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8§1. Introduction

In statistical data analysis, it is important to consider about missing observa-
tions. A statistical analysis for such monotone missing data has been discussed
by many authors. For example, Anderson (1957) showed an approach to derive
the maximum likelihood estimators (MLEs) of the mean vector and covariance
matrix by the likelihood equations for monotone missing data. Kanda and Fu-
jikoshi (1998) gave the properties of MLEs based on two-step and three-step
monotone missing samples and a general k. We note, among many other pa-
pers, Krishnamoorthy and Pannala (1999), Yu, Krishnamoorthy, and Pannala
(2006) and Chang and Richards (2009), that the methods of testing mean
vectors with monotone missing data were proposed. In particular, for testing

the mean vector with two-step monotone missing data, Seko, Yamazaki, and
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Seo (2012), and Seko, Kawasaki, and Seo (2011) provide an accurate simple
approach to give the approximate upper percentiles of Hotelling’s T? type
statistic and LRT statistic for one-sample and two-sample problems. More-
over, various statistical methods developed to analyze data with nonmonotone
missing values have been studied by Srivastava (1985), Srivastava and Carter
(1986), and S hutoh, Kusumi, Morinaga, Yamada, and Seo (2010), among
others. In this paper, we consider the one-sample problem of testing for the
mean vector with two-step monotone missing data. In particular, the test for
the subvector of a mean vector is discussed.

We first describe the case of nonmissing data. Let x1,x9,...,x, be dis-
tributed as Np(p, ), where pp = (p1, 2, - - ., f1p)’ and ¥ are unknown. Let g =
(K1, 1a{o3))', where py = (11, b2, - pip,) and piazy = (bpy+1, Hpi+25 - -5 1ip)
p1 < p < n. Then, the sample mean vector and unbiased covariance matrix
are defined as

1 = ;> . )
" . 1 -  —T)(x; —T) = 1 1(23)
T n ;-’Bz <§(23)> S 1 Z(wz Z)(x; — ) < P >,

pat S@3)1 S(23)(23)

respectively, where T is a pj-vector and S1; is a p; X p; matrix. Then, we

consider the following hypothesis:

(1.1)
Ho : po3) = B23)o given py = pyg vs. Hi @ paz) # Kaz)o given py = pyg,

where p(p3)9 and pyg are known. The equivalent criterion to the likelihood
ratio can be written as
_ L1
n—1+12"

where T2 = n(T — po)'S™(T — ), and T2, = n(T — p10) ST (@1 — pyg)-
We note that U = \=2/™ — 1, where X is the likelihood ratio criterion. Under
Hy, it follows that (n — p)U/(p2 + p3) is distributed as an F' distribution with
p2 + p3s and n — p degrees of freedom. This result follows from the one in
Siotani, Hayakawa, and Fujikoshi (1985, p. 215). The criterion is called Rao’s
U statistic (See, Rao (1949) and Giri (1964)). In this paper, we consider this

problem for the case of two-step monotone missing data. We first derive the



MLESs of p and ¥ and the MLE of ¥ under Hy. Using these MLESs, we propose
the likelihood ratio test statistic and its approximate upper percentile.

In the following section, we describe the definition and some notations for
two-step monotone missing data. Then, we describe the definition for two-
step monotone missing data and derive the MLEs. In Section 3, we propose
the LRT statistic and its approximate upper 100a percentiles. The accuracy
of the approximate upper percentiles of the test statistic is investigated by
Monte Carlo simulation in Section 4. Section 5 gives a numerical example
to illustrate the method using the approximate upper percentiles of the test

statistic.

§2. Two-step monotone missing data

Let the data set {z;;} be of the form

11 o Tlpy Lipi+1 " Tlpi+ps L1pi+p2+1 " Llp
Tny, 1 0 Toi,p Tnipi+1l " Togpi+pe Tnipi+pe+l °° Togp
)
Tni+1,1 " Tni+lpr Tny+lpi+1 ° " Tny+lpi+p2 * T %
Tn1 0 Tppy Lnpi+1 " Tnpi+ps * e X

[13%2

where no = n —ni, p = p1 + p2 + p3, and ny > p. “¥” indicates missing
data. That is, we have complete data for n; mutually independent obser-
vations with p dimensions and incomplete data for ne mutually independent

observations with (p; 4+ p2) dimensions. Such a data set is called two-step

monotone missing data. Let @1, @a,...,x,, be distributed as N,(p,>) and
let 11, Tny+2,. -, Ty be distributed as Np, 45, ((12), Z(12)(12)), Where each
;= (zj1,252,...,%p),J =1,2,...,n1 is p x 1, each ©; = (1, zj2,. ..,

