Estimation of misclassification probability
for multi-class classification
based on the Euclidean distance
in high-dimensional data

Masashi Hyodo*, Yuki Yamada'and Hiroshi Furukawa
Tokyo Unwversity of Science

April 8, 2015

Abstract

The Euclidean distance-based classifier is often used to classify an observation
into one of several populations in high-dimensional data. One of the most important
problem in discriminant analysis is estimating the probability of misclassification.
Recently, Yamada et al. (2015) proposed the asymptotically unbiased and con-
sistent estimator of misclassification probabilities for two class classification under
high-dimensional settings where the number of parameters exceeds the sample size.
Their proposed method has the advantage of establishing under variance hetero-
geneity and nonnormality. In this paper, we extend their discussion to the case
of multiple groups. One of the main contributions of this paper is to establish
the asymptotic multivariate normality for several discriminant functions. By us-
ing this asymptotic multivariate normality and new estimator of bilinear form, we
also obtain the asymptotically unbiased and consistent estimator of misclassifica-
tion probabilities for multi-class classification. Finally, we numerically justify the
high accuracy of our proposed estimator in finite sample applications, inclusive of
high-dimensional scenarios.
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1 Introduction

In this paper, we focus on the multi-class classification which is concerned with the allo-
cation of a given object, &, a random vector represented by a set of features (zy,...,z,),
to one of ¢+ 1 populations, Iy, ... ,II, and II,;1. Suppose that x € II, (¢ =1,...,¢+1);
then, we assume that

x=19z 4+ “(9)‘

Further, let m}‘”, a:gg), . ,wg\‘}; be p-dimensional observation vectors from the g-th popu-

lation II, such that
2@ =102 4 p@ (j=1,... N, g=1,....q+1).

Here, TWI'9) = $@(> O) and z = (21,...,2,) and zg-g) = (zg), e zz(,?))’ are indepen-

dent and identically distributed (i.i.d.) random vectors such that E[z] = E[zg-g)] =0 and
Var(z] = Var[zg.g)] =1,

In our study, we consider two cases, (C1) and (C2), as follows.

(C1) alii‘g), Kai, /ifﬁr)lax, Kamax € (0,00) such that

Z;l] = Ky4; + 3 S Kamax + 37
AN =k 4 3<k9 13 (i=1,...,p),

4dmax

[
[

E[z227] = E[{"219") = 1,
[

| = B[z 4 z,0)

=0 (i #k1,m).
(C2) z; and zi(f) are independent for i, 7, g, and 3&55), Kai, /ﬁfﬁax, Kamax € (0,00) such
that )

Elzi] = fiai +3 < Famax + 3 and B2 ] = &7 +3 < {2 + 3.
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Here, (C1) is a weaker condition than (C2). However, under (C2), assumptions about the
mean vector and covariance become weak.

We are interested to explore the discrimination procedure that can accommodate p >
max{Ny, Na, ..., Ny41} cases, with the main focus on the performance accuracy in the
asymptotic framework that allows p to grow together with Ny, N, ..., Nyi1. Recently,
Aoshima and Yata (2014) have been considered the Euclidean distance-based classifier
for the high-dimensional multi-class problem with different class covariance matrices. Let
x be an observation vector into one of the several populations II;,II, ..., II,41. The
Euclidean distance-based discriminant function is defined as

1 1
Wiglw) = lla— T ~ o ~FO i | =5 = 50| ()
where S@ (i =1,2,...,q+ 1) denote the sample covariance matrices. Then, to classify

an individual @ to I, the regions of classification, R, (¢ =1,...,¢+ 1), are given by

Ry ={x|Wyy(x) >cy, —cn,h=1,2,..., ¢+ 1,h # g},



where ¢, and ¢;, are some constants. The classification rule is given by * € R, = = € II,.
The misclassification probability in this case is given by

eg=1—-Pr(x e Ryleeclly) (¢9=1,...,q+1).

In this study, we focus on the misclassification probability e,. Our main objective
is to derive limiting value of misclassification probability and propose its consistent and
asymptotically unbiased estimator under high-dimensional frameworks. It is generally dif-
ficult to obtain an exact value of misclassification probability. So, there are much works
for asymptotic approximations for misclassification probability of the Fisher linear dis-
criminant rule. The approximations are the ones under a framework such that N; and N,
are large and p is fixed has been studied. For a review of these results, see, e.g., Okamoto
(1963, 1968), Siotani (1982). Further, the asymptotic approximation under a framework
that Ny, Ny and p are all large have also been studied (see, e.g., Lachenbruch (1968)
and Fujikoshi and Seo (1998)). Moreover, Fujikoshi (2000) obtained an explicit formula
of error bounds for an approximation of misclassification probability. Recently, Aoshima
and Yata (2014) showed the asymptotic normality of the Euclidean distance discrimi-
nant function under the under high-dimensional asymptotic framework. Yamada et al.
(2015) obtained the asymptotically unbiased and consistent estimator of misclassification
probability for two-class classification based on the Euclidean distance. In this paper, we
extend their discussion to the case of multiple groups. One of the main contributions of
this paper is to establish the asymptotic multivariate normality for several discriminant
functions. By using asymptotic multivariate normality, we propose the consistent and
asymptotically unbiased estimator of misclassification probability of e,. As a by product,
we also derive the unbiased estimator of 5’gh2(9)6ghr, where 5, = p, — by,

