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ABSTRACT

This paper is concerned with the null distribution of the likelihood ratio test statistic −2 log Λ

for testing the adequacy of a random-effects covariance structure in a parallel profile model. It

is known that the null distribution of −2 log Λ converges to χ2
f or 0.5χ2

f + 0.5χ2
f+1 when the

sample size tends to infinity. In order to extend this result, we derive asymptotic expansions

of the null distribution of −2 log Λ. The accuracy of the approximations based on the limiting

distribution and an asymptotic expansion are compared through numerical experiments.

Key Words: asymptotic expansion, parallel profile model, random-effects covariance structure,
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1. Introduction

Let x
(g)
j be a p-dimensional vector of observations on the jth individual in the gth

group, where j = 1, . . . , Ng and g = 1, . . . , k, and let N = N1 + · · · + Nk. We assume

that x
(1)
1 , . . . ,x

(k)
Nk

are mutually independent and distributed as

x
(g)
j ∼ Np(µ

(g),Σ), µ(g) = δg1p + µ, µ = (µ1, . . . , µp)
′, (1.1)

where 1p is a p-dimensional vector of ones, δ1, . . . , δk and µ1, . . . , µp are unknown param-

eters, and Σ is an unknown positive definite matrix. Here, we may assume that δk = 0,

without loss of generality. The model (1.1) is called a parallel profile model. In the par-

allel profile model, Yokoyama and Fujikoshi (1993) assumed the following random-effects

covariance structure:
Σ = λ21p1

′
p + σ2Ip, λ

2 ≥ 0, σ2 > 0. (1.2)

By making the above rather strong assumption for Σ, they obtained more efficient esti-

mators and more powerful tests. Needless to say, these results are only valid if Σ satisfies

(1.2). Hence, it is important to test the hypothesis that Σ has the random-effects co-

variance structure.
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Yokoyama (1995) proposed a likelihood ratio test for testing the hypothesis

H0 : Σ = λ21p1
′
p + σ2Ip, λ

2 ≥ 0, σ2 > 0 v.s. H1 : not H0, (1.3)

and they derived a restricted likelihood ratio test statistic (R-LRT) for testing (1.3).

They showed that the null distribution of the R-LRT converges to χ2
f or 0.5χ2

f +0.5χ2
f+1

when the sample size tends to infinity, where f = (p2+p−4)/2. Therefore, the hypothesis

(1.3) is tested based on this asymptotic property.

On the other hand, Srivastava and Singull (2012) constructed the test based on the

likelihood ratio, without the non-negativity of λ2 in (1.3), for testing the random-effects

covariance structure under the parallel profile model. In other words, they considered

the following hypothesis:

H0∗ : Σ = ρ1p1
′
p + σ2Ip, ρ > −σ2/p, σ2 > 0 v.s. H1∗ : not H0∗ . (1.4)

Here, the covariance structure given by H0∗ is called the exchangeable covariance struc-

ture. They derived a modified likelihood ratio test statistic (M-LRT) for testing (1.4).

Their modification is based on the Box’s (1949) asymptotic expansion with Bartlett’s

correction, and the order of the error term of the null distribution for the M-LRT is

O(N−2). It is known that under H0∗ the limiting distribution of the M-LRT is χ2
f .

Then, the hypothesis (1.4) is tested by using χ2
f .

Under H0 Srivastava and Singull (2012) showed that the limiting approximation of

the distribution of the M-LRT is better than that of the R-LRT proposed by Yokoyama

(1995). Moreover, through numerical experiments, they also showed that the power for

the M-LRT is larger than the power for the R-LRT. For these reasons, they suggested

using the M-LRT even in the case of testing (1.3).

However, since “the good test” and “the adequacy of the approximation” are different

problems, these should be considered separately. In particular, for the adequacy of the

approximation, this is not a fair comparison because the R-LRT is not modified. The

main purpose of this paper is to derive an asymptotic expansion of the null distribution

of the R-LRT up to the order N−1 under the parallel profile model.

The remainder of the present paper is organized as follows: In Section 2 and 3 we derive

an asymptotic expansion of the null distribution of the R-LRT when λ2 > 0 and λ2 = 0,

respectively. In Section 4 we provide the relevant theorem and corollary. In Section 5

we compare the accuracy of the approximations based on the limiting distribution and

an asymptotic expansion through numerical experiments. In Section 6 we conclude our

discussion. Technical details are provided in the Appendix.
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2. Asymptotic expansion of the null distribution when λ2 > 0

In this section we derive an asymptotic expansion of the null distribution of the R-LRT

proposed by Yokoyama (1995) under H0 and λ2 > 0. First, we consider the definition

and decomposition of the restricted likelihood ratio.

2.1. Definition and decomposition of the restricted likelihood ratio

The restricted likelihood ratio Λ proposed by Yokoyama (1995), is given by

Λ =

{
Λ1, if s1/f1 ≥ s2/f2,
Λ2, if s1/f1 < s2/f2,

where, f1 = N, f2 = N(p− 1),

Λ1 =

(
s3
f1

)f1/2 ∣∣∣∣ 1f1S4

∣∣∣∣f1/2(
s1
f1

)f1/2(s2
f2

)f2/2
, Λ2 =

(
s3
f1

)f1/2 ∣∣∣∣ 1f1S4

∣∣∣∣f1/2(
s1 + s2
f1 + f2

)(f1+f2)/2
,

and

St =
k∑

g=1

Ng∑
j=1

(x
(g)
j − x̄)(x

(g)
j − x̄)′, Sw =

k∑
g=1

Ng∑
j=1

(x
(g)
j − x̄(g))(x

(g)
j − x̄(g))′,

x̄ =
1

N

k∑
g=1

Ng∑
j=1

x
(g)
j , x̄(g) =

1

Ng

Ng∑
j=1

x
(g)
j ,

s1 =
1

p
1′
pSw1p, s2 = trSt −

1

p
1′
pSt1p, s3 =

(
1

p
1′
pS

−1
w 1p

)−1

, |S4| =
1

p
1′
pS

−1
t 1p|St|.

Then, the restricted likelihood ratio test statistic is defined by −2 log Λ.

Under H0∗ , from the definitions of Λ1, Λ2, s1 and s2, the restricted likelihood ratio is

decomposed by using Bartlett decomposition of Wishart distribution (see, e.g., Fujikoshi,

et al., 2010) as

Λ1 =

(
p−2∏
l=0

Bl

)N/2

× (p− 1)N(p−1)/2K
N/2
0 , Λ2 = Λ1 ×X, (2.1)

where

K0 =

p−1∏
j=1

Kj

K
, K =

p−1∑
k=1

Kk, X =

{
pp

(p− 1)p−1

s1
s1 + s2

(
1− s1

s1 + s2

)p−1
}N/2

,

(2.2)
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and

B0 ∼ Beta

(
N − (p− 1)− k

2
,
p− 1

2

)
, Bl ∼ Beta

(
N − l − 1

2
,
l

2

)
,

Kj ∼ χ2
N−1, s1 ∼ τ2χ2

N−k, s2 ∼ σ2χ2
(N−1)(p−1), τ2 = pλ2 + σ2.

(2.3)

Here, it is easily checked that B0, . . . , Bp−2, K1, . . . ,Kp−1, s1 and s2 are mutually in-

dependent. Hence, Λ1 , s1 and s2 are also mutually independent. Note that the results

obtained in this subsection are derived under H0∗ . Therefore, these also hold under H0.

