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Abstract

The aim of this paper is to review likelihood ratio test procedures

in multivariate linear models, focusing on projection matrices. It is

noted that the projection matrices to the spaces spanned by mean vec-

tors in hypothesis and alternatives play an important role. Some basic

properties are given for projection matrices. The models treated in-

clude multivariate regression model, discriminant analysis model and

growth curve model. The hypotheses treated involve a generalized

linear hypothesis and no additional information hypothesis, in addi-

tion to a usual liner hypothesis. The test statistics are expressed in

terms of both projection matrices and sums of squares and products

matrices.
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1. Introduction

In this paper we review statistical inference, especially LRC (Likelihood

Ratio Criterion) in multivariate linear model, focusing on matrix theory.

Cosider a multivariate linear model with p response variables y1, . . . , yp and

k explanatory or dummy variables x1, . . . , xk. Suppose that y = (y1, . . . , yp)
′

and x = (x1, . . . , xk)
′ are measured for n subjects, and let the observation

of the ith subject be denoted by yi and xi. Then, we have the observation

matrices given by

Y = (y1,y2, . . . ,yn)
′, X = (x1,x2, . . . ,xn)

′. (1.1)

It is assumed that y1, . . . ,yn are independent and have the same covariance

matrix Σ. We express the mean of Y as follows:

E(Y) = η = (η1, . . . ,ηp). (1.2)

A multivariate linear model is defined by requiring that

ηi ∈ Ω, for all i = 1, . . . , p, (1.3)

where Ω is a given subspace in the n dimensional Euclid space Rn. A typical

Ω is given by

Ω = R[X] = {η = Xθ; θ = (θ1, . . . , θk)
′,−∞ < θi < ∞, i = 1, . . . , k}.

(1.4)

Here, R[X] is the space spanned by the column vectors ofX. A general theory

for statistical inference on the regression parameter Θ can be seen in texts

on multivariate analysis, e.g., see Anderson (2003), Arnold (1981), Fujikoshi

et al. (2010), Muirhead (1982), Rencher (2002), Seber (2004), Seber (2008),

Siotani et al. (1985), etc. In this chapter we discuss with algebraic approach

in multivariate linear model.
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In section 2 we consider a multivariate regression model in which xi’s

are explanatory variables and Ω = R[X]. The MLE (Maximum Likelihood

Estimator) ’s and LRC (Likelihood Ratio Criterion) for Θ2 = O are derived

by using projection matrices. Here, Θ = (Θ1 Θ2). The distribution of LRC

is discussed by multivariate Cochran theorem. It is pointed out that pro-

jection matrices play an important role. In Section 3 we give a summary

of projection matrices. In Section 4 we consider to test an additional infor-

mation hypothesis of y2 in the prsence of y1, where y1 = (y1. . . . , yq)
′ and

y2 = (yq+1. . . . , yp)
′. In Section 5 we consider testing problems in discrimi-

nant analysis. Section 6 deals with a generalized multivariate linear model

which is also called the growth curve model. Some related problems are

discussed in Section 7.

2. Multivariate Regression Model

In this section we consider a multivariate regression model on p response

variables and k explanatory variables denoted by y = (y1, . . . , yp)
′ and x =

(x1, . . . , xk)
′, respectively. Suppose that we have the observatin matrices

given by (1.1). A multivariate regression model is given by

Y = XΘ+ E, (2.1)

where Θ is a k × p unknown parameter matrix. It is assumed that the rows

of the error matrix E are independently distributed as a p variate normal

distribution with mean zero and unknown covariance matrixΣ, i.e., Np(0,Σ).

Let L(Θ,Σ) be the density function or the likelihood function. Then, we

have

−2 logL(Θ,Σ) = n log |Σ|+ trΣ−1(Y − XΘ)′(Y − XΘ) + np log(2π).

The maximum likelihood estimators (MLE) Θ̂ and Σ̂ of Θ and Σ are defined

by the maximizers of L(Θ,Σ) or equivalently the minimizers of−2 logL(Θ,Σ).
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Theorem 2.1. Suppose that Y follows the multivariate regression model in

(2.1). Then, the MLE’s of Θ and Σ are given as

Θ̂ = (X′X)−1X′Y,

Σ̂ =
1

n
(Y − XΘ̂)′(Y − XΘ̂) =

1

n
Y′(In −PX)Y,

where PX = X(X′X)−1X′. Further, it holds that

−2 logL(Θ̂, Σ̂) = n log |Σ̂|+ np {log(2π) + 1} .

Theorem 2.1 can be shown by a linear algebraic method, which is dis-

cussed in the next section. Note that PX is the projection matrix on the

range space Ω = R[X]. It is symmetric and idempotent, i.e.

P′
X = PX, P2

X = PX.

Next, we consider to test the hypothesis

H : E(Y) = X1Θ1 ⇔ Θ2 = O, (2.2)

againstK; Θ2 ̸= O, whereX = (X1 X2), X1;n×j andΘ = (Θ′
1 Θ

′
2)

′, Θ1; j×
p. The hypothesis means that the larst k − j dimensional variate x2 =

(xj+1, . . . , xk)
′ has no additional information in the presense of the first j

variate x1 = (x1, . . . , xj)
′. In general, the likelihood ratio criterion (LRC) is

defined by

λ =
maxH L(Θ,Σ)

maxK L(Θ,Σ)
. (2.3)

Then we can express

−2 log λ = min
H

{−2 logL(Θ,Σ)} −min
K

{−2 logL(Θ,Σ)}

= min
H

{n log |Σ|+ tr(Y −XΘ)′(Y −XΘ)}

−min
K

{n log |Σ|+ tr(Y −XΘ)′(Y −XΘ)} .

