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ABSTRACT

This paper is concerned with the null distribution of the likelihood ratio test statistic —2log A
for testing the adequacy of a random-effects covariance structure in a parallel profile model. It
is known that the null distribution of —2log A converges to X?f or 0.5)@ + O.5xi+1 when the
sample size tends to infinity. In order to extend this result, we derive asymptotic expansions
of the null distribution of —21log A. The accuracy of the approximations based on the limiting

distribution and an asymptotic expansion are compared through numerical experiments.
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1. Introduction

Let :cgg) be a p-dimensional vector of observations on the jth individual in the gth

group, where j = 1,...,Ngand g = 1,...,k, and let N = Ny + --- + Ni. We assume

that azgl), e ,wg\’fz are mutually independent and distributed as
wg'g) ~ Np(u(g)7 2), pl) = Og1lp + py o= (1,5 pip), (1.1)
where 1, is a p-dimensional vector of ones, d1,...,d; and pq, ..., 1, are unknown param-

eters, and ¥ is an unknown positive definite matrix. Here, we may assume that d; = 0,
without loss of generality. The model (1.1) is called a parallel profile model. In the par-
allel profile model, Yokoyama and Fujikoshi (1993) assumed the following random-effects

covariance structure:
3 =A1,1,+0°I,, \>>0, 0 >0. (1.2)

By making the above rather strong assumption for 3, they obtained more efficient esti-
mators and more powerful tests. Needless to say, these results are only valid if 3 satisfies
(1.2). Hence, it is important to test the hypothesis that 3 has the random-effects co-

variance structure.



Yokoyama (1995) proposed a likelihood ratio test for testing the hypothesis
Ho: ¥ =X1,1) +0°I,, \* >0, 0> >0 v.s. Hy : not Hy, (1.3)

and they derived a restricted likelihood ratio test statistic (R-LRT) for testing (1.3).
They showed that the null distribution of the R-LRT converges to Xfc or O.5xfc + 0.5)(? 41
when the sample size tends to infinity, where f = (p?>+p—4)/2. Therefore, the hypothesis
(1.3) is tested based on this asymptotic property.

On the other hand, Srivastava and Singull (2012) constructed the test based on the
likelihood ratio, without the non-negativity of A\? in (1.3), for testing the random-effects
covariance structure under the parallel profile model. In other words, they considered

the following hypothesis:
Ho« : 3 = pl,1) + 0°I,, p> —0°/p, 0° > 0 v.s. Hi+ : not Ho-. (1.4)

Here, the covariance structure given by Hy- is called the exchangeable covariance struc-
ture. They derived a modified likelihood ratio test statistic (M-LRT) for testing (1.4).
Their modification is based on the Box’s (1949) asymptotic expansion with Bartlett’s
correction, and the order of the error term of the null distribution for the M-LRT is
O(N—2). It is known that under Hg- the limiting distribution of the M-LRT is Xfc.
Then, the hypothesis (1.4) is tested by using Xfc.

Under Hy Srivastava and Singull (2012) showed that the limiting approximation of
the distribution of the M-LRT is better than that of the R-LRT proposed by Yokoyama
(1995). Moreover, through numerical experiments, they also showed that the power for
the M-LRT is larger than the power for the R-LRT. For these reasons, they suggested
using the M-LRT even in the case of testing (1.3).

However, since “the good test” and “the adequacy of the approximation” are different
problems, these should be considered separately. In particular, for the adequacy of the
approximation, this is not a fair comparison because the R-LRT is not modified. The
main purpose of this paper is to derive an asymptotic expansion of the null distribution
of the R-LRT up to the order N~! under the parallel profile model.

The remainder of the present paper is organized as follows: In Section 2 and 3 we derive
an asymptotic expansion of the null distribution of the R-LRT when A\? > 0 and \? = 0,
respectively. In Section 4 we provide the relevant theorem and corollary. In Section 5
we compare the accuracy of the approximations based on the limiting distribution and
an asymptotic expansion through numerical experiments. In Section 6 we conclude our

discussion. Technical details are provided in the Appendix.



2. Asymptotic expansion of the null distribution when \2 > 0

In this section we derive an asymptotic expansion of the null distribution of the R-LRT
proposed by Yokoyama (1995) under Hg and A\? > 0. First, we consider the definition

and decomposition of the restricted likelihood ratio.

2.1. Definition and decomposition of the restricted likelihood ratio

The restricted likelihood ratio A proposed by Yokoyama (1995), is given by

A= {Ah if s1/f1 > sa2/ fa,
Ao, if s1/f1 < s2/fa,
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Then, the restricted likelihood ratio test statistic is defined by —2log A.

Under Hy+, from the definitions of A1, As, s; and so, the restricted likelihood ratio is
decomposed by using Bartlett decomposition of Wishart distribution (see, e.g., Fujikoshi,
et al., 2010) as

N/2

p—2
A = (H Bl) X (p— 1)]\](10—1)/2}{(])\[/27 Ay = Ay x X, (2.1)
1=0
where
p—1 p—1 p—1Y N/2
K PP s s1
Ko=1|=, K=) K, X-= _
0 e K’ ; ks {(p_]_)p—l $1 + 89 ( 81+82> } )



and

N—-—p-1)—k p—1 N-1-11
BONBeta< (p ) ,p ), Bleeta<— —),

2 2 2 2 (2.3)
Kj~ Xyt $1~TXRop S22~ UQX?NA)(pq)a 7% = pA® + 0%,
Here, it is easily checked that By,...,B,_2, Ki,...,K,_1, s1 and sy are mutually in-

dependent. Hence, A , s; and s, are also mutually independent. Note that the results

obtained in this subsection are derived under Hy«. Therefore, these also hold under H.

