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Abstract

In this paper we study the problem of estimating the number of

significant components in principal component analysis (PCA) which

denotes the number of dominant eigenvalues of the covariance matrix

of p variables. Our purpose is to examine the consistency of the esti-

mation criteria AIC and BIC based on the model selection criteria by

Akaike (1973) and Schwarz (1978) under a high-dimensional asymp-

totic framework. Using random matrix theory, we derive sufficient

conditions for the criteria to be strongly consistent for the case when

the dominant population eigenvalues are finite, and the case when the

dominant eigenvalues tend to infinity. Moreover, the asymptotic re-

sults are obtained without normality assumption on the population

distribution. Simulation studies are also conducted.
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1 Introduction

Principal component analysis (PCA) is a widely used technique for reducing

the dimensionality of data in the form of n observations of p variables. An

important issue in the application of PCA is to determine the number of

significant components (see, e.g. Jolliffe (2002), Ferré (1995)) which is also

called the dimensionality in PCA. Let λ1 ≥ · · · ≥ λp be the population

eigenvalues of the covariance matrix Σ of a p-dimensional random vector y.

As an approach for determining the dimensionality, we consider a covariance

structure model in which the number of dominant eigenvalues is k, that is,

Mk : λk > λk+1 = · · · = λp = λ. (1.1)

Here M0 refers to λ1 = · · · = λp = λ.

If Mk is true, we say that the true dimensionality or the true number of

significant components is k. The model Mk has also been considered by Bai,

Miao and Rao (1995) as a signal processing model and by Johnstone (2001)

as a spiked model. The number, k, in these work is respectively referred to

as the number of signals and the number of spikes.

In general, the number of significant components, k, is unknown, and we

need to estimate it. Specifically, let y1, . . . ,yn be a random sample of size n

from a p-dimensional population with mean µ and covariance matrix Σ, and

let Sn be the sample covariance matrix given by

Sn =
1

n− 1

n∑
i=1

(yi − ȳ)(yi − ȳ)>, (1.2)

where ȳ = (1/n)
∑n

i=1 yi. Based on the sample, we estimate the dimension-

ality by selecting an appropriate model from the set {M0,M1, . . . ,Mp−1}. In

particular, we consider two estimation criteria AIC and BIC based on the
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decision rules of Akaike (1973) and that of Schwarz (1978) respectively. We

shall discuss p < n first. With

Cp,n = n log ((n− 1)/n)p + np{1 + log(2π)},

these are given by (see, e.g., Fujikoshi, Ulyanov and Shimizu (2010), Fujikoshi

and Sakurai (2015))

AICj = n log(`1 · · · `j) + n(p− j) log ¯̀
jp + 2dj + Cp,n, (1.3)

BICj = n log(`1 · · · `j) + n(p− j) log ¯̀
jp + (log n)dj + Cp,n, (1.4)

where `1p > . . . > `pp are the sample eigenvalues of Sn, and for 1 ≤ j ≤ p−1,
¯̀
jp is the arithmetic mean of `j+1,p, . . . , `pp, that is,

¯̀
jp :=

1

p− j

p∑
t=j+1

`tp. (1.5)

Furthermore, dj denotes the number of independent parameters under for

Σ and µ under Mj which is given by

dj = pj − 1

2
j(j + 1) + j + 1 + p

= (j + 1)(p+ 1− j/2). (1.6)

Then the AIC and BIC select respectively the number of significant compo-

nents according to

k̂A = arg min
j

AICj and k̂B = arg min
j

BICj.

When we are interested in only the first q models Mj, j = 0, 1, . . . , q − 1,

then the criteria are defined by considering the minimum only with respect

to j = 0, 1, . . . , q − 1. We call q the number of candidate models. We also

use

Aj =
1

n
(AICj − AICp−1), Bj =

1

n
(BICj − BICp−1)

instead of AICj and BICj.
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Motivated by numerous modern data structure in which p > n, we extend

our study to cover this situation in Section 4. We modify the definition of

(1.5) to (4.2), and propose to use the modified criteria Ãj and B̃j as defined

in Section 4.

In general, under a large-sample asymptotic framework, in which p is

fixed and n goes to infinity, it has been pointed out in various models that

AIC is not consistent, but BIC is. See, for examples, Shibata (1976), Nishii

(1984), Nishii, Bai and Krishnaiah (1988), and Gunderson and Muirhead

(1997). Similar selection consistency results in PCA is shown by Fujikoshi

and Sakurai (2015). However, under the high-dimensional framework, in

which both p and n tend to infinity, Fujikoshi, Sakurai and Yanagihara (2014)

and Yanagihara, Wakaki and Fujikoshi (2015) showed that in multivariate

regression model there are cases in which AIC is consistent, but BIC is not.

Our purpose is to study the consistency of the estimation criteria AIC

and BIC under a high-dimensional asymptotic framework p/n → c > 0. It

is assumed that the true number of significant components, k, is fixed; and

that the number of candidate models q satisfies q > k. We provide complete

proofs for 0 < c < 1 case, and sketch how these proofs can be extended in a

similar way for c > 1. The case c = 1 is more intricate (see the remark at

the end of Section 4) and will not be explored in this study.

For 0 < c < 1, Theorem 3.1 states that if the dominant k population

eigenvalues are bounded, AIC is strongly consistent under the “gap con-

dition” (3.4), but BIC is not. Furthermore, if the dominant k population

eigenvalues tend to infinity, AIC is always strongly consistent. If the domi-

nant k population eigenvalues tend to infinity with a rate faster than log n,

BIC is shown to be strongly consistent as well. These results are extended

to c > 1.

Our main results are obtained by techniques from random matrix theory

(RMT). An attractive feature of our results is that we require very mild distri-

butional assumption on the population: finite fourth moment. In particular,

the results hold without assuming normality. Two new results, Lemmas 2.2
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and 2.3, on the limiting behaviors of the sample eigenvalues are of inde-

pendent interests. The first describes the limiting behaviors of the sample

eigenvalues when the dominant population eigenvalues tend to infinity. The

second is concerned with monotonicity of the ratio of quantiles of Marčenko-

Pastur (MP) distribution.

This paper is organized as follows. In Section 2, we recall some basic

results on random matrix theory and state the two new lemmas. Main results

on strong consistency of AIC and BIC are stated and proved in Section 3.

In Section 4 the results are extended to the case c > 1. In Section 5, we

present our simulation studies. They show that the gap condition and the

finite fourth moment condition are essential for the selection consistency of

AIC, in addition to demonstrate perfect agreement with our Theorems. We

end our paper with concluding remarks in Section 6, and a conjecture. Proofs

of Lemmas 2.2 and 2.3 are given in the Appendix.

2 Preliminaries

In this section we recall some basic results in random matrix theory. For

more details, see Bai and Silverstein (2010) and Yao, Zheng and Bai (2015).

Moreover, we obtain new results on the limiting behaviors of the sample

eigenvalues of Sn when the population spiked eigenvalues tend to infinity,

and a monotonicity property of a ratio of quantiles of the MP distribution.

