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Abstract

Principal component analysis is a method for reduction of dimen-
sionality of data in the form of N observations of p variables. In this
paper we consider to estimate the number of the largest characteristic
roots of the covariance matrix of p variables, which is called dimension-
ality, in a covariance structure such that the remainder characteristic
roots are the same. Our purpose is to examine properties of the es-
timation criteria AIC and BIC based on model selection criteria by
Akaike (1973) and Schwart (1978). Under large-sample asymptotic
framework, we evaluate the bias term as an estimator of AIC-type
risk. Further, we note that AIC is not consistent, but BIC is consis-
tent. For high-dimensional case, it is conjectured that there are cases
that AIC is consistent, but BIC is not consistent, based on simulation
study.
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1. Introduction

Many methods have been proposed to determine the number of relevant com-

ponents or dimensionality in principal component analysis (see, e.g. Jolliffe
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(2002), Ferré (1995)). It may be noted that the methods should depend on

the aims of statistical analysis and the models considered. As an approach

for determining the number of relevant components in principal component

analysis, we consider a covariance structure model such that

Mj : λ1 > · · · > λj > λj+1 = · · · = λp = λ, (1.1)

where λ1 ≥ · · · ≥ λp are the characteristic roots of the covariance matrix Σ of

p-dimensional random vector x. If Mj is true, we can say that the number of

relevant principal components or the dimensionality in principal component

analysis is j.

Let x1, . . . ,xN be a random sample of sizeN = n+1 from a p-dimensional

normal population Np(µ,Σ). Based on the sample, we consider to esti-

mate the dimensionality by selecting an appropriate model from the set

{M0,M1, . . . ,Mp−1}. Especially, we consider two estimation criteria AIC

and BIC based on the model selection criteria by Akaike (1973) and Schwarz

(1978). Our purpose is to study asymptotic properties of AIC and BIC.

The two criteria are given in Section 2 by evaluating the bias term in

the estimation of AIC-type risk. In Section 3, it is pointed that, under

large-sample asymptotic framework, AIC is not consistent, but BIC is con-

sistent. In Section 4, high-dimensional properties of the criteria are studied

by simulation experiment. It is conjectured that there are cases that AIC

is consistent, but BIC is not consistent. In Section 5, we discuss our con-

clusions. In Appendix we proof an asymptotic result for the bias term in

estimation of AIC-type risk.

2. AIC and BIC

In general, AIC for a model M is defined (Akaike (1973)) as

AIC = −2 log L̂+ 2d, (2.1)

where L̂ is the maximum likelihood underM , and d is the number of indepen-

dent parameters under M . First we shall obtain AIC for Mj by using (2.1).
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Let the likelihood of X = (x1, . . . ,xN)
′ denote by L(µ,Σ), and the maxi-

mum likelihood estimators of µ and Σ under Mj by µ̂j and Σ̂j, respectively.

Then, µ̂j = x̄ = (1/N)
∑N

i=1 xi, and we have

−2 logL(µ̂j,Σ) = N log |Σ|+ ntrΣ−1S+ pN log 2π,

where S is the sample covariance matrix given by

S =
1

n

N∑
i=1

(xi − x̄)(xi − x̄)′,q uadn = N − 1.

Let ℓ1 > . . . > ℓp be the characteristic roots of S and hi, i = 1, . . . , p the

corresponding orthonormal characteristic vectors. These are expressed in

matrix notation as L = diag(ℓ1, . . . , ℓp) and H = (h1, . . . ,hp). Then, the

maximum likelihood estimator of Σ under Mj is given (Anderson (1963)) as

Σ̂j =
n

N
Sj, Sj = H

(
L1 O
O ℓ̄(p−j)Ip−j

)
H′, (2.2)

where

L1 = diag(ℓ1, . . . , ℓj), ℓ̄(p−j) =
1

p− j

p∑
i=j+1

ℓi.

Therefore, we have

AICj = N log ℓ1 · · · ℓj +N(p− j) log ℓ̄(p−j) + 2dj (2.3)

+N log
( n

N

)p

+Np (log 2π + 1) .

Here, dj is the number of independent parameters under Mj, which is eval-

uated as follows. Let γi be the characteristic vector of Σ corresponding to

the i-th root λi such that γi’s are orthonormal. Let

Λ = diag(λ1, . . . , λp), Λ1 = diag(λ1, . . . , λj),

Γ = (γ1, . . . ,γp) = (Γ1 Γ2), Γ1 = (γ1, . . . ,γj).