The remaining part of the paper is organized as follows. In Section 2, we show the
asymptotic multivariate normality for several Euclidean discriminant functions. In Sec-
tion 3, we derived the asymptotically unbiased and consistent estimator of misclassifi-
cation probability of e;. In Section 4 summaries the results of numerical experiments
justifying the validity of the suggested estimators for the data along with a number of
high-dimensional scenarios. We conclude in Section 5, and give some auxiliary lemmas in
Appendix.

2 Asymptotic normality of Euclidean distance-based
classifier

In this section, we show the asymptotic multivariate normality for g-dimensional vector
wj, the component is several Euclidean discriminant functions, i.e.

wy = (Wig(@), ..., Wo1g(®), Wr1g(), ..., Werr())"



We assume (C1) and the high-dimensional asymptotic framework

(A0) q:fix, p,N1,...,Nyy1 =00, Ny <N, (h=2,...,q+1),

tro@* tremy@)
Al lim ———— =0, 0< lim ———— < o0 h=1,2,... 1
AU D RN == 9.h=12..q+1),
IO
) : gh gh _ _
(A2’) p,Ngl,l]\l}Ihl%oo —5%9 =0 (g,h=1,2,...,q+1)

or (C2) and the high-dimensional asymptotic framework (A0), (A1),

6;h2(h)5gh

(AQ) p’Ngl}Nth—mo NhU;%g :O (gah: 1,2,...,q+1, g?éh),
(9)? (9)? )
max{y( W Vgh) } )
A3 i 1), ghrl _ o 5 w9§
( ) pr%Bﬂoo J;hz(g)dgh » Ygh gh Ng

(gah:172a"'>q+17 g%h)a
where

4try(9)? N 4try (@) n () N 2try(9)° N 2trn(m)?
N, N, N,(N,—1)  Np(N,—1)

2 _
Ohg =

4 4
o, = 46,598, + Ftrz(g)2 + FtrE@)E(h), (g:h=1,...,q+1, g#h),
g h

4 2
Ohg,h'g = 46;h2(g)69h’ + Ftrz(g) (gu hv h = L...,q+ 17 g 7é h 7é 3 7é g)
g

Here, 7((5,)11),1 denote the i-th element of F(g)/égh. Suppose that

vy =diag(oy,) ..., 0,0, 0,01 0pt1,) (wy — Elwg|z € 1))

The following theorem provides the asymptotic normality of v,.

Theorem 2.1 Let x € II,(g = 1,...,¢+ 1). Under (C1), (A0), (A1) and (A2’) or
(C2), (A0)-(A3), it holds that

d
v, — N (0, R),
where

1 P1g,2g Pig3g -+  Plggg Plgg+lg
) P2g,19 1 P2g3g "'t P2gq9  P2g,q+1g

R = lim . . . . . .

p,N1,...,Ngyr1—00
Pq+1g,lg Pg+lg2g Pq+lg3g - - Pgt+lgag 1

HGT’(E, Phg,h'g = Uhg,h’g/(ahgah’g) (97 h7 h' = 17 27 NS 17 g 7£ h 5& h' % g)



Proof. Let §; (i=1,...,q+ 1,1 # g) denotes ¢ non-random values which satisfy

0< lim |Bi| < o0,

and introduce the random variable
q+1
T = Z ﬁhThg

h#a
which is defined as the linear combination of

Whg(x) — 8,6
Thg = ol - P (h=1,....q+Lh#g).
g

Then T}, is decomposed as T}, = T,S]) + T}Ef}), where

Ty = 2z~ p) 8y + 2Aa — ) (@D —p@) — @Y — )},

Ng
@ _ 1 @ @V ()
O-hgTjk - Ng(Ng - 1) ]%—:1(mj w ) (mk w! )
i#k
1 all
(h) (W)Y ( () (h) 1 (z(h) (h)
S — '\ — x,’ — — 26, (£ — )
Nh(Nh_ 1) ij:1( j 12 )( k 12 ) gh( H )
ik

First, we show the asymptotic normality of 7" under (C1), (A0), (A1) and (A2’). From
Lemma A.2, it holds that

N
T = sz + 0p(0y),
i=1

where

q+1

P | 2 @V _ @) (i
- e (9) _ —1,...,N,),
0 Z% (@ = w0 @ = ) 5)
h#g
_ 26 @)y () ()
P = Jthh(:v ) (@i 2y, — 1)
h—1
i=Nyg+ Y Ny+1,... N+ZNh/
h'=0
h'#g h’#g

Here, N = ZqH N; and Ny = 0.