Using Theorem 2.1, we can expressed as

λ2/n ≡ Λ =
|nΣ̂Ω|
|nΣ̂ω|

.
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Here, Σ̂Ω and Σ̂ω are the maximum likelihood estimators of Σ under the

model (2.1) or K and H, respectively, which are given by

nΣ̂Ω = (Y −XΘ̂Ω)
′(Y −XΘ̂Ω), Θ̂Ω = (X′X)−1X′Y

= Y′(In −PΩ)Y (2.4)

and

nΣ̂ω = (Y −X1Θ̂1ω)
′(Y −X1Θ̂1ω), Θ̂1ω = (X′

1X1)
−1X′

1Y

= Y′(In −Pω)Y (2.5)

Summarizing these results, we have the following theorem.

Theorem 2.2. Let λ = Λn/2 be the LRC for testing H in (2.2). Then, Λ is

expressed as

Λ =
|Se|

|Se + Sh|
, (2.6)

where

Se = nΣ̂Ω, Sh = nΣ̂ω − nΣ̂Ω, (2.7)

and SΩ and Sω are given by (2.4) and (2.5), respectively.

The matrices SΩ and Sh in the testing problem are called the sums of

squares and products (SSP) matrices due to the error and the hypothesis,

respectively. We consider the distribution of Λ. If a p× p random matrix W

is expressed as

W =
n∑

j=1

zjz
′
j,

where zj ∼ Np(µj,Σ) and z1, . . . , zn are independent, W is said to have a

noncentral Wishart distribution with n degrees of freedom, covariance matrix

Σ, and noncentrality matrix ∆ = µ1µ
′
1 + · · · + µnµ

′
n. We write that W ∼

Wp(n,Σ;∆). In the special case ∆ = O, W is said to have a Wishart

distribution, denoted by W ∼ Wp(n,Σ).
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Theorem 2.3. (multivariate Cochcran theorem) Let Y = (y1, . . . ,yn)
′,

where yi ∼ Np(µi,Σ), i = 1, . . . , n and y1, . . . ,yn are independent. Let

A, A1, and A2 be n× n symmetric matrices. Then:

(1) Y′AY ∼ Wp(k,Σ;Ω) ⇔ A2 = A, trA = k,Ω = E(Y)′AE(Y).

(2) Y′A1Y and Y′A2Y are independent ⇔ A1A2 = O.

For a proof of multivariate Cochcran theorem, see, e.g. Seber (2004,

2008), Fujikoshi et al. (2010), Siotani et al. (1985), etc. Let B and W be

independent random matrices following the Wishart distribution Wp(q,Σ)

and Wp(n,Σ), respectively, with n ≥ p. Then, the distribution of

Λ =
|W|

|B+W|

is said to be the p-dimensional Lambda distribution with (q, n)-degrees of

freedom, and is denoted by Λp(q, n). For distributional results of Λp(q, n),

see Anderson (2003), Fujikoshi et al. (2010).

By using multivariate Cochran’s Theorem, we have the following distri-

butional results:

Theorem 2.4. Let Se and Sh be the random matrices in (2.7). Let Λ be the

Λ-statistic defined by (2.6). Then,

(1) Se and Sh are independently distributed as a Wishart distribution Wp(n−
k,Σ) and a noncentral Wishart distribution Wp(k − j,Σ;∆), respec-

tively, where

∆ = (XΘ)′(PX −PX1)XΘ. (2.8)

(2) Under H, the statistic Λ is distributed as a lambda distribution Λp(k −
j, n− k).

Proof. Note that PΩ = PX = X(X′X)−1X′, Pω = PX1 = X1(X
′
1X1)

−1X′

and PΩPω = PωPΩ. By multivariate Chochran’s theorem the first result (1)
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follows by checking that

(In−PΩ)
2 = (In−PΩ), (PΩ−Pω)

2 = (PΩ−Pω), (In−PΩ)(PΩ−Pω) = O.

The second result (2) follows by showing that ∆0 = O, where ∆0 is the ∆

under H. This is seen that

∆0 = (X1Θ1)
′(PΩ −Pω)(X1Θ1) = O,

since PΩX1 = PωX1 = X1.

The matrices Se and Sh in (2.7) are defined in terms of n × n matrices

PΩ and Pω. It is important to give expressions useful for their numerical

computations. We have the following expressions:

Se = Y′Y−Y′X(X′X)−1X′Y, Sh = Y′X(X′X)−1X′Y−Y′X1(X
′
1X1)

−1X′
1Y.