2.2. Asymptotic expansion under H0 and λ2 > 0

Suppose that the hypothesis H0 is true and λ2 > 0. Then, Λ1, s1 and s2 are mutually

independent. Thus, from the definition of Λ, the distribution of −2 log Λ can be written

as

P(−2 log Λ ≤ c) = P(−2 log Λ1 ≤ c, s1/f1 ≥ s2/f2) + P(−2 log Λ2 ≤ c, s1/f1 < s2/f2)

= P(−2 log Λ1 ≤ c)P(s1/f1 ≥ s2/f2) + P(−2 log Λ2 ≤ c, s1/f1 < s2/f2)

= P(−2 log Λ1 ≤ c)− P(−2 log Λ1 ≤ c)P(s1/f1 < s2/f2)

+ P(−2 log Λ2 ≤ c, s1/f1 < s2/f2).

From τ2 > σ2 and the definitions of s1 and s2, for large N , the last two terms satisfy

that

| − P(−2 log Λ1 ≤ c)P(s1/f1 < s2/f2) + P(−2 log Λ2 ≤ c, s1/f1 < s2/f2)|
≤ 2P(s1/f1 < s2/f2)

= 2P

(
f2
f1

N − k

(N − 1)(p− 1)

τ2

σ2
<
s2/{σ2(N − 1)(p− 1)}

s1/{τ2(N − k)}

)
≤ 2P

(
t <

χ2
l2
/l2

χ2
l1
/l1

)
,

where t is a constant (t > 1), l1 = N − k and l2 = (N − 1)(p − 1). Here, the last

probability is evaluated by the following lemma.

Lemma 2.1. Let l1 = N − k, l2 = (N − 1)(p− 1) and t > 1. Then, it holds that

P

(
t <

χ2
l2
/l2

χ2
l1
/l1

)
= O(c−N

0 ) (c0 > 1).

Proof. Let c be a constant satisfying t−1 < c < 1. Then, it holds that

P

(
χ2
l2

l2
> t

χ2
l1

l1

)
≤ P

(
χ2
l1

l1
< c

)
+ P

(
χ2
l2

l2
> tc

)
. (2.4)

Using Markov’s inequality and the moment generating function of the chi-squared dis-

tribution, for any negative number a, the first term of the right hand side in (2.4) can
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be evaluated as

P

(
χ2
l1

l1
< c

)
= P(aχ2

l1 > acl1) = P(eaχ
2
l1 > eacl1) ≤ E[eaχ

2
l1 ]

eacl1
=

{
1

(1− 2a)e2ac

} l1
2

.

Hence,

P

(
χ2
l1

l1
< c

)
≤ inf

a<0

{
1

(1− 2a)e2ac

} l1
2

.

Here, it is easily showed that (1 − 2a)e2ac is maximized at a = (2c)−1(c − 1) (< 0)

under a < 0, and its maximum value is ec−1−log c(> 1). Let c1 = ec−1−log c, and let

c11 = c
1/2
1 (> 1). Then, it holds that

P

(
χ2
l1

l1
< c

)
≤ c

− l1
2

1 = c
k/2
1 (c

1/2
1 )−N = c

k/2
1 (c11)

−N = O(c−N
11 ). (2.5)

Next, let tc = d (> 1). Using the same argument, for any positive number b satisfying

0 < b < 1/2, the second term of the right hand side in (2.4) can be evaluated as

P

(
χ2
l2

l2
> tc

)
= P(bχ2

l2 > bdl2) = P(ebχ
2
l2 > ebdl2) ≤ E[ebχ

2
l2 ]

ebdl2
=

{
1

(1− 2b)e2bd

} l2
2

.

Hence,

P

(
χ2
l2

l2
> tc

)
≤ inf

0<b<1/2

{
1

(1− 2b)e2bd

} l2
2

.

Similarly, it can be showed that (1 − 2b)e2bd is maximized at b = 2−1 − (2d)−1 (> 0)

under 0 < b < 1/2, and its maximum value is ed−1−log d (> 1). Let c2 = ed−1−log d, and

let c22 = c
(p−1)/2
2 (> 1). Then, it holds that

P

(
χ2
l2

l2
> tc

)
≤ c

− l2
2

2 = c
(p−1)/2
2 (c

(p−1)/2
2 )−N = c22c

−N
22 = O(c−N

22 ). (2.6)

Let c0 = min{c11, c22} (> 1). Then, substituting (2.5) and (2.6) into (2.4) yields

P

(
χ2
l2
/l2

χ2
l1
/l1

> t

)
= P

(
χ2
l2

l2
> t

χ2
l1

l1

)
≤ O(c−N

11 ) +O(c−N
22 ) ≤ O(c−N

0 ).

From Lemma 2.1, the distribution function of −2 log Λ is

P(−2 log Λ ≤ c) = P(−2 log Λ1 ≤ c) +O(c−N
0 ). (2.7)
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Thus, we derive an asymptotic expansion of P(−2 log Λ1 ≤ c). From (2.2) and (2.3), it

is easily checked that the hth moment of B0, Bl and K0 are given by

E[Bh
0 ] =

Γ(N−(p−1)−k
2 + h)

Γ(N−(p−1)−k
2 )

Γ(N−k
2 )

Γ(N−k
2 + h)

, E[Bh
l ] =

Γ(N−l−1
2 + h)

Γ(N−l−1
2 )

Γ(N−1
2 )

Γ(N−1
2 + h)

,

E[Kh
0 ] =

{
Γ(N−1

2 + h)

Γ(N−1
2 )

}p−1
Γ( (N−1)(p−1)

2 )

Γ( (N−1)(p−1)
2 + (p− 1)h)

,

(2.8)

respectively. Hence, from (2.1) and (2.8), the log-characteristic function of −2 log Λ1 can

be expressed as

logφ(t) = log E[e−2it log Λ1 ] = log E[Λ−2it
1 ]

= log Γ

(
N − (p− 1)− k

2
−Nit

)
− log Γ

(
N − (p− 1)− k

2

)
+ log Γ

(
N − k

2

)
− log Γ

(
N − k

2
−Nit

)
+

p−2∑
l=1

{
log Γ

(
N − l − 1

2
−Nit

)
− log Γ

(
N − l − 1

2

)
+ log Γ

(
N − 1

2

)
− log Γ

(
N − 1

2
−Nit

)}
−N(p− 1)it log(p− 1)

+ (p− 1)

{
log Γ

(
N − 1

2
−Nit

)
− log Γ

(
N − 1

2

)}
+ log Γ

(
(N − 1)(p− 1)

2

)
− log Γ

(
(N − 1)(p− 1)

2
−N(p− 1)it

)
.

Here, the expansion formula for the log-gamma function is given by the following lemma

(see, e.g., Barnes, 1899).

Lemma 2.2. Let z be a complex number, and let α be a constant. Then, it holds that

log Γ(z + α) =

(
z + α− 1

2

)
log z − z +

1

2
log 2π +

1

2
β2(α)z

−1 + ε,

where | arg z| ≤ π, β2(α) = α2 − α+ 1/6, |ε| ≤ C|z|−2 and C is a positive constant.