Then, we can express Σ under Mj as

Σ = ΓΛΓ′

= (Γ1 Γ2)

(
Λ1 O
O λIp−j

)
(Γ1 Γ2)

′

= Γ1(Λ1 − λIj)Γ
′
1 + λIp. (2.4)
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For the derivation of the last expression, we use Γ2Γ
′
2 = Ip−Γ1Γ

′
1. Therefore,

the dimensionality of {Σ,µ} under Mj is equal to the dimensionality of

{Γ1,Λ,λ,µ} which is given by

dj = pj − 1

2
j(j + 1) + j + 1 + p. (2.5)

In general, BIC for a model selection M is defined (see Schwarz (1978)) as

BIC = −2 log L̂+ (log n)d. (2.6)

Therefore, we can write BIC for Mj as

BICj = N log ℓ1 · · · ℓj +N(p− j) log ℓ̄(p−j) + (log n)dj (2.7)

+N log
( n

N

)p

+Np (log 2π + 1) .

Since we select the model with the minimum value of AIC or BIC, instead

of AICj and BICj we may use the following Aj and Bj:

Aj = AICj − AICp−1, j = 0, 1, . . . , p− 1

= −N

{
p∑

i=j+1

log ℓi − (p− j) log ℓ̄p−j

}
− 2qj,

Bj = BICj − BICp−1, j = 0, 1, . . . , p− 1

= −N

{
p∑

i=j+1

log ℓj − (p− j) log ℓ̄p−j

}
− (log n)qj,

where qj =
1
2
(p − j − 1)(p − j + 2), Ap−1 = 0 and Bp−1 = 0. Note that the

first part in Aj and Bj

Tj = −N

{
p∑

i=j+1

log ℓi − (p− j) log ℓ̄p−j

}
is a likelihood ratio test statistic for testingMj. Further, the null distribution

of Tj is asymptotically distributed (Anderson (1963)) as a chi-square distri-

bution with qj degrees of freedom under large-sample framework. Based on

Aj and Bj, we estimate the dimensionality by

ĵA = argmin
j

Aj, and ĵB = argmin
j

Bj,
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respectively.

Now we derive the term ”2dj” in connection with Akaike-type risk. Let

f(X;µj,Σj) be the the density function of X under Mj. Then the AIC-type

risk of Mj is given as

RA = E∗
YE

∗
Z[−2 log f(Z; µ̂j, Σ̂j)], (2.8)

which is based on Kullback-Leibler information. Here Z = (z1, . . . , zN)
′

has the same distribution as X and is independent of X, and E∗ denotes

the expectation to the true model M∗. The true model is assumed that

x1, . . . ,xN are independently and identically distributed as N(µ∗,Σ∗). Note

that Z may be regarded a future random matrix for X. Now we estimate

RA by −2 log f(X; µ̂j, Σ̂j). Let us denote the bias term in the estimation by

“−bA(Mj)”. Then

bA(Mj) = E∗
XE

∗
Z

{
−2 log f(Z; µ̂j, Σ̂j) + 2 log f(X; µ̂j, Σ̂j)

}
. (2.9)

We can write

bA(Mj) = E∗
XE

∗
Z

{
N∑
i=1

trΣ̂
−1

j (zi − µ̂j)(zi − µ̂j)− ntrΣ̂
−1

j S

}
= N(N + 1)n−1E∗

X

{
trS−1

j Σ∗
}
−Np. (2.10)

For the special cases Mp−1 and M0, it is possible to obtain their exact

expressions. In fact, note that Sp−1 = S. We have

bA(Mp−1) = N(N + 1)E∗
X(trS

−1Σ∗)−Np

=
pN(N + 1)

n− p− 1
−Np.

For M0, S0 = p−1trS. Assume that M∗ ⊂ M0. Then, noting that we may

write Σ∗ = σ2
∗Ip,

bA(M0) = N(N + 1)pE∗
X(trS

−1Σ∗)−Np

=
p2N(N + 1)

np− 2
−Np.
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These imply that

bA(M0) = 2(p+ 1) + O(n−1),

bA(Mp−1) = 2

{
1

2
p(p+ 1) + p

}
+O(n−1).

In general, under the assumption M∗ ⊂ Mj, it is shown that

bA(Mj) = 2dj +O(n−1). (2.11)

For the derivation, see Appendix. Therefore, we can propose

−2 log f(X; µ̂j, Σ̂j) + 2dj,

which is AICj in (2.3), as a refinement of a naive estimator−2 log f(X; µ̂j, Σ̂j)

of RA.