Suppose that x1 is 1 for all subjects, i.e., x1 is an intercept term. Then, we

can express these in terms of the SSP matrix of (y′,x′)′ defined by

S =
n∑

i=1

(
yi − ȳ
xi − x̄

)(
yi − ȳ
xi − x̄

)′

=

(
Syy Syx

Sxy Sxx

)
, (2.9)

where ȳ and x̄ are the sample mean vectors. Along the partition of x =

(x′
1,x

′
2)

′, we partition S as

S =

 Syy Sy1 Sy2

Sy1 S11 S12

Sy2 S21 S22

 . (2.10)

Then,

Se = Syy·x, Sh = Sy2·1S
−1
22·1S2y·1. (2.11)

Here, we use the notation Syy·x = Syy − SyxS
−1
xxSxy, Sy2·1 = Sy2 − Sy1S

−1
11 S1y,

etc. These are derived in the next section by using projection matrices.
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3. Idempotent Matrices and Max-Mini Prob-

lems

In the previous section we have seen that idempotent matrices play an

important role on statistical inference inference in multivariate regression

model. In fact, letting E(Y) = η = (η1, . . . ,ηp), consider a model satisfying

ηi ∈ Ω = R[R], for all i = 1, . . . , p, (3.1)

Then the MLE ofΘ is Θ̂ = (X′X)−1X′Y, and hence the MLE of η is denoted

by

η̂Ω = XΘ̂ = PΩY.

Here, PΩ = X(X′X)−1X′. Further, the residual sums of squares and products

(RSSP) matrix is expressed as

SΩ = (Y − η̂Ω)
′(Y − η̂Ω) = Y′(In −PΩ)Y.

Under the hypothesis (2.2), the spaces ηi’s belong are the same, and is given

by ω = R[X]. Similarly, we have

η̂ω = XΘ̂ω = PωY.

Sω = (Y − η̂ω)
′(Y − η̂ω) = Y′(In −Pω)Y,

where Θ̂ω = (Θ̂
′
1ω O)′ and Θ̂1ω = (X′

1X1)
−1X′

1Y. The LR criterion is based

on the following decompsition of SSP matries;

Sω = Y′(In −Pω)Y = Y′(In −PΩ)Y + Y′(PΩ −Pω)Y

= Se + Sh.

The degees of freedom in the Λ distribution Λp(fh, fe) are given by

fe = n− dim[Ω], fh = k − j = dim[Ω]− dim[ω].

In general, an n × n matrix P is called idemportent if P2 = P. A

symmetric and idempotent matrix is called projection matrix. Let Rn be
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the n dimensional Euclid space, and Ω be a subspace in Rn. Then, any n×1

vector y can be uniquely decomposed into direct sum, i.e.,

y = u+ v, u ∈ Ω, v ∈ Ω⊥, (3.2)

where Ω⊥ is the orthocomplement space. Using decomposition (3.2), consider

a mapping

PΩ : y −→ u, i.e. PΩy = u.

The mapping is linear, and hence it is expressed as a matrix. In this case,

u is called the orthogonal projection of y into Ω, and PΩ is also called

the orthogonal projection matrix to Ω. Then, we have the following basic

properties:

(P1) PΩ is uniquely defined.

(P2) In −PΩ is the projection matix to Ω⊥.

(P3) PΩ is a symmetric idempotent matrix.

(P4) R[PΩ] = Ω, and dim[Ω] = trPΩ.

Let ω be a subset of Ω. Then, we have the following properties:

(P5) PΩPω = PωPΩ = Pω.

(P6) PΩ −Pω = Pω⊥∩Ω, where ω⊥ is the orthcomplement space of ω.

(P7) LetB be a q×nmatrix, and let N(B) = {y; By = 0}. If ω = N[B]∩Ω,
then ω⊥ ∩ Ω = R[PΩB

′].

For more details, see, e.g. Rao (1973), Harville (1997), Seber (2008), Fu-

jikoshi et al. (2010), etc.

The MLE’s and LRC in multivariate regression model are derived by

using the following Theorem.

Theorem 3.1.

9



(1) Consider a function of f(Σ) = log |Σ|+trΣ−1S of p×p positive definite

matrix. Then, f(Σ) takes uniquely the minimum at Σ = S, and the

minimum value is given by

min
Σ>O

f(Σ) = f(S) + p.

(2) Let Y be an n× p known matrix and X an n× k known matrix of rank

k. Consider a function of p × p positive definite matrix Σ and k × p

matrix Θ = (θij) given by

g(Θ,Σ) = m log |Σ|+ trΣ−1(Y −XΘ)′(Y −XΘ),

where m > 0, −∞ < θij < ∞, for i = 1, . . . , k; j = 1, . . . , p. Then,

g(Θ,Σ) takes the minimum at

Θ = Θ̂ = (X′X)−1X′Y, Σ = Σ̂ =
1

m
Y′(In −PX)Y,

and the minimum value is given by m log |Σ̂|+mp.

Proof. Let ℓ1, . . . , ℓp be the characteristic roots of Σ
−1S. Note that the char-

acteristic roots of Σ−1S and Σ−1/2SΣ−1/2 are the same. The latter matrix is

positive definite, and hence we may assume ℓ1 ≥ · · · ≥ ℓp > 0. Then

f(Σ)− f(S) = log |ΣS−1|+ tr(Σ−1S)− p

= − log |Σ−1S|+ tr(Σ−1S)− p

=

p∑
i=1

(− log ℓi + ℓi − 1) ≥ 0.