2.2. Asymptotic expansion under Hy, and \? > 0

Suppose that the hypothesis Hg is true and A2 > 0. Then, A, s; and s, are mutually
independent. Thus, from the definition of A, the distribution of —2log A can be written

as

P(—2logA <c¢) =P(—2logA; < e, s1/f1 > s2/f2) + P(—2log As < ¢,81/f1 < 82/ f2)
P(—2log A1 < ¢)P(s1/f1 > s2/f2) + P(—2log Ay < ¢, 81/ f1 < 52/ f2)
=P(-2log Ay < ¢) = P(=2log Ay < ¢)P(s1/f1 < s2/ [2)

+P(—2logAs < ¢,51/f1 < 82/ [f2).

From 72 > 02 and the definitions of s; and ss, for large N, the last two terms satisfy
that

’ — P(—QIOgAl < C)P(Sl/fl < 82/f2) -+ P(—210gA2 <, Sl/fl < Sg/fg)’
< 2P(s1/f1 < s2/ f2)

o (fz Nk 7 32/{U2<N—1><p)—}1>}) < op (K xi/z2>,

f(N=1)(p-1)0° si/{T*(N — k X,/

where ¢ is a constant (t > 1), [y = N —k and lo = (N — 1)(p — 1). Here, the last
probability is evaluated by the following lemma.

Lemma 2.1. Let [y =N —k, I = (N —1)(p—1) and ¢ > 1. Then, it holds that

P (t < Xl22/l2> =0(cg™) (co>1).

X3/l

Proof. Let ¢ be a constant satisfying t~! < ¢ < 1. Then, it holds that

2 2 2 2
p e X ) cp (2 o) pp 2y, (2.4)
lo I l1 lo

Using Markov’s inequality and the moment generating function of the chi-squared dis-

tribution, for any negative number a, the first term of the right hand side in (2.4) can



be evaluated as

2 axi ?
X1 _ 2 _ ax? acl E[e ll] — 1
P (l_ll < C> = P(aXh > adl) = P(e X > e 1) S eacli (1 — 2a)€2ac .

X2 1 171
p (2t <infd—F— V.
<l1 <c> _;20{(1—26062“0}

Here, it is easily showed that (1 — 2a)e?*¢ is maximized at a = (2¢)7'(c — 1) (< 0)

Hence,

under a < 0, and its maximum value is e¢~17198¢(> 1). Let ¢; = e“~!171°8¢ and let
c11 = i/ (> 1). Then, it holds that
X7 -4 k/2, 1/2\—N k/2 N N
P l_ll <c|<e? =" (q"7) T = (enn) " =0(ery ) (2.5)
Next, let tc = d (> 1). Using the same argument, for any positive number b satisfying

0 < b < 1/2, the second term of the right hand side in (2.4) can be evaluated as

2

2 bxi 2
Xl B 9 _ b 2 bdl E[e 12] . 1 2
P (l—; > tC) = P(le2 > bdl2) = P(e Xz > e 2) < ebdls (1 — 2b)62bd .

2 la
Xi . 1 2
Pl|=—=2>tc] < f —_— .
( lo C) - 0<£1/2 { (1-— 2b)62bd}

Similarly, it can be showed that (1 — 2b)e?*? is maximized at b = 271 — (2d)~! (> 0)
under 0 < b < 1/2, and its maximum value is e?=171984 (> 1), Let cp = e?7171984 and

let cgo = ¢ /% (> 1). Then, it holds that

2 l
P (% > tC) S 62_?2 — Cgpfl)/Q(Cgpfl)/Q)—N — 62262—2]\7 — O(CQ_QN) (26)

Let ¢o = min{ci1,ca2} (> 1). Then, substituting (2.5) and (2.6) into (2.4) yields

2 l 2 2
p X/ ) Jp (X X < o) 1 o) < o).
Xi, /1 l2 h

From Lemma 2.1, the distribution function of —2log A is

P(—2log A < ¢) = P(—2log Ay < ¢) + O(cy ™). (2.7)



Thus, we derive an asymptotic expansion of P(—2logA; < ¢). From (2.2) and (2.3), it
is easily checked that the hth moment of By, B; and K, are given by
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respectively. Hence, from (2.1) and (2.8), the log-characteristic function of —2log A; can

be expressed as
log p(t) = log E[e~ 2108 Al] — logE[Al—%t]

zlogF(N_(pz_l)_k—Nit>—logF(N_(pz_l)_k)

N —k N —k
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e (W00 g (00D gy,

Here, the expansion formula for the log-gamma function is given by the following lemma

(see, e.g., Barnes, 1899).

Lemma 2.2. Let z be a complex number, and let « be a constant. Then, it holds that

1 1 1
logl'(z + a) = (z+a— 5) logz — z + 510g27r—|— iﬁg(a)z_l +¢,

where |arg z| <7, Ba(a) =a? —a+1/6, || < C|z|72 and C is a positive constant.

From Lemma 2.2, the log-characteristic function log ¢(t) can be expanded as

M
log p(t) = —g log(1 — 2it) + Js’k{(l —2it)7t =1} 4 £,

where f = (p? +p—4)/2, |e1]| < C1N~2 and

(p—1)2+2(p—1)(k+1)+(p—2)(p—1)(2p+9) (p—2)(4p —3)

4 24 6(p—1) (29)

My =



Note that C does not depend on ¢t. Hence, the characteristic function of —2log A; can

be written as
_ loge(t) _ ot Mpg £ i
o(t) = eloEP®) — (1 — 1) z+T{(1—2n) 2 (1 2it) z}+52. (2.10)

Here, it is easily checked that there exists a positive constant C5 such that C5 does
not depend on ¢ and |eo| < [t|7//2Cy N~2. Inverting (2.10), the distribution function of
—2log A, is given by

P(=2log Ay < ¢) = G(c) + M]@’“{GHQ(C) _G(0)} + 23, (2.11)

where G,(-) is the distribution function of the chi-squared distribution with s degrees of

freedom, and

1
les] < ¢ /
TN? |4

Therefore, from (2.7) and (2.11) we obtain the asymptotic expansion of the null distri-

r dt + — dtzm—l—m, (Cg,C4>O).