2.1 Marčenko-Pastur (MP) law

Let {xij, i = 1, . . . , p; j = 1, . . . , n} be a double array of iid random vari-

ables with mean 0 and variance 1. Write xk = (x1k, . . . , xpk)
> and X =

(x1, · · · ,xn). Suppose that p/n → c ∈ (0, 1) and define the sample covari-

ance matrix as

Sn =
1

n− 1

n∑
j=1

(xj − x̄)(xj − x̄)>,

where x̄ = 1
n

∑n
k=1 xk.
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Denote the eigenvalues of Sn as `1p > `2p > · · · > `pp > 0. Define the

empirical spectral distribution (ESD) of Sn by

Fn(x) =
1

p

p∑
i=1

I(−∞,x](`ip),

where IA(·) is the indicator function. With probability 1, Fn(x)
w→ Fc(x),

where

F ′c(x) = fc(x) =

{
1

2πxc

√
(b− x)(x− a), if x ∈ (a, b),

0, otherwise,

where a = (1−
√
c)2 and b = (1 +

√
c)2.

If c > 1, Fc has a point mass 1− 1/c at the origin, that is,

Fc(x) =


0, if x < 0,

1− 1/c, if 0 ≤ x < a,

1− 1/c+
∫ x
a
fc(t)dt, if x ≥ a.

We remark that
∫ b
a
fc(t)dt = 1 or 1/c in accordance with c < 1 or c ≥ 1

respectively.

From the MP law, we have the easy consequence that if i/p→ α ∈ (0, 1),

then `ip
a.s.→ µ1−α, where µα is the α-quantitle of the MP law, that is Fc(µα) =

α.

2.2 Limits of eigenvalues under spiked model

Let {xij, i = 1, . . . , p; j = 1, . . . , n} be a double array of iid random vari-

ables with mean 0 and variance 1. Write xk = (x1k, . . . , xpk)
> and Y =

(y1, · · · ,yn) = Σ1/2(x1, . . . ,xn). Define the sample covariance matrix of Y

as

Sn =
1

n− 1

n∑
j=1

(yj − ȳ)(yj − ȳ)>, (2.1)

where ȳ = 1
n

∑n
k=1 yk. Write the eigenvalues of Sn as `1p > `2p > · · · > `pp >

0. Define the ESD of Sn by

Fn(y) =
1

p

p∑
i=1

I(−∞,y](`ip).
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Assume that

(C1) p/n→ c > 0.

(C2) The ESD of Σ, Hp = FΣ converges weakly to H as p→∞.

Under (C1) and (C2), with probability 1, Fn(y)
w→ F c,H(y), where the

Stieltjes transform s of F c,H(y) = (1− c)δ0 + cF c,H(y) is the unique solution

to the equation

z = −1

s
+ c

∫
t dH(t)

1 + ts
,

on the upper complex plane for every z with Im(z) > 0. Define

ϕ(x) = x

(
1 + c

∫
t dH(t)

x− t

)
. (2.2)

By Silverstein and Choi (1995), if a nonzero point x does not belong to the

support of H, then ϕ(x) is an inner point of the complement of the support

of F c,H if and only if

ϕ′(x) > 0.

Suppose the eigenvalues of Σ are λ1, . . . , λk, 1, . . . , 1. In the following, for

simplicity, we consider the case

(C3) λ1 ≥ · · · ≥ λk > λk+1 = · · · = λp = λ = 1.

Denote by µF the support of a distribution F . The i-th largest eigenvalue,

λi, of Σ is called a distant spiked eigenvalue if ϕ′(λi) > 0. Bai and Yao

(2012) proved the following lemma.

Lemma 2.1. Let `ip denote the i-th largest eigenvalue of Sn in (2.1). Suppose

that E(x4
11) <∞, (C1), (C2), (C3) hold, and λ1 is bounded.

(1) If λi is a distant spiked eigenvalue, then `ip
a.s.→ ϕ(λi).

(2) If λi is not a distant spiked eigenvalue and i/p → α, then `ip
a.s.→ µc,H1−α

and the convergence is uniform in 0 ≤ α ≤ 1. Here µc,Hα denotes the

α-th quantile of the limiting spectral distribution (LSD), F c,H .

7



Baik and Silverstein (2006) shows the special case where H(θ) = I(1 ≤ θ).

In this case, ϕ(x) = x{1 + c/(x − 1)}, which will be denoted by ψ for the

rest of this paper. In this case, an eigenvalue λ of Σ satisfying λ > 1 +
√
c is

a distant spiked eigenvalue.

In Bai and Yao (2012), it is assumed that the spectral norm (that is,

the largest singular value of Σ1/2) is bounded. Therefore, when the spiked

population eigenvalues tend to infinity, we need to establish a new limiting

result for the distant spiked eigenvalues. Intuitively, if λj →∞, ϕ(λj) ∼ λj.

Under the assumption of finite 4-th moment, this is indeed the case and is

summarized in the following lemma.

Lemma 2.2. In the same setup of Lemma 2.1, instead of assuming λ1

bounded, we assume that λk → ∞ as p → ∞. We have the following re-

sults.

(1) For any j ≤ k, limn→∞ `jp/λj = 1 a.s.

(2) If λi is not a distant spiked eigenvalue and i/p → α as n → ∞, then

limn→∞ `ip = µc,H1−α a.s. and the convergence is uniform in 0 ≤ α ≤ 1.

Here µc,Hα denotes the α-th quantile of the limiting spectral distribution

(LSD), F c,H .

The proof of Lemma 2.2 is given in the Appendix. Note that Lemmas 2.1

and 2.2 are true for both cases 0 < c < 1 and c ≥ 1. The only difference is

µ1−t = 0 when t > 1/c if c > 1.

The asymptotic framework that the largest k population eigenvalues tend-

ing to infinity was introduced in Schott (2006), and in Fujikoshi et al. (2007).

In fact, they derived the asymptotic distributions of test statistics for testing

the hypothesis λk+1 = · · · = λp under the assumptions that (1) k is fixed,

(2) p/n→ c ∈ (0, 1), (3) λi = O(n), i = 1, . . . , k, and (4) y is normal.
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2.3 Monotonicity property of a ratio of quantiles of
MP law

Let Sn be the sample covariance in (2.1) with the population covariance

matrix Σ = Ip, and let `1p > `2p > · · · > `pp > 0 be the eigenvalues of Sn.

Consider the ratios

Ri =
`ip

1
p−i
∑p

t=i+1 `tp
=
`ip
¯̀
ip

, i = 1, 2, . . . , p− 1.

Monotonicity of the ratio of quantiles of MP law in Lemma 2.3 below leads

us to conjecture that in most cases

R1 > R2 > · · · > Rp−1,

hold almost surely.

Lemma 2.3. Let µα be the α-th quantile of the MP distribution, that is,

Fc(µα) = α. We define

x(t) =
µ1−t

µ̄1−t
, 0 ≤ t ≤ min{1, 1/c}

where

µ̄1−t =


1

1−t

∫ 1−t
0

µsds = 1
1−t

∫ µ1−t
a

xfc(x)dx, if 0 < c < 1;

c
1−ct

∫ 1−t
1−1/c

µsds = c
1−ct

∫ µ1−t
a

xfc(x)dx, if c ≥ 1.

Then (i) when c < 1, x(t) strictly decreases from b to 1 as t increases from 0

to 1; and (ii) when c ≥ 1, x(t) strictly decreases from b/c to 1 as t increases

from 0 to 1/c.

