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Abstract. We get the computable error bounds for generalized
Cornish-Fisher expansions for quantiles of statistics provided that
the computable error bounds for Edgeworth-Chebyshev type ex-
pansions for distributions of these statistics are known. The results
are illustrated by examples.

1. Introduction and main results

In statistical inference it is of fundamental importance to obtain
the sampling distribution of statistics. However, we often encounter
situations, where the exact distribution cannot be obtained in closed
form, or even if it is obtained, it might be of little use because of its
complexity. One practical way of getting around the problem is to
provide reasonable approximations of the distribution function and its
quantiles, along with extra information on their possible errors. It can
be made with help of Edgeworth–Chebyshev and Cornish–Fisher type
expansions. Recently the interest for Cornish–Fisher type expansions
stirred up because of intensive study of VaR (Value at Risk) models
in financial mathematics and financial risk management (see, e.g. [14]
and [15]).

Mainly, it is studied the asymptotic behavior of the expansions men-
tioned above. It means that accuracy of approximation for distribution
of statistics or its quantiles is given as O(·), that is in the form of order
with respect to some parameter(s) (usually, w.r.t. n as a number of
observations and/or p as dimension of observations). In this paper we
construct non-asymptotic error bounds, in other words – computable
error bounds, for Cornish–Fisher type expansions, that is for an er-
ror of approximation we prove upper bounds with closed-form depen-
dence on n and/or p and, perhaps, on some moment characteristics of
observations. We get these bounds under condition that similar non-
asymptotic results are already known for accuracy of approximation of
distributions of statistics by Edgeworth–Chebyshev type expansions.

LetX be a univariate random variable with a continuous distribution
function F . For α : 0 < α < 1, there exists x such that F (x) = α,
which is called the (lower) 100α% point of F . If F is strictly increasing,
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the inverse function F−1(·) is well defined and the 100α% point is
uniquely determined. We also speak of “quantiles” without reference
to particular values of α meaning the values given by F−1(·). Even
in the general case, when F (x) is not necessarily continuous nor is it
strictly increasing, we can define its inverse function by formula

F−1(u) = inf{x;F (x) > u}.

This is a right-continuous nondecreasing function defined on the inter-
val (0, 1) and F (x0) ≥ u0 if x0 = F−1(u0).

Let Fn(x) be a sequence of distribution functions and let each Fn

admit the Edgeworth-Chebyshev type expansion (ECE) in the powers
of ϵ = n−1/2 or n−1:

Fn(x) = Gk,n(x) +Rk(x) with Rk(x) = O(ϵk) and

Gk,n(x) = G(x) +
{
ϵa1(x) + · · ·+ ϵk−1ak−1(x)

}
g(x),

(1)

where g(x) is a density function of the limiting distribution function
G(x). An important approach to the problem of approximating the
quantiles of Fn is to use their asymptotic relation to those of G’s. Let
x and u be the corresponding quantiles of Fn and G, respectively. Then
we have

(2) Fn(x) = G(u).

Write x(u) and u(x) to denote the solutions of (2) for x in terms of u
and u in terms of x, respectively [i.e. u(x) = G−1(Fn(x)) and x(u) =
F−1
n (G(u))]. Then we can use the ECE (1) to obtain formal solutions

x(u) and u(x) in the form

(3) x(u) = u+ ϵb1(u) + ϵ2b2(u) + · · ·
and

(4) u(x) = x+ ϵc1(x) + ϵ2c2(x) + · · · .

Cornish and Fisher in [3] and [6] obtained the first few terms of these
expansions when G is the standard normal distribution function (i.e.,
G = Φ). Both (3) and (4) are called the Cornish–Fisher expansions,
(CFE). Concerning CFE for random variables obeying limit laws from
the family of Pearson distributions see, e.g., [1]. Hill and Davis in [13]
gave a general algorithm for obtaining each term of CFE when G is an
analytic function.

Usually the CFE are applied in the following form with k = 1, 2 or
3:

(5) xk(u) = u+
k−1∑
j=1

ϵjbj(u) + R̂k(u) with R̂k(u) = O(ϵk).

It is known (see, e.g., [15]) how to find the explicit expressions for b1(u)
and b2(u) as soon as we have (1). By Taylor’s expansions for G, g, and
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a1, we obtain

b1 = −a1(u),

b2 =
1

2
{g′(u)/g(u)}a21(u)− a2(u) + a′1(u)a1(u),

(6)

provided that g and a1 are smooth enough functions.
In the following Theorems we show how xk(u) from (5) could be

expressed in terms of u. Moreover, we show what kind of bounds we
can get for R̂k(x) as soon as we have some bounds for Rk(x) from (1).