TN2 Jjyysa 1772

sin(ct) ’ C 1 cCs Cy

bution of —2log A as

My i

P(—2log A <¢) = Gy(e) + N

{Griale) = G} +ON2). (212)

3. Asymptotic expansion of the null distribution when \2 =0

Suppose that the hypothesis Hg is true and A\?> = 0. Let U be a random variable
distributed as Beta((N —k)/2,(N —1)(p—1)/2). Here, since s; and sy are independent,
and A2 = 0, i.e., 72 = 02, from (2.3) it holds that

S1 . 7'2(81/7'2) . 81/7'2

S1 4+ 89 72(s1/72) + 02(s2/0?) N s1/72% + s9/0?

~ Beta

(Nz—k, (N—l;(p—l))‘

Hence, s1/(s1 + s2) and U have the same distribution. Thus, from the definition of A,
the distribution of —2log A is written by using U as

P(—2logA <c¢) =P(—2logA1 < ¢)P(U > 1/p) + P(—2logA1 + W < ¢,U < 1/p),
(3.1)

where W = —Nlog{pP(p — 1)~P=DU(1 — U)?~'}. Next, we expand P(U > 1/p) and
P(—2logA1 + W < ¢,U < 1/p).



3.1. Expansion of P(U > 1/p)

Since U is distributed as Beta((N — k)/2,(N — 1)(p — 1)/2), it holds that

P (U < 1) = ! / uNgk_l(l — u)(N_lé(p_l)_ldu
0

T =

N—k (N-1)(p—1)
P/ g (g, eeen)
) N (3.2)
_ PoON—k_ g INSDGeD
_5+B<N_k (N—1)(p—1)> /lu = ll—w) 2 du,
2 2 p2P
1 /p%?’ Nz_k_l(l u) (N_lé(p_l)_ldu
E = u _
N—k (N-1)(p—1) ’
B (N, G ) Jo

where B(-, -) is the beta function. From Stirling’s formula, the inverse of the beta function
is expanded as

1
N—k (N-1)(p—-1)
B (X5t ee=t)

N p+k 2 2 2
\/ Y4 2 — = _ 1 ( 3k%(p—=1)"+45p“—2p—1
A= {”( )+0<N-2>}- (3.3

Tom - (p_1)%
From (3.3), for large IV, it holds that

2

N

_N
2

<p = O(al_N)v (34)

eV}

where a; and C are positive constants, and a; > 1.
On the other hand, the integral of (3.2) can be expressed as

1 1

1 1
p2P p2P

Let f(u) =logu(l —u)P~! and g(u) = w=*/?271(1 —u)~(®~1/2-1 Note that f'(1/p) = 0.
Then, for any u satisfying 1/p?? < u < 1/p, using Taylor expansion at u = 1/p, f(u)

and g(u) can be expanded as
1\* 1\’ 1\* 1\°
f(u):so+32<u——> +33<u——> +34<u——> —|—€(u——) ,
p p p p
g(u):go+gl(u—1>+gz<u—1>2+5(u—1>3,
p p p

where

(3.6)



and p*,p € [1/p*?,1/p]. Note that ¢ and § are bounded. From (3.6), the right hand side
of (3.5) is given by

1
e%so P |:6];]32 (u—%)Z6%{ss(u—%)3+s4(u—%)4+€(u—%)5}
1

, , (3.7)
1 1 1
X<go+qp|lu——)+glu——) +d|lu—- du.
p p p
Let /—sy = t, and let v/Nt(u — 1/p) = y. Then, (3.7) can be written as

0 S S
6%80 1 / efy22@2\}3£t3+2;4\]yt4+N\/7 X (g 91y gZy 5y )

VNt \/_t Nt? N\/_

(3.8)

where £ and é are bounded, and T = t(p~t —p72P), € =271t 5¢ and 6 =1¢35. Let

B ST VR TR
1 2t3; 2 2t47 1 n 2 t2-
3

Then, using e® = 1 +z + 27122 + 6~ 'e® 22, 2* € [0, z], (3.8) is expanded as

0
Kgo/ - d + —/ e (219 + gow1y®)dy
VNT (3.9)

K
/ e T {Zzy + (gows + z1w1)y* + 200 1 G}dy+€1 + e +e3+ €4,
vVNT 2

where
N 1 K v2 N % 0 y2
K=e2%——r ¢ = —/ e 2 e2%dy, eq = K/ e~ 2 gowdy,
VNt NV N J_ynNT —VNT
0 v 21y wayt  wiy®
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Note that a* < 0, because, for any u satisfying 1/p?? < u < 1/p, f"”(u) is non-negative,

ie.,

3 4 ~ 5 3
53y S4Y gy N1, 1

— 2] <o.
ovve Tana P yur - 26l @) (u P



Next, we evaluate each term in (3.9). It is easily checked that

0 y2 v—1 1
/ e Ty — 973 (U+ ) (—1)”+O(C_N), (c>1),
—VNT 2

for any non-negative integer v. Thus, using this result, the first three terms in (3.9) are

given by

0 u2 V2
Kgo/ e—zdyngo{—”w(cl )},
_JNT 2

_L
2

(219 + gow1y®)dy = ——{Zl + 2gowr + O(c; ™)},

\/_/WT VN

K
—/ _% {zzy + gow2+z1w1)y +gO 1 6}dy
N J_yNT 2

2
_K {\/277 3var | 1sgow? oo O(CgN)},

(3.10)

