 4. Σ = ΦΦ′, whereΦ is a (p + 8) × (p + 8) matrix whose elements are distributed
from U(0, 1/p+ 8).

In these settings, data are generated under the following combinations of n and p:

• c0 = 0.05: (n, p) = (100, 5), (200, 10), (500, 25), (1000, 50).

• c0 = 0.1: (n, p) = (100, 10), (200, 20), (500, 50), (1000, 100).

• c0 = 0.2: (n, p) = (100, 20), (200, 40), (500, 100), (1000, 200).

• c0 = 0.3: (n, p) = (100, 30), (200, 60), (500, 150), (1000, 300).

Tables 2 through 6 show the selection probability (i.e., the probability of selecting the true
model) when ε and x are from Distributions 1, 2, 3, 4, and 5, respectively, when using the AIC,
the AICc, the BIC, the CAIC, and the HQC. From these tables, we can see that the selection
probability of the AIC tends to increase in most settings when p and n were large. The AICc

and HQC had the same tendency as that of the AIC, that is, when n and p were large, their
selection probabilities tended to increase. On the other hand, the selection probabilities of
the BIC and CAIC decreased for larger values of n and p. Moreover, it was worth noting that
the selection probabilities of the BIC and CAIC depend on the distribution settings, this may
be because the conditions for consistency of the BIC and CAIC have a strong dependence on
the values of parameters in the true model. We repeated the simulations for several models
and obtained similar results, and these validated our claim.
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Table 2. Selection probabilities of the true model (%) in the Case of Distribution 1
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 80.01 79.24 31.31 15.29 67.22 62.36 56.11 8.54 2.48 37.42
200 10 94.55 95.03 17.95 4.88 76.07 93.47 92.95 12.51 2.98 68.61
500 25 99.58 99.88 1.18 0.06 83.03 99.66 99.93 12.86 1.24 97.99

1000 50 99.99 100.00 0.00 0.00 85.92 100.00 100.00 6.25 0.13 99.99

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 88.12 94.09 80.83 63.32 94.94 85.77 92.28 68.05 47.49 90.37
200 10 96.08 98.70 96.04 84.35 99.82 95.67 98.70 86.36 64.22 99.62
500 25 99.68 99.92 99.99 98.41 100.00 99.61 99.88 99.12 89.53 100.00

1000 50 100.00 100.00 100.00 100.00 100.00 99.97 100.00 100.00 99.59 100.00

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 70.89 49.01 2.14 0.15 31.16 65.76 42.52 1.24 0.10 24.92
200 20 86.25 62.95 0.01 0.00 17.14 93.81 78.96 0.22 0.01 32.36
500 50 97.74 81.43 0.00 0.00 2.19 100.00 99.43 0.00 0.00 36.62

1000 100 99.76 92.53 0.00 0.00 0.03 100.00 100.00 0.00 0.00 30.78

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 93.28 95.23 41.77 13.54 88.98 91.66 89.10 24.65 5.28 79.32
200 20 98.98 99.88 40.28 7.35 98.35 99.03 99.62 17.78 1.30 94.04
500 50 99.98 100.00 32.00 1.57 100.00 100.00 100.00 9.86 0.01 99.97

1000 100 100.00 100.00 27.28 0.14 100.00 100.00 100.00 4.61 0.00 100.00

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 43.70 2.00 0.00 0.00 2.94 54.98 4.17 0.01 0.00 5.62
200 40 46.18 0.70 0.00 0.00 0.02 76.68 6.28 0.00 0.00 1.21
500 100 46.50 0.05 0.00 0.00 0.00 96.04 6.35 0.00 0.00 0.00

1000 200 45.68 0.00 0.00 0.00 0.00 99.69 4.13 0.00 0.00 0.00

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 94.18 49.12 0.85 0.00 53.71 90.08 30.18 0.12 0.00 35.98
200 40 99.76 83.58 0.00 0.00 57.81 99.52 67.62 0.00 0.00 37.10
500 100 100.00 99.96 0.00 0.00 78.03 100.00 99.49 0.00 0.00 52.33

1000 200 100.00 100.00 0.00 0.00 99.81 100.00 100.00 0.00 0.00 97.96

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 27.92 0.00 0.00 0.00 0.10 43.50 0.00 0.00 0.00 0.97
200 60 21.75 0.00 0.00 0.00 0.00 54.80 0.00 0.00 0.00 0.02
500 150 11.36 0.00 0.00 0.00 0.00 68.94 0.00 0.00 0.00 0.00

1000 300 4.13 0.00 0.00 0.00 0.00 80.42 0.00 0.00 0.00 0.00

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 89.60 0.29 0.00 0.00 17.18 85.65 0.07 0.00 0.00 9.41
200 60 99.34 1.09 0.00 0.00 8.98 98.66 0.13 0.00 0.00 3.17
500 150 100.00 11.88 0.00 0.00 5.06 100.00 3.14 0.00 0.00 0.74