Lemma 2.3 is used in the proof of consistency of AIC and BIC. The proof

of this lemma is given in the Appendix.
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3 Main results

In this section we derive consistency of two estimation criteria k̂A and k̂B

based on AIC and BIC. Throughout this section, we assume 0 < c < 1. The

case for c ≥ 1 will be dealt with in the next section.

Suppose that the true number of significant components (or true dimen-

sionality or the true number of spikes) is k. AIC and BIC being scale invari-

ant so when we consider the distributions of AIC and BIC, we may assume,

without loss of generality, that the population eigenvalues are

λk+1 = · · · = λp = 1. (3.1)

Here λi should be read as λi/λ, i = 1, . . . , k.

We may consider the Aj and Bj below instead of AICj and BICj:

Aj =
1

n
(AICj − AICp−1)

= (p− j) log ¯̀
jp −

p∑
i=j+1

log `ip − (p− j − 1)(p− j + 2)/n,

Bj =
1

n
(BICj − BICp−1)

= (p− j) log ¯̀
jp −

p∑
i=j+1

log `ip −
(p− j − 1)(p− j + 2)

2n
log n.

Here Ap−1 = 0 and Bp−1 = 0. Then, the decision rule of AIC (respectively,

BIC) selects the model k̂A (respectively, k̂B) by

k̂A = arg min
j

Aj and k̂B = arg min
j

Bj.

When we are interested in models Mj, j = 0, 1, . . . , q − 1, then, the criteria

are defined by considering the minimum with respect to j = 0, 1, . . . , q − 1.

In general, a criterion k̂ for estimating the true number of significant

components k is said to be consistent (or strongly consistent) if limn→∞ P (k̂ =

k) = 1 (respectively, P (limn→∞ k̂ = k) = 1).

In this section we assume conditions (C1) with 0 < c < 1, (C2), (C3) and

(C4) λk > 1 +
√
c.

10



3.1 AIC

Suppose that λ1 is finite. Then, from Lemma 2.1 and (C4) it follows that for

i = 1, . . . , k, `ip
a.s.→ ψi, where

ψi ≡ ψ(λi) = λi +
cλi

λi − 1
, i = 1, 2, . . . , k. (3.2)

Consider a function h(x) = x − 1 − log x − 2c, x ≥ 1. Let x = m(c) be the

only solution to the equation

m = 1 + logm+ 2c, m > 1. (3.3)

Then, it is easily seen that h(x) > 0, for x > m(c). We consider a condition

ψk > m(c), (3.4)

which is equivalent to

γ(c) ≡ ψk − 1− logψk − 2c > 0. (3.5)

Condition ψk > m(c) or γ(c) > 0 is called the gap condition.

Theorem 3.1. Suppose the conditions (C1) with 0 < c < 1, (C2)–(C4) hold,

and that the number of candidate models, q, satisfies q = o(p). We have the

following results on the consistency of the estimation criterion k̂A based on

AIC.

(1) Suppose that λ1 is finite. If the gap condition (3.4) (i.e., ψk < m(c))

does not hold, then k̂A is not consistent. If the gap condition (3.4)

holds, then k̂A is strongly consistent.

(2) Suppose that λk tends to infinity, and λ1 = O(p). Then, k̂A is strongly

consistent.

Proof. Suppose that λ1 is finite. We first consider the case where j < k.

Noting that for i ∈ [j, k), `ip
a.s.→ ψi := ψ(λi) = λi + cλi/(λi − 1) and

¯̀
ip =

1

(p− i)

p∑
t=i+1

`tp
a.s.−→

∫ b

a

tfc(t) dt = 1. (3.6)
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This implies

Aj − Ak =
k∑

i=j+1

(Ai−1 − Ai)

=
k∑

i=j+1

[
(p− i+ 1) log

{
1− 1

p− i+ 1
(1− `ip/¯̀

ip)

}
+ log ¯̀

ip − log `ip − 2(p− i+ 1)/n
]

∼
k∑

i=j+1

(ψi − 1− logψi − 2c) . (3.7)

If the gap condition (3.4) does not hold, or equivalently, ψk−1−logψk−2c <

0, then for sufficiently large n, Ak−1 − Ak < 0 by (3.7) and hence k̂A is not

consistent.

We next consider ψk > m(c). For 0 ≤ j < k, and for sufficiently large n,

apply (3.7) to conclude

Aj − Ak ≥ (k − j) (ψk − 1− logψk − 2c) > 0.

In other words,

k̂A ≥ k a.s. (3.8)

Next we consider the case where k < j = o(p). We have

Aj − Ak =

j∑
i=k+1

(Ai − Ai−1)

=

j∑
i=k+1

[
− (p− i+ 1) log

{
1− 1

p− i+ 1
(1− `ip/¯̀

ip)

}
− log ¯̀

ip + log `ip + 2(p− i+ 1)/n

]
∼

j∑
i=k+1

{(
1− `ip/¯̀

ip

)
+ log

(
`ip/¯̀

ip

)
+ 2c (1− i/p)

}
. (3.9)

For k < i ≤ j, `jp ≤ `ip ≤ `k+1,p. From part (2) in Lemma 2.1, `k+1,p and
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`jp
a.s.→ µ1 = b as n→∞, so `ip

a.s.→ b. It implies almost surely that

Aj − Ak ∼ (j − k)(1− b+ log b+ 2c)

= (j − k)
{
c− 2

√
c+ 2 log(1 +

√
c)
}
> 0.

Combining the above with (3.8), we complete the proof of (1).

To prove (2), the case for k < j = o(p) is the same as that of (1) as
¯̀
ip → 1 remains to hold.

For j < k, as in the proof of (1),

Aj − Ak ∼
k∑

i=j+1

[
`ip/¯̀

ip − 1− log(`ip/¯̀
ip)− 2c

]
.

When λk → ∞ and λ2 = o(n), we still have ¯̀
ip → 1 (because `tp/p →

0 for t = j + 1, ..., k), and thus `ip/¯̀
ip ∼ λi → ∞. Hence Aj − Ak ∼∑k

i=j+1 [λi − 1− log λi − 2c] > 0.

When λk → ∞ and λi/p → ηi−1, we have ¯̀
ip → 1 + ηk−1 + · · · + ηi, and

thus `ip/¯̀
ip ∼ λi/(1 + ηk−1 + ...+ ηi)→∞. Hence

Aj−Ak ∼
k∑

i=j+1

[
λi

1 + ηk−1 + · · ·+ ηi
− 1− log

(
λi

1 + ηk−1 + ...+ ηi

)
− 2c

]
> 0.

3.2 BIC

In general, BIC is consistent under a large-sample asymptotic framework.

However, under a high-dimensional asymptotic framework, BIC is not nec-

essarily consistent. By the method of proof similar to that of Theorem 3.1

for AIC, we obtain the following theorem.

Theorem 3.2. Suppose the conditions (C1) with 0 < c < 1, (C2)–(C4) hold.

We have the following results on the consistency of the estimation criterion

k̂B based on BIC.

(1) Suppose that λk/ log n→ 0. Then, k̂B is not consistent.
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(2) Suppose that λk/ log n→∞. Then, k̂B is strongly consistent.

Remark. Since the penalty in BIC tends to infinity as n → ∞, no fur-

ther condition on the number of candidate models: q = o(p) is required in

Theorem 3.2.