xj,P1+p2),’j =n1+ 1)”1 + 25 ceey N is (pl +p2) X 17 and

M1 Y11 Y12 Y13
p=1 p | = <N(12)> , U= |9 X X3 | = <E§2)(12) 22(312)3> )
M3 Hs Y31 Y32 33 3(12) 33
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We partition x; into a p; x 1 random vector, a ps X 1 random vector, and
a p3 x 1 random vector as x; = (2, 5, T3,) = (w'(u)j,ng)', where x;; :
pix 1Li=1,23,7=12,...,n1. In addition, ®(19); is partitioned into a
p1 % 1 random vector and a pg X 1 random vector as @(12);= (&}, T3;)', where
Tij i p; X 1,1 =1,2,7 =n1+1,n1 +2,...,n. Then the joint density function
of the observed data set @1, T2, ..., Ty, T(12)n+1> T(12)n1 42> - - - » T(12)n Can be

written as

ni n
H f(@j, 1, %) x H f(@a2)j, 112) X12)12));
j=1 j=n1+1

where f(zj, u,X) and f(2(12)5, Ba2)s Z(12)(12)) are the density functions of
Np(p, X) and Ny, 4p, (B(12)> 2(12)(12)) respectively. Then, the likelihood func-
tion is

= 1 1
L(p, %) = 31:[1 W €xp {—i(wj —)'E () - M)}

n
1 1 1
<11 1(27r)(p1+p2>/2|2(12)(12)|1/2exp{_§(‘”<12>ﬂ'_“<12>)'2(12>(12>(‘”(12>J‘_"(12))}'
Jj=n1+

The sample mean vectors are defined as

1 n 1 n 1 ni 1 ni
51T=—E 15 52T=—§ T2, T Z—E T -531::—2 T3;.
N 4 Ve n 4 g L(12)F ny 4 (12)5> ny 4 J

Jj=1 Jj=1 Jj=1 Jj=1

In order to obtain the MLEs, we use the decomposition of the density into
conditional densities, which is called the conditional method (Kanda and Fu-
jikoshi, 1998). In our situation, multiplying the observation vectors x; by the

transformation matrix
I, O
_ O
F=| —Za%y Iy Iy
) | I,

on the left side, the transformed observation vectors are
Tyj ~ Npl (771» \1111)7 ] = 17 27 sy,
:D2j - \IJQI:Elj ~ NPQ(TI27 \:[122)7 j = 1727 RN (2

Il?3j - \P3(12)$(12)j ~ Np3(7737 \I’33)7 ] = 17 27 o, ny,



where
Im 0] o
Fl = 0 Ip2 )
_23(12)2(12)(12) ‘ Ips
! P | K10
n=\m| = Ko — Z321?111 K10 = Ko — Worptyg )
13 K3 — Z33(12)2(12)(12)M(12) K3 — ‘1’3(12)N(12)
-1
Uy Wio Vi3 Y Y Yi2|y-1
v = (%12)(12) ‘1’\52)3>: Tyr Uy Ty | = [ZarB5) Epy | 02027023 ]
33
3(12) Wy U Uas by (12)2(12)(12) ‘ 233_(12)

Y921 = Ug2 — To137] a1, Sss(12) = B33 — 23(12)2(—12)(12)2(12)3. It should be
noted that x1;, T2; — V21215, and x3; — U312 (12); are independent. Because
(n, ¥) has a one-to-one correspondence to (u, X), we derive the MLEs of (n,
V) instead of (p, ). For the parameter  and W, the likelihood function can

be written as

1 1 _
L(n, V) = L 2w, 172 eXp {_§($1j — )i (2 - 771)}

n

H Qﬂ- p2/2|q;22‘1/2

1 _
X exp {—5(-’1723' — Uy@15 — ) U3y (@25 — Uora; — 772)}

ni

1
X

1 _
X exp {—5(1733'—‘1’3(12)517(12)3' _773)1‘1’331(11733'—\1’3(12)$(12)j_773)}-
The partial derivative of log L(n, ¥) with respect to ¥y is

d0log L(n, V) n_._ 1~y by
B2 —50n +; ; Ui (@1 — o) (@1 — )"y

Solving the partial derivative of log L(n, ¥) = 0, we obtain the MLE of ¥ as

~ 1 &
Uy = - E (€15 — pyo)(T1j — ).
=
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Similarly, the partial derivative of log L(n, ¥) with respect to ny, ¥a1, Uag, 13,
U312y, and V33 are

dlog L(n, ¥ -
OlogL(n, ¥) _ Uog Y (@o5 — Yoy — my),

ony j=1
8 log L ) v _- T x z z
% =>_ Vo { (@2 ~Tor) (1~ F17) '~ Uor (1~ Tar) (w1~ Tar) ',

j=1
dlog L(n, ¥) P R _
T 00Uy _5‘1/221 —I—§ Z;‘IJQQI(-’sz — U121 — 1) (25— Vo121 — 1) Vs,
j=
a lOg L n, v — S
% =T ) (w35 — Vsa2)Z(12); — M3);
UE j=1