The last inequality follows from x− 1 ≥ log x (x > 0). The equality holds if

and only if ℓ1 = · · · = ℓp = 1 ⇔ Σ = S.

Next we prove (2). For any positive definite matrix Σ, we have

trΣ−1(Y −XΘ)′(Y −XΘ)

= trΣ−1(Y −XΘ̂)′(Y −XΘ̂) + trΣ−1{X(Θ̂−Θ)}′X(Θ̂−Θ)

≥ trΣ−1Y′(In −PX)Y.

10



The first equality follow from that Y − XΘ = Y − XΘ̂ + X(Θ̂ − Θ) and

(Y−XΘ̂)′X(Θ̂−Θ) = O. In the last step, the equality holds when Θ = Θ̂.

The required result is obtained by noting that Θ̂ does not depend on Σ and

combining this result with the first result (1).

Theorem 3.2. Let X be an n × k matrix of rank k, and let Ω = R[X]

which is defined also by the set {y : y = Xθ}, where θ is a k × 1 unknown

parameter vector. Let C be a c× k matrix of rank c, and define ω by the set

{y : y = Xθ, Cθ = 0}. Then,

(1) PΩ = X(X′X)−1X′.

(2) PΩ −Pω = X(X′X)−1C′{C(X′X)−1C}−1C(X′X)−1X′.

Proof. (1) Let ŷ = X(X′X)−1X′ and consider a decomposition y = ŷ+(y−
ŷ). Then, ŷ′(y−ŷ) = 0. Therefore, PΩy = ŷ and hence PΩ = X(X′X)−1X′.

(2) Since Cθ = C(X′X)−1X′ · Xθ, we can write ω = N[B] ∩ Ω, where

B = C(X′X)−1X′. Using (P7),

ω⊥ ∩ Ω = R[PΩB
′] = R[X(X′X)−1C′].

The final result is obtained by using (1) and (P7).

Consider a special case C = (O Ik−q). Then ω = R[X1], where X =

(X1 X2), X1 : n× q. We have the following results:

ω⊥ ∩ Ω = R[(In −PX1)X2],

Pω⊥∩Ω = (In −PX1)X2{X′
2(In −PX1)X2}−1X′

2(In −PX1).

The expressions (2.11) for Se and Sh in terms of S can be obtained from

projection matrices based on

Ω = R[X] = R[1n] + R[(In −P1n)X],

ω⊥ ∩ Ω = R[(In −P1n −P(In−P1n )X1)X2].
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4. General Linear Hypothesis

In this section we consider to test a general linear hypothesis

Hg : CΘD = O, (4.1)

against alternatives Kg : CΘD ̸= O under a multivariate linear model given

by (2.1), where where C is a c× k given matrix with rank c and D is a p× d

given matrix with rank d. When C = (O Ik−j) and D = Ip, the hypothesis

Hg becomes H : Θ2 = O.

For the derivation of LR test of (4.1), we can use the following conven-

tional approach: If U = YD, then the rows of U are independent and

normally distributed with the identical covariance matrix D′ΣD, and

E(U) = XΞ, (4.2)

where Ξ = ΘD. The hypothesis (4.1) is expressed as

Hg : CΞ = O. (4.3)

Applying a general theory for testing Hg in (2.1), we have the LRC λ:

λ2/n = Λ =
|Se|

|Se + Sh|
, (4.4)

where

Se = U′(In −PX)U

= D′Y′(In −PA)YD,

and

Sh = (C(X′X)−1X′U)′{C(X′X)−1C′}−1C(X′X)−1X′U,

= (C(X′X)−1X′YD)′{C(X′X)−1C′}−1C(X′X)−1X′YD.

Theorem 4.1. The statistic Λ in (4.4) is an LR statistic for testing (4.1)

under (2.1). Further, under Hg, Λ ∼ Λd(c, n− k).
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Proof. Let G = (G1 G2) be a p× p matrix such that G1 = D, G′
1G2 = O,

and |G| ̸= 0. Consider a transformation from Y to

(U V) = Y(G1 G2).

Then the rows of (U V) are independently normal with the same covariance

matrix

Ψ = G′ΣG =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
, Ψ12 : d× (p− d),

and

E[(U V)] = XΘ(G1 G2)

= X(Ξ ∆), Ξ = ΘG1, ∆ = ΘG2.

The conditional of V given U is normal. The rows of V given U are indepen-

dently normal with the same covariance matrix Ψ11·2, and

E(V|U) = X∆+ (U−XΞ)Γ

= X∆∗ +UΓ,

where ∆∗ = ∆−ΞΓ and Γ = Ψ−1
11 Ψ12. We see that the maximum likelihood

of V given U does not depend on the hypothesis. Therefore, an LR statistic

is obtained from the marginal distribution of U, which implies the results

required.

5. Additional Information Tests for Reseponse

Variables

We consider a mutivariate regression model with an intercept term x0

and k explanatory variables x1, . . . , xk as follows.

Y = 1θ′ + XΘ+ E, (5.1)
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where Y and X are the observation matrices on y = (y1, . . . , yp)
′ and x =

(x1, . . . , xk)
′. We assume that the error matrix E has the same property as in

(2.1), and rank(1n X) = k+1. Our interest is to test a hypothesis H2·1 on no

additional information of y2 = (yq+1, . . . , yp)
′ in presense of y1 = (y1, . . . , yq)

′.