From Lemma 2.2, the log-characteristic function logφ(t) can be expanded as

logφ(t) = −f
2
log(1− 2it) +

Mp,k

N
{(1− 2it)−1 − 1}+ ε1,

where f = (p2 + p− 4)/2, |ε1| ≤ C1N
−2 and

Mp,k =
(p− 1)2 + 2(p− 1)(k + 1)

4
+

(p− 2)(p− 1)(2p+ 9)

24
+

(p− 2)(4p− 3)

6(p− 1)
. (2.9)
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Note that C1 does not depend on t. Hence, the characteristic function of −2 log Λ1 can

be written as

φ(t) = elogφ(t) = (1− 2it)−
f
2 +

Mp,k

N

{
(1− 2it)−

f+2
2 − (1− 2it)−

f
2

}
+ ε2. (2.10)

Here, it is easily checked that there exists a positive constant C2 such that C2 does

not depend on t and |ε2| ≤ |t|−f/2C2N
−2. Inverting (2.10), the distribution function of

−2 log Λ1 is given by

P(−2 log Λ1 ≤ c) = Gf (c) +
Mp,k

N
{Gf+2(c)−Gf (c)}+ ε3, (2.11)

where Gs(·) is the distribution function of the chi-squared distribution with s degrees of

freedom, and

|ε3| ≤
C2

πN2

∫ 1

−1

∣∣∣∣ sin(ct)t

∣∣∣∣ dt+ C2

πN2

∫
|t|>1

1

|t|1+f/2
dt =

cC3

N2
+
C4

N2
, (C3, C4 > 0).

Therefore, from (2.7) and (2.11) we obtain the asymptotic expansion of the null distri-

bution of −2 log Λ as

P(−2 log Λ ≤ c) = Gf (c) +
Mp,k

N
{Gf+2(c)−Gf (c)}+O(N−2). (2.12)

3. Asymptotic expansion of the null distribution when λ2 = 0

Suppose that the hypothesis H0 is true and λ2 = 0. Let U be a random variable

distributed as Beta((N − k)/2, (N − 1)(p− 1)/2). Here, since s1 and s2 are independent,

and λ2 = 0, i.e., τ2 = σ2, from (2.3) it holds that

s1
s1 + s2

=
τ2(s1/τ

2)

τ2(s1/τ2) + σ2(s2/σ2)
=

s1/τ
2

s1/τ2 + s2/σ2
∼ Beta

(
N − k

2
,
(N − 1)(p− 1)

2

)
.

Hence, s1/(s1 + s2) and U have the same distribution. Thus, from the definition of Λ,

the distribution of −2 log Λ is written by using U as

P(−2 log Λ ≤ c) = P(−2 log Λ1 ≤ c)P(U ≥ 1/p) + P(−2 log Λ1 +W ≤ c, U < 1/p),
(3.1)

where W = −N log{pp(p − 1)−(p−1)U(1 − U)p−1}. Next, we expand P(U ≥ 1/p) and

P(−2 log Λ1 +W ≤ c, U < 1/p).
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3.1. Expansion of P(U ≥ 1/p)

Since U is distributed as Beta((N − k)/2, (N − 1)(p− 1)/2), it holds that

P

(
U <

1

p

)
=

1

B
(

N−k
2 , (N−1)(p−1)

2

) ∫ 1
p

0

u
N−k

2 −1(1− u)
(N−1)(p−1)

2 −1du

= ε+
1

B
(

N−k
2 , (N−1)(p−1)

2

) ∫ 1
p

1
p2p

u
N−k

2 −1(1− u)
(N−1)(p−1)

2 −1du,

(3.2)

ε =
1

B
(

N−k
2 , (N−1)(p−1)

2

) ∫ 1
p2p

0

u
N−k

2 −1(1− u)
(N−1)(p−1)

2 −1du,

where B(·, ·) is the beta function. From Stirling’s formula, the inverse of the beta function

is expanded as

1

B
(

N−k
2 , (N−1)(p−1)

2

)
=

√
N

2
√
π

{
pp

(p− 1)p−1

}N
2 p−

p+k
2

(p− 1)−
p
2

{
e
− 1

N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+O(N−2)

}
. (3.3)

From (3.3), for large N , it holds that

|ε| ≤ C
√
N

{
pp

(p− 1)p−1

}N
2 p−pN

N
≤ p−

N
2 = O(a−N

1 ), (3.4)

where a1 and C are positive constants, and a1 > 1.

On the other hand, the integral of (3.2) can be expressed as∫ 1
p

1
p2p

u
N−k

2 −1(1− u)
(N−1)(p−1)

2 −1du =

∫ 1
p

1
p2p

e
N
2 log u(1−u)p−1

u−
k
2−1(1− u)−

p−1
2 −1du. (3.5)

Let f(u) = log u(1−u)p−1 and g(u) = u−k/2−1(1−u)−(p−1)/2−1. Note that f ′(1/p) = 0.

Then, for any u satisfying 1/p2p ≤ u ≤ 1/p, using Taylor expansion at u = 1/p, f(u)

and g(u) can be expanded as

f(u) = s0 + s2

(
u− 1

p

)2

+ s3

(
u− 1

p

)3

+ s4

(
u− 1

p

)4

+ ε

(
u− 1

p

)5

,

g(u) = g0 + g1

(
u− 1

p

)
+ g2

(
u− 1

p

)2

+ δ

(
u− 1

p

)3

,

(3.6)

where

s0 = f

(
1

p

)
, s2 =

1

2
f ′′
(
1

p

)
, s3 =

1

6
f ′′′
(
1

p

)
, s4 =

1

24
f (4)

(
1

p

)
, ε =

1

120
f (5) (p⋆) ,

g0 = g

(
1

p

)
, g1 = g′

(
1

p

)
, g2 =

1

2
g′′
(
1

p

)
, δ =

1

6
f ′′′ (p̃) ,
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and p⋆, p̃ ∈ [1/p2p, 1/p]. Note that ε and δ are bounded. From (3.6), the right hand side

of (3.5) is given by

e
N
2 s0

∫ 1
p

1
p2p

[
e

N
2 s2(u− 1

p )
2

e
N
2

{
s3(u− 1

p )
3
+s4(u− 1

p )
4
+ε(u− 1

p )
5
}

×

{
g0 + g1

(
u− 1

p

)
+ g2

(
u− 1

p

)2

+ δ

(
u− 1

p

)3
}]

du.

(3.7)

Let
√
−s2 = t, and let

√
Nt(u− 1/p) = y. Then, (3.7) can be written as

　 e
N
2 s0

1√
Nt

∫ 0

−
√
NT

e−
y2

2 e
s3y3

2
√

Nt3
+

s4y4

2Nt4
+ ε̃y5

N
√

N ×

(
g0 +

g1y√
Nt

+
g2y

2

Nt2
+

δ̃y3

N
√
N

)
dy,

(3.8)

where ε̃ and δ̃ are bounded, and T = t(p−1 − p−2p), ε̃ = 2−1t−5ε and δ̃ = t−3δ. Let

w1 =
s3
2t3

, w2 =
s4
2t4

, z1 =
g1
t
, z2 =

g2
t2
.