Define Fy = {0,Q}, F1 = {1}, Fic1 = o{th1,19,...,;_1}. Then it is straightforward
to show that E[¢;] = 0 and E[¢;|F;—1] = 0. Thus, 1); is a martingale difference sequence.
To apply martingale central limit theorem, we need to show that

N
ZE AFia] Bo?  and Y E[] =0, (2.1)
=1
where
q+1 q+1
oy —Zﬁh-ir Z BnBh Prg,hg-
h,h/=
= ;éh;éh';ég

We first show the first part of (2.1). Note that

N q+1 ﬁh 2 4 )
> EWFi] - o) = ( 2 —) 7 (@ = n@YS9 (@ - u@) - 43"
i—1 heT hitq Oh9 9
g+1 4ﬁ
+ Z h — p9Ys® (g — p9y — trZ(g)Z(h)) +0(1).
h= 1h¢g

Hence, it holds that

since
2\ 2
E [((w — pY2@) (g — p9)) — 2@ ) } < 249 e’

E [((m ~ p9YEW (g — y @) trg(g)g(h)ﬂ < 2+ Hiﬁax)tr(z(g)g(h))?

This proves the first part of (2.1).

Next, we show the second part of (2.1). Under (C1), (A0), (Al) and (A2’), it holds
that

N
S B[] = o(1),
=1
since
.-
o (@~ w2y (@ — po)) - O((tr2(9)2)2+tr2(9)4>
Ny Ny ’
4:
. (@—n@y@y, —pm) | o (TSR 1 u(sOne)y
N} B N '




This proves the second part of (2.1) and finishes the proof of asymptotic normality of T’
under (C1),(A0),(Al) and (A2).

Next, we show the asymptotic normality of 7' under (C1),(A0)-(A3). Let g9 =
7 — p@ g0 =10z Then T}, can be factorized as P lh) + 0,(1), where

Ohg€; e — 27(9)) 2+ 2)\ ) 2)\1(51)1/2

( Z,h(g) /y(h)

Here, H9 is an orthogonal matrix such that H@ AW H' = £ where, A¥) = diag()\gg),
. 7)\;9)) and )\Eg) is i-th eigenvalues of ¥(9). Note that

p g+l
h
T=3"% A" +o,(1)
i=1 h=1
h#g
Suppose that
g+1
€ = Z /Bh€§h)
h=1,h+g

and Fy = {0,Q}, Fi_1 = o{e1,...,€_1}. Then it is straightforward to show that E[¢;] = 0
and Ele;|F;—1] = 0. So ¢; is a martingale difference sequence. To apply martingale central
limit theorem, we need to show that

p p
> 6,502 and Y E[ef] =0, (2.2)
=1 i=1
where
q+1 q+1
U—Xﬁﬁ-E:BMMW@EFEMEJ-
h,h/=
= ghtiitg

We first show the first part of (2.2). Note that

q+1 q+1
§)w“+ ST Bubwo™™),
h,h/=1
(= g#h#h' £
where
) 4 (9) )‘z('g)z /\) /h(g)h( @)\ (9)rz(h)
N 0 iy ~ Dgmatis MUY
(9)
gl _ 4 (@9 (9 +)\ig +/\( h)/h(ghg)/—(h’)
i Chghrg \ @i lad)a T T T Y

)1/2 —(n 1/2 -
)\(g (gh Zhgg 1=(h') _ )\gg) 7((5)h’) ,h(- 9)r y(h)> .



Then we get
p
=30
i=1

It is sufficient to show Var[A;] = o(1), Var[As] = o(1) and Var[A3] = o(1), where

A = LY gt Yy

g(h)'g(g)y(h) 4 5’h§] (D) y(h)/z(g)y(h’)
U%g Jhg

O’th'h/g

The variance of A; is evaluated as

Var[A;] = E[A}] - ——{tr(2@Wx®))2

4 2
th

(h)
L[ imax tr(B@EM)2 = o(1).
0'th2 Nh

By applying Cauchy-Schwarz inequality,
8, SMSOEMg ) < 8, M /tr(SME6))2,

So, the variance of A, is evaluated as

8y SRIEME, 8, RN 8 /ir(EPE0)2

Var[A,] = E[A43] = =o(1).

O'thh - O'thh
The variance of As is evaluated as
tr@nm) @ tr(X@XNM) 2t (L9 (R))2
Var[4;] = E[A}] = d \/ 1 )*tr( )
O'th'h/ NhNh/ O'thh/ NhNh/