Along the partition of y into (y′
1,y

′
2), let Y, θ, Θ, and Σ partition as

Y = (Y1 Y2), Θ = (Θ1 Θ2),

θ =

(
θ1

θ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

The conditional distribution of Y2 given Y1 is normal with mean

E(Y2|Y1) = 1θ′
2 +XΘ2 + (Y1 − 1nθ

′
1 − XΘ1)Σ

−1
11 Σ12

= 1nθ̃
′
02 +XΘ̃2 + Y1Σ

−1
11 Σ12, (5.2)

and the conditional covariance matrix is expressed as

Var[vec (Y2|Y1)] = Σ22·1 ⊗ In, (5.3)

where Σ22·1 = Σ22 −Σ21Σ
−1
11 Σ12, and

θ̃
′
2 = θ′

2 − θ′
1Σ

−1
11 Σ12, Θ̃2 = Θ2 −Θ1Σ

−1
11 Σ12.

Here, for a n × p matrix Y = (y(1), . . . ,y(p)), vec(Y ) means an np-vector

(y′
(1), . . . ,y

′
(p))

′. Now we define the hypothesis H2·1 as

H2·1 : Θ2 = Θ1Σ
−1
11 Σ12 ⇔ Θ̃2 = O. (5.4)

The hypothesis H2·1 means that y2 after removing the effects of y1 does

not depend on x. In other words, the relationship between y2 and x can be

described by the relationship between y1 and x. In this sense y2 is redundant

in the relationship between y and x.

The LR criterion for testing the hypothesisH2·1 against alternativesK2·1 :

Θ̃2·1 ̸= O can be obtained through the following steps.

(D1) The density function of Y = (Y1 Y2) can be expressed as the product of

the marginal density function of Y1 and the conditional density function

of Y2 given Y1. Note that the density functions of Y1 under H2·1 and

K2·1 are the same.
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(D2) The spaces spanned by each columns of E(Y2|Y1) are the same, and

let the spaces under K2·1 and H2·1 denote by Ω and ω, respectively.

Then

Ω = R[(1n Y1 X)], ω = R[(1n Y1)],

and dim(Ω) = q + k + 1, dim(ω) = k + 1.

(D3) The likelihood ratio criterion λ is expressed as

λ2/n = Λ =
|SΩ|
|Sω|

=
|SΩ|

|SΩ + (Sω − SΩ)|
.

where SΩ = Y′
2(In −PΩ)Y2, and Sω = Y′

2(In −Pω)Y2.

(D4) Note that E(Y2|Y1)
′(Pω −Pω)E(Y2|Y1) = O under H2·1. The condi-

tional distribution of Λ under H2·1 is Λp−q(k, n− q− k− 1), and hence

the distribution of Λ under H2·1 is Λp−q(k, n− q − k − 1).

Note that the Λ statistic is defined through Y′
2(In−PΩ)Y2, and Y′

2(PΩ−
Pω)Y2, which involve n × n matrices. We try to write these statistics in

termes of the SSP matrix of (y′,x′)′ defined by

S =
n∑

i=1

(
yi − ȳ
xi − x̄

)(
yi − ȳ
xi − x̄

)′

=

(
Syy Syx

Sxy Sxx

)
,

where ȳ and x̄ are the sample mean vectors. Along the partition of y =

(y′
1,y

′
2)

′, we partition S as

S =

 S11 S12 S1x

S21 S22 S2x

Sx1 Sx2 Sxx

 .

We can show that

Sω = S22·1 = S22 − S21S
−1
11 S12,

SΩ = S22·1x = S22·x − S21·xS
−1
11·xS12·x.
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The first result is obtained by using

ω = R[1n] + R[(In −P1n)Y1].

The second result is obtained by using

Ω = R[1n] + R[(Ỹ1, X̃)]

= R[1n] + R[(In −P0)X] + R[(In −PX)(In −P0)Y1],

where Ỹ1 = (In −P1n)Y1 and X̃ = (In −P1n)X.

Summarizing the above results, we have the following theorem.

Theorem 5.1. In the multivariate regression model (5.1), consider to test

the hypothesis H2·1 in (5.4) against K2·1. Then the LR criterion λ is given

by

λ2/n = Λ =
|S22·1x|
|S22·1|

,

whose null distribution is Λp−q(k, n− q − k − 1).

Note that S22·1 can be decomposed as

S22·1 = S22·1x + S2x·1S
−1
xx·1Sx2·1.

This decomposition is obtained by expressing S221̇x in terms of S22·1, S2x·1,

Sxx·1 and Sx2·1 by using an inverse formula(
H11 H12

H21 H22

)−1

=

(
H−1

11 O
O O

)
+

(
−H−1

11 H12

I

)
H−1

22·1
(
−H21H

−1
11 I

)
.

(5.5)

The decomposition is expressed as

S22·1 − S22·1x = S2x·1S
−1
xx·1Sx2·1. (5.6)

The result may be also obtained by the following algebraic method. We have

S22·1 − S22·1x = Y′
2(PΩ −Pω)Y2

= Y′
2(Pω⊥∩Ω)Y2,
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and

Ω = R[1n] + R[(Ỹ1 X̃)], ω = R[1n] + R[Ỹ1].