AlogLm,¥) =~ _ ~
% Z‘Ifgg{wsg Tzp)as; —T3r) - V302®2); ~ T2 HEw2); ~Za2) )

and

Olog L(n,¥) _ Mg
OV3g 2 33

1 _ _
+ 3 Z ‘1’331(5U3j - ‘1’3(12)w(12)j - 773)(3333' - ‘1’3(12)30(12)3' - 773),‘1’331-
=1
Therefore, we obtain the MLEs of 1y, 13, W21, Y22, V3(12), and Vss:

Ny = Tor — Y Zir, N3 = T3r — V312)T(12)F>

-1
n

n
Vg1 =4 > (w25 — Tor) (@1 — Tar)’ Z Ty — Tir) (T —Tur) o
i=1 =1

n

~ 1 ~ =~
WUooy — — R L _ 5 P . n.)
29 - E (:1:2] 2115 772)(9323 2115 M)’

j=1
~ "1
U3(12) = 2(3333' —T3r)(T(12); — Ta2)r)
j=1
n1 -1
X Z($(12)j — T2 (Ta2); — Ba)r) )
j=1

ni

~ 1 - ~ ~ _
Vs = ,2;(1733‘ — Usa9)Ta2); — M3) (3 — Y3anTa2); — N3)-
J:



Next we derive the MLE under Hy to obtain the LRT statistic. The null
hypothesis in (1.1) can be written as Hy : p = pg (= (g, b, H5) =
(u’(12)0,u’30)’). Let x; = (:13’(12)j, xy;)" be distributed as Np(p9, ¥), j = 1,2,.
ny and @(1g); be distributed as Np,4p, (B(12)0: Z(12)(12))s 7 = 1 + Ly +
2,...,n, then, the likelihood function is

ni

o) = 1] e 0 | 3t — o) @)

n

1
_jzl;IJrl (27r)(p1+p2)/2‘2(12)(12)‘1/2

1 -
X exp {—5(53(12)3' — Ba2)0) 2(12)(12)( (12)j — u(m)o)} :
Multiplying the observation vectors by I'; in (2.1) on the left side, we have
Z(12); ~ Npi+p2(§(12)s Pay12))s 7 =1,2,...,m,

x3j — P3(12)T(12)j ~ Nps (&3, P33), j=1,2,...,n1,

where

¢ = <§<12>> _ K20 _ < 1120 )
1§ K30 — Z3(12)2(12)(12)“( 12)0 M3 — P312)K(12)0/

-1
o — (@(12)(12) ‘I’(12)3> _ (12)£112) 212)(12)2(12)3 7
D312y Ps3 2i312)2(12)(12) ¥33.(12)
which have one-to-one correspondence with gy and . For the parameters

&, P, the likelihood function can be written as

L(¢,®) = H

ey (2m) (Pt /2|‘I’(12 12)[1/2

X exp{

(2 1"5‘*’/2|‘1’33|1/2

€012)) (1519 (®(12)5 —€<12>>}

l\DI»—A

m:

1
X eXp {—§($3g = P319)x 53) 33 (m3] — ®3(12)%(12); 53)}

Similarly, as the MLE, we have the MLEs under the Hy of &3, ®(12)(12) P3(12)»

and P33 are expressed as
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n

~ ~ ~ 1
€3 = M3 — @3(12)11107 @(12)(12) = " 2(517(12)3' - N(12)0)($(12)j - N(12)0)I,
j=1
-1
_ ni ni
‘1’3(12): Z(wsj—H30)($(12)j—ﬂ(12)0), Z(m(12)j_ﬂ(12)0)(w(12)j_u(12)0)/ )
J=1 j=1

-~ 1 X ~ ~ ~ ~
P33 = n—l Z(w?,j - ‘1’3(12)93(12)]' - 53)(9333' - @3(12)“7(12)j - 53)1'
j=1

83. Likelihood ratio test

In this section, we provide the LRT statistic for testing the subvector of a
mean vector with two-step monotone missing data. In the hypothesis in (1.1),
the parameter space 2 and the subspace w when Hy is true are, respectively,

as follows:
Q:{(”72) : _OO</vLi<Ooaz.:p1+1ap1+27”'7p711/1 = K105
¥ >0and 2(23)(23) > 0} s
w={(1, %) : = po, X >0 and (o3)(a3) > 0},

where 3 > 0 and X (93)(23) > 0 mean that X and X(93)(23) are positive definite

matrices. Using the MLEs in Section 2, the likelihood ratio criterion is given

by
mEXL(“’ %) (Wi - (o] \ * [ [Wss] ) °
maxL(p, 1P(12)(12)] | @3]

Note that under the null hypothesis, the LRT statistic, —2log Aps, is asymp-
totically distributed as y? with a degree of freedom of ps 4+ p3 when ny,n — oo
with n1/n — 6 € (0,1]. However, the upper percentile of the x? distribution
is not a good approximation to that of the LRT statistic when the sample size
is not large. We consider an approximate upper percentile of the LRT statistic
because it is not easy to obtain the exact one of the LRT statistic. In this
paper, we give a simplified and good approximation using linear interpolation
for the nq x p and n x p complete data sets. We note that, at least, the pro-

posed approximation is better than the y? approximation and uses the same



concept adopted for tests of the mean vector with two-step monotone missing
data by Seko, Yamazaki, and Seo (2012) and Yagi and Seo (2015). In our case,
as in Section 1, we use the property in the case of complete data. That is, the

exact upper 100« percentile of A is satisfied with Pr{\ > ¢,(a)} = «, where

I3

)

7 B _
gn(a) = {1 T (P2 + P3) Fpotpsn p(a)}
n—p
and Fp, p, n—p(a) is the upper 100a percentile of the F' distribution with

p2 + p3 and n — p degrees of freedom. Thus, we have the following theorem.