Then, using ex = 1 + x+ 2−1x2 + 6−1ex
∗
x3, x∗ ∈ [0, x], (3.8) is expanded as

Kg0

∫ 0

−
√
NT

e−
y2

2 dy +
K√
N

∫ 0

−
√
NT

e−
y2

2 (z1y + g0w1y
3)dy

+
K

N

∫ 0

−
√
NT

e−
y2

2

{
z2y

2 + (g0w2 + z1w1)y
4 +

g0w
2
1

2
y6
}
dy + ε1 + ε2 + ε3 + ε4,

(3.9)

where

K = e
N
2 s0

1√
Nt

, ε1 =
K

N
√
N

∫ 0

−
√
NT

e−
y2

2 e
N
2 αδ̃y3dy, ε2 = K

∫ 0

−
√
NT

e−
y2

2 g0ωdy,

ε3 = K

∫ 0

−
√
NT

e−
y2

2
z1y√
N

(
ω +

w2y
4

N
+
w2

1y
6

2N

)
dy,

ε4 = K

∫ 0

−
√
NT

e−
y2

2
z2y

2

N

(
ω +

w2y
4

N
+
w2

1y
6

2N
+
w1y

3

√
N

)
dy,

and

N

2
α =

s3y
3

2
√
Nt3

+
s4y

4

2Nt4
+

ε̃y5

N
√
N

=
N

2

1

6
f ′′′(u∗)

(
u− 1

p

)3

,

ω =
ε̃y5 + w1w2y

7

N
√
N

+
w2

2y
8 + 2w1ε̃y

8

2N2
+

(ε̃)2y10

2N3
+

w2ε̃y
9

N2
√
N

+
eα

∗

6

(
w1y

3

√
N

+
w2y

4

N
+

ε̃y5

N
√
N

)3

.

Note that α∗ ≤ 0, because, for any u satisfying 1/p2p ≤ u ≤ 1/p, f ′′′(u) is non-negative,

i.e.,

s3y
3

2
√
Nt3

+
s4y

4

2Nt4
+

ε̃y5

N
√
N

=
N

2

1

6
f ′′′(u∗)

(
u− 1

p

)3

≤ 0.

9



Next, we evaluate each term in (3.9). It is easily checked that∫ 0

−
√
NT

e−
y2

2 yvdy = 2
v−1
2 Γ

(
v + 1

2

)
(−1)v +O(c−N ), (c > 1),

for any non-negative integer v. Thus, using this result, the first three terms in (3.9) are

given by

Kg0

∫ 0

−
√
NT

e−
y2

2 dy = Kg0

{√
2π

2
+O(c−N

1 )

}
,

K√
N

∫ 0

−
√
NT

e−
y2

2 (z1y + g0w1y
3)dy = − K√

N
{z1 + 2g0w1 +O(c−N

2 )},

K

N

∫ 0

−
√
NT

e−
y2

2

{
z2y

2 + (g0w2 + z1w1)y
4 +

g0w
2
1

2
y6
}
dy

=
K

N

{√
2π

2
z2 + (g0w2 + z1w1)

3
√
2π

2
+

15g0w
2
1

4

√
2π +O(c−N

3 )

}
,

(3.10)

respectively, where c1, c2, c3 > 1. Similarly, using eNα/2 ≤ 1, eα
∗ ≤ 1 and |y|m1 ≤

|y|m2 + 1, (m1 ≤ m2), we have

|ε1| ≤
KC

N
√
N

∫ ∞

0

e−
y2

2 y3dy = K ×O(N− 3
2 ),

|εi| ≤
K

N
√
N

∫ ∞

0

e−
y2

2 (C1y
13+i + C2)dy = K ×O(N− 3

2 ), (i = 2, 3, 4),

(3.11)

where C,C1, C2 > 0. Here, g0, w1, w2, z1 , z2 and K are written by using p, k and N as

K =
1√
N

{
(p− 1)p−1

pp

}N
2
√
2(p− 1)

p
√
p

, g0 =
p

k+p
2

(p− 1)
p
2

p
√
p

√
p− 1

,

w1 =

√
2(p− 2)

3
√
p(p− 1)

, w2 = −p
2 − 3p+ 3

2p(p− 1)
, z1 =

p√
2(p− 1)

p
k+p
2

(p− 1)
p
2

{2 + (1− p)(1 + k)},

z2 =

√
p(p− 1)

4

p
k+p
2

(p− 1)
p
2

{
(k + 2)(k + 4)− 2(k + 2)(p+ 1)

p− 1
+

(p+ 1)(p+ 3)

(p− 1)2

}
,

(3.12)
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respectively. Hence, from (3.9), (3.10), (3.11) and (3.12) we obtain∫ 1
p

1
p2p

u
N−k

2 −1(1− u)
(N−1)(p−1)

2 −1du =

∫ 1
p

1
p2p

e
N
2 log u(1−u)p−1

u−
k
2−1(1− u)−

p−1
2 −1du

=
1√
N

{
(p− 1)(p−1)

pp

}N
2 p

p+k
2

(p− 1)
p
2

×

{
√
π +

1√
N

3k(p− 1)− p− 1

3
√
p(p− 1)

+

√
π

N

3k2(p− 1)2 + 5p2 − 2p− 1

12p(p− 1)
+O(N− 3

2 )

}

=
1√
N

{
(p− 1)(p−1)

pp

}N
2 p

p+k
2

(p− 1)
p
2

×

{
√
πe

1
N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+

1√
N

3k(p− 1)− p− 1

3
√
p(p− 1)

+O(N− 3
2 )

}
.

(3.13)

Finally, from (3.2), (3.3), (3.4) and (3.13), the probability P(U < 1/p) is expanded as

P(U < 1/p) =
1

2
√
π

{
√
π +

1√
N

3k(p− 1)− p− 1

3
√
p(p− 1)

+O(N− 3
2 )

}

=
1

2
+

1√
N

3k(p− 1)− p− 1

6
√
πp(p− 1)

+O(N− 3
2 ).

This implies

P(U ≥ 1/p) = 1− P(U < 1/p) =
1

2
− 1√

N

3k(p− 1)− p− 1

6
√
πp(p− 1)

+O(N− 3
2 ). (3.14)

3.2. Expansion of P(−2 log Λ1 +W ≤ c, U < 1/p)

From the property of the conditional probability, P(−2 log Λ1 +W ≤ c, U < 1/p) can

be written as

P(−2 log Λ1 +W ≤ c, U < 1/p) = P(U < 1/p)×P(−2 log Λ1 +W ≤ c|U < 1/p). (3.15)

Let Y = W |(U < 1/p), and let ψ(y) be a probability density function of Y . Since Λ1

and (W,U) are independent, Λ1 and Y are also independent. Hence, it holds that

P(−2 log Λ1 +W ≤ c|U < 1/p) = P(−2 log Λ1 + Y ≤ c) = P(−2 log Λ1 ≤ c− Y )

=

∫
P(−2 log Λ1 ≤ c− y)ψ(y)dy.

(3.16)
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From (2.11), the integral of (3.16) can be expressed as∫
P(−2 log Λ1 ≤ c− y)ψ(y)dy =

∫ c

0

P(−2 log Λ1 ≤ c− y)ψ(y)dy

=

∫ c

0

Gf (c− y)ψ(y)dy

+
Mp,k

N

∫ c

0

{Gf+2(c− y)−Gf (c− y)}ψ(y)dy

+

∫ c

0

εψ(y)dy,

(3.17)

because both −2 log Λ1 and Y are non-negative. Here, the last integral of (3.17) satisfies

that ∣∣∣∣∫ c

0

εψ(y)dy

∣∣∣∣ ≤ 1

N2

∫ c

0

{(c− y)C3 + C4}ψ(y)dy

≤ 1

N2

∫ c

0

{cC3 + C4}ψ(y)dy

≤ {cC3 + C4}
N2

∫
ψ(y)dy =

{cC3 + C4}
N2

= O(N−2).

(3.18)

Next, we expand ψ(y).