Therefore,

ω⊥ ∩ Ω = R[(In −P11 −PỸ1
)(Ỹ1 X̃)]

= R[(In −P11 −PỸ1
)X̃],

which gives an expression for Pω⊥∩Ω by using Theoren 3.1 (1). This leads to

(5.6).

6. Tests in Discriminant Analysis

We consider q p-variate normal populations with common covariance

matrix Σ and the ith population having mean vector θi. Suppose that a

sample of size ni is available from the ith population, and let yij be the

jth observation from the ith population. The observation matrix for all the

observations is expressed as

Y = (y11, . . . ,y1n1 ,y21, . . . ,yq1, . . . ,yqnq)
′. (6.1)

It is assumed that yij are independent, and

yij ∼ N(θi,Σ), j = 1, . . . , ni; i = 1, . . . , q, (6.2)

The model is expressed as

Y = AΘ+ E, (6.3)

where

A =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq

 , Θ =


θ

′

1

θ
′

2
...

θ
′

q

 .

Here, the error matrix E has the same property as in (2.1).
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First we consider to test

H : θ1 = · · · = θq(= θ), (6.4)

against alternatives K : θi ̸= θj for some i, j. The hypothesis can be ex-

pressed as

H : CΘ = O, C = (Iq−1, −1q−1) . (6.5)

The tests including LRC are based on three basic statistics, the within-group

SSP matrix W, the between-group SSP matrix B and the total SSP matrix

T given by

W =

q∑
i=1

(ni − 1)Si, B =

q∑
i=1

ni(ȳi − ȳ)(ȳi − ȳ)′,

T = B+W =

q∑
i=1

ni∑
j=1

(yij − ȳ)(yij − ȳ)′, (6.6)

where ȳi and Si are the mean vector and sample covariance matrix of the

ith population, and ȳ is the total mean vector defined by (1/n)
∑q

i=1 niȳi,

and n =
∑q

i=1 ni. In general, W and B are independently distributed as

a Wishart distribution Wp(n − q,Σ) and a noncentral Wishart distribution

Wp(q − 1,Σ;∆), respectively where

∆ =

q∑
i=1

ni(θi − θ̄)(θi − θ̄)′,

where θ̄ = (1/n)
∑q+1

i=1 niθi. Then, the following theorem is well known.

Theorem 6.1. Let λ = Λn/2 be the LRC for testing H in (6.4). Then, Λ is

expressed as

Λ =
|W|

|W + B|
=

|W|
|T|

, (6.7)

where W, B and T are given in (6.6). Further, Under H, the statistic Λ is

ditributed as a lambda distribution Λp(q − 1, n− q).
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Now we shall show Theorem 6.1 by an algebraic method. It is easy to see

that

Ω = R[A], ω = N[C(A′A)−1A′] ∩ Ω = R[1n].

The last equality is also checked from that under H

E[Y] = A1qθ
′ = 1nθ

′.

We have

T = Y′(In −P1n)Y

= Y′(In −PA)Y + Y′(PA −P1n)Y

= W + B.

Further, it is easily checked that

(1) (In −PA)
2 = In −PA, (PA −P1n)

2 = PA −P1n .

(2) (PA −P1n)(PA −P1n) = O.

(3) fe = dim[R[A]⊥] = tr(In −PA) = n− q,

fh = dim[R[1n]
⊥ ∩ R[A]] = tr(PA −P1n) = q − 1.

Related to the test of H, we are interested in whether a subset of vari-

ables y1, . . . , yp is sufficient for discriminant analysis, or the set of remainder

variables has no additional information or is redundant. Without loss of gen-

erality we consider the sufficiency of a subvector y1 = (y1, . . . , yk)
′ of y, or

redundancy of the remainder vector y2 = (yk+1, . . . , yp)
′. Consider to test

H2·1 : θ1;2·1 = · · · = θq;2·1(= θ2·1), (6.8)

where

θi =

(
θi;1

θi;2

)
, θi;1; k × 1, i = 1, . . . , q,

and

θi;2·1 = θi;2 −Σ21Σ
−1
11 θi;1, i = 1, . . . , q.
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The testing problem was considered by Rao (1948). The hypothsis can be

formulated in terms of Maharanobis distance and discriminant functions. For

its details, see Rao (1973) and Fujikoshi (1987). To obtain a likelihood ratio

for H2·1, we partition the observation matrix as

Y =
(
Y1 Y2

)
, Y1 : n× k.

Then the conditional distribution of Y2 given Y1 is normal such that the

rows of Y2 are independently distributed with covariance matrix Σ22·1 =

Σ22 −Σ21Σ
−1
11 Σ12, and the conditional mean is given by

E(Y2|Y1) = AΘ2·1 + Y1Σ
−1
11 Σ12, (6.9)

where Θ21̇ = (θ1;2·1, . . . ,θq;2·1)
′. The LRC for H2·1 can be obtained by use of

the conditional distribution, and following the steps (D1)-(D4) in Section 5.