Theorem 3.1.  Suppose that the data have a two-step monotone missing
data pattern. Then, the approximate upper 100c percentile of the LRT statistic
—2log Ay is given by

* P3 p1+ p2
(31) C]M(a) = —210g {— Adny (a) + qn(a)} ,
p D
where
”Ll n
+ p3) F, n— = F o n
1—D n—p

and F,p(a) is the upper 100a percentile of the F distribution with a and b

degrees of freedom.

Therefore, we reject Hy if —2log Ay > ¢f(a). In the following section, the
accuracy and asymptotic behavior of the approximation are investigated by

Monte Carlo simulation.

84. Simulation studies

In this section, we compute the upper 100« percentiles of the LRT statistic
Qm(@) by Monte Carlo simulation for o = 0.05,0.01. We generate artificial
two-step missing data from N, (0, I,,) for the various conditions of py, p2, p3, 11,
and ng. We simulated the upper percentiles of the LRT statistic given the

qi,(a) values and the type I error rates under the simulated LRT statistic
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when the null hypothesis is rejected using g3, (a) and X%Q 4py» Where
Py = Pr{—2log Ay > q3;(a)}, P.=Pr{—2log Ay > X12,2+p3(a)},
and X;%Q +ps (@) is the upper 100a percentile of the x? distribution with a de-
gree of freedom of py + p3. The simulation results are shown in Tables 1-6.
Computations are made for the following six cases:
Case I: (p1,p2,p3) = (2,2,4),(2,3,3),(2,4,2),
(n1,n2) = (n1,2n1), (n1,n1), (n1,n1/2),n1 = 20,40, 80, 160;
Case I : (p1,p2,p3) = (2,2,4),(2,3,3),(2,4,2),
(n1,n2),n1 = 20,40, 80, 160, ny = 10, 20, 40;

Case III : (p1,p2,p3) = (2,2,2),(4,2,2),(8,2,2),

(n1,n2) = (n1,2n1), (n1,n1), (n1,n1/2),n1 = 20, 40, 80, 160;

Case IV: (p1,p2,p3) = (2,2,4),(4,3,3),(6,2,2),

(n1,n2),n1 = 20,40, 80, 160, ny = 10, 20, 40.

Case V : (p1,p2,p3) = (2,4,4),(4,3,3),(6,2,2),

(n1,n2) = (n1,2n1), (n1,n1), (n1,n1/2),n1 = 20, 40, 80, 160;

Case VI: (p1,p2,p3) = (2,4,4),(4,3,3),(6,2,2),

(n1,n2),n1 = 20,40, 80, 160, ny = 10, 20, 40.
We note that the cases for p = 8 and p; = 2 are given in Tables 1 and 2. That
is, the values of p and p; are fixed. Further, Tables 3 and 4 give the case where
P2 = p3, and po and p3 are fixed, Tables 5 and 6 give the case where p = 10
and p2 = p3.

From Tables 1 and 2, it is seen that the proposed approximation ¢} («) is
good for the case when the sample sizes ny and nq are large or the sample size
np is large and ng is fixed. This result also shows that the type I error rate is
close to a when the sample size n; is large. From Tables 3 and 4, we can see
that the approximation ¢} (a) is good for the case of py = ps = 2 when the
sample size np is large. It can be seen from Tables 3 and 4 that the value of

qi,(a) is close to that of the LRT when p; is small. However, we note that the

proposed approximation is better than the y? approximation for all cases.



TABLE 1: p; and p are fixed, and a = 0.05,0.01

11

a=0.05 a=0.01

n ny Gum(@) gule) P P qem(e) gula) P B
(p17p27p3) — (27 27 4)

20 40 17.69 15.17 .093 .171 23.81 19.99 .028 .062
40 80 14.54 13.90 .061 .091 19.50 18.50 .014 .024
80 160 13.48 13.24 .054 .067 18.06 17.66 .011 .016
160 320 13.01 1291 .052 .058 17.40 17.24 .011 .012
20 20 17.83 1592 .080 .176 24.00 21.05 .022 .064
40 40 14.61 14.15 .058 .093  19.52 18.85 .013 .025
80 80 13.52  13.33 .053 .068 18.05 17.80 .011 .016
160 160 13.02 12,95 .051 .058 17.43 17.29 .011 .013
20 10 1793 16.71 .068 .180 23.98 22.21 .016 .066
40 20 14.69 14.39 .055 .095 19.63 19.20 .012 .025
80 40 13.54 13.43 .052 .069 18.10 17.93 .011 .016
160 80 13.06 13.00 .051 .059 17.43 17.35 .010 .013
(p17p27p3) = (27 37 3)