3. Large-Sample Properties

In this section we examine consistency of the criteria ĵA and ĵB under large-

sample asymptotic framework. Our assumptions are summarized as follows.

A1; p is fixed, n → ∞.

A2; The minimum model including the true model M∗ is Mj.

A3; The characteristic roots of Σ under the true model satisfies

λ1 > · · · > λj > λj+1 = · · · = λp = λ.

Note that nS is distributed as a Wishart distribution Wp(n,Σ). We use the

following lemma (Anderson (1963)).

Lemma 1. Let ℓ1 > · · · > ℓp > 0 be the ordered characteristic roots of the

sample covariance matrix S, based on a normal sample of size N = n − 1.

Suppose that the characteristic roots λi’s of Σ satisfy (1.1). Consider the

transformed characteristic roots defined by

yi =
√
n(ℓi − λi), i = 1, 2, . . . , p.

Then, under a large-sample A1 it holds that
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(1) The limiting distributions of y1, . . . , yj and {yk+1, . . . , yp} are indepen-

dent.

(2) For i = 1, . . . , j, the limiting distribution of yi is N(0, 2λ
2
i ).

(3) The limiting joint density of yj+1, . . . , yp is given by

K(p− j)

λ(p−j)(p−j+1)/2
e−

∑p−j
i=1 y2j+i/(4λ

2)
∏
i<k

(yj+i − yj+k),

where yj+1 > · · · > yp and 0 otherwise, and

1/K(p− j) = 2(p−j)(p−j+3)/4

p−j∏
i=1

Γ[
1

2
(p− j + 1− i)].

Theorem 1. Suppose that the assumptions A2 and A3 are satisfied. Then,

under large-sample asymptotic framework A1 it holds that

(1) ĵA is not consistent, and

lim
n→∞

P (ĵA = j) = P (Qj,j+1 > 0, . . . , Qj,p > 0), (3.1)

where

2Qjk = −
(
y2j+1 + · · ·+ y2k

)
− 1

p− k
(yk+1 + · · ·+ yp)

2

+
1

p− j
(yj+1 + · · ·+ yp)

2 + 2(k − j)(2p+ 1− k − j),

and the probability of the right side of (3.1) is evaluated with respect to

(yj+1, . . . , yp) whose density is given by Lemma 1 (3).

(2) ĵB is consistent.

Proof. Without loss of generality we may assume that λ = 1, and for i < j,

λi should be regarded as λi/λ. For k > j,

Ak − Aj = N (ℓj+1 + · · ·+ ℓk)

+N(p− k) log
1

p− k
(ℓk+1 + · · ·+ ℓp)

−N(p− j) log
1

p− j
(ℓj+1 + · · ·+ ℓp)

+ (k − j)(2p+ 1− k − j).
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Further, from Lemma 1, for k > j

log ℓk = log

(
1 +

1√
n
yk

)
=

1√
n
yk −

1

2

(
1√
n
yk

)2

+ · · · .

Therefore, we can see that

Ak − Aj = Qjk +O(n−1/2), (3.2)

On the other hand, for i < j we have

lim
n→∞

1

N
(Ai − Aj) = − logRM(λi+1, . . . , λp) > 0, (3.3)

where

RM(λi+1, . . . , λp) =

∏p−i
a=1 λi+a(

1
p−i

∑p−i
a=1 λi+a

)p−i .

The results (3.2) and (3.3) implies the first result.

Based on the above results on Aj, it easy to see that

(B1) for k > j;

lim
n→∞

(log n)−1 (Bk − Bj) = (k − j)(2p+ 1− k − j) > 0.

(B2) for i < j;

lim
n→∞

1

N
(Bi − Bj) = − logRM(λi+1, . . . , λp) > 0.

These imply the second result.

In order to confirm the results in Theorem 1 and see the speed of con-

vergence, we tried a numerical experiment. In our numerical experiment we

define p-variate x as

x = Λ1/2

 z1
...
zp

 , (3.4)
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where Λ = diag(λ1, . . . , λj, λ, . . . , λ) and z1, . . . , zp are independently and

identically distributed as N(0, 1). The population characteristic roots were

set as

λ1 = 20 > λ2 = 10 > λ3 = λ4 = λ5 = λ = 3,

and hence the true dimensionality is j = 2. Let Mj denote by j simply. Let

the minimum model including the true model denote by F∗. Further, let the

sets of underspecified and overspecified models by F− and F+, respectively.