Hence completes the proof for the first part of (2.2).
Next, we show the second part of (2.2). We decompose ¢; into > 7 1 hta ﬁhe ,

where egh) = 651) + eg) + 62(3). Here,

(9 i b
o _ Dam# gy _ 2wz gy _ 20 kg
1l Thg ) T2 Ohg )’ Y43 Ohg

By applying Holder’s inequality, we obtain

p p q+1 - q+1 (' i
STEE=DE ( > Buel >> <27¢" Y 5;&213 P e
=1 =1

h=1,h#g h=1,h#g i=1



So, we need to show > 7, E[e&?)4] = o(1) for £ = 1,2,3. Note that

(h 4 16
ZE NS S Bmax{y(0 1 0S8 = o(1),
hg
ZE MY < 10 (k) +3) —“ﬁa" +3 | 8@’ =o(1)
— K max r =0 Y
op N2 N,
Z E[e(h)4] < 16 (I{(g) + 3) Kﬁ(llrr)lax +3 Z )\ g 5y h)h(g))Q
- 13 — N,% hg 4max Nh 7
(h)
< K +3) [ 22 4 3 ) tr(R@ORM) = o(1).
oo (ima +3) T (ZO5M) = o(1)

This proves the second part of (2.2) and finishes the proof of asymptotic normality of 7".00
By using Theorem 2.1, we obtain the limiting values of probabilities of misclassification
in following corollary.

Corollary 2.1 We assume that

cog—cp—206.8
(A4) 0<  lim g _h TghTeh

Ng:Nh7P_>OO O-hg
Let ’
/ !/
. Cg —C1 — 65]1691 Cg — Cq+1 — 6gq+1dgq+1
cy = lim . )
p,N1,..., Ngt1—00 Ulg 0q+1g

Under (C1), (A0), (A1), (A2°) and (A4) or (C2), (A0)-(A4), it holds that

eg = 1—F(cy|R)+o0(1), (2.3)

[e'e) 00 o) 1 IE—
Pl = [ [ [ e

3 Estimation of probability of misclassification

where

The limiting values (2.3) include the unknown values 8;,d4, and o4y. We use unbiased
estimator of &7, 04

- _ _ _ _ trS@  trS®
8,,00n = (T — My (Z9) — ") — N -

—

The unbiased estimator 8;,d,, is used in two sample test (e.g. Chen and Qin (2010),
Aoshima and Yata (2011).) Now consider the estimator of oj;. We prepare the unbiased



estimators of tr2@X® r2@)* and §2@§ as follows:

HE@DH = 5@ s™

— N —1 2
try? = g {(N — 1)(N, = 2)trS9” + (trS9)? — N, Q<9>} ,
NQ(NQ_Q)(N9_3) ! ! !
— 1 1
8, 00s,, = (N, = 2)Vehh) _oreh) _ — 359 gh
oh ! (Ng_1>(Ng_2) { ! } Ng
1 2 2
+ {2N QY — (N, — 1) (trS9)* — (N, — 1)*t2S© }
N, =3, =3 1@~ (= 1) ()= 0
— = 1 ’ /
6 X9 = {(N _ 2)v(g,h,h) _ <U(g,h) + U(g,h))}
" ! (Ng_1>(Ng_2) !
1 2 2
+ {2N QY — (N, — 1) (trS9)? — (N, — 1)*t2S© }
N, =2, =) VN7 = (o = ) ()= (0
where
R 2
(9) _ (@) _ =)V (@) _ =(9)
Qg - Ng—llz:;{(ml mg)<ml mg)}7
Ng
v/ (g:h:h") Z(w(g) — MY (£l — D) (2 — Yy (79 — "))
=1
NQ
yloh)  — Z(w(g) — My (29 — @) (g — )Y (g — z).
i=1
The unbiased estimator t@ is proposed in Himeno and Yamada (2013), and they

—

showed the consistency of this estimator. Also note that tr¥X(¥? is the same as the one

—

of Chen et al. (2010). Yamada et al. (2015) derived the unbiased estimator &7;,3(9)d,,
and investigate the leading term of variance of these estimators. In this paper, we obtain
the unbiased estimator of 5;h2(9) 0,4 and investigate the leading term of variance of this

o —

estimator (see, Appendix). By using these estimators trX(@X (") tr3(9)* and 5lgh2(j)5gh/,
Yamada et al. (2015) proposed the truncated estimator of oy

tr/2<9\>20} F—

+ Ftrz(wz(h).

h

c;%\g = 4max {élghE(g)égh +
g

—

This estimator satisfies o3, > 0 a.e. and ng/azg % 1 under assumptions (C1), (A0)

—

and (A1) or (C2), (A0) and (Al). By using a/\,%g, 0,298, and tr¥(9)°, we obtain the
estimator of ppg g 88 Prgiig = Ongira/ (ThgTng), Where

4
Ohgh'g — 46;192(9)5”94—?'51‘2(9)2'
g

10



Replacing the unknown values in R, we obtain ¢ X ¢ matrix R = (Phg.vg). We use the
following ridge type estimator

R. = R+ Iigon,.. =<0 (R)ale,

so that the estimator of R may be negative semidefinite matrix. Here, Ch,,;,(A) denotes
the smallest eigenvalue of matrix A and the function I4(x) is the indicator function
defined as

1, €A,

[A<£C):
0, = ¢A.