Proof. We first consider the case where j < k. Note that for i ∈ [j, k),

`ip
a.s.→ ψi. Similar to the AIC argument, we have

Bj − Bk ∼
k∑

i=j+1

(ψi − 1− logψi − c log n). (3.10)

If λk/ log n → 0, or equivalently, ψk/ log n → 0, then Bk−1 − Bk ∼ ψk − 1−
logψk − c log n < 0. This proves (1).

If λk/ log n→∞, then for sufficiently large n, by (3.10),

Bj − Bk ≥ (k − j) (ψk − 1− logψk − c log n) > 0 a.s.

for any 1 ≤ j < k. That is, k̂B ≥ k a.s.

Consider k < j, analogous to the derivation of (3.9), we have

Bj − Bk ∼
j∑

i=k+1

[1− x(i/p) + log x(i/p) + c(1− i/p) log n]

where x(t) is defined in Lemma 2.3.

We first consider the case where k < j ≤ 2p/3. Lemma 2.3 implies

the monotonicity of 1 − x(t) + log x(t). Therefore, when n is large enough,

`jp/¯̀
jp ∼ b and

Bj − Bk > (j − k) [1− b+ log b+ (c/3) log n] > 0.

When j > 2p/3,

Bj − Bk ≥ ([2p/3]− k) [1− b+ log b+ (c/3) log n]

+ (j − [2p/3]) (1− b+ log b)

> ([2p/3]− k) [(c/3) log n− 2(b− 1− log b)] > 0
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where we used the fact that j− [2p/3] < [2p/3]−k. So min{Bj, j 6= k} > Bk

a.s. This completes the proof of (2).

We end this section with the following conjecture, and a sketch of evidence

for supporting this conjecture.

Conjecture 1: Theorem 3.1 continues to hold when the candidate models

are {M0,M1, . . . , Mp−1}. In other words, the condition that the number of

candidate models is o(p) is superfluous.

Evidence 1. From the proof in Theorem 3.1, indeed we have shown for

k < j < p,

Aj − Ak ∼
j∑

i=k+1

[
1− `ip

¯̀
ip

+ log

(
`ip
¯̀
ip

)
+ 2c

(
1− i

p

)]

−
p∑

i=k+1

1

p− i+ 1

(
1− `ip

¯̀
ip

)2

=

j∑
i=k+1

gi.

By the MP law and the boundedness of `1p under finite fourth moment con-

dition, it can be shown that

j∑
i=k+1

gi = (1 + oa.s.(1))

j∑
i=k+1

ĝi

where

ĝi = 1− x(i/p) = log x(i/p) + 2c(1− i/p)

and

x(t) =
µ1−t

1
1−i/p

∫ µ1−t
a

tfc(s)ds
.

It remains to consider the case where j > k and j/p → α ∈ (0, 1). For

this case, it can be shown that

Aj − Ak ∼
∫ α

0

ĝ(t)dt =: I(c, α).
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Proof of I(c, 1) > 0. Note that

I(c, 1) = 1−
∫ 1

0

x(t)dt+

∫ 1

0

log x(t) dt+ c. (3.11)

Let u = µ1−t, then∫ 1

0

x(t)dt =

∫ b

a

ufc(u)Fc(u)∫ s
a
fc(s) ds

du = −
∫ b

a

fc(u) log

(∫ u

a

sfc(s)ds

)
du;

(3.12)

and ∫ 1

0

log x(t)dt =

∫ b

a

fc(u) log

(
uFc(u)∫ u

a
sfc(s)ds

)
du

=

∫ b

a

fc(u) log udu− 1 +

∫ 1

0

x(t)dt. (3.13)

By (3.11)-(3.13), we have

I(c, 1) = c+

∫ b

a

f(u) log u du

= c+
1

π

∫ π

−π

sin2 θ

1 + c− 2
√
c cos θ

log(1 + c− 2
√
c cos θ) dθ

=
(1− c)
c

[− log(1− c)− c] > 0.

We used contour integration in the last step.

Evidence 2. We can show that ĝ(t) is positive in the neighbourhood of 0.

Numerical calculation for various values of c shows that ĝ(t) has at most one

zero. We have not been able to prove this. If this were true, then we could

prove that

I(c, α) > 0 (3.14)

and Conjecture 1 would be proved.

Proof of (3.14). If ĝ(t) has no zero, then (3.14) holds trivially. If ĝ(t) has

one zero in (0, 1), we denote this zero by t0. If 0 < α ≤ t0, then (3.14) holds

trivially. If α > t0, then I(c, α) > I(c, 1) > 0.
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4 The case c > 1

Increasing number of scientific studies lead to datasets in which p > n. Mo-

tivated by this scenario, we consider the case when p, n → ∞ such that

p/n→ c ∈ (1,∞). Then the smallest p− (n− 1) eigenvalues of Sn are zero,

that is,

`n−1,p > `np = · · · = `pp = 0.

It is still of interest to estimate the true number of significant components

in (1.1) under this setting. As n < p, it is not possible to infer the smallest

population eigenvalues λn, λn+1, . . . , λp > 0, and so in this section we assume

(C1) with c > 1, (C3), (C4) and (C5) hold where

(C5) λn−1 = λn = · · · = λp = λ.

The assumption (C5) is rather natural at least in a high-dimensional PCA

setting. Under (C5), we have, for j = 0, 1, . . . , n− 2,

M̃j; λj > λj+1 = · · · = λn−1 ⇔ Mj : λj > λj+1 = · · · = λp. (4.1)

First, we modify the definition of ¯̀
jp in (1.5) to

¯̀
jp :=

1

n− 1− j

n−1∑
t=j+1

`tp, (4.2)

for i = 1, 2, . . . , n− 1.

Second, for selecting a model from the set of models M0,M1, . . . , Mn−2,

we consider the following modified criteria Ãj and B̃j obtained from replacing

the p and n in Aj and Bj by n− 1 and p respectively:

Ãj = (n− 1− j) log ¯̀
jp −

n−1∑
i=j+1

log `ip −
(n− j − 2)(n− j + 1)

p
,

B̃j = (n− 1− j) log ¯̀
jp −

n−1∑
i=j+1

log `ip −
(n− j − 2)(n− j + 1)

2p
log p.
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Here Ãn−2 = 0, B̃n−2 = 0. Similar to the case where c < 1, we propose the

quasi-AIC (or quasi-BIC) rule to select the model k̂Ã (or k̂B̃) respectively by

k̂Ã = arg min(Ãj, j ≤ n− 2) and k̂B̃ = arg min(B̃j, j ≤ n− 2).

Third, as c > 1, the gap condition (3.5) is modified to

γ̃(c) := ψk/c− 1− log(ψk/c)− 2c−1 > 0. (4.3)

The following theorems show that k̂Ã and k̂B̃ possess similar consistency

properties as k̂A and k̂B do.

Theorem 4.1. Suppose the conditions (C1) with c > 1, (C2)–(C5) hold, and

that the number of candidate models q = o(p). We have the following results

on the consistency of the estimation criterion k̂Ã based on AIC.

(1) Suppose that λ1 is finite. If the modified gap condition (4.3) fails, k̂A is

not consistent. If the modified gap condition (4.3) holds, k̂Ã is strongly

consistent.