1000 300 100.00 97.41 0.00 0.00 50.09 100.00 93.84 0.00 0.00 33.20
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Table 3. Selection probabilities of the true model (%) in the Case of Distribution 2
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 70.88 70.46 41.68 30.97 62.29 59.53 55.40 23.14 15.84 43.97
200 10 83.11 81.24 36.61 27.35 64.22 81.02 78.56 33.51 24.30 60.22
500 25 90.40 87.54 29.00 21.80 62.23 94.25 92.27 39.50 30.74 72.06

1000 50 92.04 89.24 23.62 17.80 59.04 96.50 95.29 40.56 32.51 75.13

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 82.10 85.17 66.30 56.92 81.89 78.86 81.42 60.29 49.99 77.19
200 10 93.23 94.36 71.94 63.35 88.57 92.09 92.88 65.70 55.36 85.87
500 25 98.62 98.46 75.12 67.20 92.92 98.03 97.71 68.73 60.07 89.75

1000 50 99.49 99.30 76.25 68.69 94.38 99.34 99.04 71.52 64.30 93.01

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 64.80 51.08 17.11 10.27 40.08 61.25 47.16 15.50 9.31 36.22
200 20 72.02 58.14 12.12 6.83 36.35 77.47 64.79 16.47 10.28 42.66
500 50 75.68 61.46 7.04 4.19 29.85 86.82 76.86 15.27 10.13 46.72

1000 100 76.70 63.06 5.69 3.49 26.86 89.08 80.67 13.46 8.82 46.74

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 83.68 79.58 47.70 35.06 72.52 80.40 73.00 39.56 27.40 65.88
200 20 93.50 89.31 46.82 34.92 76.79 91.20 85.29 40.31 29.12 71.40
500 50 97.27 94.75 46.91 36.65 80.37 96.54 93.27 41.18 31.03 76.67

1000 100 98.00 96.28 47.83 38.02 83.41 98.04 95.66 41.87 32.54 80.15

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 47.43 14.72 3.47 1.45 16.31 55.08 20.38 5.48 2.42 22.46
200 40 50.05 17.70 1.64 0.77 12.28 64.78 29.86 4.12 1.81 21.77
500 100 49.43 18.32 0.80 0.42 7.86 69.83 35.59 2.71 1.34 18.57

1000 200 49.49 18.56 0.42 0.22 6.33 71.86 38.38 1.71 0.83 16.91

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 79.91 50.57 20.96 10.53 52.44 75.03 42.11 15.57 7.22 44.63
200 40 87.60 62.47 17.41 8.76 52.42 84.93 56.40 13.64 6.58 46.10
500 100 93.24 75.42 15.87 8.48 56.02 91.56 70.49 12.39 6.55 50.00

1000 200 96.31 83.78 17.75 10.84 63.24 95.63 81.52 15.48 8.92 60.03

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 37.47 2.05 0.85 0.24 7.48 48.51 4.57 1.96 0.61 13.55
200 60 36.78 2.81 0.43 0.17 4.76 54.14 6.72 1.17 0.37 10.51
500 150 34.22 2.75 0.13 0.05 2.43 57.06 8.62 0.52 0.17 7.66

1000 300 34.70 2.99 0.04 0.02 1.80 56.92 9.41 0.17 0.06 5.96

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 73.63 16.62 7.94 2.32 35.67 70.68 13.42 6.12 1.74 31.38
200 60 82.74 27.83 6.00 2.17 36.05 78.83 23.01 4.81 1.73 30.72
500 150 89.72 41.14 4.98 2.02 38.36 88.05 38.43 4.29 1.76 35.95

1000 300 95.06 59.40 7.02 3.09 50.27 94.51 57.81 5.91 2.89 48.35
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Table 4. Selection probabilities of the true model (%) in the Case of Distribution 3
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 88.85 94.65 94.12 90.68 96.36 87.31 92.30 85.31 79.04 92.31
200 10 95.66 97.94 94.29 91.23 98.37 95.57 97.81 93.27 89.64 97.97
500 25 99.50 99.67 93.22 90.07 98.52 99.60 99.80 96.22 94.04 99.22

1000 50 99.86 99.87 91.82 88.26 98.46 99.91 99.92 96.38 94.76 99.50

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 88.98 95.67 99.80 99.78 98.83 87.48 96.53 99.85 99.76 98.61
200 10 95.95 98.56 100.00 100.00 99.93 95.66 98.51 100.00 99.99 99.94
500 25 99.68 99.96 100.00 100.00 100.00 99.63 99.88 100.00 99.99 100.00

1000 50 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 92.07 95.45 82.79 73.59 93.32 91.70 94.84 80.12 70.24 92.08
200 20 97.86 97.44 78.98 69.86 93.67 98.16 98.38 84.30 76.80 95.65
500 50 99.28 98.71 73.05 64.11 93.57 99.70 99.37 85.48 78.68 97.58

1000 100 99.50 98.79 67.48 57.84 92.03 99.88 99.69 83.60 77.61 97.11

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 94.17 99.37 99.96 99.82 99.79 94.12 99.53 99.95 99.89 99.84
200 20 98.79 99.96 99.99 99.99 100.00 98.87 99.89 99.99 99.99 100.00
500 50 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00