We consider the following relation,

y = −N log
pp

(p− 1)p−1
u(1− u)p−1 = −N log

pp

(p− 1)p−1
−N log u(1− u)p−1, (3.19)

where y is defined on (0, c] and c is a positive constant. Similarly, u is defined on [u∗, 1/p),

and u∗ is a positive number satisfying

−N log
pp

(p− 1)p−1
u∗(1− u∗)p−1 = c. (3.20)

Let f(u) = log u(1− u)p−1. Then, the following expansion holds (see, Appendix).

u− 1

p
= − b1√

N

√
y +

b2
N
y +

b3

N
√
N
y
√
y +

ε

N2
y2, (3.21)

where

b1 =

√
− 2

f ′′(1/p)
, b2 =

b41
12
f ′′′(1/p),

b3 =
{f ′′′(1/p)}2b71

288
− f ′′′(1/p)b31b2

4
− f (4)(1/p)b51

48
, ε = O(1).

On the other hand, given the event U < 1/p, a conditional probability density function

ϕ(u) of U can be written as

ϕ(u) =

{
1

P(U<1/p)B(N−k
2 ,

(N−1)(p−1)
2 )

u
N−k

2 −1(1− u)
(N−1)(p−1)

2 −1 (0 < u < 1/p)

0 (otherwise)
.
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Under u < 1/p, form (3.19) it holds that∣∣∣∣dudy
∣∣∣∣ = 1∣∣∣ dydu ∣∣∣ = − u(1− u)

Np(u− 1/p)
. (3.22)

Hence, ψ(y) is given by using the transformation formula and ϕ(u) as

ψ(y) =
1

P(U < 1/p)B
(

N−k
2 , (N−1)(p−1)

2

)uN−k
2 −1(1− u)

(N−1)(p−1)
2 −1

∣∣∣∣dudy
∣∣∣∣

=
1

P(U < 1/p)
β−1uN/2(1− u)N(p−1)/2u−k/2(1− u)−(p−1)/2 1

−Np(u− 1/p)
,

where β = B((N − k)/2, (N − 1)(p− 1)/2). Noting that

u
N
2 (1− u)

N(p−1)
2 =

{
(p− 1)p−1

pp

}N
2

e−
y
2 ,

using (3.3), ψ(y) can be expressed as

ψ(y) =
1

P(U < 1/p)

1

2
√
π

p−
p+k
2 −1

(p− 1)−
p
2

{
e
− 1

N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+O(N−2)

}

× e−
y
2 g(u)

1

−
√
N(u− 1/p)

, (3.23)

where g(u) = u−k/2(1 − u)−(p−1)/2. Here, from (3.20), there exists a positive constant

u∗∗ such that u∗∗ < u∗ for any N . Thus, using Taylor expansion at u = 1/p, g(u) can

be expanded as

g(u) = g0 + g1(u− 1/p) +
1

2
g2(u− 1/p)2 + δ1(u− 1/p)3, (3.24)

g0 = g(1/p), g1 = g′(1/p), g2 = g′′(1/p), δ1 = O(1).

Substituting (3.21) into (3.24), we obtain

g(u) = g0 +
q1√
N

√
y +

q2
N
y +

ε1

N
√
N
y
√
y, (3.25)

q1 = −g1b1, q2 = g1b2 +
1

2
g2b

2
1, ε1 = O(1).

Similarly, substituting (3.21) into (3.22), we can write

1

−
√
N(u− 1/p)

=
1

b1
√
y (1− δ∗)

, (3.26)

δ∗ =
c1√
N

√
y +

c2
N
y +

δ2

N
√
N
y
√
y = o(1), c1 =

b2
b1
, c2 =

b3
b1
, δ2 = O(1).

Since (1− x)−1 = 1 + x+ x2 + δ3x
3, δ3 = O(1) when x = o(1), we have

1

1− δ∗
= 1 +

r1√
N

√
y +

r2
N
y +

ε2

N
√
N
y
√
y, (3.27)

13



where r1 = c1, r2 = c2 + c21 and ε2 = O(1). Therefore, substituting (3.25), (3.26) and

(3.27) into (3.23) yields

ψ(y) = K
1
√
y
e−

y
2

(
g0 +

q1
√
y

√
N

+
q2y

N
+
ε1y

√
y

N
√
N

)(
1 +

r1
√
y

√
N

+
r2y

N
+
ε2y

√
y

N
√
N

)
= K

1
√
y
e−

y
2

(
g0 +

v1√
N

√
y +

v2
N
y +

ε3

N
√
N
y
√
y

)
,

(3.28)

where K, v1, v2 and ε3 are given by

K =
1

b1

1

P(U < 1/p)

1

2
√
π

p−
p+k
2 −1

(p− 1)−
p
2

{
e
− 1

N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+O(N−2)

}
,

v1 = g0r1 + q1, v2 = g0r2 + q1r1 + q2, ε3 = O(1),

respectively. Let

J0 = Kg0Γ

(
1

2

)
2

1
2 , J1 = Kv1Γ

(
2

2

)
2

2
2 , J2 = Kv2Γ

(
3

2

)
2

3
2 .

Furthermore, let hs(y) be a probability density function of the chi-squared distribution

with s degrees of freedom. Then, from (3.28), the conditional probability density function

ψ(y) can be expressed as

ψ(y) = J0h1(y) +
J1√
N
h2(y) +

J2
N
h3(y) +

Kε3e
− y

2

N
√
N

y. (3.29)

Using the convolution formula

Gf+s(c) =

∫ c

0

Gf (c− y)hs(y)dy,

substituting (3.29) into (3.17) yields

P(−2 log Λ1 + Y ≤ c) = J0Gf+1(c) +
J1√
N
Gf+2(c) +

J2
N
Gf+3(c)

+
J0Mp,k

N
{Gf+3(c)−Gf+1(c)}+ ε,

(3.30)

where ε is given by

ε =
J1Mp,k

N
√
N

{Gf+4(c)−Gf+2(c)}+
J2Mp,k

N2
{Gf+5(c)−Gf+3(c)}

+
Kε3

N
√
N

∫ c

0

e−
y
2 yGf (c− y)dy

+
Kε3Mp,k

N2
√
N

∫ c

0

e−
y
2 y{Gf+2(c− y)−Gf (c− y)}dy +O(N−2).
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Here, K, J0, J1 and J2 are given by

K =
1

P(U < 1/p)

1

2
√
2π

p−
p+k
2 + 1

2

(p− 1)−
p
2+

1
2

{
e
− 1

N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+O(N−2)

}
,

J0 =
1

2

1

P(U < 1/p)

{
e
− 1

N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+O(N−2)

}
,

J1 =
3k(p− 1)− p− 1

6
√
πp(p− 1)

1

P(U < 1/p)

{
e
− 1

N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+O(N−2)

}
,

J2 =
1

2

3k2(p− 1)2 + 5p2 − 2p− 1

12p(p− 1)

1

P(U < 1/p)

{
e
− 1

N

(
3k2(p−1)2+5p2−2p−1

12p(p−1)

)
+O(N−2)

}
,

(3.31)

respectively. In addition, it is easily checked that ε = O(N−3/2) because J1, J2, Mp,k,

Gs(c), Gs+2(c)−Gs(c), K, ε3 and ye−y/2 are bounded under 0 < y ≤ c. Therefore, from

(3.15), (3.18), (3.30) and (3.31) we obtain

P(−2 log Λ1 +W ≤ c, U < 1/p) = P(−2 log Λ1 + Y ≤ c)× P(U < 1/p)

=
1

2
Gf+1(c) +

1√
N

3k(p− 1)− p− 1

6
√
πp(p− 1)

Gf+2(c)

+
1

N

3k2(p− 1)2 + 5p2 − 2p− 1

12p(p− 1)

{
1

2
Gf+3(c)−

1

2
Gf+1(c)

}
+
Mp,k

N

{
1

2
Gf+3(c)−

1

2
Gf+1(c)

}
+O(N−3/2).