In our setting,

F− = {0, 1}, F∗ = {2}, F+ = {3, 4, . . . , p}.

Then, we obtained the probabilities selecting F−,F∗ and F+ by Monte Carlo

simulations with 104 repetition. The results are given in Table 1.

Table 1.
Aj Bj

n p F− F∗ F+ F− F∗ F+

30 5 5.2 77.0 17.8 22.2 74.7 3.2
60 5 0.1 83.1 16.8 2.2 96.8 1.0
90 5 0.0 84.4 15.6 0.1 99.3 0.6
120 5 0.0 83.8 16.2 0.0 99.6 0.4
150 5 0.0 84.7 15.4 0.0 99.8 0.2
180 5 0.0 84.4 15.6 0.0 99.7 0.3
210 5 0.0 84.7 15.3 0.0 99.9 0.2
240 5 0.0 84.6 15.5 0.0 99.9 0.1
270 5 0.0 84.6 15.4 0.0 99.9 0.1
300 5 0.0 85.1 14.9 0.0 99.9 0.1

...
...

...
...

...
...

...
...

1000 5 0.0 85.5 14.5 0.0 100.0 0.0
5000 5 0.0 84.3 15.7 0.0 100.0 0.0

From Table 1 we can see the following tendencies.

• As the sample size increases, the probabilities of selecting the true

model by ĵA are increasing, but they do not converge to 1 and select

the overspecified models with the probabilities 0.145 ∼ 0.155.
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• As the sample size increases, the probabilities of selecting the true

model by ĵB tend to 1.

4. High-Dimensional Properties-Simulation Study

In this section we examine consistency of ĵA and ĵB in high-dimensional

situations such that p/n → c ∈ (0, 1). The p-dimensional variate x was

constructed in the same way as in (3.4). For the characteristic roots of Σ,

we considered the following three cases;

Case 1: λ1 = 30 > λ2 = 20 > λ3 = 13 > λ4 = 8 > λ5 = · · · = λp = λ = 3

Case 2: λ1 = 30 > λ2 = 22 > λ3 = 16 > λ4 = 10 > λ5 = · · · = λp = λ = 3

Case 3: λ1 = 30×
√

p

10
, λ2 = 20×

√
p

10
, λ3 = 13×

√
p

10
, λ4 = 8×

√
p

10
,

λ5 = · · · = λp = λ = 3

For Case 3, it holds that limp→∞ λi = ∞, i = 1, 2, 3. In our setting,

F− = {0, 1, 2, 3}, F∗ = {4}, F+ = {5, 6, . . . , p}.

Then, we obtained the probabilities selecting F−, F∗ and F+ by Monte Carlo

simulations with 104 repetitions.

Table 2. Selection probabilities of ĵA
Case 1 Case 2 Case 3

n p F− F∗ F+ F− F∗ F+ F− F∗ F+

30 10 23.0 53.3 0.6 9.2 65.3 25.5 0.0 71.1 28.9
60 20 10.5 77.3 0.0 1.5 84.4 14.1 0.0 84.4 15.6
90 30 5.7 86.9 0.0 0.2 91.0 8.8 0.0 91.1 8.9
120 40 2.9 92.2 0.0 0.0 94.7 5.3 0.0 94.2 5.8
150 50 1.4 95.4 0.0 0.0 96.4 3.6 0.0 96.0 4.0
180 60 1.0 97.1 0.0 0.0 97.6 2.4 0.0 97.2 2.8
210 70 0.4 98.3 0.0 0.0 98.6 1.4 0.0 98.4 1.6
240 80 0.3 98.6 0.0 0.0 98.9 1.1 0.0 98.9 1.1
270 90 0.2 99.3 0.0 0.0 99.3 0.7 0.0 99.2 0.8
300 100 0.1 99.5 0.0 0.0 99.6 0.4 0.0 99.6 0.4

10



Table 3. Selection probabilities of ĵB
Case 1 Case 2 Case 3

n p F− F∗ F+ F− F∗ F+ F− F∗ F+

30 10 72.2 27.2 0.6 44.3 54.5 1.2 0.2 97.7 2.2
60 20 87.7 12.3 0.0 49.7 50.4 0.0 0.0 100.0 0.0
90 30 95.9 4.1 0.0 60.3 39.8 0.0 0.0 100.0 0.0
120 40 99.0 1.0 0.0 70.5 29.5 0.0 0.0 100.0 0.0
150 50 99.7 0.3 0.0 79.6 20.4 0.0 0.0 100.0 0.0
180 60 100.0 0.0 0.0 86.4 13.6 0.0 0.0 100.0 0.0
210 70 100.0 0.0 0.0 91.5 8.5 0.0 0.0 100.0 0.0
240 80 100.0 0.0 0.0 94.5 5.5 0.0 0.0 100.0 0.0
270 90 100.0 0.0 0.0 97.0 3.0 0.0 0.0 100.0 0.0
300 100 100.0 0.0 0.0 98.4 1.7 0.0 0.0 100.0 0.0

From Tables 2 and 3 we can see the following tendencies.