20 40 17.09 14.81 .090 .154  23.07 19.58 .026 .054
40 80 14.32  13.72 .060 .08  19.16 18.27 .014 .022
80 160 13.35 13.15 .054 .065 17.82 17.55 .011 .015
160 320 1296 12.87 .052 .057 17.31 17.18 .010 .012
20 20 17.37 1559 .079 .163 23.35 20.68 .021 .058
40 40 14.46 14.00 .058 .089 19.31 18.66 .013 .023
80 80 13.43 13.27 .053 .067 17.95 17.71  .011 .015
160 160 13.00 12,92 .051 .058 17.38 17.25 .010 .012
20 10 17.62 16.45 .067 .171 23.66 21.90 .016 .061
40 20 14.56 14.29 .055 .092 19.45 19.06 .011 .024
80 40 13.49 13.39 .052 .068 18.00 17.87 .010 .015
160 80 13.01 1298 .051 .058 17.35 17.33 .010 .012
(p17p2’p3) = (27 47 2)

20 40 16.34 14.51 .081 .134 22.11 19.25 .022 .044
40 80 14.06 13.55 .059 .080 18.78 18.06 .013 .020
80 160 13.24 13.07 .053 .063 17.67 17.44 .011 .014
160 320 12.89 12.83 .051 .055 17.26 17.13 .011 .012
20 20 16.74 15.32 .073 .146  22.55 20.36  .019 .049
40 40 14.23 13.87 .056 .084  19.02 18.49 .012 .021
80 80 13.34 13.21 .052 .064 17.85 17.63 .011 .015
160 160 1293 12.89 .051 .056 17.31 17.21  .010 .012
20 10 1724 16.22 .065 .159 23.21 21.62 .015 .056
40 20 14.44 14.19 .054 .089 19.27 18.94 .011 .023
80 40 13.43 13.34 .051 .067 17.92 17.81 .010 .015
160 80 1298 1296 .050 .057 17.33 17.30 .010 .012

Note : x2(0.05) = 12.59, x2(0.01) = 16.81
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TABLE 2 : pq, p and no are fixed, and o = 0.05,0.01

a=0.05 a=0.01

ny ng Gm(@) qule) P P gm(a) qule) Py F
(p17p27p3) — (27 27 4)

20 10 1793 16.71 .068 .180 23.98 22.21 .016 .066
40 10 14.75 14.58 .053 .097 19.72 19.47 .011 .026
80 10 13.58 13.56 .050 .070 18.13 18.10 .010 .016
160 10 13.08 13.07 .050 .059 17.50 17.45 .010 .013
20 20 17.83 1592 .080 .176 24.00 21.05 .022 .064
40 20 14.69 14.39 .055 .095 19.63 19.20 .012 .025
80 20 13.56 13.51 .051 .069 18.07 18.04 .010 .016
160 20 13.08 13.06 .050 .059 17.43 17.43 .010 .013
20 40 17.69 15.17 .093 .171 23.81 19.99 .028 .062
40 40 14.61 14.15 .058 .093 19.52 18.85 .013 .025
80 40 13.54 13.43 .052 .069 18.10 17.93 .011 .016
160 40 13.06 13.03 .051 .059 17.42 17.40 .010 .013
(p17p27p3) = (27 37 3)

20 10 17.62 16.45 .067 .171 23.66 21.90 .016 .061
40 10 14.68 14.51 .053 .094 19.60 19.38 .011 .025
80 10 13.56 13.54 .050 .069 18.11 18.08 .010 .016
160 10 13.07 13.07 .050 .059 17.47 17.44 .010 .013
20 20 17.37 15,59 .079 .163 23.35 20.68 .021 .058
40 20 14.56 14.29 055 .092 19.45 19.06 .011 .024
80 20 13.54 13.48 .051 .069 18.09 18.00 .010 .016
160 20 13.06 13.05 .050 .059 17.43 17.42 .010 .013
20 40 17.09 14.81 .090 .154 23.07 19.58 .026 .054
40 40 14.46 14.00 .058 .089 19.31 18.66 .013 .023
80 40 13.49 13.39 .052 .068 18.00 17.87 .010 .015
160 40 13.05 13.02 .050 .059 17.40 17.38 .010 .013
(p17p2’p3) - (27 4, 2)