In fact, The spaces spanned by each columns of E(Y2|Y1) are the same, and

let the spaces under K2·1 and H2·1 denote by Ω and ω, respectively. Then

Ω = R[(A Y1)], ω = R[(1n Y1)],

dim(Ω) = q+ k, and dim(ω) = q+1. The likelihood ratio criterion λ can be

expressed as

λ2/n = Λ =
|SΩ|
|Sω|

=
|SΩ|

|SΩ + (Sω − SΩ)|
.

where SΩ = Y′
2(In −PΩ)Y2, and Sω = Y′

2(In −Pω)Y2. We exprese the LRC

in terms of W, B and T. Let us partition W, B and T as

W =

(
W11 W12

W21 W22

)
, B =

(
B11 B12

B21 B22

)
, T =

(
T11 T12

T21 T22

)
,

(6.10)

where W12 : q × (p − q), B12 : q × (p − q) and T12: q × (p − q). Notig that

PΩ = PA +P(In−PA)Y1 , we have

SΩ = Y′
2

{
In −PA − (In −PA)Y1{Y′

1(In −PA)Y1}−1Y′
1(In −PA)

}
Y2

= W22 −W21W
−1
11 W12 = W22·1.
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Similarly, notig that Pω = P1n +P(In−P1n )Y1 , we have

Sω = Y′
2

{
In −P1n − (In −P1n)Y1{Y′

1(In −P1n)Y1}−1Y′
1(In −P1n)

}
Y2

= T22 − T21T
−1
11 T12 = T22·1.

Theorem 6.2. Suppose that the observation matrix Y in (6.1) is a set of

samples from Np(θi,Σ), i = 1, . . . , q. Then the likelihood ratio criterion λ

for the hypothesis H2·1 in (6.8) is given by

λ =

(
|W22·1|
|T22·1|

)n/2

,

where W and T are given by (6.6). Further, under H2·1,

|W22·1|
|T22·1|

∼ Λp−k(q − 1, n− q − k).

Proof. We consider the conditional distributions of W22·1 and T22·1 given Y1

by using Theorem 2.3, and see also that they does not depend on Y1. We

have seen that

W22·1 = Y′
2Q1Y2, Q1 = In −PA −P(In−PA)Y1 .

It is easy to see that Q2
1 = Q1, rank(Q1) = trQ1 = n − q − k, Q1A = O,

Q1X1 = O, and

E(Y2|Y1)
′Q1E(Y2|Y1) = O.

This implies that W22·1|Y1 ∼ Wp−k(n − q − k,Σ22·1) and hence W22·1 ∼
Wp−k(n− q − k,Σ22·1). For T22·1, we have

T22·1 = Y′
2Q2Y2, Q2 = In −P1n −P(In−P1n )Y1 ,

and hence

T22·1 −W22·1 = Y′
2(Q2 −Q1)Y2.

Similarly Q2 is idempotent. Using P1nPA = PAP1n = P1n , we have Q1Q2 =

Q2Q1 = Q1, and hence

(Q2 −Q1)
2 = Q2 −Q1, Q1 · (Q2 −Q1) = O.
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Further, under H2·1,

E(X2|X1)
′(Q2 −Q1)E(X2|X1) = O.

7. General Multivariate Linear Model

In this section we consider a general multivariate linear model as follows.

Let Y be an n × p observation matrix whose rows are independently dis-

tributed as p-variate normal distribution with a common covariance matrix

Σ. Suppose that the mean of Y is given as

E(Y) = AΘX′, (7.1)

where A is an n × k given matrix with rank k, X is a p × q matrix with

rank q, and Θ is a k × q unknown parameter matrix. For a motivation of

(7.1), consider the case when a single variable y is measured at p time points

t1, . . . , tp (or different conditions) on n subjects chosen at random from a

group. Suppose that we denote the variable y at time point tj by yj. Let the

observations yi1, . . . , yip of the ith subject be denoted by

yi = (yi1, . . . , yip)
′, i = 1, . . . , n.

If we consider a polynomial regression of degree q−1 of y on the time variable

t, then

E(yi) = Xθ,

where

X =

 1 t1 · · · tq−1
1

...
... · · · ...

1 tp · · · tq−1
p

 , θ =


θ1
θ2
...
θq

 .
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If there are k different groups and each goups have a polynomial regression of

degree q− 1 of y, we have a model given by (7.1). From such motivation the

model (7.1) is also called a growth curve model. For its detail, see Pothoff

and Roy (1964).

Now, let us consider to derive LRC for a general linear hypothesis

Hg : CΘD = O, (7.2)

against alternatives Kg : CΘD ̸= O. Here, C is a c × k given matrix

with rank c, and D is a q × d given matrix with rank d. This problem was

discussed by Khatri (1966), Gleser and Olkin (1970), etc. Here, we obtain

LRC by reducing it to the problem of obtaining LRC for a general linear

hypothesis in a multivariate linear model. In order to relate the model (7.1)

to a multivariate linear model, consider the transformation from Y to (U V):

(U V) = YG, G = (G1 G2), (7.3)

where G1 = X(X′X)−1, G2 = X̃, and X̃ is a p × (p − q) matrix satisfying

X̃
′
X = O and X̃

′
X̃ = Ip−q. Then, the rows of (U V) are independently

distributed as p-variate normal distributions with means

E[(U V)] = (AΘ O),

and the common covariance matrix

Ψ = G′ΣG =

(
G′

1ΣG1 G′
1ΣG2

G′
2ΣG1 G′

2ΣG2

)
=

(
Ψ11 Ψ12

Ψ21 Ψ22

)
.