N 5 2o + (gows + z1w1) 5 1

respectively, where ci,cz,c3 > 1. Similarly, using eN®/2 < 1, e < 1 and |y|™ <

ly|™2 + 1, (m1 < mg), we have

KC e y2 3
< e 7yldy=K x O(N~2),
K 2 , 3 '
gl < —— e T (CLyPT 4+ Cy)dy = K x O(N™2), (i=2,3,4),
| |— N\/N 0 ( 1Y 2) Y ( ) ( )
where C, Cy,Cy > 0. Here, go, w1, wa, 21 , 22 and K are written by using p, k and N as
p—1 % ktp
P {(p—l) } 2p-1) o pVp
VN P D (p—1)2p—1
_ V2(p-2) PP =3p+3 _  p ps"

= 3= v ) T ) (p—l)%{2+(1_p)(1+k)}’

Vol —1) pt C2(k+2)(p+1) | (p+D(p+3)
29 = 1 (p—l)g {(k+2)(k‘+4) b1 + (p—1) }»

(3.12)

10



respectively. Hence, from (3.9), (3.10), (3.11) and (3.12) we obtain

1 1
p N—k _ (N=D(p=1) P N _u)P~l _Ek_ _p=1_
/ w2 N1l —w) 2 1du:/ e losu(l=w)" "y =5 =11 — )~ ~Ldu
1

1

p2P p2P

-
{ } (p—1)%
i 1 3k(p—1)— p—1+ﬁ3k2(p—1)2+5p2—2p—1
VN 3\/7—1) N 12p(p — 1)

1 { _1(10 1)} P’
VN (p—1)°

1 3k2(p =1 +5p1272p 1 1 3k(p—1)—p—1 3
\/— p(p—1) ) + +O(N_§) .
{ VN 3y/plp - 1)

_I_
©
3
W
=

(3.13)

Finally, from (3.2), (3.3), (3.4) and (3.13), the probability P(U < 1/p) is expanded as

o <t iz (Voo G i vous)
:1+ 1 3k(p—1)—p—1+O(N_%).

NG N Y

This implies

P(U>1/p)=1—PU < 1/p) = % - Vlwgkép ;;()p__pg Liow9. 31

3.2. Expansion of P(—2logA; + W < ¢,U < 1/p)

From the property of the conditional probability, P(—2log A + W < ¢,U < 1/p) can

be written as
P(—2logA 1+ W < ¢, U < 1/p) =P(U < 1/p) x P(=2log A1 + W < ¢|U < 1/p). (3.15)

Let Y = W|(U < 1/p), and let ¥(y) be a probability density function of Y. Since Ay
and (W,U) are independent, A; and Y are also independent. Hence, it holds that

P(=2logA1 + W < c|U < 1/p) =P(—2logA1 + Y < ¢) =P(—2logA; <c-Y)

= /P(—2logA1 < c—y)(y)dy. (3.16)

11



From (2.11), the integral of (3.16) can be expressed as
[P2iogns <c-yutdy = [ P(-2loghi < c - o)y
0

/ C Gf<c— y)o(y)dy

4 /O e (y)dy,

because both —2log A; and Y are non-negative. Here, the last integral of (3.17) satisfies
that

(3.17)
—Gple—y)(y)dy

ew< ' /{c— )Cs + Ca}(y)dy

< Ni | tecat cayvty (3.15)

{cCs 4; Cya} /w(y)dy _ {CC:%NE Cy}

IN

= O(N7?).
Next, we expand ¥(y).
We consider the following relation,

pP
(p—1)p-1

pp

—u)P"! = —Nlog — Nlogu(l —u)?~*, (3.19)

where y is defined on (0, ¢] and ¢ is a positive constant. Similarly, u is defined on [u*, 1/p),

and u* is a positive number satisfying

—N log uw (1 —u* )Pt =c (3.20)

"
(p— 1)~

Let f(u) =logu(l —u)P~1. Then, the following expansion holds (see, Appendix).

U = TV R i+ g (3.21)
where
2 b4 ///
N e
"1 2p7 sl b3b (4) 1 b
py = AUV S0 SO _ g

On the other hand, given the event U < 1/p, a conditional probability density function
¢(u) of U can be written as

N-k __ WN-1(p=1) _
P(u) = P(U<1/p)B(@’W)U 7 Y1 —u) 2 L (0<u<1/p) .
0 (otherwise)

12



Under u < 1/p, form (3.19) it holds that

du| 1 u(l—u) (3.22)
dy| | Np(u—1/p)’ '
Hence, 1(y) is given by using the transformation formula and ¢(u) as
1 N—k (N-1)(p—1) du
P(y) = e
P(U < l/p)B <N2—k, (N—l%(p—l)) dy
1 1
L gNg N(p=1)/20,~k/2(1 _ o)~ @=1)/2 ,
P(U < 1/p) (1-w) S —Np(u—1/p)
where 8 = B((N — k)/2,(N — 1)(p — 1)/2). Noting that
N
- R I
g(l_u)wz{u} 8_5,
pp
using (3.3), 1¥(y) can be expressed as
p+k 2 2 2
1 1 p 2z —% <3k (p7112) (+ip1)72p71) —92
_ p(p O(N
¥(y) P(U < 1/p) 27 (p—1) % {e + O( )
y 1
xXe 2g(u , 3.23
Ty (3.2

where g(u) = u=*/2(1 — u)~P=1/2, Here, from (3.20), there exists a positive constant

u** such that u** < u* for any N. Thus, using Taylor expansion at u = 1/p, g(u) can

be expanded as

9(u) = g0+ 91 (u— 1/p) + oot~ 1/p)” + b1 (u— 1/p)" (3:24)
90 =9(1/p), g1 =9'(1/p), g2 =g"(1/p), 1 = O(1).