20 10 17.24 16.22 .065 .159 23.21 21.62 .015 .056
40 10 14.58 14.45 .052 .092 19.47 19.30 .011 .024
80 10 13.57 13.53 .051 .070 18.12 18.06 .010 .016
160 10 13.09 13.06 .050 .060 17.51 17.44 .010 .013
20 20 16.74 15.32 .073 .146  22.55 20.36  .019 .049
40 20 14.44 14.19 .054 .089  19.27 1894 .011 .023
80 20 13.50 13.45 .051 .068 18.04 17.96 .010 .016
160 20 13.08 13.04 .051 .059 1749 1741 .010 .013
20 40 16.34 14.51 .081 .134 22.11 19.25 .022 .044
40 40 14.23 13.87 .056 .084  19.02 18.49 .012 .021
80 40 13.43 13.34 .051 .067 17.92 17.81 .010 .015
160 40 13.02 13.01 .050 .058 17.41 17.37 .010 .013

Note : x2(0.05) = 12.5

9, x2(0.01) = 16.81



TABLE 3 : py = ps3, and a = 0.05,0.01
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a=0.05 a=0.01

nm ny qam(@) qula) Py Pe quw(®) aqula) P P
(p17p27p3) — (27 27 2)

20 40 11.93 10.88 .070 .109 16.78 15.12 .018 .032
40 80 10.561 10.17 .057 .073  14.72 14.21 .012 .018
80 160 9.96 9.82 .053 .060 13.96 13.74 .011 .013
160 320 9.70 9.65 .051 .055 13.58 13.561 .010 .011
20 20 12.10 11.31 .064 .113 16.98 15.75 .015 .034
40 40 10.57 10.34 .055 .075  14.78 14.45 .011 .018
80 80 10.01 9.90 .052 .061 14.02 13.85 .011 .013
160 160 9.75 9.69 .051 .056 13.61 13.56 .010 .012
20 10 12.29 1176 .059 .119 17.30 16.42 .013 .037
40 20 10.66 10.51 .053 .077 1497 14.70 .011 .019
80 40 10.05 9.97 .052 .062 14.06 13.95 .010 .014
160 80 9.75 9.72 .050 .056 13.60 13.61 .010 .011
(p17p27p3) - (47 27 2)

20 40 13.35 11.23 .091 .146 18.87 15,57 .026 .051
40 80 1098 10.35 .062 .084 15.39 14.45 .014 .022
80 160 10.13 9.91 .054 .064 14.19 13.86 .011 .014
160 320 9.81 9.70 .052 .057 13.70 13.57 .011 .012
20 20 13.59 1196 .079 .155 19.19 16.62 .021 .055
40 40 11.06 10.63 .058 .086 1549 14.85 .013 .022
80 80 10.20 10.03 .053 .066 14.29  14.03 .011 .015
160 160 9.82 9.75 .0561 .057 13.75 13.65 .010 .012
20 10 13.94 1278 .069 .165 19.60 17.82 .017 .060
40 20 11.22 1091 .056 .091 15.72 15.26 .012 .024
80 40 10.27  10.15 .052 .067  14.40 14.21 .011 .015
160 80 9.86 9.81 .051 .058 13.78 13.73 .010 .012
(p17p2’p3) - (87 2, 2)

20 40 18.24 1199 .170 .271 26.27 16.63 .068 .132
40 80 12.01 10.71 .076 .111 16.91 14.92 .019 .033
80 160 10.55 10.09 .059 .074 14.79 14.10 .013 .018
160 320 9.99 9.78 .054 .061 13.99 13.69 .011 .013
20 20 18.67 13.47 .137 .289  26.83 18.71 .050 .142
40 40 12.28 11.23 .069 .118 17.28 15.67 .017 .036
80 80 10.64 10.30 .057 .076 14.91 14.41 .012 .018
160 160 10.03 9.88 .053 .062 14.03 13.83 .011 .014
20 10 19.33 15.38 .106 .311 27.60 21.42 .033 .158
40 20 1247 11.81 .062 .125 17.48 16.50 .014 .039
80 40 10.77  10.53 .055 .079 15.06 14.73 .011 .020
160 80 10.07 9.98 .052 .063 14.14 1397 .011 .014

Note : x2(0.05) = 9.49, x2(0.01) = 13.28



14

T. KAWASAKI AND T. SEO

TABLE 4 : ny is fixed, po = p3, and a = 0.05,0.01

a=0.05 a=0.01

ni_ np Gm(@) qule) P P gm(a) qule) By F
(p17p27p3) — (27 27 2)

20 10 12.29 1176 .059 .119 17.30 16.42 .013 .037
40 10 10.73 10.65 .052 .078 15.04 14.90 .011 .020
80 10 10.11  10.07 .051 .063 14.16 14.10 .010 .014
160 10 9.79 9.78 .050 .056 13.69 13.69 .010 .012
20 20 12.10 11.31 .064 .113 16.98 15.75 .015 .034
40 20 10.66 10.51 .053 .077 1497 14.70 .011 .019
80 20 10.06 10.03 .050 .062 14.10 14.04 .010 .014
160 20 9.77 9.77 .050 .056 13.68 13.67 .010 .012
20 40 11.93 10.88 .070 .109 16.78 15.12  .018 .032
40 40 10.57 10.34 .055 .075  14.78 14.45 .011 .018
80 40 10.05 9.97 .052 .062 14.06 13.95 .010 .014
160 40 9.79 9.75 .051 .056 13.70 13.65 .010 .012
(p17p27p3) - (47 27 2)