(2) Suppose that λk tends to infinity and λ1 = O(p). Then, k̂Ã is strongly

consistent.

Theorem 4.2. Suppose the conditions (C1) with c > 1, (C2)–(C5) hold. We

have the following results on the consistency of the estimation criterion k̂B̃
based on BIC.

(1) Suppose that λk/ log n→ 0. Then, k̂B̃ is not consistent.

(2) Suppose that λk/ log n tends to infinity. Then, k̂B̃ is strongly consistent.

We shall sketch the proofs of Theorems 4.1 and 4.2 below. For j < k, we

have

Ãj − Ãk =
k∑

i=j+1

[
(n− i) log

{
1− 1

n− i

(
1− `ip

¯̀
ip

)}
− log

`ip
¯̀
ip

− 2(n− i)
p

]
.
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When λ1 = o(n), we have ¯̀
i,n−1 ∼ c

∫ b
a
tfc(t)dt = c, and hence if the modified

gap condition (4.3) is satisfied,

Ãj − Ãk ∼
k∑

i=j+1

(
ψi/c− 1− log(ψi/c)− 2c−1

)
≥ (k − j)γ̃(c) > 0.

When λ1 = O(n), the same inequality can be obtained without the modified

gap condition γ̃(c) > 0.

We next consider the case where i ∈ [k + 1, n− 2]. Similarly, we have

Ãj − Ãk

=

j∑
i=k+1

[
−(n− i) log

{
1− 1

n− i

(
1− `ip

¯̀
ip

)}
+ log

`ip
˜̀
ip

+
2(n− i)

p

]

∼
j∑

i=k+1

{g̃(i/n) + o(1)} ,

when j = o(p), and we used the approximation `ip/¯̀
ip ∼ b/c. Here

g̃(t) = log x̃(t)− x̃(t) + 1 + 2c−1(1− t),

and

x̃(t) =
µ1−t

c
1−ct

∫ 1−t
1−1/c

µsds
≥ 1,

and o(1) is uniformly in i ∈ [k + 1, n − 2]. Similar to the case where c < 1,

one can prove Ãj − Ãk > 0. Combining these results, we have proved that

minj 6=k(Ãj − Ãk) > 0. Similarly one can prove that minj 6=k(B̃j − B̃k) > 0,

when λk/ log n→∞.

Remark. When c = 1, the behavior of the smallest eigenvalue is not well

understood and we may not have the property that x(t) decreases to 1 as t

increases to 1. However, if the number of candidate models is o(p), Theorem

3.1 or Theorem 4.1 holds for c = 1.

We also end this section with another conjecture below.

Conjecture 2: Theorem 4.1 continues to hold when the candidate models

are {M0,M1, . . . , Mn−2}.
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5 Simulation studies

When the population eigenvalues remain bounded, we impose the gap con-

dition and the finite fourth moment condition to establish the consistency

of the AIC and BIC; whereas when λk → ∞ at a rate faster than log n,

we only need finite fourth moment. We conducted a number of simulation

studies to examine the effects on the consistency of k̂A and k̂B when the gap

condition or the finite fourth moment condition does not hold. Moreover,

when these conditions are met, we are interested to gain some insight at the

rate of convergence.

5.1 Simulation studies for 0 < c < 1

In our experiments, we define p-variate y as

y = Λ1/2(x1, . . . , xp)
>, (5.1)

where Λ = diag(λ̃1, . . . , λ̃k, λ̃, . . . , λ̃) and x1, . . . , xp are iid with mean 0 and

variance 1. We also set p/n = 1/3, that is, c = 1/3. So m(c) = 2.636. It

follows that the covariance of y is given by Λ. As for the distribution of xi,

we consider the following five cases. Note that the fourth moment of xi exists

only for cases D1, D3–D5; whereas for case D2, which is a standardized t4

distribution with finite moments up to order 3.

D1 Standard normal distribution: xi ∼ N(0, 1)

D2 Standardized t distribution with 4 d.f.: xi ∼ t4/
√

Var(t4)

D3 Standardized t distribution with 5 d.f.: xi ∼ t5/
√

Var(t5)

D4 Standardized t distribution with 10 d.f.: xi ∼ t10/
√

Var(t10)

D5 Standardized chi-square distribution with 3 d.f.: xi ∼ (χ2
3 − 3)/

√
Var(χ2

3)

For the eigenvalues of Σ, we considered the following three cases. In the

first case, L1, the gap condition fails: λ4 = 5/3 and ψ4 = 2.5 which is less

than m = 2.636. In L2, the gap condition holds. In L3, the spiked eigenvalues

(1 ≤ i ≤ 4) tend to infinity at a rate n1/2 which is faster than log n. Here

αp =
√
p/10.
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λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 · · · λ̃p
L1 30 20 13 5 3 · · · 3
L2 30 22 16 10 3 · · · 3
L3 30αp 20αp 13αp 8αp 3 · · · 3

In our framework, λi is taken to be λ̃i/λ̃. The true number of significant

components in all cases, L1–L3, is the same: k = 4. We simply use j to

denote Mj. Let the minimum model including the true model be denoted by

F∗. Furthermore, let the sets of under-specified and over-specified models be

denoted by F− and F+ respectively. In our simulation studies,

F− = {0, 1, 2, 3}, F∗ = {4}, F+ = {5, 6, . . . , p}.

The selection percentages of selecting F−, F∗ and F+ by Monte Carlo

simulations with 104 repetitions were computed. For space consideration,

we only report the selection percentages for standardized t4 and t5 under

cases L1–L3 in Tables 2–4 below. We first summarize our findings in Table 1

below. Here, “Y” denotes k̂A (or k̂B) is consistent; and “N” for inconsistent.

Table 1: Summary of consistency of AIC and BIC. Here GC stands for gap
condition.

L1 (GC fails) L2 (GC holds) L3 (GC holds)
AIC BIC AIC BIC AIC BIC

D1 N N Y N Y Y
D3 N N Y N Y Y
D4 N N Y N Y Y
D5 N N Y N Y Y
D2 N N N N N Y

We highlight some observations from Tables 1-4 as follows.

(i) In the standardized t4 case, D2, k̂A is not consistent across our choices

of eigenvalues L1–L3. The finite fourth moment condition is essential

for Theorem 3.1 to hold. Moreover, when AIC does not specify the true

number of significant components correctly, it tends to over-specify it.
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(ii) In the standardized t4 case, D2, k̂B is not consistent for L1 and L2 cases

with tendency to under-specify the true number of significant compo-

nents. Interestingly, when eigenvalues tend to infinity fast enough as in

L3, our simulation results suggest that k̂B is consistent even the finite

fourth moment condition fails.

(iii) Our simulation studies suggest that the rate of convergence to the true

number of significant components depend on the difference of the spiked

population eigenvalues and λk+1. Convergence is faster for greater dif-

ference. Moreover, when k̂A and k̂B are both consistent, selection per-

centages of k̂B converges faster to 100 than k̂A does.

Table 2. Selection percentages of k̂A and k̂B for population eigenvalues in L1

Standardized t4 Standardized t5
k̂A k̂B k̂A k̂B

n p F− F∗ F− F∗ F− F∗ F− F∗
30 10 37.1 27.9 83.3 13.3 43.5 28.9 88.5 10.1
60 20 28.1 34.4 91.3 8.0 42.4 35.1 96.5 3.4
90 30 26.4 35.9 94.0 5.6 43.4 37.7 98.4 1.6
...