(3.32)

3.3. Final result

Substituting (2.11), (3.14) and (3.32) into (3.1), we derive the asymptotic expansion

of the null distribution of −2 log Λ as

P(−2 log Λ ≤ c) =
1

2
Gf (c) +

1

2
Gf+1(c) +

A1√
N

{Gf+2(c)−Gf (c)}

+
A2

N
{Gf+2(c)−Gf (c)}+

A3

N
{Gf+3(c)−Gf+1(c)}+O(N−3/2),

(3.33)

where

A1 =
3k(p− 1)− p− 1

6
√
πp(p− 1)

, A2 =
Mp,k

2
, A3 =

3k2(p− 1)2 + 5p2 − 2p− 1

24p(p− 1)
+A2. (3.34)

4. Conservativeness and power

In Section 2 and 3, we derived the asymptotic expansions (2.12) and (3.33) when λ2 > 0

and λ2 = 0, respectively. For testing the hypothesis (1.3), we should use the asymptotic
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expansion (2.12) if λ2 > 0 is true, on the other hand, we should use (3.33) if λ2 = 0

is true. However, we do not know which is true because λ2 is the unknown parameter.

Hence, which expansion should we use, that is the problem. Nevertheless, one of the

answers to this problem is given by the following theorem.

Theorem 4.1. Let Λ be the LR criterion for testing H0 : Σ = λ21p1
′
p + σ2Ip, λ

2 ≥
0, σ2 > 0 v.s. H1 : not H0 under the parallel profile model (1.1). Then, under H0 it holds

that
P(−2 log Λ > c | H0) ≤ P(−2 log Λ > c | H0, λ

2 = 0).

Proof. Suppose that H0 is true and λ2 > 0. Under H0, from Section 2, −2 log Λ can be

written as

−2 log Λ =

{
−2 log Λ1, if s1/f1 ≥ s2/f2,
−2 log Λ1 +Q, if s1/f1 < s2/f2,

where, f1, f2, s1, s2 and Λ1 are defined in Section 2, and Q is given by

Q = −N log

{
pp

(p− 1)p−1

(
s1

s1 + s2

)(
1− s1

s1 + s2

)p−1
}
. (4.1)

Note that Λ1, s1 and s2 are mutually independent, and

s1 ∼ τ2χ2
N−k, s2 ∼ σ2χ2

(N−1)(p−1), τ2 = pλ2 + σ2.

From the definition of Λ we have

P(−2 log Λ ≤ c | H0, λ
2 > 0) = P(−2 log Λ1 ≤ c, s1/s2 ≥ (p− 1)−1 | H0, λ

2 > 0)

+ P(−2 log Λ1 +Q ≤ c, s1/s2 < (p− 1)−1 | H0, λ
2 > 0).

(4.2)

Since σ2/τ2 < 1, if s1/s2 < (p− 1)−1 then

1

p
>

s1
s1 + s2

=
s1/τ

2

s1/τ2 + (σ2/τ2)× s2/σ2
>

s1/τ
2

s1/τ2 + s2/σ2
≡ U (say) > 0. (4.3)

Note that U ∼ Beta((N − k)/2, (N − 1)(p− 1)/2). From (4.3) it holds that

Q ≤ −N log
pp

(p− 1)p−1
U(1− U)p−1 ≡W (say),

because the function

−N log
pp

(p− 1)p−1
x(1− x)p−1

is a decreasing function on (0, 1/p). Thus, the following inequality holds.

P(−2 log Λ1 +W ≤ c, s1/s2 < (p− 1)−1 | H0, λ
2 > 0)

≤ P(−2 log Λ1 +Q ≤ c, s1/s2 < (p− 1)−1 | H0, λ
2 > 0).

(4.4)
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Hence, using (4.2) and (4.4) it holds that

P(−2 log Λ ≤ c | H0, λ
2 > 0) ≥ P(−2 log Λ1 ≤ c, s1/s2 ≥ (p− 1)−1 | H0, λ

2 > 0)

+ P(−2 log Λ1 +W ≤ c, s1/s2 < (p− 1)−1 | H0, λ
2 > 0).

(4.5)

Furthermore, the right hand side of (4.5) satisfies that

P(−2 log Λ1 ≤ c, s1/s2 ≥ (p− 1)−1 | H0, λ
2 > 0)

+ P(−2 log Λ1 +W ≤ c, s1/s2 < (p− 1)−1 | H0, λ
2 > 0)

= P

(
−2 log Λ1 ≤ c,

s1/τ
2

s2/σ2
≥ 1

p− 1

∣∣∣∣ H0, λ
2 > 0

)
+ P

(
−2 log Λ1 ≤ c,

1

p− 1
>
s1/τ

2

s2/σ2
≥ σ2

τ2
1

p− 1

∣∣∣∣ H0, λ
2 > 0

)
+ P

(
−2 log Λ1 +W ≤ c,

s1/τ
2

s2/σ2
<

1

p− 1

∣∣∣∣ H0, λ
2 > 0

)
− P

(
−2 log Λ1 +W ≤ c,

1

p− 1
>
s1/τ

2

s2/σ2
≥ σ2

τ2
1

p− 1

∣∣∣∣ H0, λ
2 > 0

)
= P(−2 log Λ1 ≤ c, U ≥ 1/p | H0, λ

2 > 0) + P(−2 log Λ1 +W ≤ c, U < 1/p | H0, λ
2 > 0)

+ P

(
−2 log Λ1 ≤ c,

1

p− 1
>
s1/τ

2

s2/σ2
≥ σ2

τ2
1

p− 1

∣∣∣∣ H0, λ
2 > 0

)
− P

(
−2 log Λ1 +W ≤ c,

1

p− 1
>
s1/τ

2

s2/σ2
≥ σ2

τ2
1

p− 1

∣∣∣∣ H0, λ
2 > 0

)
≥ P(−2 log Λ1 ≤ c, U ≥ 1/p | H0, λ

2 > 0) + P(−2 log Λ1 +W ≤ c, U < 1/p | H0, λ
2 > 0).

(4.6)

Here, the last inequality is derived by W ≥ 0. Noting that Λ1, U and W do not depend

on λ2, substituting (4.6) into (4.5) yields

P(−2 log Λ ≤ c | H0, λ
2 > 0)

≥ P(−2 log Λ1 ≤ c, U ≥ 1/p | H0, λ
2 > 0) + P(−2 log Λ1 +W ≤ c, U < 1/p | H0, λ

2 > 0)

= P(−2 log Λ1 ≤ c | H0, λ
2 > 0)P(U ≥ 1/p | H0, λ

2 > 0)

+ P(−2 log Λ1 +W ≤ c, U < 1/p | H0, λ
2 > 0)

= P(−2 log Λ1 ≤ c | H0, λ
2 = 0)P(U ≥ 1/p | H0, λ

2 = 0)

+ P(−2 log Λ1 +W ≤ c, U < 1/p | H0, λ
2 = 0)

= (3.1) = P(−2 log Λ ≤ c | H0, λ
2 = 0).