Substituting (3.21) into (3.24), we obtain

g(u) = go + \/_\/_+ 24 N\/_y\/_ (3.25)

@1 = —g1b1, g2 = g1ba + 59261, g1 = O(1).

Similarly, substituting (3.21) into (3.22), we can write

1 1
_ , 3.26
—V/N(u—1/p) by (1 —9*) (3:20)
c1 C2 d2 b b3
V'=—=Vy+ =y+ =o0(l), 1 = =, ca ==, 62 =0(1).
NV N RV T ot as g e =0
Since (1 —z)™! =1+ 2+ 22 + d323, 63 = O(1) when z = o(1), we have
1 €2
g , 3.27

13



where r; = ¢1, 79 = ¢3 + ¢ and g3 = O(1). Therefore, substituting (3.25), (3.26) and
(3.27) into (3.23) yields

(go+q1\/§ G2y 1y\/_> <1+ Y | Ty 5234\/_)

<
<
SN—
I
ml
e

+ ==+ + ==+

VN N NVN VN N NVN
:Kﬁe 2(904—\/_\/_—1— y+N\/—y\/_)

where K, vy, vy and €3 are given by

K = i 1 I p- ol 6_%(3162(1)7112);(:5}12)72]071) + O(N—Q)
by P(U < 1/p) 2y (p—1) 3 ’

v1 = gor1 +q1, V2 = gor2 + 171 + g2, €3 = O(1),

(3.28)

respectively. Let

1\ 1 2\ .2
Jo = Kgol' (5) 27, J; = KojT (5) 27, Jy = Kvol' (g) 27,

Furthermore, let hg(y) be a probability density function of the chi-squared distribution
with s degrees of freedom. Then, from (3.28), the conditional probability density function

¥ (y) can be expressed as

Yy

J1 Jo [{&?3675
= Joh + —h —h —_—. 3.29
Using the convolution formula
Graele) = [ Gsle=hau)dy,
0
substituting (3.29) into (3.17) yields
J1 Jo
P(=2logA; +Y <¢) = JoGyy1(c) + \/——Gf+2( c) + Gf+3( )
(3.30)

J()Mp k

+ G raa(0) ~ G (@) + e,

where ¢ is given by

J1M

f {Gf+4< )~ Graale)} + 20

{Gris(c) = Graslc)}

N\/— e 2yGf c—y)dy
K€3M’ —¥ _9
+ W ; e 2y{Gr2(c—y) = Gelc—y)tdy + O(N 7).
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Here, K, Jy, J1 and J5 are given by

K — 1 1 p_#ﬁ‘% 67% (3,62(,7,112);(:5}712)72?,1) N O(N_2)
P(U < 1/p)2v/2r (p—1)~5+2 ’

1 1 1 (3k2(17—112)2(+ip12)—2p—1) ~
SP(IT < 1/m) nr O(N
2P(U < 1/p) {e +ONT) o,

— 1) —p— _ 1 3k%2(p-1)2+5p2—2p—1
Jy = 3]€(p 1) p 1 1 e N( 12p(p—1) ) + O(N_g) 7
6/mp(p—1) PU <1/p)

J2 = 13[92(1) - 1)2 + 5p2 — 2]? —1 1 6_% <3k2(p7112)§(;ip12)72p71> + O(N—Q)
2 12p(p — 1) P(U < 1/p) ’

Jo =

respectively. In addition, it is easily checked that ¢ = O(N—%/2) because J1, Ja, M,
Gy(c), Geialc) —Gy(c), K, e3 and ye ¥/? are bounded under 0 < y < ¢. Therefore, from
(3.15), (3.18), (3.30) and (3.31) we obtain

P(—2logAy + W < ¢, U < 1/p) =P(—2logA1 +Y <¢) x P(U < 1/p)

1 1 3k(p—1)—p—1
= -G + G
2 f_|_1(C) \/N 6 ﬂ_p(p — 1) f+2(c)
13k2(p—1)2+5p2—2p—1 (1 1 (3.32)
Mp,k

{56700 - 5610 )+ ONH2)

3.3. Final result

Substituting (2.11), (3.14) and (3.32) into (3.1), we derive the asymptotic expansion
of the null distribution of —2log A as

1 1 A

P(~2log A < ¢) = 5G () + 5Gpea(c) + \/—%{Gm(c) — Gy(0)}
Az As _3/2
+ W{Gfm(c) — Gy} + W{GHS(C) —Gpa(0)} + O(NT7),
(3.33)
where
1) —-p—1 M, 2(p—1)2+5p2 —2p— 1
A ==Y —p—t o My, SR )T =21 (3.34)
6+/mp(p — 1) 2 24p(p — 1)

4. Conservativeness and power

In Section 2 and 3, we derived the asymptotic expansions (2.12) and (3.33) when A\? > 0
and A\? = 0, respectively. For testing the hypothesis (1.3), we should use the asymptotic
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expansion (2.12) if A2 > 0 is true, on the other hand, we should use (3.33) if A2 = 0
is true. However, we do not know which is true because A\? is the unknown parameter.
Hence, which expansion should we use, that is the problem. Nevertheless, one of the

answers to this problem is given by the following theorem.