Note that R, > O, and under assumptions (C1), (A0) and (A1) or (C2), (A0) and (A1),
it holds that

R. 5 R. (3.1)

Further, under assumptions (C1), (A0) and (A1) or (C2), (A0) and (A1), it holds that

—

/ /
6gﬁ‘\sgh 2 6gh59h‘ (3.2)
Uhg Uhg

Based on consistency (3.1) and (3.2), we propose the estimator of e, as
G=1-F(elR.). (3.3)

Note that F'(c|Y) is a function that is continuous on a set A = {(¢,Y)|c € R1,Y >

A~

O} and Pr((cy, R.) € A) = 1. Thus, from (3.3) and multivariate continuous mapping
theorem, we obtain F(¢,|R.) % F (c,|R). From this result and Corollary 2.1, we obtain
the following theorem.

Theorem 3.1 Under assumptions (C1), (A0), (A1), (A2’) and (A4) or (C2), (A0)-(A4),
it holds that &, 2 e,

By applying Lebesgue’s dominated convergence theorem to Theorem 3.1 since
€, — ey <2 ae.,
we get the following corollary.

Corollary 3.1 Under assumptions (C1), (A0), (A1), (A2’) and (A4) or (C2), (A0)-
(A4), it holds that

Eleg] = ¢4 +o(1).

11



4 Numerical Results

Now, we investigate numerical performances of the consistent estimator €, by Monte Carlo
simulation. First, we investigate the accuracy of the asymptotic approximations

3 /
(HYF) : elxl—F<”c“1|}Ng>7 (AY) : 61%2@(—61h61h>,

h=2

where

& = <_5/12512’_5/13513>/7 R— < 1 P21,31>.
o921 031 parz1 1
Here, the approximation (HYF) represents our proposed method based on (2.3), and
the approximation (AY) represents the method proposed by Aoshima and Yata (2014).

The misclassification probability e; is calculated via simulation with 100,000 replications,
where in each step, the data sets are generated as

(Case 1) :z\? 2%, ... ,wg\g,g) N9, 29 (g =1,2,3),
(Case II) : a{? ol . >w§33 () 29 1) (g =1,2,3),

where t,(p, X, v) denotes p-variate ¢-distribution with mean p, covariance matrix ¥ and
degrees of freedom v, u™® =0, u® = (1,...,1,0,...,0) whose first [\/ trZ(l)Q—‘ elements

are 1 and u® = (0,...,0,1,...,1) whose last [\/trE(l){‘ elements are 1 or u) = 0,

n? = (1/50/p,...,/50/p) and u® = —u®. Here,

. 1 2 * J4 :
B = diag 054+——7 ,305+——% ,..., <05+ —— )
p+1 p+1 p+1

We chose p = 100, 250, 500, 1000, (N7, Na, N3) = (20, 40,60), (40,80, 120), (60,120, 180)
and v = 30. Then we compare the true value e;, the approximation (HYF) and the
approximation (AY) on these settings. In comparison of the approximations in Table 1
and 2, it is seen that approximation (HYF) is closer to the true value e; than (AY) in
most cases.

Next, we investigate the bias and mean squared error (MSE) of the consistent estima-
tor e; on same settings. For comparison, we consider the leave-one-out cross-validation
method (CV), which is a popular method for estimating prediction errors for small sam-
ples. Set for j =1,..., Ny

where

N

» 1 1 1 !
X7 = @ 2l al).

12



The set Xffj ) represents the leave-one-out learning set, which is the collection of data
with observation $§1) removed. It calculates the rate of misclassification when predicting
for each specimen using a learning set containing all other observations in the sample.

We define the discriminant function using the learning set by

. 2
Wi (@) = H‘”ED _zm|" _ ng'l) _ =) , (h=2,3).

&)

2 1 1
—tr [——5") — s
' {Nh N =179

where a_zgl_)j) and S((i)j) are calculated like procedures given around (1.1) based on the

)

learning set X 1(_j . Then the CV estimator of e; is given by

N

1
OV(].) = ]. - Fl Zl I{wj|W2(1_j)(w;1>)>0, Wé;j)(w§1))>0} (w])’
ji=

The biases and MSEs of the estimators C'V (1) and e; are given in Table 3 and 4 for Case
I and in Table 5 and 6 for Case II. These tables show that €; has smaller MSEs than
CV (1) in most cases.

5 Concluding Remarks

We considered the multi-class classification problem for high-dimensional data. In this pa-
per, we showed the asymptotic multivariate normality for several Euclidean distance-based
discriminant functions under high-dimensional settings where the number of parameters
exceeds the sample size. By using this results and new estimator of bilinear form, we also
proposed the asymptotically unbiased and consistent estimator. Our theoretical results
have the advantage of establishing under variance heterogeneity and nonnormality. We
confirmed that proposed estimator have good performances in high-dimensional situation
by numerical simulations.