...
...

...
...

...
...

...
...

...
270 90 26.9 39.0 96.0 3.9 59.1 34.0 99.5 0.5
300 100 28.8 39.4 96.6 3.3 62.3 31.9 99.4 0.6
900 300 29.3 40.0 96.6 3.3 63.8 31.5 99.5 0.5
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Table 3. Selection percentages of k̂A and k̂B for population eigenvalues in L2

Standardized t4 Standardized t5
k̂A k̂B k̂A k̂B

n p F− F∗ F− F∗ F− F∗ F− F∗
30 10 11.7 35.8 51.9 38.3 11.2 43.1 51.7 42.0
60 20 2.9 34.5 56.4 38.9 3.2 50.8 56.0 42.7
90 30 1.2 34.4 62.1 35.2 1.2 55.7 63.2 36.1
...

...
...

...
...

...
...

...
...

...
270 90 0.0 36.5 81.8 17.2 0.0 77.9 87.9 12.0
300 100 0.0 38.3 83.3 15.9 0.0 79.9 90.0 9.9
900 300 0.0 50.6 94.5 5.3 0.0 92.7 99.3 0.7

Table 4. Selection percentages of k̂A and k̂B for population eigenvalues in L3

Standardized t4 Standardized t5
k̂A k̂B k̂A k̂B

n p F− F∗ F− F∗ F− F∗ F− F∗
30 10 21.7 32.0 69.8 24.3 23.1 37.9 70.9 25.4
60 20 1.3 35.2 38.7 55.3 1.2 51.1 36.0 61.4
90 30 0.1 32.1 16.8 76.1 0.0 55.1 12.8 85.3
...

...
...

...
...

...
...

...
...

...
270 90 0.0 35.2 0.0 94.1 0.0 76.7 0.0 99.3
300 100 0.0 37.4 0.0 94.0 0.0 79.7 0.0 99.3
900 300 0.0 49.6 0.0 95.7 0.0 92.3 0.0 99.6

5.2 Simulation studies for c > 1

For the case where n, p → ∞ such that p/n → c > 1, we consider the

consistency properties of k̂Ã and k̂B̃ under the population eigenvalues

L4: λ̃1 = 30 > λ̃2 = 20 > λ̃3 = 13 > λ̃4 = 8 > λ̃5 = · · · = λ̃p = 1

in addition to L1, L2 and L3. The variables x1, . . . , xp in (5.1) were chosen

to be iid from the standard normal distribution. We set p/n = 3 and hence

c = 3. Note that L1 satisfies the gap condition (4.3), but not the condition
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(C4); L2 satisfies the condition (C4), but not the gap condition. So, we do

not expect that k̂Ã and k̂B̃ are consistent in L1 and L2. On the other hand,

from Theorems 4.1 and 4.2 it is expected that k̂Ã is consistent in L3 and L4;

and k̂B̃ is consistent in L3. Simulation results, as shown in Table 5, confirm

the results of Theorems 4.1 and 4.2.

Table 5. Selection percentages of k̂Ã and k̂B̃ for eigenvalues in L1–L4

L1 L2

k̂Ã k̂B̃ k̂Ã k̂B̃
n p F− F∗ F− F∗ F− F∗ F− F∗

10 30 92.2 4.7 97.5 1.9 88.6 7.0 95.6 3.1
20 60 93.8 5.3 100.0 0.1 86.7 11.5 99.8 0.2
30 90 94.7 5.1 100.0 0.0 85.9 13.2 100.0 0.0
...

...
...

...
...

...
...

...
...

...
90 270 98.5 1.5 100.0 0.0 86.0 14.0 100.0 0.0

100 300 98.9 1.1 100.0 0.0 86.3 13.7 100.0 0.0
300 900 100.0 0.0 100.0 0.0 94.1 5.9 100.0 0.0

L3 L4

k̂Ã k̂B̃ k̂Ã k̂B̃
n p F− F∗ F− F∗ F− F∗ F− F∗

10 30 74.8 16.8 85.6 11.1 47.1 37.0 59.0 33.2
20 60 28.6 61.7 71.8 28.1 15.0 73.8 49.6 50.3
30 90 5.4 87.4 46.9 53.1 5.2 87.8 47.6 52.4
...

...
...

...
...

...
...

...
...

...
90 270 0.0 99.3 0.4 99.6 0.0 99.3 67.9 32.1

100 300 0.0 99.4 0.1 99.9 0.0 99.5 72.2 27.8
300 900 0.00 100.0 0.0 100 0.0 100 99.7 0.3

6 Concluding remarks

In this paper we consider the consistency problem in estimating the number

of dominant eigenvalues in (1.1) which is called the number of significant

components or the dimensionality in PCA. High-dimensional properties are
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studied for two estimation criteria k̂A and k̂B based on AICj and BICj,

which are equivalent to Aj and Bj. When the true number of significant

components is o(p), we give sufficient conditions in Theorems 3.1 and 3.2 for

the criteria k̂A and k̂B to be strongly consistent under a high-dimensional

asymptotic framework such that p/n → c ∈ (0, 1). We emphasize that the

consistency properties of the AIC and BIC criteria differ substantially from

those in a large-sample asymptotic framework. In a large-sample asymptotic

framework, in general, k̂A is not consistent, but k̂B is consistent. When n < p,

we propose quasi-AIC and quasi-BIC decision rules k̂Ã and k̂B̃. Further, their

consistency properties are summarized in Theorems 4.1 and 4.2.

These theorems were proved by random matrix theory techniques. We

were also led to discover some interesting limiting results in sample eigenval-

ues when the population eigenvalues tend to infinity (see Lemma 2.2); and

monotonicity property on ratio of quantiles of the MP law (see Lemma 2.3).

Appendix

A Additional lemmas and proof of lemmas

A.1 Two Additional Lemmas

We need two additional lemmas to prove Lemma 2.2. The first Lemma A.4

below which is a modification of Lemma 2 from Bai and Yin (1993).

Lemma A.4. Let x be a random variable with E|x|(1+β)/α < ∞ for some

α > 1/2, β ≥ 0. Let {xij} be a double array of random variables such that

P (|xij| > t) ≤ KP (|x| > t) for all i, j, t > 0, and a fixed constant K.

For each j fixed, we assume further that x1j, . . . , xnj are independent. For

1/2 < α ≤ 1, we require further that xij’s have the same mean. Then for

any constant 0 < M <∞, we have

lim
n→∞

sup
j≤Mnβ

∣∣∣∣∣n−α
n∑
i=1

(xij − ν)

∣∣∣∣∣ = 0 a.s. (A.1)
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Here

ν =

{
E(x11), if 1/2 < α ≤ 1,

any constant, if α > 1.

Proof. The proof of the Lemma is the same as the proof for the sufficient

part of Lemma 2 of Bai and Yin (1993) by noticing that the independence

between rows of random variables was in fact not used in the latter. Details

are omitted.