Theorem 1. Suppose that for the distribution function of a statistic
U we have

(7) F (x) ≡ Pr{U ≤ x} = G(x) +R1(x),

where for remainder term R1(x) there exists a constant c1 such that

|R1(x)| ≤ d1 ≡ c1ϵ.

Let xα and uα be the upper 100α% points of F and G respectively, that
is

(8) Pr{U ≤ xα} = G(uα) = 1− α.

Then for any α such that 1− c1ϵ > α > c1ϵ > 0 we have

(i): uα+d1 ≤ xα ≤ uα−d1.

(ii): |xα − uα| ≤ c1ϵ/g(u(1)), where g is the density function of
the limiting distribution G and

g(u(1)) = min
u∈[uα+d1

,uα−d1
]
g(u).

Theorem 2. In the notation of Theorem 1 we assume that

F (x) ≡ Pr{U ≤ x} = G(x) + ϵg(x)a(x) +R2(x),

where for remainder term R2(x) there exists a constant c2 such that

|R2(x)| ≤ d2 ≡ c2ϵ
2.

Let T = T (u) be a monotone increasing transform such that

Pr{T (U) ≤ x} = G(x) + R̃2(x) with |R̃2(x)| ≤ d̃2 ≡ c̃2ϵ
2.

Let x̃α and uα be the upper 100α% points of Pr{T (U) ≤ x} and G,
respectively. Then for any α such that

1− c̃2ϵ
2 > α > c̃2ϵ

2 > 0,

we have

(9) |x̃α − uα| ≤ c̃2ϵ
2/g(u(2)),

where

g(u(2)) = min
u∈[uα+d̃2

,uα−d̃2
]
g(u).
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Theorem 3. We use the notation of Theorem 2. Let b(x) be a function
inverse to T , i.e. b(T (x)) = x. Then xα = b(x̃α) and for α such that
1− c̃2ϵ

2 > α > c̃2ϵ
2 we have

(10) |xα − b(uα)| ≤ c̃2
|b′(u∗)|
g(u(2))

ϵ2,

where

|b′(u∗)| = max
u∈[uα+d̃2

,uα−d̃2
]
|b′(u)|.

Moreover,

(11) b(x) = x− ϵa(x) +O(ϵ2).

Remark 1. The main assumption of the Theorems is that for distri-
butions of statistics and for distributions of transformed statistics we
have some approximations with computable error bounds. There are
not many papers with this kind of non-asymptotic results because it
requires technique which is different from the asymptotic results meth-
ods (cf., e.g., [10] and [20]). In series of papers [7], [8], [10], [11], [2],
[16], [18], [19] we got non-asymptotic results for wide class of statistics
including multivariate scale mixtures and MANOVA tests. We con-
sidered as well the case of high dimensions, that is the case when the
dimension of observations and sample size are comparable. The results
were included in the book [9]. See also [5].

Remark 2. The results of Theorems 1–3 could not be extended
to the whole range of α ∈ (0, 1). It follows from the fact that the
Cornish-Fisher expansion does not converge uniformly in 0 < α < 1.
See corresponding example in Section 2.5 of [12].

Remark 3. In Theorem 2 we required the existence of a monotone
increasing transform T (z) such that distribution of transformed statis-
tic T (U) is approximated by some limit distribution G(x) in better way
than the distribution of original statistic U . We call this transforma-
tion T (z) the Bartlett type correction. See corresponding examples in
Section 3.

Remark 4. According to (10) and (11) the function b(uα) in Theo-
rem 3 could be considered as an ”asymptotic expansion” for xα up to
order O(ϵ2).

2. Proofs of main results

Proof of Theorem 1. By the mean value theorem,

|G(xα)−G(uα)| ≥ |xα − uα| min
0<θ<1

g(uα + θ(xα − uα)).

From (7) and the definition of xα and uα in (8), we get

|G(xα)−G(uα)| = |G(xα)− Pr{U ≤ xα}|
= |R1(xα)| ≤ d1.
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Therefore,

(12) |xα − uα| ≤
d1

min0<θ<1 g(uα + θ(xα − uα)
.

On the other hand, it follows from (7) that

G(xα) = 1− α−R1(α)

≤ 1− (α− d1) = G(uα−d1).

This implies that xα ≤ uα−d1 . Similarly, we have uα+d1 ≤ xα. There-
fore, we proved Theorem 1 (i).