1000 100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 92.60 79.33 52.46 36.37 80.81 94.40 84.37 61.07 44.56 85.66
200 40 96.22 84.23 43.23 28.85 78.19 98.19 91.50 59.73 44.81 87.59
500 100 97.15 87.72 31.62 19.98 74.35 99.02 95.05 52.37 38.88 88.36

1000 200 97.43 87.97 23.28 14.81 70.63 99.24 95.81 44.88 32.47 86.65

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 97.54 100.00 99.92 99.63 99.98 97.36 99.97 99.90 99.66 99.97
200 40 99.78 100.00 100.00 99.93 100.00 99.81 100.00 99.96 99.88 100.00
500 100 100.00 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 100.00

1000 200 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 99.99 100.00

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 89.84 44.40 29.49 14.31 67.31 93.39 57.59 43.18 24.00 78.32
200 60 93.25 51.09 19.56 9.03 60.82 97.12 69.56 35.49 20.54 77.67
500 150 94.29 55.46 9.90 4.47 52.73 98.08 76.25 23.36 13.05 74.07

1000 300 94.62 55.92 5.34 2.13 46.42 98.34 77.47 16.54 8.23 69.95

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 97.85 99.93 99.77 98.69 100.00 97.81 99.90 99.72 98.79 99.98
200 60 99.90 100.00 99.92 99.49 100.00 99.89 99.99 99.92 99.47 99.99
500 150 100.00 100.00 99.98 99.83 100.00 100.00 100.00 99.97 99.83 100.00

1000 300 100.00 100.00 99.99 99.93 100.00 100.00 100.00 99.99 99.96 100.00
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Table 5. Selection probabilities of the true model (%) in the Case of Distribution 4
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 78.20 77.81 32.68 16.90 66.21 62.22 55.45 9.93 3.10 38.18
200 10 92.82 93.13 20.00 6.68 74.06 91.95 91.39 15.13 4.56 68.45
500 25 99.54 99.71 2.64 0.28 80.76 99.55 99.87 17.48 3.16 96.38

1000 50 99.99 99.98 0.10 0.03 84.23 99.98 100.00 10.39 0.93 99.72

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 87.88 93.62 79.14 62.57 94.41 86.54 92.39 68.39 48.09 90.36
200 10 95.49 98.14 94.70 82.68 99.87 95.16 98.45 85.14 64.50 99.45
500 25 99.63 99.90 99.89 98.06 100.00 99.68 99.94 98.36 87.81 100.00

1000 50 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 99.20 100.00

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 69.39 48.63 3.18 0.34 32.22 65.19 43.49 2.12 0.24 27.32
200 20 84.31 62.58 0.12 0.02 19.98 91.63 77.31 0.62 0.04 34.25
500 50 96.47 79.43 0.02 0.00 3.66 99.85 98.55 0.06 0.02 38.67

1000 100 99.44 90.44 0.00 0.00 0.16 100.00 99.96 0.00 0.00 33.97

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 92.95 94.50 43.66 16.67 88.52 91.42 88.14 28.99 7.68 79.38
200 20 98.68 99.81 41.77 10.51 97.82 98.82 99.54 20.37 2.26 93.68
500 50 99.98 100.00 34.09 3.09 100.00 99.98 100.00 12.52 0.23 99.94

1000 100 100.00 100.00 30.53 0.78 100.00 100.00 100.00 7.42 0.15 100.00

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 44.40 2.83 0.01 0.00 3.79 55.29 6.02 0.03 0.00 7.41
200 40 46.23 1.21 0.00 0.00 0.17 74.94 9.11 0.00 0.00 2.40
500 100 46.74 0.21 0.00 0.00 0.00 93.21 8.66 0.00 0.00 0.09

1000 200 46.50 0.03 0.00 0.00 0.00 98.87 6.62 0.00 0.00 0.01

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 93.63 50.57 1.16 0.01 54.88 89.19 32.12 0.34 0.00 38.31
200 40 99.61 82.54 0.01 0.00 57.02 99.44 66.86 0.01 0.00 38.29
500 100 100.00 99.93 0.00 0.00 77.16 100.00 99.37 0.00 0.00 52.97

1000 200 100.00 100.00 0.00 0.00 99.42 100.00 100.00 0.00 0.00 96.68

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 28.13 0.01 0.00 0.00 0.24 44.62 0.02 0.00 0.00 1.77
200 60 23.64 0.00 0.00 0.00 0.00 54.96 0.00 0.00 0.00 0.08
500 150 13.48 0.00 0.00 0.00 0.00 67.55 0.01 0.00 0.00 0.01

1000 300 5.65 0.00 0.00 0.00 0.00 78.08 0.01 0.00 0.00 0.00

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 88.89 0.41 0.01 0.00 19.33 84.12 0.08 0.00 98.79 99.98
200 60 99.23 1.56 0.00 0.00 11.25 98.24 0.50 0.00 99.47 99.99
500 150 100.00 13.89 0.00 0.00 6.66 100.00 4.92 0.00 99.83 100.00