Write Snx = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)> and Σ = UΛU>, where U =

(U1,U2) = (u1, · · · ,up) is a p-dimensional orthogonal matrix with U1 of

dimension p× k and Λ = diag(λ1, . . . , λk, 1, . . . , 1) is a diagonal matrix of

eigenvalues of Σ. Then,

Sn = UΛ1/2U>SnxUΛ1/2U>

= U

(
Λ

1/2
1 U>1 SnxU1Λ

1/2
1 Λ

1/2
1 U>1 SnxU2

U>2 SnxU1Λ
1/2
1 U>2 SnxU2

)
U>, (A.2)

where Λ1 = diag(λ1, . . . , λk). Since U2U
>
2 has p − k eigenvalues 1 and

k eigenvalues 0, we know that the ESD of U>2 SnxU2 tends to MP law by

Silverstein (1995) and its largest eigenvalue tends to b and smallest eigenvalue

tends to a by Bai and Silverstein (1998).

Lemma A.5. Under the assumption of Lemma 2.2, we have

max
j≤k

∣∣u>j Snxuj − 1
∣∣→ 0 a.s.

Proof. It suffices to show that u>1 Snxu1 → 1 a.s. Without loss of gener-

ality, we may assume the means of the random entries are 0. Let u1 =
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(u1, · · · , up)>, then we have

|u′1Snxu1 − 1| =

∣∣∣∣ 1

n− 1

p∑
j=1

u2
i

n∑
j=1

(x2
ij − 1)

+
1

n− 1

∑
j1 6=j2

uj1uj2

n∑
i=1

xij1xij2 −
n

n− 1
(u>1 x̄)2

∣∣∣∣
≤ sup

j≤p

∣∣∣∣∣ 1

n− 1

n∑
i=1

(x2
ij − 1)

∣∣∣∣∣
+

∣∣∣∣∣ 1

n− 1

n∑
i=1

∑
j1 6=j2

uj1uj2xij1xij2

∣∣∣∣∣+
n

n− 1
sup
j≤p

∣∣∣∣∣ 1n
n∑
i=1

xij

∣∣∣∣∣
2

.

By Lemma A.4, the first and the third term tends to 0 with probability 1.

That the second term tends to 0 with probability 1 can be proved by noticing

that

E

∣∣∣∣∣ 1

n− 1

n∑
i=1

∑
j1 6=j2

uj1uj2xij1xij2

∣∣∣∣∣
4

=
1

(n− 1)4

[ n∑
i=1

E

(∑
j1 6=j2

uj1uj2xij1xij2

)4

+3
∑
i1 6=i2

E

(∑
j1 6=j2

uj1uj2xi1j1xi1j2

)2(∑
j1 6=j2

uj1uj2xi2j1xi2j2

)2 ]
≤ n

(n− 1)4

[
24

∑
j1,j2,j3,j4
distinct

u2
j1
u2
j2
u2
j3
u2
j4

+ 24
∑
j1,j2,j3
distinct

u3
j1
u3
j2
u2
j3
Ex3

11Ex
3
11

+8
∑
j1 6=j2

u4
j1
u4
j2
Ex4

11Ex
4
11 + 12n(n− 1)

]
≤ K

n2
,

for some constant K. The proof is complete.

A.2 Proof of (1) of Lemma 2.2

First we prove that lim inf `ip/λi ≥ 1 a.s. for i ≤ k. We note that

`ip/λi = λ−1
i inf

v1,...,vi−1

sup
u⊥v1,...,vi−1,‖u‖=1

u>Snu
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For any given v1, · · · ,vi−1 there exists a vector u in the linear space spanned

by u1, · · · ,ui which is orthogonal to v1, · · · ,vi−1 denoted by u =
∑i

j=1 ajuj

with
∑i

j=1 a
2
j = 1.

By Lemma A.5, we have

u>Snxu/λi = λ−1
i

i∑
j=1

λja
2
ju
>
j Snxuj ≥

i∑
j=1

a2
ju
>
j Snxuj

a.s.→ 1.

Next, we shall show that lim sup `ip/λi ≤ 1 a.s. for i ≤ k. As before, we

have

`ip/λi = λ−1
i inf

v1,...,vi−1

sup
u⊥v1,...,vi−1,‖u‖=1

u>Snu

≤ λ−1
i sup

u⊥u1,...,ui−1,‖u‖=1

u>Snu

= λ−1
i sup

a≤1

{
a2u>i Snxui + (1− a2) sup

u⊥u1,...,uk.‖u‖=1

u>Snu

}
∼ sup
|a|≤1

{
a2 + (1− a2)λ−1

i ‖U>2 SnU2‖
}

∼ sup
|
∑k
t=i a

2
t |≤1

{
k∑
t=i

a2
t + (1−

k∑
t=i

a2
t )λ
−1
i b

}
= 1,

where we have used the fact that ‖U>2 SnU2‖ → b which was proved in Bai

and Silverstein (1998).

Combining the two conclusions, we conclude that `jp/λj
a.s.→ 1.

A.3 Proof of (2) of Lemma 2.2

By (A.2), `1p, · · · , `pp are also the eigenvalues of(
Λ

1/2
1 U>1 SnxU1Λ

1/2
1 Λ

1/2
1 U>1 SnxU2

U>2 SnxU1Λ
1/2
1 U>2 SnxU2

)
.

Write the eigenvalues of the matrix U>2 SnxU2 as ˜̀
1p, · · · , ˜̀

p−k,p. By Silver-

stein (1995), the empirical spectral distribution of U>2 SnxU2 tends to MP

law with probability 1. Thus, if i/p→ α, then ˜̀
ip
a.s.→ µ1−α.
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On the other hand, by interlacing theorem (see Rao and Rao (1998)), for

any i ∈ (1, p− k), we have

`ip ≥ ˜̀
ip ≥ `k+i,p ≥ ˜̀

k+i,p.

Thus, for all i ≥ k + 1, `ip
a.s.→ µ1−α, where α = lim i/p. This completes the

proof of Lemma 2.2.

A.4 Proof of Lemma 2.3

For notational simplicity, we write Fc and fc as F and f respectively for the

rest of this paper. Define G(t) = F−1(t), the t-th quantile of the MP, which

is denoted by µt earlier.

Note that G′(t) = 1
f(G(t))

. We write y(t) = tG(t)/
∫ t

0
G(s)ds, which is

equal to x(1 − t). Thus we want to prove that y increases from y(0) = 1 to

y(1) = b. Towards this end, we have

y′(t) =
[G(t) + tG′(t)]

∫ t
0
G(s)ds− t [G(t)]2(∫ t

0
G(s)ds

)2

=
[f (G(t))G(t) + t]

∫ t
0
G(s)ds− tf (G(t)) [G(t)]2

f (G(t))
(∫ t

0
G(s)ds

)2 .

So to prove y′(t) > 0, it is equivalent to proving that

∆(t) ≡
∫ t

0

G(s)ds− tf (G(t)) [G(t)]2

[f (G(t))G(t) + t]
> 0. (A.3)

It is easy to see that limt→0+ ∆(t) = 0. If we can show that

∆′(t) > 0 for t ∈ (0, 1), (A.4)

then ∆(t) > ∆(0+) = 0, and so y′(t) > 0.
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We have

∆′(t) = G(t)−
f(G(t))[G(t)]2 + tf ′(G(t))[G(t)]2

f(G(t))
+ 2tG(t)

[f (G(t))G(t) + t]

+
t [G(t)]2 [2f (G(t)) + f ′(G(t))G(t)]

[f (G(t))G(t) + t]2

= G(t)− [f(G(t))]2[G(t)]2 + tf ′(G(t))[G(t)]2 + 2tf(G(t))G(t)

f(G(t)) [f (G(t))G(t) + t]

+
t [G(t)]2 [2f (G(t)) + f ′(G(t))G(t)]

[f (G(t))G(t) + t]2
.