This transformation can be regarded as one from y = (y1, . . . , yp)
′ to

a q-variate main variable u = (u1, . . . , uq)
′ and a (p − q)-variate auxiliary

variable v = (v1, . . . , vp−q)
′. The model (7.1) is equivalent to the following

joint model of two componets:

(1) The conditional distribution of U given V is

U | V ∼ Nn×q(A
∗Ξ, Ψ11·2). (7.4)
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(2) The marginal distribution of V is

V ∼ Nn×(p−q)(O, Ψ22), (7.5)

where

A∗ = (A V), Ξ =

(
Θ
Γ

)
,

Γ = Ψ−1
22 Ψ21, Ψ11·2 = Ψ11 −Ψ12Ψ

−1
22 Ψ21.

Befor we obtain LRC, first we consider the MLE’s in (7.1). Applying a

general theory of multivariate linear model to (7.4) and (7.5), the MLEs of

Ξ, Ψ11·2, and Ψ22 are given by

Ξ̂ = (A∗′A∗)−1A∗′U, nΨ̂11·2 = U′(In −PA∗)U, nΨ̂22 = V′V. (7.6)

Let

S = Y′(In −PA)Y, W = G′SG = (U V)′(In −PA)(U V),

and partition W as

W =

(
W11 W12

W21 W22

)
, W12 : q × (p− q).

Theorem 7.1. For an n× p observation matrix Y, assume a general multi-

variate linear model given by (7.1). Then:

(1) The MLE Θ̂ of Θ is given by

Θ̂ = A(A′A)−1A′YS−1X(X′S−1X)−1.

(2) The MLE Ψ̂11·2 of Ψ11·2 is given by

nΨ̂11·2 = W11·2 = (X′S−1X)−1.
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Proof. The MLE of Ξ is Ξ̂ = (A∗′A∗)−1A∗′U. The inverse formula (see

(5.5)) gives

Q = (A∗′A∗)−1 =

(
(A′A)−1 O

O O

)
+

(
−(A′A)−1A′V

Ip−q

)
[V′(In −PA)V]

−1

(
−(A′A)−1A′V

Ip−q

)′

=

(
Q11 Q12

Q21 Q22

)
.

Therefore, we have

Θ̂ = (Q11A
′ +Q12V

′)U

= (A′A)−1A′YG1 − (A′A)−1A′YG2(G
′
2SG2)

−1G′
2SG1.

Using

G2(G
′
2SG2)

−1G′
2 = S−1 −G1(G

′
1S

−1G2)
−1G′

1S
−1,

we obtain (1). For a derivation of (2), let B = (In − PA)V. Then, using

PA∗ = PA+PB, the first expression of (1) is obtained. Similarly, the second

expression of (2) is obtained.

Theorem 7.2. Let λ = Λn/2 be the LRC for testing the hypothesis (7.2) in

the generalized multivariate linear model (7.1). Then,

Λ = |Se|/|Se + Sh|,

where

Se = D′(X′S−1X)−1D, Sh = (CΘ̂D)(CRC′)−1CΘ̂D

and

R = (A′A)−1 + (A′A)−1A′YS−1{S−X′(XS−1X′)−1X}

× S−1Y′A(A′A)−1.

Here Θ̂ is given in Theorem 7.1 (1). Further, the null distribution is Λd(c, n−
k − (p− q)).
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Proof. The test of Hg in (7.2) agaist alternatives Kg is equivalent to testing

Hg : C
∗ΞD = O (7.7)

under the conditional model (7.4), where C∗ = (C O). Since the distribution

of V does not depend on Hg, the LR test under the conditional model is the

LR test under the unconditional model. Using a general result for a general

linear hypothesis given in Theorem 4.1, we obtain

Λ = |S̃e|/|S̃e + S̃h|,

where

S̃e = D′U(In − A∗(A∗′A∗)−1A∗′)UD,

S̃h = (CΞ̂D)(C∗(A∗′A∗)−1C∗′)−1CΞ̂D.

By reduction similar to those of MLEs, it is seen that S̃e = Se and S̃h = Sh.

This completes the proof.

8. Concluding Remarks

In this paper we discuss LRC in multivariate linear model, focussing

on the role of projection matrices. Testing problems considered involve the

hypotheses on selection of variables or no additional information of a set of

variables, in addition to a typical linear hypothesis. It may be noted that

various LRC’s and their distributions are obtained by aljebraic methods.

We have not discussed with LRC’s for the hypothsis of selection of vari-

ables in canonical correlation analysis, and for dimensionality in multivariate

linear model. Some results for these problems can be founded in Fujikoshi

(1982), Fujikoshi et al. (2010).

In multivariate analysis, there are some other test crteria such as Lawley-

Hotelling trace criterion and Bartlett-Nanda-Pillai trace criterion. For the
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testing problems treated in this chapter, it is possible to propose such criteria

as in Fujikoshi (1989).

The LRC’s for tests of no additional information of a set of variables will

be useful in selection of variables. For example, it is possible to propose

model selection criteria such as AIC (see Akakike (1973)).
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