1000 300 100.00 96.20 0.00 0.00 51.00 100.00 91.87 0.00 99.96 100.00
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Table 6. Selection probabilities of the true model (%) in the Case of Distribution 5
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 68.55 66.94 37.54 26.26 58.66 68.77 67.46 36.44 25.73 58.13
200 10 82.13 81.29 30.08 18.65 65.52 81.80 81.24 29.76 18.67 64.76
500 25 94.76 94.71 14.85 7.22 69.75 94.34 94.61 15.47 7.38 69.62

1000 50 98.55 98.62 5.12 1.94 70.50 98.48 98.41 5.21 1.88 70.23

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 83.07 87.90 74.46 62.14 87.55 79.29 85.69 66.74 52.36 83.95
200 10 90.71 94.44 88.08 75.94 97.71 89.81 94.00 79.21 63.46 96.66
500 25 97.14 98.33 98.15 91.54 99.89 97.03 98.38 93.55 78.81 99.82

1000 50 99.31 99.61 99.87 98.01 99.97 99.07 99.52 99.20 93.10 99.95

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 59.32 47.56 12.74 6.17 36.77 59.04 47.53 12.47 5.91 36.65
200 20 70.33 56.89 4.31 1.67 29.71 70.95 56.51 4.21 1.69 29.34
500 50 85.63 68.94 0.56 0.20 16.92 84.84 67.64 0.55 0.19 16.28

1000 100 93.21 77.33 0.08 0.02 7.46 93.14 76.98 0.06 0.03 7.27

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 85.68 87.01 49.37 28.97 81.53 83.01 82.24 38.34 19.34 75.53
200 20 94.55 97.36 47.50 23.41 92.70 94.19 96.21 32.56 12.82 87.38
500 50 98.98 99.67 41.80 15.27 99.54 99.00 99.73 26.01 6.66 98.53

1000 100 99.79 99.88 39.29 10.02 100.00 99.84 99.93 21.94 3.76 99.98

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 42.87 11.39 1.35 0.41 12.64 42.95 11.00 1.36 0.37 12.15
200 40 46.97 9.62 0.18 0.04 4.73 47.13 9.12 0.11 0.04 4.43
500 100 48.63 5.15 0.00 0.00 0.69 47.48 5.17 0.00 0.00 0.64

1000 200 48.18 2.37 0.00 0.00 0.11 48.73 2.19 0.00 0.00 0.11

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 84.44 53.91 9.39 1.37 56.51 80.68 41.22 5.14 0.69 45.79
200 40 96.33 76.28 1.95 0.23 58.61 94.87 65.24 0.77 0.10 44.32
500 100 99.73 97.82 0.15 0.01 68.54 99.69 94.99 0.04 0.00 53.72

1000 200 99.93 100.00 0.01 0.00 93.01 99.95 100.00 0.07 0.00 85.80

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 32.52 0.91 0.26 0.02 4.55 44.24 2.30 0.70 0.19 9.44
200 60 31.53 0.32 0.01 0.01 0.80 53.04 1.71 0.06 0.00 3.75
500 150 24.33 0.11 0.00 0.00 0.09 60.55 0.82 0.00 0.00 0.57

1000 300 17.70 0.05 0.00 0.00 0.00 66.13 0.30 0.00 0.00 0.10

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 79.72 5.54 0.72 0.05 30.74 77.07 3.48 0.43 0.02 24.33
200 60 95.30 10.57 0.04 0.00 23.13 93.24 5.70 0.01 0.00 14.91
500 150 99.86 27.58 0.01 0.00 19.93 99.79 16.97 0.00 0.00 11.77

1000 300 100.00 84.93 0.00 0.00 50.09 99.98 80.00 0.00 0.00 44.04
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4 Conclusion and Discussion

In this paper, we derived the conditions that the LLBIC in (6) is consistent in selecting the
best model for a CCA, when the normality assumption to the true model is violated. The
information criteria considered in this paper are defined by adding a positive penalty term
to the negative twofold maximum log-likelihood, hence, the family of information criteria
that we considered includes as special cases the AIC, AICc, BIC, CAIC, and HQC. If we
define consistency by meaning that the probability of selecting the true model approaches
1, then, in general, under the LS asymptotic framework, neither the AIC nor the AICc are
consistent, but the BIC, CAIC, and HQC are. In this paper, we derived the conditions for
consistency under the HD asymptotic framework. Understanding the asymptotic behavior
of the difference between the two negative twofold maximum log-likelihoods are important
because the dimension of the maximum log-likelihood increases with an increase in the sample
size. If a normal distribution is assumed to the true model, it is possible to use a method
that uses the properties of Wishart distribution (see Yanagihara et al., 2012; Fujikoshi et
al., 2014). However, we cannot use this method in this paper, because we considered a case
in which the normality assumption is violated for the true model. Hence, to evaluate the
asymptotic behavior, we considered the convergence in probability for a linear combination
of elements in a symmetric idempotent random matrix and the distribution of the maximum
eigenvalues of the estimators of the covariance matrix. A basic idea for evaluating consistency
is the same as in Yanagihara (2013). However, in Yanagihara (2013), x was not a random
vector. Hence, we extended Yanagihara’s method to the case that x is a random vector.