20 10 13.94 1278 .069 .165 19.60 17.82 .017 .060
40 10 11.34  11.15 .054 .094 15.86 15.60 .011 .025
80 10 10.34 10.32 .050 .069 14.49 14.44 .010 .016
160 10 9.90 9.90 .050 .059 13.83 13.86 .010 .013
20 20 13.59 1196 .079 .155 19.19 16.62 .021 .055
40 20 11.22 1091 .056 .091 15.72 15.26 .012 .024
80 20 10.32 10.25 .051 .068 14.44 14.34 .010 .016
160 20 9.89 9.88 .050 .059 13.84 13.83 .010 .013
20 40 13.35 11.23 .091 .146 18.87 15.57 .026 .051
40 40 11.06 10.63 .058 .08  15.49 14.85 .013 .022
80 40 10.27 10.15 .052 .067 14.40 14.21 .011 .015
160 40 9.88 9.85 .051 .059 13.82 13.79 .010 .012
(p17p2’p3) - (87 2, 2)

20 10 19.33 15.38 .106 .311 27.60 21.42 .033 .158
40 10 12.75 12.30 .057 .132 17.88 17.21  .012 .043
80 10 10.92 10.84 .051 .083 15.30 15.17 .011 .021
160 10 10.16 10.15 .050 .065  14.23 14.21  .010 .015
20 20 18.67 13.47 .137 .289  26.83 18.71 .050 .142
40 20 12.47 11.81 .062 .125 17.48 16.50 .014 .039
80 20 10.84 10.72 .052 .081 15.19 14.99 .011 .020
160 20 10.15 10.12 .051 .064 14.18 14.16 .010 .015
20 40 18.24 11.99 .170 .271  26.27 16.63 .068 .132
40 40 12.28 11.23 .069 .118 17.28 15.67 .017 .036
80 40 10.77 10.53 .055 .079 15.06 14.73 .011 .020
160 40 10.13 10.06 .051 .064 14.21 14.08 .010 .014

Note : x2(0.05) = 9.49, x2(0.01) = 13.28



TABLE 5: p =10, ps = p3, and a = 0.05,0.01
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a=0.05 a=0.01

ni na qSim(a) qf\}(a) Pq* P, qSim(a) qgt/l(a) PQ* P
(p17p27p3) — (27 47 4)

20 40 23.13 18.58 .127 .227 30.50 23.82 .043 .094
40 80 18.17 17.14 .067 .103 23.63 22.11 .016 .029
80 160 16.67 16.33 .056 .071 21.62 21.13 .012 .017
160 320 16.07 1592 .053 .060 20.84 20.62 .011 .013
20 20 23.47 19.86 .105 .238 30.78  25.52 .032 .100
40 40 18.34 17.58 .061 .107 23.81 22.72 .014 .030
80 80 16.74 16.50 .054 .073 21.73 21.37 .011 .017
160 160 16.09 15,99 .051 .060 20.80 20.72 .010 .013
20 10 23.90 21.35 .084 251 31.26 27.53 .023 .107
40 20 18.53 18.02 .057 .112 24.09 23.33 .013 .032
80 40 16.84 16.67 .053 .075 21.81 21.60 .011 .018
160 80 16.16 16.07 .051 .061 20.94 20.82 .010 .013
(p17p27p3) = (47 37 3)

20 40 19.48 1523 127 218 26.43 20.13 .043 .090
40 80 1498 1395 .068 .102  20.13 18.56 .017 .029
80 160 13.63 13.27 .056 .071 18.19 17.70 .012 .016
160 320 13.07 12,93 .052 .059 17.44 17.26 .011 .013
20 20 19.85 16.46 .105 .231 26.87 21.80 .032 .097
40 40 15.13 14.39 .063 .106  20.22 19.17 .014 .030
80 80 13.73 13.45 .055 .073 18.37 1795 .012 .017
160 160 13.12 13.01 .052 .060 17.52 17.37 .011 .013
20 10 20.34 17.90 .084 .246 27.52 23.79 .023 .106
40 20 15.37 14.85 .058 .111  20.57 19.80 .013 .032
80 40 13.83 13.63 .053 .075 18.45 18.20 .011 .018
160 80 13.16 13.09 .051 .061 17.55 1748 .010 .013
(p17p2’p3) - (67 2, 2)