13



Appendix

In this section, we state some results on the moments of a random vector 29 = N Z 201 %) g
the variance of Whg( x), and variances of unbiased estimators &7, dg, tr¥(@ X" ) ro) 2,
6/h2 9)69h and 6/ Z(g)dgh/

Lemma A. 1 Let zg.g)(j =1,...,N,) be ii.d. random vectors that satisfy (C1) or (C2).
Then for any p x p positive semidefinite matrices A = (a;;) and B = (b;;), it holds that

K9 43N,
N3 ’
(9) + 2Ng 1

(11) E[(E(Q)/Az(g))Q] < I{4ma)}v3 tr A2 + m(tI'A)

i) E[EY=

(iii) E[(z\" Az Zn4f)afl+2trA2+(trA)2,
(iv) El(=f""Az)"] < <Hi€3ax +8) { ({0 + 2)trA* + (5r42)2}

Proof. The proof of Lemma A.1 is routine and hence omitted here.

Lemma A. 2 The variance of Wj,,(x) is

2try(@)° 2try(? 45/h2(h)5 h
Var[W,,, ()] = o2, + + + 2 J )
(Who ()] = ogn Ny(N,—1) "~ Nu(N, —1) N,
where
2 ! () 1yt s@nm
Ohy = 40 hZ Ogn + FtrE + FtrZ Y

Proof. W,,(x) is decomposed as
Wi () = 8y8gn + Wiy + Wy,
where

Wy = 2@ —p9) o+ 2@ — p){@? - p@) - @ - M)},
Ng

@ 1 @) @V () (9)
w2 = —N(N_I)Z(wj p9Y (@ — p'?)
g g jk=1
o
1 Al
(h) (R)\! ( o(P) (h) I (m(h) (h)
F—— T, —u x, —p'") =248, @ —p'").
Nh(Nh_1> ]%::1( j )( k ) gh( )
itk
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It can be shown that

4 4
Var [W,ﬁé)} = 46,598, + —tr2@” 4 —tn@n® (= 02),

N, N, g
Var [W@)} _ 2 sty 2 swr 5’ nhs
ho Ng(Ng — 1) Nyp(Np — 1) gh I

and COV(W,E;), W}Ez)) = 0. From the above results, the proof of Lemma A.2 is complete.
]

Lemma A. 3 Under (C1), (A0), (A1), (A2’) or (C2), (A0)-(A3), it holds that

- 2 2 2 2
i) Var[d, 6] = ——tr2@ 4 =ty (W
W Varldgdarl = 8, =) Na(Nw — 1)

4 4
h ’ ! h
tI‘E:(g)Z( ) + Eéth(g)(igh + —Th(sth( )5gh7

NN,

(i) Var[rE@Z®] =0 ((Ni + Nih) tr(X@nM)?

_|_

tro@n(h)y2

—— 1 1
(iii) Var[tr£®)?’] = O (EtrE( 9" 4 m(trE( 9% ) :

— 1 /1 1\? )
(iv) Var[(i’ Y@§ W =0|-— <_ + _) (trZ(g) )2
gh g Ng Ng Nh

1 1 1 2 1 9
+F (ﬁ + m) O 5;h2(9)5gh + E(é’th(Q)égh) )

+o0 i + L i (tr2(9)2)2
Ny Ny
1 1
+ ( N, + ) 5lgh2(g)59htr2(g)2) :
h

= 1 1 1 1 1 2
"' 09§, = S — (9)%)2
(v) Var[d),2@d,,] = O (Ng (Ng + Nh) (Ng + Nh/> (trx'9)

1 1 1 1 2
‘f‘ﬁ <_ + Fh + N_h/> trE(g) J;hZ(g)égh

g

(5’h2<9 5gh,)2>

1 1 1 1 2
_ . . - t E(g) 2
+0((N9+Nh) (N +Nh’)(r )

1 1
+ <F + Fh + Nh/> J'hZ(g dgh/trE( ) )

Proof. For the proof of (i), see e.g. Chen and Qin (2010). The proof of (ii) follows the
same approach. Note that the estimator trX(9)? is the same as that is proposed by Chen
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et al. (2010). For the proof of (iii), see e.g. Chen et al. (2010). For the proof of (iv), see
e.g. Yamada et al. (2015). We give the proof of (v). Let ygg) = :l:(g) — 9. From the

definition of &7, %98, this statistic can be expressed as 8}, X9y = =1 Y, where

N,
1 N @ @) (), ()
no= R Thek T Ty
Ng(Ng - 1)(Ng - 2) j7;821 I koI ¢
AR kAL
1 Ny
o= - Y\ y Dy y9),
N, (N, — )(N, — 2)(N, - 3) jg%l ;Y Y
jkb£m
0 jAmtk
9
(h
Ya = _NN N, —1) Z Zy] yk y]g)/ye),
h ]k 14=1
J#k
Ng Nh/
= a1, .(9) (g)/ (h’)
Y4__NN/ N, —1) Zzyj Y Y; )
h ]k 1/4=1
Jj#k
1 No
YV, = ——— u(g) _ H( ) y( )y(g) y(g),
Ng(Ng - 1) ngZZI ( ) J J k
j;«ék
Yy = N, T Z (“ > Yy
jk 1
J#k