The results of our analysis and simulations confirmed that the AIC and AICc are consis-
tent, and in some cases, the BIC is not consistent. These results are similar to those obtained
for a multivariate regression model proposed by Yanagihara and colleagues (Yanagihara et
al., 2012, 2014; Yanagihara 2013).

Appendix

A1. Lemmas for Proving Theorems and Corollaries

In this section, we prepare some lemmas that we will use to derive the conditions for consis-
tency of the penalty term m(j) in ICm in (5). We first present Lemma 1, which addresses
the expectation of a moment (the proof was given in Yanagihara, 2013).

Lemma 1 For any n× n symmetric matrix A,

E
[
tr
{
(E ′AE)2

}]
= κ

(1)
4

n∑
a=1

{(A)aa}2 + p(p+ 1)tr(A2) + ptr(A)2,

where κ
(1)
4 is given by (12), and (A)ab is the (a, b)th element of A.

Next, we present Lemma 2, which is the key lemma for deriving the conditions for consistency.
In this study, we derived the conditions necessary for achieving Lemma 2 (the proof was given
in Yanagihara, 2013).
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Lemma 2 Let bj,ℓ be some positive constant that depends on the models, j, ℓ ∈ J . Then, we
have

∀ℓ ∈ J \ {j}, 1

bj,ℓ
{ICm(ℓ)− ICm(j)} ≥ Tj,ℓ

p−→ τj,ℓ > 0 ⇒ P (ĵm = j) → 1.

Lemmas 3, 4, and 5 were used for evaluating the asymptotic behavior of each term (the proofs
are given in Appendices A4, A5 and A6).

Lemma 3 Let W be an n × n random matrix, defined by W = E(E ′E)−1E ′. Then, for any
ℓ ∈ J , we obtain

1

n− 1
X ′

ℓWXℓ
p−→ c0Σℓℓ.

Lemma 4 Let λmax(A) denote the maximum eigenvalue of A, and let V j be a p× p matrix
defined by

V j =
1

n
E ′(In − P j −HjH

′
j)E ,

where P j and Hj are given by (10) and (11), respectively. If assumption A2 holds, λmax(V j) =
Op(p

1/2) is satisfied.

Lemma 5 If assumptions A2 and A4 hold, αj,1 = Op(np) is satisfied, and lim inf
cn,p→c0

αj,1/(np) >

0, where αj,1 is the maximum diagonal element of Lj given by (11).

A2. Proof of Theorem 1

Let D(j, ℓ) (j, ℓ ∈ J ) be the difference between two negative twofold maximum log-likelihoods
divided by (n− 1), such that

D(j, ℓ) = log
|Syy·j |
|Syy·ℓ|

.

Note that
ICm(j)− ICm(j∗) = (n− 1)D(j, j∗) +m(j)−m(j∗).

From Lemma 2, we see that to obtain the conditions on m(j) such that ICm(j) is consistent,
we only have to show the convergence in probability of D(j, j∗) or a lower bound on D(j, j∗)
divided by some constant.

First, we show the convergence in probability of D(j, j∗) when j ∈ J+. Note that P jY =
P jE holds for all j, since X∗ is centralized. From the property of the determinant (see, e.g.,
Harville, 1997, chap. 18, cor. 18.1.2), the following equation are satisfied for all j ∈ J+ \ {j∗}
under the given assumptions:

D(j, j∗) = log
|Y ′(In − P j)Y |
|Y ′(In − P j∗)Y |

= log
|E ′(In − P j)E |
|E ′(In − P j∗)E |

= log

∣∣In − (E ′E)−1E ′P jE
∣∣

|In − (E ′E)−1E ′P j∗E |

= log

∣∣X ′
jXj −X ′

jWXj

∣∣ |X ′
∗X∗|

|X ′
∗X∗ −X ′

∗WX∗|
∣∣X ′

jXj

∣∣ .
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Hence, by using Lemma 3 and (n− 1)−1X ′
ℓXℓ

p−→ Σℓℓ for all ℓ ∈ J , we obtain

D(j, j∗)
p−→ (qj − qj∗) log(1− c0). (A1)

Next, we show the convergence in probability of a lower bound on D(j, j∗)/ log p when
j ∈ J−. It follows that for all j ∈ J−,

D(j, j∗) = log

∣∣∣(L1/2
j G′

j +H ′
jE)′(L

1/2
j G′

j +H ′
jE) + nV j

∣∣∣
|E ′(In − P j∗)E |

= log

∣∣∣∣∣Ip +

∑γj
a=1 V

−1
j (

√
αj,agj,a + E ′hj,a)(

√
αj,agj,a + E ′hj,a)

′

n

∣∣∣∣∣
+ log

|nV j |
|E ′(In − P j∗)E |

≥ log

∣∣∣∣∣Ip +
V −1

j (
√
αj,1gj,1 + E ′hj,1)(

√
αj,1gj,1 + E ′hj,1)