20 40 15.27  11.59 .121 .198  21.80 16.07 .041 .081
40 80 11.47 10.53 .068 .096 16.12 14.68 .017 .027
80 160 10.35 10.00 .057 .069 14.51 13.98 .012 .016
160 320 9.87 9.74 .053 .058 13.85 13.63 .011 .013
20 20 15.70 12.67 .102 .212 22.30 17.59 .032 .089
40 40 11.64 10.92 .063 .101 16.30 15.25 .015 .029
80 80 10.41 10.17 .055 .071  14.58 14.22 .012 .017
160 160 9.95 9.82 .053 .060 13.90 13.74 .011 .013
20 10 16.11  13.97 .082 .226  22.80 19.45 .022 .097
40 20 11.81 11.34 .058 .106 16.54 15.86 .013 .031
80 40 10.49 10.34 .053 .073 14.68 1446 .011 .017
160 80 9.98 9.90 .052 .061 13.92 13.85 .010 .013

x2(0.05) = 9.49, x2(0.05) = 12.59, and x2(0.05) = 15.51

2
4
x2(0.01) = 13.28, x4(0.01) = 16.81, and x2(0.01) = 20.09
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TABLE 6 : no is fixed, p = 10, po = p3, and o = 0.05,0.01

a=0.05 a=0.01

n1 n2 qSim(a) qf\}(a) Pq* P, qSim(a) qgt/l(a) PQ* P
(p17p27p3) — (27 47 4)

20 10 23.90 21.35 .084 .251 31.26 27.53 .023 .107
40 10 18.66 18.38 .054 .116 24.24 23.82 .011 .034
80 10 16.94 16.90 .050 .077 21.93 2190 .010 .018
160 10 16.19 16.19 .050 .062 21.01 20.98 .010 .014
20 20 23.47 19.86 .105 .238 30.78  25.52 .032 .100
40 20 18.53 18.02 .057 .112 24.09 23.33 .013 .032
80 20 16.93 16.81 .052 .076 21.95 21.78 .011 .019
160 20 16.18 16.17 .050 .062 20.96 20.95 .010 .014
20 40 23.13 18.58 .127 .227 30.50 23.82 .043 .094
40 40 18.34 17.58 .061 .107 23.81 22.72 .014 .030
80 40 16.84 16.67 .053 .075 21.81 21.60 .011 .018
160 40 16.16 16.13 .051 .061 20.94 20.90 .010 .013
(p17p27p3) = (47 37 3)

20 10 20.34 17.90 .084 .246 27.52 23,79 .023 .106
40 10 15.52 1522 .055 .116 20.76 20.32 .012 .034
80 10 13.94 13.88 .051 .077 18.64 18.53 .010 .019
160 10 13.23 13.23 .050 .062 17.68 17.66 .010 .014
20 20 19.85 16.46 .105 .231 26.87 21.80 .032 .097
40 20 15.37 14.85 .058 .111  20.57 19.80 .013 .032
80 20 13.87 13.78 .052 .076 18.53 18.40 .010 .018
160 20 13.22 13.20 .050 .062 17.66 17.63 .010 .014
20 40 19.48 15.23 .127 .218 26.43  20.13 .043 .090
40 40 15.13 14.39 .063 .106  20.22 19.17 .014 .030
80 40 13.83 13.63 .053 .075 18.45 18.20 .011 .018
160 40 13.20 13.16 .051 .062 17.61 17.57 .010 .013
(p17p2’p3) = (67 27 2)

20 10 16.11  13.97 .082 .226 22.80 19.45 .022 .097
40 10 11.99 11.70 .055 .111 16.80 16.36 .012 .033
80 10 10.63 10.57 .051 .076 14.85 14.80 .010 .019
160 10 10.04 10.03 .050 .062 14.04 14.03 .010 .014
20 20 15.70 12.67 .102 .212 22.30 17.59 .032 .089
40 20 11.81 11.34 .058 .106 16.54 15.86 .013 .031
80 20 10.58 1048 .052 .074 14.81 14.66 .011 .018
160 20 10.02 10.00 .050 .062 14.03 13.99 .010 .014
20 40 15.27 11.59 .121 .198  21.80 16.07 .041 .081
40 40 11.64 10.92 .063 .101 16.30 15.25 .015 .029
80 40 10.49 10.34 .053 .073 14.68 14.46 .011 .017
160 40 10.00 9.96 .051 .061 14.01 13.94 .010 .014

x2(0.05) = 9.49, x2(0.05) = 12.59, and x2(0.05) = 15.51

2
4
x2(0.01) = 13.28, x4(0.01) = 16.81, and x2(0.01) = 20.09
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85. Numerical example

We illustrate the results of this study using an example given in Wei and Lachin
(1984). The sample data consist of serum cholesterol values that were mea-
sured under treatment at five different time points: the baseline and months
6, 12, 20, and 24. The original data have 36 complete observations for months
20 and 24 to create two-step monotone missing data. We are interested in the
change from the baseline at each post-baseline time point. Thus, we have n =
30, n1 =20, ne =10, p =4, p1 = p2 = 1, and p3 = 2. We consider the hypoth-
esis H : (p2, p3, pa)’ = (0,0,0)" given g = 0. Then, we compute —2log Ay =
10.95. Because g, (0.05) = 9.36 from the simulation study, the null hypothe-
sis is rejected at the 0.05 significance level. When we use ¢},(0.05) = 9.15 and

X§(0,05) = 7.81, the null hypothesis is also rejected.
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