(4.7)

This implies that P(−2 log Λ > c | H0) ≤ P(−2 log Λ > c | H0, λ
2 = 0)

From Theorem 4.1, the actual test size of the test using the null distribution under

λ2 = 0, is always smaller than the nominal test size α even if λ2 > 0 is true. The nominal

test size α can be chosen freely by the analyst, and α should not be overestimated. In
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this sense, this testing method is conservative (the safest). For this reason, we suggest

using the asymptotic expansion (3.33) for testing the hypothesis (1.3).

On the other hand, in the certain alternative hypothesis, the power of the test using

the null distribution under λ2 = 0 is given by the following corollary.

Corollary 4.1. Let Λ be the LR criterion defined as in Theorem 4.1, and let

H11 : Σ = ρ1p1
′
p + σ2Ip, 0 > ρ > −σ

2

p
, σ2 > 0.

Then, under H11 it holds that

P(−2 log Λ > c | H0, λ
2 = 0) ≤ P(−2 log Λ > c | H11).

Proof. Suppose that H11 is true. Under H11, since Σ has the exchangeable covariance

structure, −2 log Λ can be written as

−2 log Λ =

{
−2 log Λ1, if s1/f1 ≥ s2/f2,
−2 log Λ1 +Q, if s1/f1 < s2/f2,

where, f1, f2, s1, s2 and Λ1 are defined in Section 2, and Q is given by (4.1). Note that

Λ1, s1 and s2 are mutually independent, and

s1 ∼ υ2χ2
N−k, s2 ∼ σ2χ2

(N−1)(p−1), υ2 = pρ+ σ2.

Noting that σ2/υ2 > 1 and Y is non-negative, we have

P(−2 log Λ ≤ c | H11)

= P(−2 log Λ1 ≤ c, s1/s2 ≥ (p− 1)−1 | H11)

+ P(−2 log Λ1 +Q ≤ c, s1/s2 < (p− 1)−1 | H11)

= P

(
−2 log Λ1 ≤ c,

s1/υ
2

s2/σ2
≥ 1

p− 1

∣∣∣∣ H11

)
− P

(
−2 log Λ1 ≤ c,

1

p− 1
≤ s1/υ

2

s2/σ2
<
σ2

υ2
1

p− 1

∣∣∣∣ H11

)
+ P

(
−2 log Λ1 +Q ≤ c,

s1/υ
2

s2/σ2
<

1

p− 1

∣∣∣∣ H11

)
+ P

(
−2 log Λ1 +Q ≤ c,

1

p− 1
≤ s1/υ

2

s2/σ2
<
σ2

υ2
1

p− 1

∣∣∣∣ H11

)
≤ P

(
−2 log Λ1 ≤ c,

s1/υ
2

s2/σ2
≥ 1

p− 1

∣∣∣∣ H11

)
+ P

(
−2 log Λ1 +Q ≤ c,

s1/υ
2

s2/σ2
<

1

p− 1

∣∣∣∣ H11

)
.

Since σ2/υ2 > 1, if (s1/υ
2)/(s2/σ

2) < (p− 1)−1 then

0 <
s1

s1 + s2
=

s1/υ
2

s1/υ2 + (σ2/υ2)× s2/σ2
<

s1/υ
2

s1/υ2 + s2/σ2
≡ U∗ (say) <

1

p− 1
. (4.8)
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Note that U∗ ∼ Beta((N − k)/2, (N − 1)(p− 1)/2). From (4.8) it holds that

Q ≥ −N log
pp

(p− 1)p−1
U∗(1− U∗)p−1 ≡W ∗ (say).

Therefore, similarly as to evaluations of (4.4) and (4.7) in the proof of Theorem 4.1, we

obtain
P(−2 log Λ > c | H0, λ

2 = 0) ≤ P(−2 log Λ > c | H11).

Corollary 4.1 implies that, for the fixed nominal test size α, the actual test size (or

power) of the test using the null distribution under λ2 = 0, is larger than α under H11.

Therefore, this testing method is also better from the viewpoint of the power.

Remark 4.1. The null hypothesis H0∗ considered by Srivastava and Singull (2012)

includes H11. Hence, for the fixed nominal test size α, the actual test size (or power)

of the test using the M-LRT proposed by Srivastava and Singull (2012), is equal to α

under H11. Therefore, under the certain alternative hypothesis H11, the test using the

null distribution of R-LRT proposed by Yokoyama (1995) under λ2 = 0, is better than

the test using the M-LRT from the viewpoint of the power.

5. Numerical experiments

To compare the accuracy of the approximations based on the limiting distribution and

the asymptotic expansion, we compute the actual test sizes (ATSs) of −2 log Λ. Let

F (λ2>0)(c) = Gf (c) +
Mp,k

N
{Gf+2(c)−Gf (c)},

F (λ2=0)(c) =
1

2
Gf (c) +

1

2
Gf+1(c) +

A1√
N

{Gf+2(c)−Gf (c)}

+
A2

N
{Gf+2(c)−Gf (c)}+

A3

N
{Gf+3(c)−Gf+1(c)},

where Mp,k is given by (2.9) and A1, A2, A3 are given by (3.34). Let α be the nominal

test size. Then, from 100,000 monte carlo simulation runs, in the case of λ2 > 0 the

ATSs of −2 log Λ based on the limiting distribution and the asymptotic expansion are

computed as

α̂λ2>0 =
#{t |Gf (t) > 1− α}

100000
, α̃λ2>0 =

#{t |F (λ2>0)(t) > 1− α}
100000

,

respectively. Similarly, in the case of λ2 = 0 these are computed as

α̂λ2=0 =
#{t |0.5× (Gf (t) +Gf+1(t)) > 1− α}

100000
, α̃λ2=0 =

#{t |F (λ2=0)(t) > 1− α}
100000

,
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respectively. Here, t is the values of −2 log Λ calculated from the simulation data. Under

the null hypothesis we considered the following six cases.

(1) p = 2, k = 2, λ2 = 1, σ2 = 1, (2) p = 4, k = 2, λ2 = 1, σ2 = 1,

(3) p = 2, k = 5, λ2 = 1, σ2 = 1, (4) p = 2, k = 2, λ2 = 0, σ2 = 1,

(5) p = 4, k = 2, λ2 = 0, σ2 = 1, (6) p = 2, k = 5, λ2 = 0, σ2 = 1.

The ATSs in the cases (1)–(3) and (4)–(6) are given in Table 1 and Table 2, respectively,

for α = 0.05.
Table 1. The ATSs in the cases (1)–(3)

Sample size Nominal 5% test

N α̂λ2>0 α̃λ2>0

10 0.11776 0.07249

20 0.07384 0.05382

30 0.06532 0.05226

Case (1) 40 0.06047 0.05005

50 0.05953 0.05133

80 0.05671 0.05180

100 0.05430 0.05001

10 0.24649 0.13524

20 0.11172 0.06703

30 0.08576 0.05714

Case (2) 40 0.07563 0.05454

50 0.06871 0.05267

80 0.06177 0.05079

100 0.05813 0.04986

10 0.28712 0.18017

20 0.10971 0.06863

30 0.08318 0.05713

Case (3) 40 0.07303 0.05395

50 0.06786 0.05352

80 0.06188 0.05272

100 0.05654 0.04930

Table 2. The ATSs in the cases (4)–(6)

Sample size Nominal 5% test

N α̂λ2=0 α̃λ2=0

10 0.12881 0.07344

20 0.08451 0.05691

30 0.07110 0.05210

Case (4) 40 0.06607 0.05208

50 0.06320 0.05196

80 0.05849 0.05034

100 0.05646 0.04952

10 0.26490 0.14340

20 0.11929 0.06738

30 0.09053 0.05782

Case (5) 40 0.07823 0.05406

50 0.07120 0.05237

80 0.06294 0.05108

100 0.06075 0.05071

10 0.38579 0.22048

20 0.16566 0.08472

30 0.11993 0.06411

Case (6) 40 0.10114 0.05883

50 0.09308 0.05777

80 0.07656 0.05188

100 0.07278 0.05203

From Table 1 and 2 we can see that the accuracy of the approximations of α̃λ2>0 and

α̃λ2=0 are better than that of α̂λ2>0 and α̂λ2=0, respectively. However, for the small

sample size, the approximation of the asymptotic expansion is still not good when p

and k are not very small. Nevertheless, for any natural number s, applying the same
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techniques used in Section 2 and 3 we can derive the asymptotic expansion up to the

order of N−s. Therefore, further improvement in the accuracy of the approximation is

possible.