′

n

∣∣∣∣∣
+ log

|nV j |
|E ′(In − P j∗)E |

= log

{
1 +

(
√
αj,1gj,1 + E ′hj,1)

′V −1
j (

√
αj,1gj,1 + E ′hj,1)

n

}

+ log
|nV j |

|E ′(In − P j∗)E |

≥ log

{
λmax(V j) +

(
√
αj,1gj,1 + E ′hj,1)

′(
√
αj,1gj,1 + E ′hj,1)

n

}
+ log

|nV j |
|E ′(In − P j∗)E |

− log λmax(V j)

= D1(j) +D2(j) +D3(j), (A2)

where

D1(j) = log {λmax(V j) + pξj} ,

D2(j) = log
|nV j |

|E ′(In − P j∗)E |
,

D3(j) = − log λmax(V j),

and ξj = (
√
αj,1gj,1 + E ′hj,1)

′(
√
αj,1gj,1 + E ′hj,1)/(np).

First, we evaluate the asymptotic behavior of D1(j) in (A2). From the equation h′
j,lhj,1 =

1, it is easy to see that
E[h′

j,1EE ′hj,1] = p.

Moreover, it follows from Lemma 1 that

E[(h′
j,1EE ′hj,1 − p)2] = κ

(1)
4

n∑
a=1

{(hj,1h
′
j,1)aa}2 + 2p

= O(max{p, ps}),
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where κ
(1)
4 is given by (12), and s is a positive constant given by (13). Hence, we have

h′
j,1EE ′hj,1 = p+Op(max{p1/2, ps/2}) = Op(p). (A3)

Moreover, note that gj,1g
′
j,1 is an idempotent matrix,(√
αj,1gj,1E ′hj,1

)2
= αj,1h

′
j,1Egj,1g

′
j,1E ′hj,1

≤ αj,1h
′
j,1EE ′hj,1

= Op(np
2).

This implies that

√
αj,1gj,1E ′hj,1 = Op(n

1/2p). (A4)

From Lemma 5, (A3), and (A4), we have

ξj = Op(1). (A5)

By using (A5) and Lemma 4, we obtain

1

log p
D1(j) =

1

log p
log {λmax(V j) + pξj}

=
1

log p
log

{
1

p
λmax(V j) + ξj

}
+ 1

p−→ 1. (A6)

Next, we evaluate the asymptotic behavior of D2(j) in (A2). From Lemma 3 and the
result (In − P j −HjH

′
j)(In − P j) = In − P j −HjH

′
j , we can see that

D2(j) ≤ log
|E ′(In − P j)E |
|E ′(In − P j∗)E |

= log

∣∣X ′
jXj −X ′

jWXj

∣∣ |X ′
∗X∗|

|X ′
∗X∗ −X ′

∗WX∗|
∣∣X ′

jXj

∣∣
p−→ (kj − kj∗) log(1− c0),

where W is given in Lemma 3. It follows that (In − P j+)(In − P j −HjH
′
j) = In − P j+ ,

where j+ is given by (9). Thus, we also have

D2(j) ≥ log

∣∣E ′(In − P j+)E
∣∣

|E ′(In − P j∗)E |

= log

∣∣X ′
j+Xj+ −X ′

j+WXj+

∣∣ |X ′
∗X∗|

|X ′
∗X∗ −X ′

∗WX∗|
∣∣X ′

j+Xj+

∣∣
p−→ (kj+ − kj∗) log(1− c0).

The above upper and lower bounds on D2(j) imply that

1

log p
D2(j)

p−→ 0. (A7)
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Finally, we evaluate the asymptotic behavior of D3(j) in (A2). Since − log x ≤ −x+1 for
any x ≥ 0, we have

D3(j) =
1

2
log p− log

λmax(V j)√
p

≥ 1

2
log p−

{
λmax(V j)√

p
− 1

}
= D3,1(j).

It follows from Lemma 4 that
1

log p
D3,1(j)

p−→ 1

2
. (A8)

Consequently, combining (A2), (A6), (A7), and (A8) yields,

1

log p
logD(j, j∗) =

1

log p
{D1(j) +D2(j) +D3(j)}

≥ 1

log p
{D1(j) +D2(j) +D3,1(j)}

p−→ 1

2
. (A9)

As a result, from Lemma 2, (A1), and (A9), we can obtain the conditions given in Theorem
1.

A3. Proof of Corollary 1

First, we consider the AIC and AICc. According to an expansion of m(j) − m(j∗) in the
AICc, the differences between the penalty terms of the AICcs are

m(j)−m(j∗)

=
(qj − q∗)(2− cn,p)p

(1− cn,p)2

(
1 +

qj + q∗ − 2

n

)(
1− 1

n

)2

+O
(
pn−1

)
.

(A10)

Moreover, the differences between the penalty terms of the AICs are

1

n log p
{m(j)−m(j∗)} =

2cn,p
log p

(qj − qj∗).

Hence, the convergence of the differences between the penalty terms of the AICs and those
of the AICcs is

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = 0.