It follows from Theorem 1 (i) that

min
u∈[uα+d1

,uα−d1
]
g(u) ≤ min

0<θ<1
g(uα + θ(xα − uα)).

Thus, using (12) we get statement of Theorem 1 (ii).

Proof of Theorem 2. It is easy to see that it is sufficient to apply
Theorem 1 (ii) to the transformed statistic T (U).

Proof of Theorem 3. Using now (9) and the mean value theorem we
obtain

(13) x̃α − uα = b−1(xα)− b−1(b(uα)) = (b−1)′(x∗)
(
xα − b(uα)

)
,

where x∗ is a point on the interval
(
min{xα, b(uα)} , max{xα, b(uα)}

)
.

By Theorem 1 (i) we have

uα+d̃2
≤ x̃α ≤ uα−d̃2

.

Therefore, for xα = b(x̃α) we get

(14)
(
min{b−1(xα), uα} , max{b−1(xα), uα}

)
⊆

(
uα+d̃2

, uα−d̃2

)
.

Since by properties of derivatives of inverse functions

(b−1)′(z) = 1/ b′(b−1(z)) = 1/b′(y)

for z = b(y), the relations (13) and (14) imply (10).
Representation (11) for b(x) follows from (6) and (10).

3. Examples

In [17] we gave sufficient conditions for transformation T (x) to be
the Bartlett type correction (see Remark 3 above) for wide class of
statistics U allowing the following represantion

(15) Pr{U ≤ x} = Gq(x) +
1

n

k∑
j=0

aj Gq+2j(x) +R2k,

where R2k = O(n−2) and Gq(x) is the distribution function of chi-
squared distribution with q degrees of freedom and coefficients aj’s

satisfy the relation
∑k

j=0 aj = 0. Some examples of the statistic U are
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as follows: for k = 1, the likelihood ratio test statistic; for k = 2, the
Lawley-Hotelling trace criterion and the Bartlett-Nanda-Pillai trace
criterion, which are test statistics for multivariate linear hypothesis
under normality; for k = 3, the score test statistic and Hotelling’s T 2-
statistic under nonnormality. The results of [17] were extended in [4]
and [5].

In [10] we were interested in the null distribution of Hotelling’s gen-
eralized T 2

0 statistic defined by

T 2
0 = n trSh S

−1
e ,

where Sh and Se are independently distributed as Wishart distributions
Wp(q, Ip) and Wp(n, Ip) with identity operator Ip in Rp, respectively.
In Theorem 4.1 (ii) in [10] we proved (15) for all n ≥ p with k = 3 and
computable error bound:

|Pr(T 2
0 ≤ x)−Gr(x)−

r

4n
{(q − p− 1)Gr(x)

−2qGr+2(x) + (q + p+ 1)Gr+4(x)}|

≤ cp,q
n2

,

where r = pq and for constant cp,q we gave expicit formula with depen-
dence on p and q.

Therefore, according to [17] we can take in this case the Bartlett
type correction T (z) as

T (z) =
a− 1

2b
+

√(
a− 1

2b

)2

+
z

b
,

where

a =
1

2n
p(q − p− 1),

b =
1

2n
p(q + p+ 1)(q + 2) −1.

It is clear that T (z) is invertable and we can apply Theorem 3.
Other examples and numerical calculations and comparisons of ap-

proximation accuracy see in [4] and [5].
One more example is connected with sample correlation coefficient.

Let
X = (X1, ..., Xn)

T , and Y = (Y1, ..., Yn)
T be two vectors from an

n-dimensional normal distribution N(0, In) with zero mean, identity
covariance matrix In and the sample correlation coefficient

R = R(X,Y ) =

∑n
k=1 Xk Yk√∑n

k=1 X2
k

∑n
k=1 Y 2

k

.

In [2] it was proved for n ≥ 7 and N = n− 2.5:

supx

∣∣∣∣Pr(√N R ≤ x
)
− Φ(x)− x3 φ(x)

4N

∣∣∣∣ ≤ Bn

N2
,
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with Bn ≤ 2.2. It is easy to see that we can take T (z) as the Bartlett
type correction in the form T (z) = z + z3/(4N). Then the inverse
function b(z) = T−1(z) is defined by formula

b(z) =
(
2N z +

√
(2Nz)2 + (4N/3)3

)1/3

−
(
− 2N z +

√
(2Nz)2 + (4N/3)3

)1/3

= z − z3

4N
+

3 z5

16N2
+O(N−3).

Now we can apply Theorem 3.
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