Ng

1
Yr = Yy Dy 9y ™),
NgNh(Ng_l)(Ng—Z) j,;ﬁ_1 mzl J kE Je
J#k kAL ]
1 Ny N/
Ys = 91, (9) %)
s NgNh’(Ng_l)(Ng_z) Z Zyj Y yﬁ ym )

7,kl=1 m=1

JFk kAL LF]
1 No
Yo = — N(g) _ M(h) y(g)y( )1 y(9)7
N0, 2, | ) v uiy,
Ak kAL
1 Ny
Yio = — <M<g>_“< )) SOMOINO)
N9<Ng - 1)(Ng - 2) j,;ﬂ:l J k ¢
ke kA
N, Ng Ny ( )
Y = vy y :
L R
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Y12

Ng Ny

1 o
_ (@) _ () 9),,(9)r, (h)
NgNhZZ<“’g H )yj Yi Y

j=1 k=1

Ny, Ny Ny

Y, (R
13 NNhNh’ L= 1) ZZZ% VT
j=1 k=1 m=1
ket
Vi = S o) Z Z( ) vy,
i =1 (=1
J#k
1 Ng Ny
Vis = —a 2o (B = ™) gy,
A -
1 &
Vie = o 2 (9 — ) y9ylo (M@) —u(’”)7
g j=1
1 Ng Ny
Yi7 u(g) _ ,u( ) y(g)y(g)/y(h’),
NgNh,(Ng_l)];lezzl( ) J k L
i#k
1 s
Y, L (@) _ () 4@ <g>/< (9) _ <h'>) _
8 Ng(Ng_l)Z(u 1) Yy Py (w9 — p
7,k=1
7k
The variances of Y, (for a = 1,...,18) are derived as
1 (9)%)2 (9)*
Var[Yi] @) m(t YY)+ —trE
g g
1 ;
Var[YQ] O (m(trﬁ(g) )2) ’
g
1 2
VarlY- O tr2@))2 4 trx) z<h>>
¥ = 0 (5 O+
1 .
VarlY, O tra@))2 trn@)° ()
i) = 0 (g (2O + e ,
1 1 1/2
Var[Y3] @ (N2 ghz(g)é htl"E (@)° + N3 ;hz(g)‘sgh <tr2(g)4> ) )
g g
LY (9)? / @\
Var[YG] @) N2 —0 h,E (5gh/tr§] + F5 h’E 6gh’ <tr2 > s
g g
Var[Y; O try )’
) = 0 (g 052
1
Var[Y: O try)
) = 0 (g (59
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1 1/2
Var[Yg] = 0 (mé hZ(g)é htI‘E(g) + méghg(g)égh (trz(g)4> ) ,
9
- l 5 s (9)? (9) @ )"
Var[}/io] = 0 —aégh,Z (Sgh/tl"Z +_5gh’2 5gh’ tr2 s
Ny Ny
Y = — — (trX@n ) (@R tr(n@2 () ()
Varlta] = O (g (BSR4 ),
1
Var[Ys] = O ( v O B8, +—5’h,2< 8o (tr(2<9>2(h>)2)1/2),
giVh
1 /
Var[Viz] = O —— trn@n®¢rn@n®)
ar{Y ( N . ,
1 h
Var[Yy] = 0( NgNhé;hE(g)agh,trz(g)z( >),
L g (9)? / xyw)y2) "
Varlis] = O ( 57y 8,205, trsl +N—5 OF M <tr(2 2 )) ,
h! h!
Var[Yig] = O( (80,298 ) ) ,
1 /
Var[Yi;] = O( NIN 5’ghz<9>5ghtrz<g>z<h>),
h/

Var[Yis] = O <N2(5/h§](9 Ogn) ) .

From the above results, the proof is complete. 0
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Table 1: Comparison of approximations where u® = (1/50/p, ..., /50/p)’

(N1, N2, N3)
D (20,40,80) (40,80,120) (60,120,180)
100 el Case 1 0.1462 0.1407 0.1385
Case II  0.1442 0.1400 0.1373
approx HYF 0.1455 0.1406 0.1390
AY 0.0000 0.0000 0.0000
250 el Case 1 0.1889 0.1766 0.1718
Case IT ~ 0.1858 0.1732 0.1674
approx HYF 0.1880 0.1767 0.1729
AY 0.0000 0.0000 0.0000
500 el Case 1 0.2226 0.2011 0.1926
Case II ~ 0.2195 0.1945 0.1883
approx HYF 0.2210 0.2003 0.1931
AY 0.0038 0.0000 0.0000
1000 el Case 1 0.2650 0.2276 0.2155
Case IT  0.2563 0.2229 0.2069
approx HYF 0.2631 0.2274 0.2140
AY 0.0408 0.0036 0.0004

Table 2: Comparison of approximations where u® = (1,...,1,0,...,0)