This indicates that the condition C2 holds for both the AIC and the AICc. Furthermore, it
follows from equation (A10) that

lim
cn,p→c0

1

p
{m(j)−m(j∗)} =


2(qj − qj∗) (AIC)

(qj − qj∗){(1− c0)
−1 + (1− c0)

−2} (AICc)
.

Since c−1 log(1−c)+(1−c)−1+(1−c)−2 is a monotonically increasing function when 0 ≤ c < 1,
it follows that c−1

0 log(1− c0) + (1− c0)
−1 + (1− c0)

−2 > 0 holds. That is, the penalty terms
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in the AICc always satisfy the condition C1 when j ∈ J \ {j∗}, and those in the AIC satisfy
the condition C1 if c0 ∈ [0, ca), where ca is given by (14).

Next, we consider the BIC and the CAIC. When j ∈ J+ \{j∗}, the difference between the
penalty term of the BIC and that of the CAIC is

lim
cn,p→c0

1

p logn
{m(j)−m(j∗)} = qj − qj∗ > 0.

Thus, the condition C1 holds. Moreover, it is easy to obtain

1

n log p
{m(j)−m(j∗)} =


cn,p(qj − qj∗)

(
− log cn,p
log p

+ 1

)
(BIC)

cn,p(qj − qj∗)

(
1− log cn,p

log p
+ 1

)
(CAIC)

.

Since limc→0 c log c = 0 holds, we obtain

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = c0(qj − qj∗).

When j ∈ S̄− ∩J−, condition C2 is satisfied because c0(qj− q∗) ≥ 0 holds, where S− is given
by (15). When j ∈ S−, then for all j ∈ S−, condition C2 is satisfied if c0 < 1/{2(q∗ − qj)}
holds.

Finally, the HQC is considered. When j ∈ J+ \ {j∗}, the difference between the penalty
terms of the HQCs is

lim
cn,p→c0

1

p log log n
{m(j)−m(j∗)} = 2 log log(qj − qj∗).

Thus, the condition C1 holds. Moreover, it is easy to see that

1

n log p
{m(j)−m(j∗)} = 2(qj − qj∗)cn,p

{
log log p

log p
+

log(1− log cn,p/ log p)

log p

}
.

From this equation, we obtain

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = 0.

Hence, condition C2 holds. From the above results and Theorem 1, Corollary 1 is proved.

A4. Proof of Lemma 3

For any ℓ ∈ J , let Xℓ = (x1, . . . ,xqℓ), let xk = (x1k, . . . , xnk)
′, and let wab be the (a, b)th

element of W . Then, x′
sWxt, which is the (s, t)th element of X ′

ℓWXℓ, is expressed as

x′
sWxt =

n∑
a=1

xasxatwaa +

n∑
a ̸=b

xasxbtwab. (A11)
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Moreover, we can calculate

(
x′
sWxt

)2
=

n∑
a=1

x2asx
2
atw

2
aa +

n∑
a ̸=b ̸=c ̸=d

xasxbsxctxdtwabwcd

+
n∑

a ̸=b

{
xasxbsxatxbt

(
waawbb + w2

ab

)
+ x2asx

2
btw

2
ab + 2(x2asxatxbt

+xasxbsx
2
at)waawab

}
+

n∑
a ̸=b̸=c

{
2xasxbsxatxct + (x2asxbtxct

+2xasxbsxatxct + xbsxcsx
2
at)wabwac

}
, (A12)

where the notation
∑n

a1 ̸=a2 ̸=··· means
∑n

a1=1

∑n
a2=1,a2 ̸=a1

· · · . Notice that X ′1n = 0q and so

n∑
a,b

xasxbt =

n∑
a=1

xas =

n∑
a=1

xat = 0,

n∑
a ̸=b

xasxbt = −x′
sxt,

n∑
a ̸=b

xasxbsxatxbt = (x′
sxt)

2 −
n∑

a=1

x2asx
2
at,

n∑
a ̸=b

x2asx
2
bt = x′

sxsx
′
txt −

n∑
a=1

x2asx
2
at,

∑
a ̸=b

x2asxatxbt =
∑
a ̸=b

xasxbsx
2
at = −

n∑
a=1

x2asx
2
at, (A13)

n∑
a̸=b̸=c

xasxbsxatxct =

n∑
a ̸=b̸=c

x2asxbtxct =

n∑
a ̸=b̸=c

xbsxcsx
2
at

=

n∑
a=1

x2asx
2
at +

n∑
a ̸=b

xatxbtxasxbs.