Theorem 4.1. Let A be the LR criterion for testing Hg : X = )\211[,1;j + 0?1, \* >
0, 02 > 0 v.s. H; : not Hy under the parallel profile model (1.1). Then, under Hy it holds

that
P(—2log A > ¢ | Hy) < P(—2log A > ¢ | Hp, A\? = 0).

Proof. Suppose that Hy is true and A2 > 0. Under Hy, from Section 2, —2log A can be

written as A fs1/f /f
B _ [—2log A, it s1/f1 2 82/ J2,
210gA—{_210gA1+Q, if s1/f1 < s2/f,

where, f1, fa, s1, s2 and A; are defined in Section 2, and (@) is given by

p—1
_ P’ 51 s
Q= Nlog{(p—l)l’_l (81+82> (1 81+82) } (4'1)

Note that A1, s; and so are mutually independent, and

S1 T2X?\f—k7 S2 ~ 02X%N_1)(p_1)7 72 =pX* + o,

From the definition of A we have

P(—2logA < c | Hp,A* > 0) = P(—2log Ay < ¢,81/s0 > (p—1)"" | Hy, A > 0)
+P(—2log A1 +Q < ¢, 51/50 < (p—1)7" | Hp, A* > 0).

(4.2)
Since 02 /72 < 1, if 81/s9 < (p — 1)~! then
2 2
219 ” $1 i s2 s1/72% + (;77:2) X 8o /02 ” 31/7{;1—/:52/02 =U (say) >0. (43)
Note that U ~ Beta((N — k)/2,(N — 1)(p — 1)/2). From (4.3) it holds that
Q<-Nlog—L_u(1—Uy' =W (say),
(p— 1P~
because the function .
—Nlog (p_pﬁx(l — )Pt
is a decreasing function on (0,1/p). Thus, the following inequality holds.
P(—2log Ay + W < ¢,51/50 < (p—1)"1 | Hp, A2 > 0) (84

< P(—2log A1+ Q < ¢,81/s0 < (p— 1)7" [ Ho, A* > 0).
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Hence, using (4.2) and (4.4) it holds that

P(—2log A < c | Ho, A* > 0) > P(—2log Ay < ¢,81/s0 > (p—1)"" | Ho, A > 0)

+P(—2log Ay + W < ¢, 81/s0 < (p—1)"' | Hp, A2 > 0).
(4.5)

Furthermore, the right hand side of (4.5) satisfies that

P(—210gA1 S 0781/52 Z (p— 1)_1 | Ho,)\2 > 0)
+P(—2log Ay + W < ¢,51/50 < (p—1)"1 | Hp, A2 > 0)

2 1
—p (21080, < TS Ho, A2 > 0
s9f0? ~ p—1
1 s1/m? _ 0% 1 9
Pl —-2logA; < > > ——— | Hp,A* >0
* ( R | safo2 T m2p—1 0
51 /72 1 9
+P(—2logA + W <cg, Ho, A >0
sofo? p—1
1 2 21
P —2logA + W <, VA S IR RN
p—1" s9/02 =~ m2p—1
=P(—2logA; <c,U > 1/p | Hy, A2 > 0) +P(—2log Ay + W < ¢,U < 1/p | Hp, A > 0)
1 s/t _ 0% 1 9
P —2logA; <c, > > ——— | Hyp,A* >0
* ( °8 1_Cp—l sg/o? ~ 1m2p—1 0
1 2 21
P —2logh, + W <o, VA AN S B TSR
p—1" s9/02 ~ m2p—1
> P(~2logAy < U > 1/p | Ho, A2 > 0) + P(—2log Ay + W < ¢,U < 1/p | Ho, A2 > 0)

(4.6)

Here, the last inequality is derived by W > 0. Noting that Ay, U and W do not depend
on A2, substituting (4.6) into (4.5) yields

P(—2log A < c | Hp, A > 0)
> P(—2logA; < ¢,U >1/p | Hp, A2 > 0) + P(—2log Ay + W < ¢,U < 1/p | Hy, \*> > 0)
= P(—2logA; < c | Hp, A2 > 0)P(U > 1/p | Hop, A2 > 0)

+P(—2log Ay + W < ¢,U < 1/p | Hp, A\* > 0)
= P(—2log Ay < ¢ | Hyp, A2 =0)P(U > 1/p | Hp, A\*> = 0)

+P(—2log Ay + W < ¢, U < 1/p | Hp, A2 = 0)
= (3.1) = P(—2log A < ¢ | Hp,A\* = 0).

(4.7)

This implies that P(—2log A > ¢ | Hg) < P(—2log A > ¢ | Hy, A% = 0) O

From Theorem 4.1, the actual test size of the test using the null distribution under
A2 = 0, is always smaller than the nominal test size o even if A? > 0 is true. The nominal

test size a can be chosen freely by the analyst, and « should not be overestimated. In
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this sense, this testing method is conservative (the safest). For this reason, we suggest
using the asymptotic expansion (3.33) for testing the hypothesis (1.3).
On the other hand, in the certain alternative hypothesis, the power of the test using

the null distribution under A\? = 0 is given by the following corollary.

Corollary 4.1. Let A be the LR criterion defined as in Theorem 4.1, and let

2
Hiy i = ply1, +0%T,, 0> p> —%, o2 > 0.

Then, under Hy; it holds that
P(—2log A > ¢ | Hy,A\> = 0) < P(=2log A > ¢ | Hyy).