• ĵA is consistent for all the three cases.

• ĵB is consistent for Case 3, but it is not consistent for Cases 1 and 2

and select underspecified models.

5. Concluding Remarks

In this paper we consider two estimation criteria ĵA and ĵB based on AICj

and BICj, which are equivalent to Aj and Bj, for estimating the number

of different characteristic roots in covariance structure model in (1.1). Un-

der large-sample asymptotic framework, it was shown that the AICj is an

asymptotic unbiased estimator of the AIC-type risk RA defined by (2.8).

Further, it was shown that ĵj is not consistent, but ĵB is consistent, as in

autoregressive model, linear regression model and discriminant analysis (see

Shibat (1976), Nishii (1984), Fujikoshi (1983), Fujikoshi et al. (2010), etc.).

This property was confirmed by theoretical arguments as well as numerical

experiments. Next we study asymptotic behaviors of ĵA and ĵB in high-

dimensional asymptotic framework such that p/n → c ∈ (0, 1) by numerical

experiments. It was pointed that there are cases that A is consistent, but
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B is not consistent, and both are consistent. It is hoped that these high-

dimensional properties are theoretically proved under nonnormality as well

as normality.

Appendix

A Derivation of an Asymptotic Result (2.11)

for the Bias Term (2.9)

In this section we give an outline of deriving an asymptotic result (2.11)

for the bias term (2.9). More precisely, our purpose is to give an outline of

deriving

E(trS−1
j Σ∗) = p+

2

n
(dj − 2) + O(n−2), (A1)

under M∗ ⊂ Mj, where dj and Sj are given by (2.5) and (2.2), respectively.

For a notational simplicity, we express Σ∗ as Σ in (2.4). In following, we

assume that λ1 > · · · > λj > λj+1 = · · · = λp = λ. Using

trS−1
j Σ = trHL−1H′ΓΛΓ′

= trH

(
L1 O
O ℓ̄(p−j)Ip−j

)
H′Γ

(
Λ1 O
O λIp−j

)
Γ′,

we have

trS−1
j Σ = trL−1

1 G′(Λ1 − λIj)G− ℓ̄−1
(p−j)trG

′(Λ1 − λIj)G

+ λtrL−1
1 + ℓ̄−1

(p−j)tr(Λ1 − λIj) + ℓ̄−1
(p−j)(p− j)λ, (A2)

where G = Γ′
1H1. Let S̃ = Γ′SΓ, and

S̃ = Λ+
1√
n
V, V = (vαβ).

Then, letting F = Γ′H, we have

S̃F = FL.
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We use perturbation expansions of the characteristic roots and vectors of S̃.

For the results, see, e.g., Siotani et al. (1985). Since the characteristic roots

of S̃ are the same as the ones of S, we have, for a = 1, . . . , j,

ℓa = λa +
1√
n
vaa +

1

n

p∑
b ̸=a

λabv
2
ab + · · · , (A3)

where λab = 1/(λa − λb). Note that G is a submatrix of F, and the columns

of F are the characteristic vectors of S̃. Therefore, we can expand G as

G = Ij +
1√
n
G(1) +

1

n
G(2) + · · · , (A4)

where G(1) = (g
1)
ab), G(2) = (g

(2)
ab ) and

g(1)aa = 0,

g
(1)
ja = −λjavja, j ̸= a,

g(2)aa = −1

2

∑
b ̸=a

λ2
abv

2
ab,

g
(2)
ja = −λja

[
λjavjavaa +

∑
b̸=a

λabvjbvba

]
, j ̸= a.

Substituting (A3) and (A4) into (A2) we can get (2.11), after much compu-

tation. The computations can be carried out by using E(vab) = 0 and

E(vabvcd) =


λ2
a, a = b = c = d,

λaλb, {a, b} = {c, d}, a ̸= b,
0, others.
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