(N1, N2, N3)
P (20,40,80)  (40,80,120) (60,120,180)
100 el Case 1 0.2006 0.1890 0.1836
Case II ~ 0.1973 0.1843 0.1782
approx HYF 0.2014 0.1897 0.1856
AY 0.0007 0.0000 0.0000
250 el Case 1 0.1500 0.1372 0.1306
Case IT  0.1460 0.1333 0.1259
approx HYF 0.1494 0.1355 0.1308
AY 0.0006 0.0000 0.0000
500 el Case 1 0.1175 0.1026 0.0973
Case IT  0.1151 0.0991 0.0957
approx HYF 0.1163 0.1011 0.0960
AY 0.0007 0.0000 0.0000
1000 el Case 1 0.0881 0.0722 0.0662
Case IT ~ 0.0899 0.0737 0.0663
approx HYF 0.0869 0.0712 0.0661
AY 0.0007 0.0000 0.0000
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Table 3: Comparison of Biases and MSEs where u® = (1/50/p,...,/50/p)" in Case I

(N1, Na, N3)

p (20,40,60) (40,80,120) (60,120,180)
100  Bias & 0.0008 0.0007 0.0008
CV(1)  0.0006 0.0006 0.0007

MSE & 0.0040 0.0020 0.0014
CV(1)  0.0065 0.0031 0.0021

250  Bias & 0.0002 0.0005 0.0013
CV(1)  0.0012 0.0009 0.0015

MSE & 0.0048 0.0024 0.0016
CV(1)  0.0079 0.0038 0.0025

500  Bias & -0.0003 -0.0007 0.0003
CV(1)  0.0020 -0.0002 0.0006

MSE & 0.0052 0.0025 0.0017
CV(1)  0.0087 0.0041 0.0027

1000 Bias & ~0.0013 0.0004 ~0.0014
CV(1)  0.0028 0.0017 -0.0007

MSE & 0.0057 0.0026 0.0017
CV(1)  0.0095 0.0045 0.0029

Table 4: Comparison of Biases and MSEs where p® = (1,...,1,0,...,0)" in Case I

(N1, N2, N3)

P (20,40,80)  (40,80,120) (60,120,180)
100 Bias & -0.0011 -0.0007 -0.0017
CV(1)  -0.0009 -0.0008 -0.0018

MSE & 0.0036 0.0016 0.0010
CV(1)  0.0067 0.0031 0.0021

250  Bias ¢ 0.0020 -0.0020 -0.0004
CV(1)  0.0025 -0.0021 -0.0006

MSE & 0.0029 0.0013 0.0008
CV(1)  0.0055 0.0025 0.0016

500  Bias e 0.0006 0.0008 0.0005
CV(1)  0.0002 0.0002 0.0000

MSE & 0.0023 0.0009 0.0006
CV(1)  0.0045 0.0020 0.0012

1000 Bias & 0.0030 -0.0004 0.0012
CV(1)  0.0021 -0.0016 0.0005

MSE & 0.0018 0.0007 0.0004
CV(1)  0.0037 0.0015 0.0009
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Table 5: Comparison of Biases and MSEs where u® = (1/50/p,...,1/50/p)" in Case I

(N1, Na, N3)

p (20,40,60) (40,80,120) (60,120,180)
100  Bias & 0.0033 0.0012 0.0005
CV(1)  0.0001 -0.0018 -0.0022

MSE & 0.0043 0.0022 0.0015
CV(1)  0.0064 0.0031 0.0021

250  Bias & 0.0026 0.0038 0.0055
CV(1)  -0.0005 0.0001 0.0016

MSE & 0.0052 0.0026 0.0018
CV(1)  0.0078 0.0037 0.0025

500  Bias & 0.0016 0.0049 0.0044
CV(1) -0.0015 0.0017 0.0000

MSE & 0.0056 0.0028 0.0019
CV(1)  0.0086 0.0041 0.0027

1000 Bias & 0.0058 0.0044 0.0067
CV(1)  0.0037 -0.0003 -0.0021

MSE & 0.0061 0.0029 0.0020
CV(1)  0.0094 0.0044 0.0029

Table 6: Comparison of Biases and MSEs where u® = (1,...,1,0,...,0)" in Case II

(N1, N2, N3)

P (20,40,80)  (40,80,120) (60,120,180)
100 Bias & 0.0027 0.0043 0.0069
CV(1) -0.0014 0.0000 0.0022

MSE & 0.0039 0.0018 0.0012
CV(1)  0.0065 0.0031 0.0020

250  Bias ¢ 0.0047 0.0028 0.0052
CV(1)  0.0022 -0.0003 0.0024

MSE & 0.0031 0.0013 0.0009
CV(1)  0.0055 0.0024 0.0016

500  Bias e 0.0039 0.0036 0.0011
CV(1)  0.0018 0.0015 -0.0004

MSE & 0.0025 0.0011 0.0006
CV(1)  0.0045 0.0020 0.0012

1000 Bias & 0.0012 -0.0004 0.0010
CV(1)  -0.0010 -0.0016 0.0003

MSE & 0.0019 0.0007 0.0005
CV(1)  0.0036 0.0015 0.0009
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