Proof. Suppose that Hy; is true. Under Hyq, since ¥ has the exchangeable covariance

structure, —2log A can be written as

—2log Ay if s1/f1 > s2/f2
—2log A = ’ : ’
08 {—ZIOgAl—i—Q, if s1/f1 < s2/ f2,

where, f1, f2, s1, s2 and A; are defined in Section 2, and @ is given by (4.1). Note that
A1, s1 and sy are mutually independent, and
51~V XN_g  S2 O-ZX%N—I)(p—l)? v? =pp+o.
Noting that 02 /v? > 1 and Y is non-negative, we have
P(—2logA <c¢ | Hy1)
= P(—2log Ay < ¢,51/59 > (p—1)"" | Hi)
+P(—2log A1 +Q < ¢, 51/s5 < (p—1)~" | Hyy)

2
S1/v > ! Hiy
s9f0? — p—1

1 2 21
- P (—210gA1 <eg, < 51/ < 7 ‘ Hn)

=P (—2logA1 <cg,

p—17" s9/02 " vZp-—1

2 1
+P (-2 lOgAl + Q <, 81/U < Hy;
sefo? T p—1

1 2 21
1P (2lgh t Qe o<V o Ly
p—17 s9/02 " v2p—1

H11>

2 1
+P —210gA1+Q§C, Sl/U < Hqi ).
sefo? ~p—1

s1/v? S 1

s9f0? — p—1

<P (—2logA1 <eg,

Since 02 /v? > 1, if (s1/v?)/(s2/0?) < (p —1)7! then

S1 51/“2 Sl/U2 * 1
0< = < =U < ——-. (438
51 + so 31/02 + (0‘2/’02) > 52/02 51/1}2 + 32/02 (say) p_1 ( )
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Note that U* ~ Beta((N —k)/2,(N —1)(p —1)/2). From (4.8) it holds that

pp

> —Nlog ————
Q= Nlos

U*(1—U*P~t = W* (say).

Therefore, similarly as to evaluations of (4.4) and (4.7) in the proof of Theorem 4.1, we

obtain
P(—2log A > ¢ | Hp,A\* = 0) < P(—2log A > ¢ | Hyy).

O

Corollary 4.1 implies that, for the fixed nominal test size «, the actual test size (or
power) of the test using the null distribution under A\? = 0, is larger than o under Hy;.

Therefore, this testing method is also better from the viewpoint of the power.

Remark 4.1. The null hypothesis Ho+ considered by Srivastava and Singull (2012)
includes Hy;. Hence, for the fixed nominal test size «, the actual test size (or power)
of the test using the M-LRT proposed by Srivastava and Singull (2012), is equal to «
under Hy;. Therefore, under the certain alternative hypothesis Hy;, the test using the
null distribution of R-LRT proposed by Yokoyama (1995) under A\? = 0, is better than
the test using the M-LRT from the viewpoint of the power.

5. Numerical experiments

To compare the accuracy of the approximations based on the limiting distribution and

the asymptotic expansion, we compute the actual test sizes (ATSs) of —2log A. Let

FOT9) () = G (o) + T (G () — G (),
FO=0(6) = 564(0) + 5Gria(0) + 7{Grale) ~ Gy (o))

220G 110(0) — GO} + TG ria(0) — G (),

where M), j, is given by (2.9) and A;, Ay, Ajs are given by (3.34). Let a be the nominal
test size. Then, from 100,000 monte carlo simulation runs, in the case of A\? > 0 the
ATSs of —2log A based on the limiting distribution and the asymptotic expansion are

computed as

- #{t|Gy() >1-a}

#{t |[FA>0) > 1 - o}
a =
A2>0 100000 ’

100000 ’

axN2>0

respectively. Similarly, in the case of A2 = 0 these are computed as

#{t 0.5 (Gy() + Gpa(t) >1—a} _  #{t[FX=0(1) > 1—a}

Hx2=0 = 100000 ) *A2=0 100000 ’
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respectively. Here, t is the values of —2log A calculated from the simulation data. Under

the null hypothesis we considered the following six cases.

(1) p=2, k=2, X=1,02=1, (2) p=4, k=2 X=1,0>=1,
3) p=2, k=5 N=1, ¢?=1, (4) p=2 k=2 X=0, 0*=1,
(5) p=4, k=2, A=0,0°=1, (6) p=2, k=5 A=0,o0>=1

The ATSs in the cases (1)—(3) and (4)—(6) are given in Table 1 and Table 2, respectively,

for a« = 0.05

Table 1. The ATSs in the cases (1)—(3)  Table 2. The ATSs in the cases (4)—(6)

Sample size | Nominal 5% test Sample size | Nominal 5% test
N NN N Qpa—g  Qpz
10 0.11776  0.07249 10 0.12881 0.07344
20 0.07384  0.05382 20 0.08451  0.05691
30 0.06532  0.05226 30 0.07110  0.05210
Case (1) 40 0.06047  0.05005 Case (4) 40 0.06607  0.05208
50 0.05953  0.05133 50 0.06320  0.05196
80 0.05671  0.05180 80 0.05849  0.05034
100 0.05430  0.05001 100 0.05646  0.04952
10 0.24649  0.13524 10 0.26490  0.14340
20 0.11172  0.06703 20 0.11929  0.06738
30 0.08576  0.05714 30 0.09053  0.05782
Case (2) 40 0.07563  0.05454 Case (5) 40 0.07823  0.05406
50 0.06871  0.05267 50 0.07120  0.05237
80 0.06177  0.05079 80 0.06294  0.05108
100 0.05813  0.04986 100 0.06075  0.05071
10 0.28712  0.18017 10 0.38579  0.22048
20 0.10971  0.06863 20 0.16566  0.08472
30 0.08318  0.05713 30 0.11993  0.06411
Case (3) 40 0.07303  0.05395 Case (6) 40 0.10114  0.05883
50 0.06786  0.05352 50 0.09308  0.05777
80 0.06188  0.05272 80 0.07656  0.05188
100 0.05654  0.04930 100 0.07278  0.05203

From Table 1 and 2 we can see that the accuracy of the approximations of &2y and
an2—q are better than that of ay2-¢ and &y2—g, respectively. However, for the small
sample size, the approximation of the asymptotic expansion is still not good when p

and k are not very small. Nevertheless, for any natural number s, applying the same
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techniques used in Section 2 and 3 we can derive the asymptotic expansion up to the
order of N~™¢. Therefore, further improvement in the accuracy of the approximation is

possible.