Note that x′
sxt is the (s, t)th element of X ′

ℓXℓ, and (n− 1)−1X ′
ℓXℓ

p−→ Σℓℓ. Here, since W
is a symmetric idempotent matrix and W1n = 0n holds, we obtain the following equations:

0 ≤ waa ≤ |wab| ≤
√
waawbb ≤ 1 (a = 1, . . . , n; b = 1, . . . , n; a ̸= b), (A14)
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and

tr(W ) =
n∑

a=1

waa = p, tr(W 2) =
n∑

a=1

w2
aa +

n∑
a ̸=b

w2
ab = p,

tr(W )2 =
n∑

a=1

w2
aa +

n∑
a̸=b

waawbb = p2, 1′nW1n =
n∑

a=1

waa +
n∑

a̸=b

wab = 0,

1′nW
21n =

n∑
a=1

w2
aa +

n∑
a ̸=b

(2waawab + w2
ab) +

∑
a ̸=b̸=c

wabwac = 0, (A15)

tr(W )1′nW1n =

n∑
a=1

w2
aa +

n∑
a ̸=b

(2waawab + waawbb) +
∑

a ̸=b̸=c

waawbc = 0,

(
1′nW1n

)2
=

n∑
a=1

w2
aa +

n∑
a ̸=b

(waawab + 2w2
ab + 4waawab)

+ 2
∑

a ̸=b̸=c

(waawbc + 2wabwac) +
∑

a̸=b̸=c ̸=d

wabwcd = 0.

Since waa (a = 1, . . . , n) are identically distributed, and wab (a = 1, . . . , n; b = a + 1, . . . , n)
are also identically distributed, from the equations in (A15), and for a ̸= b ̸= c ̸= d, we obtain

p = nE[waa],

p = nE[w2
aa] + n(n− 1)E[w2

ab],

p2 = nE[w2
aa] + n(n− 1)E[waawbb],

0 = nE[waa] + n(n− 1)E[wab], (A16)

0 = nE[w2
aa] + n(n− 1) (2E[waawab] + E[wab2 ]) + n(n− 1)(n− 2)E[wabwac],

0 = nE[w2
aa] + n(n− 1) (2E[waawab] + E[waawbb]) + n(n− 1)(n− 2)E[waawbc],

0 = nE[w2
aa] + n(n− 1) (E[waawbb] + 2E[wab2 ] + 4E[waawab])

+ 2n(n− 1)(n− 2) (E[waawbc] + 2E[wabwac])

+ n(n− 1)(n− 2)(n− 3)E[wabwcd].

It follows from equation (A14) that E[w2
aa] ≤ 1. Combining this result and equation (A16)

yields

E[waa] = cn,p, E[wab] = O(n−1),

E[w2
aa] = O(1), E[waawbb] = c2n,p +O(n−1),

E[w2
ab] = O(n−1), E[waawab] = O(n−1),

E[waawbc] = O(n−1), E[wabwac] = O(n−2),

E[wabwcd] = O(n−2),

(A17)

as cn,p → c0, where a, b, c, d are arbitrary positive integers not larger than n, and a ̸= b ̸= c ̸=
d.
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Let σst be the (s, t)th element of Σℓℓ. Then, by using (A11), (A12), (A13), and (A17), we
have

1

n− 1
E
[
x′
sWxt

]
→ c0σst,

1

(n− 1)2
E
[(
x′
sWxt

)2]→ c20σ
2
st.

The above equations directly imply that (n− 1)−1V ar [x′
sWxt] → 0 as cn,p → 0. Hence, the

(s, t)th element of X ′
ℓWXℓ converges, as follows:

1

n− 1
x′
sWxt

p−→ c0σst.

Therefore, Lemma 3 is proved.

A5. Proof of Lemma 4

It follows from elementary linear algebra that

λmax(V j) ≤ λmax

(
1

n
E ′E

)
≤
√

1

n2
tr
{
(E ′E)2

}
.

From Lemma 1, we can see that

E

[
1

n2
tr
{(

E ′E
)2}]

=
1

n
κ
(1)
4 +

1

n
p(p+ 1) + p = O(p).

The above equation and Jensen’s inequality lead us to the equation

E

[√
1

n2
tr
{
(E ′E)2

}]
≤

√
E

[
1

n2
tr
{
(E ′E)2

}]
= O(p1/2).

This directly implies that n−1[tr{(E ′E)2}]1/2 = Op(p
1/2). Hence, Lemma 4 is proved.

A6. Proof of Lemma 5

It follows from elementary linear algebra that

1

np
αj,1 =

1

np
λmax(Lj) ≤

1

np
tr(Lj)

=
1

np
tr
(
ΓjΓ

′
j

)
=

1

np
tr
{
X ′

∗(In − P j)X∗Σ
−1
j∗j∗

Σj∗yΣ
−1
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗

}
≤ 1

np
tr
{
X ′

∗X∗Σ
−1
j∗j∗

Σj∗yΣ
−1
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗

}
p−→ tr

(
ΨjΣ

−1
j∗j∗

)
.

From the above equations and assumptions A2 and A4, we have

αj,1 = Op(np).
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Moreover, it also follows from elementary linear algebra that

1

np
αj,1 =

1

np
λmax(Lj) ≥

1

γjnp
tr (Lj)

=
1

γjnp
tr
{
X ′

∗(In − P j)X∗Σ
−1
j∗j∗

Σj∗yΣ
−1
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗

}
p−→ tr

{
Σ−1

j∗j∗
Σj∗j∗·jΣ

−1
j∗j∗

Ψj

}
.

Hence, with assumption A4, this implies that

lim inf
cn,p→c0

1

np
αj,1 > 0.

Consequently, Lemma 5 is proved.
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