6. Conclusion

We derived the asymptotic expansions of the null distribution of the L-LRT proposed

by Yokoyama (1995). Numerical experiments showed that the accuracy of the approx-

imation of the asymptotic expansion is better than that of the limiting distribution.

Furthermore, Applying the same techniques used in Section 2 and 3, further improve-

ment in the accuracy of the approximation is possible. Therefore, “the accuracy of the

approximation” of the test using the L-LRT was improved.

On the other hand, from Theorem 4.1, we showed that the test Assuming λ2 = 0 is the

safest. In addition, from Corollary 4.1, we also showed that the power of the test assuming

λ2 = 0 is larger than the nominal test size α in the certain alternative hypothesis H11.

Recall that the test using the M-LRT proposed by Srivastava and Singull (2012) is not

detected the hypothesis H11. Hence, under H11, the test using the L-LRT is better than

the test using the M-LRT.

Appendix : derivation of (3.21)

Consider the following relation

y = −N log
pp

(p− 1)p−1
u(1− u)p−1 = −N log

pp

(p− 1)p−1
−N log u(1− u)p−1,

where y is defined on (0, c] and c is a positive constant. Similarly, u is defined on [u∗, 1/p)

and u∗ is a positive number satisfying

−N log
pp

(p− 1)p−1
u∗(1− u∗)p−1 = c.

Here, for simplicity, we denote by N(x; ε) the ε-neighborhood of x. Let

f(u) = log u(1− u)p−1.

Using Taylor expansion at u = 1/p, f(u) can be expanded as

f(u) = f(1/p) + f ′(1/p)(u− 1/p) +
1

2
f ′′(u1)(u− 1/p)2, u∗ ≤ u1 < 1/p.

Nothing that −N{f(u)− f(1/p)} = y, f ′(1/p) = 0 and u < 1/p, we have

u− 1

p
= −

√
y

√
N

√
− 2

f ′′(u1)
≡ −

√
y

√
N
c1, (A.1)
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where f ′′(u1) and c1 are bounded. Again, using Taylor expansion at u = 1/p, f(u) can

be expressed as

f(u) = f(1/p) +
1

2
f ′′(1/p)(u− 1/p)2 +

1

6
f ′′′(u2)(u− 1/p)3, u∗ ≤ u2 < 1/p.

From this expansion and (A.1), we obtain

u− 1

p
= −

√
y

√
N

√
− 2

f ′′(1/p)

√
1 +

1

6
f ′′′(u2)

√
y

√
N
c31 ≡ −

√
y

√
N

√
− 2

f ′′(1/p)

√
1 +

ε1
√
y

√
N
,

(A.2)

where ε1
√
yN−1/2 = o(1) because f ′′′(u2), c1 and y are bounded. Let g(x) = (1− x)1/2.

Then, using Taylor expansion at x = 0, g(x) is expressed as

√
1− x = 1 + g′(x∗)x, x∗ ∈ N(0; |x|).

Thus, we have √
1 +

ε1
√
y

√
N

= 1− g′(δ1)
ε1
√
y

√
N
, δ1 ∈ N(0; |ε1|

√
yN−1/2). (A.3)

Note that g′(δ1) is bounded because δ1 = o(1). Therefore, from (A.2) and (A.3) we

obtain

u− 1

p
= −

√
y

√
N

√
− 2

f ′′(1/p)
+

y

N
g′(δ1)ε1

√
− 2

f ′′(1/p)
≡ −

√
y

√
N
b1 +

y

N
c2, (A.4)

where c2 is bounded and b1 is given by

b1 =

√
− 2

f ′′(1/p)
.

Similarly, from (A.1) and (A.4), using Taylor expansion at u = 1/p, f(u) can be

expanded as

f(u) = f(1/p) +
1

2
f ′′(1/p)(u− 1/p)2 +

1

6
f ′′′(1/p)(u− 1/p)3 +

1

24
f (4)(u3)(u− 1/p)4,

= f(1/p) +
1

2
f ′′(1/p)(u− 1/p)2 +

1

6
f ′′′(1/p)

(
− b31
N
√
N
y
√
y

)
+

1

6
f ′′′(1/p)

(
3b21c2
N2

y2 −
3b1c

2
2y

2√y
N2

√
N

+
c32
N3

y3
)
+

1

24
f (4)(u3)

c41
N2

y2

= f(1/p) +
1

2
f ′′(1/p)(u− 1/p)2 +

1

6
f ′′′(1/p)

(
− b31
N
√
N
y
√
y

)
+

y2

N2
ε2,

where u3 is defined on [u∗, 1/p) and ε2 is bounded. Hence, from this expansion, we have

u− 1

p
= −

√
y

√
N
b1

√
1−

{
f ′′′(1/p)

6
√
N

b31
√
y − ε2

N
y

}
≡ −

√
y

√
N
b1
√
1− ε3, (A.5)
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where ε3 = o(1). Using

√
1− x = 1− 1

2
x+

1

2
g′′(x∗)x2, x∗ ∈ N(0; |x|),

(1− ε3)
1/2 can be expressed as

√
1− ε3 = 1− 1

2
ε3 +

1

2
g′′(δ2)ε

2
3

= 1− f ′′′(1/p)

12
√
N

b31
√
y +

ε2y

2N
+
g′′(δ2)

2

y

N

{
f ′′′(1/p)

6
b31 −

ε2√
N

√
y

}2

= 1− f ′′′(1/p)

12
√
N

b31
√
y +

y

N
ε4, δ2 ∈ N(0; |ε3|), (A.6)

where g′′(δ2) and ε4 are bounded because δ2 = o(1). Therefore, substituting (A.6) into

(A.5) yields

u− 1

p
= −

√
y

√
N
b1 +

y

N

b41
12
f ′′′(1/p)−

y
√
y

N
√
N
b1ε4 = −

√
y

√
N
b1 +

y

N
b2 +

y
√
y

N
√
N
ε5, (A.7)

b2 =
b41
12
f ′′′(1/p),

where ε5 is bounded.

Finally, using Taylor expansion at u = 1/p for f(u) up to the fifth order, the expansion

for g(x) up to the second order, (A.1) and (A.7), we obtain

u− 1

p
= − b1√

N

√
y +

b2
N
y +

b3

N
√
N
y
√
y +

ε

N2
y2, ε = O(1),

b3 =
{f ′′′(1/p)}2b71

288
− f ′′′(1/p)b31b2

4
− f (4)(1/p)b51

48
.
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