6. Conclusion

We derived the asymptotic expansions of the null distribution of the L-LRT proposed
by Yokoyama (1995). Numerical experiments showed that the accuracy of the approx-
imation of the asymptotic expansion is better than that of the limiting distribution.
Furthermore, Applying the same techniques used in Section 2 and 3, further improve-
ment in the accuracy of the approximation is possible. Therefore, “the accuracy of the
approximation” of the test using the L-LRT was improved.

On the other hand, from Theorem 4.1, we showed that the test Assuming A\?> = 0 is the
safest. In addition, from Corollary 4.1, we also showed that the power of the test assuming
A2 = 0 is larger than the nominal test size « in the certain alternative hypothesis Hy.
Recall that the test using the M-LRT proposed by Srivastava and Singull (2012) is not
detected the hypothesis Hy;. Hence, under Hyq, the test using the L-LRT is better than
the test using the M-LRT.

Appendix : derivation of (3.21)

Consider the following relation

_
(p—1)p—t

pp

)Pl =
u(l —u)?~" = —Nlog = D

y=—Nlog — Nlogu(l —u)P™1,

where y is defined on (0, ¢] and ¢ is a positive constant. Similarly, u is defined on [u*,1/p)

and u* is a positive number satisfying

—N log Lu*(l —uf )Pt =
(p—1)rt

Here, for simplicity, we denote by N(z;¢) the e-neighborhood of x. Let
f(u) =logu(l —u)P~1,
Using Taylor expansion at u = 1/p, f(u) can be expanded as
1 *
f(w) = f(1/p)+ f'(1/p)(u = 1/p) + 5 f"(w1)(u = 1/p)*, u* < ux < 1/p.

Nothing that —N{f(u) — f(1/p)} =y, f'(1/p) =0 and u < 1/p, we have

L_ Y 2 vy (A1)

u—— = ——=c1,

p VN\ fw)” VN
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where f”(u;) and ¢; are bounded. Again, using Taylor expansion at v = 1/p, f(u) can

be expressed as

Flu) = F(1/p) + 580 /p) = 1/pP + 1" (e — 1), o <z < 1/p.

From this expansion and (A.1), we obtain

_1:_\/§ — 2 llllu ﬁci’):_\/@ _ 2 M
T W\/ f”<1/p>\/1+6f ) wa = m\/ f”(l/p)\/H\/N’
(A.2)

where e1,/yN /2 = o(1) because f”(uz2), ¢; and y are bounded. Let g(z) = (1 —z)!/2.

Then, using Taylor expansion at = = 0, g(x) is expressed as
V1i—z=1+¢'(z")z, 2* € N(0; |z]).

Thus, we have

1+ 5\1/%@ —1- g'(al)%@, 51 € N(0; |e1 | /gN~V/2). (A.3)

Note that ¢’(d1) is bounded because §; = o(1). Therefore, from (A.2) and (A.3) we

obtain

1 Vy |2 Y 2 VY v,
“T TN\ T T \\ (1/p) Nt B

where ¢y is bounded and by is given by

2
TP

Similarly, from (A.1) and (A.4), using Taylor expansion at v = 1/p, f(u) can be

expanded as

Flu) = F(Up)+ 5 (1) = 1) + £ (/) (= 1/p)* 4 o F D (us)(u — 1/p),

2 6
3
= )+ W1+ ) (- )
2C 3b 2,2 C3 C4
w gy (B - PR L ) b L )
2

3

where ug is defined on [u*,1/p) and &2 is bounded. Hence, from this expansion, we have

1__ v _[SA) s e VLN
U—]—)— \/Nbl\/l { 6\/N b1\/§ Ny} \/Nbl 1 €3, (A5)
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where €3 = o(1). Using

1 1
Vi—z=1- 2% + 59//(33*)1'2, x* € N(0; |z]),

(1 —£3)'/2 can be expressed as

VI—es=1- %ag + %g"((sg)gg
_ f"(1/p) /P) 623/ g”(52) y [ f"(1/p) €9 2
=1 uy VI aN T N{ 6 b?{_\/_ﬁ‘@}
=1-— f12(\//_p) 1\/§ + N€4, (52 € N(O, ‘83’), (A6>

where ¢”(02) and €4 are bounded because d2 = o(1). Therefore, substituting (A.6) into
(A.5) yields

1 \/_ Y il " y\/@ \/@ Yy y\/g
U——-=——"=b + =— 1 — bieg = ——=b1 + =bs + es, (A7
D \/_ Ngf(/p) N\/Nl4 \/Nl N’ N\/N5 (A7)
b b4 ///(1/)
2= 15!

where ¢5 is bounded.
Finally, using Taylor expansion at u = 1/p for f(u) up to the fifth order, the expansion
for g(x) up to the second order, (A.1) and (A.7), we obtain

1 b b b
U= —\/—%\/@r Nzy+N—\;Ny\/§+ %yz, e=0(1),
by = {f"(/p)3*]  f(1/p)bibe  fU(1/p)0]

288 4 48
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