If we let u = G(t), then u ∈ (a, b) and t = F (u). We can rewrite ∆′(t) as

uψ(u) where

ψ(u) = 1− u[f(u)]2 + uf ′(u)F (u) + 2f(u)F (u)

f(u)[uf(u) + F (u)]
+
uF (u)[2f(u) + uf ′(u)]

[uf(u) + F (u)]2

=
ψ1(u)F (u)

[uf(u) + F (u)]2
.

Here

ψ1(u) =
1

u
− h′(u)F (u)

h2(u)
, (A.5)

where

h(u) = uf(u) = (2πc)−1
√

(b− u)(u− a).

Finally, to show that ∆′(t) > 0, it remains to show that ψ1(u) > 0 for

u ∈ (a, b).

Since

h′(u) =
−u+ (b+ a)/2

2πc
√

(b− u)(u− a)
=

1 + c− u
2πc
√

(b− u)(u− a)
,

we know that h′(u) < 0 if u ≥ 1 + c and hence ψ1(u) > 0. Thus, we need

only to prove that ψ1(u) > 0 for u ∈ (a, 1 + c). Rewriting

ψ1(u) =
1 + c− u

[(b− u)(u− a)]3/2
ψ2(u),

where

ψ2(u) =
[(b− u)(u− a)]3/2

u(1 + c− u)
−
∫ u

a

√
(b− s)(s− a)

s
ds, u ∈ (a, 1 + c).
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Observe that ψ2(a) = 0. Writing β(u) =
√

(b− u)(u− a)/[u2(1 + c−u)2], it

is straightforward to verify that

ψ′2(u) = β(u)
{

3(1 + c− u)2 − (b− u)(u− a)(1 + c− 2u)− u(1 + c− u)2
}

= β(u)
{

(1 + c)u2 − 2(1− c)2u+ (1 + c)(1− c)2
}

= (1 + c)β(u)

{[
u− (1− c)2

1 + c

]2

+ 4c(1− c)2/(1 + c)2

}
> 0.

So ψ2 is increasing on (a, 1 + c). As ψ2(a) = 0, therefore ψ2(u) > 0 and thus

ψ1(u) > 0 on (a, 1+c). This completes the proof of Lemma 2.3 for 0 < c < 1.

The proof for c > 1 is similar and goes as follows. We still write Fc and

fc as F and f for brevity. We let c̄ = 1 − 1/c. Define G(t) = F−1(t) for

t ∈ (1 − 1/c, 1) and G(t) = a when t ∈ (0, 1 − 1/c), the t-th quantile of the

MP, which is denoted by µt earlier.

Note that G′(t) = 1
f(G(t))

, when t > 1− 1/c and = 0 otherwise. We write

y(t) = (t− c̄)G(t)/
∫ t
c̄
G(s)ds when t ∈ (c̄, 1), which is equal to x(1− t). Thus

we want to prove that y increases from y(c̄) = 1 to y(1) = b. Towards this

end, for t ∈ (c̄, 1), we have

y′(t) =
[G(t) + (t− c̄)G′(t)]

∫ t
c̄
G(s)ds− (t− c̄) [G(t)]2(∫ t

c̄
G(s)ds

)2

=
[f (G(t))G(t) + (t− c̄)]

∫ t
c̄
G(s)ds− (t− c̄)f (G(t)) [G(t)]2

f (G(t))
(∫ t

c̄
G(s)ds

)2 .

So to prove y′(t) > 0 when t ∈ (c̄, 1), it is equivalent to proving that

∆(t) ≡
∫ t

c̄

G(s)ds− (t− c̄)f (G(t)) [G(t)]2

[f (G(t))G(t) + t− c̄]
> 0. (A.6)

It is easy to see that limt↓c̄ ∆(t) = 0. If we can show that

∆′(t) > 0 for t ∈ (c̄, 1), (A.7)

then ∆(t) > ∆(c̄+) = 0, and so y′(t) > 0.

31



We have

∆′(t)

= G(t)−
f(G(t))[G(t)]2 + (t−c̄)f ′(G(t))[G(t)]2

f(G(t))
+ 2(t− c̄)G(t)

[f (G(t))G(t) + t− c̄]

+
(t− c̄) [G(t)]2 [2f (G(t)) + f ′(G(t))G(t)]

[f (G(t))G(t) + t− c̄]2

= G(t) +
(t− c̄) [G(t)]2 [2f (G(t)) + f ′(G(t))G(t)]

[f (G(t))G(t) + t− c̄]2

− [f(G(t))]2[G(t)]2 + (t− c̄)f ′(G(t))[G(t)]2 + 2(t− c̄)f(G(t))G(t)

f(G(t)) [f (G(t))G(t) + t− c̄]
.

If we let u = G(t), then u ∈ (a, b) and t = F (u). We can rewrite ∆′(t) as

uψ(u) where

ψ(u) = 1− u[f(u)]2 + uf ′(u)F (u) + 2f(u)F (u)

f(u)[uf(u) + F (u)]
+
uF (u)[2f(u) + uf ′(u)]

[uf(u) + F (u)]2

=
ψ1(u)F (u)

[uf(u) + F (u)]2
.

Here

ψ1(u) =
1

u
− h′(u)F (u)

h2(u)
, (A.8)

where

h(u) = uf(u) = (2πc)−1
√

(b− u)(u− a).

Finally, to show that ∆′(t) > 0, it remains to show that ψ1(u) > 0 for

u ∈ (a, b).

Since

h′(u) =
−u+ (b+ a)/2

2πc
√

(b− u)(u− a)
=

1 + c− u
2πc
√

(b− u)(u− a)
,

we know that h′(u) < 0 if u ≥ 1 + c and hence ψ1(u) > 0. Thus, we need

only to prove that ψ1(u) > 0 for u ∈ (a, 1 + c). Rewriting

ψ1(u) =
1 + c− u

[(b− u)(u− a)]3/2
ψ2(u),
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where

ψ2(u) =
[(b− u)(u− a)]3/2

u(1 + c− u)
−
∫ u

a

√
(b− s)(s− a)

s
ds, u ∈ (a, 1 + c).

Observe that ψ2(a) = 0. Writing β(u) =
√

(b− u)(u− a)/[u2(1 + c−u)2], it

is straightforward to verify that

ψ′2(u) = β(u)
{

3(1 + c− u)2 − (b− u)(u− a)(1 + c− 2u)− u(1 + c− u)2
}

= β(u)
{

(1 + c)u2 − 2(1− c)2u+ (1 + c)(1− c)2
}

= (1 + c)β(u)

{[
u− (1− c)2

1 + c

]2

+ 4c(1− c)2/(1 + c)2

}
> 0.

So ψ2 is increasing on (a, 1 + c). As ψ2(a) = 0, therefore ψ2(u) > 0 and thus

ψ1(u) > 0 on (a, 1 + c). This completes the proof of Lemma 2.3.
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