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Abstract

We consider selecting of the linear and the quadratic discriminant functions in two normal populations. We do
not know which of two discriminant functions lowers the expected probability of misclassification. When difference
of the covariance matrices is large, it is known that the expected probability of misclassification of the quadratic
discriminant functions is smaller than that of linear discriminant function. Therefore, we should consider only the
selection when the difference between covariance matrices is small. In this paper we suggest a selection method
using asymptotic expansion for the linear and the quadratic discriminant functions when the difference between
the covariance matrices is small.

1 Introduction

We consider classifying an individual coming from one of two populations Π1 and Π2. We assume that Πj is
p-variate normal population with mean vector µj and the covariance matrix Σj(j = 1, 2), that is,

Π1 : Np(µ1,Σ1), Π2 : Np(µ2,Σ2).

When population parameters are known, the optimal Bayes discriminant function is given as follows (see Anderson,
2003).
In the case that the covariance matrices are equal, that is, Σ1 = Σ2 = Σ, the optimal Bayes discriminant function is

L(X;µ1,µ2,Σ) = (µ2 − µ1)
′Σ−1 {X − (µ1 + µ2)/2} ,

where a′ is the transpose of a. In the case that the covariance matrices are unequal, that is, Σ1 ̸= Σ2, the optimal
Bayes discriminant function is

Q(X;µ1,µ2,Σ1,Σ2) = (X − µ1)
′Σ−1

1 (X − µ1)− (X − µ2)
′Σ−1

2 (X − µ2) + log |Σ−1
2 Σ1|,

where |A| is the determinant of A. L(X) and Q(X) are called the linear and the quadratic discriminant functions,
respectively.

However, the population parameters are unknown in practice. Therefore, it is necessary for us to estimate the
population parameters. A sample of size Nj coming from Πj , Xj1, . . . ,XjNj

is available to estimate these parameters.
Let X̄j and Sj be the sample mean and the sample covariance matrix of Πj , respectively, and let S be the pooled
sample covariance matrix, that is,

X̄j =
1

Nj

Nj∑
k=1

Xjk, Sj =
1

nj

Ni∑
k=1

(Xjk − X̄j)(Xjk − X̄j)
′, (1.1)

S = k1S1 + k2S2,

where n = n1 + n2 and kj = nj/n with nj = Nj − 1 (j = 1, 2). Replacing the unknown parameters with these

estimators, we obtain L̂(X) = L(X; X̄1, X̄2,S) and Q̂(X) = Q(X; X̄1, X̄2,S1,S2), respectively. L̂(X) and Q̂(X)
are called the sample linear and the sample quadratic discriminant functions, respectively. An observation X is
classified, for example into Π1 for negative value of these functions.

If the covariance matrices are unequal, Q̂(X) is better than L̂(X) for large samples, since Q̂(X) is a consistent
estimator of the optimal Bayes discriminant function while L̂(X) is not consistent. But even if the covariance matrices
are unequal, Q̂(X) is not always better than L̂(X) for small samples. When the difference between the covariance
matrices is large, Q̂(X) is better than L̂(X) (see Marks and Dunn, 1974; Wahl and Kronmal, 1977). These previous
works are simulation study. Wakaki (1990) investigated performance of the two discriminant functions for moderately
large samples using asymptotic expansions of the distributions of two discriminant functions under covariance matrices
are proportional, that is, Σ2 = cΣ1 (c: constant).

We investigate performance of the discriminant functions using asymptotic expansions of the distributions of two
discriminant functions under the difference between the covariance matrices is small, that is

Σ1 −Σ2 =
1√
n
A (A: constant matrix). (1.2)
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We suggest a selection method for the discriminant functions using these asymptotic expansions.
The remainder of the present paper is organized as follows. In Section 2, we give asymptotic expansions for two

discriminant functions when difference between two covariance matrices is small. In Section 3, we will suggest a
selection method for the linear and the quadratic discriminant functions by using these asymptotic expansions. In
Section 4, we will perform numerical study for investigating the performance of our selection method. In Section 5,
we present a discussion and our conclusions.

2 Asymptotic expansion of the linear and the quadratic discriminant
functions

We consider the following asymptotic framework:

N1 → ∞, N2 → ∞,
N1

N2
= O(1),

N2

N1
= O(1).

We can assume the following condition without loss of generality,

µ1 + µ2 = 0, k1Σ1 + k2Σ2 = Ip. (2.1)

2.1 Asymptotic expansion for the linear discriminant function

Wakaki (1990) proposed Theorem 2.1 which derived an asymptotic expansion of the sample linear discriminant
function in a general case where covariance matrices are unequal.

Theorem 2.1. Let X be an observation vector coming from Πj(j = 1, 2) and let

L∗
j = (d′Σjd)

−1/2{L̂(X) + µ′
jd},

where d = µ1 − µ2. Then for large N1 and N2,

P (L∗
j ≤ x) = Φ(x) +

2∑
i=1

N−1
i

4∑
s=1

(d′Σjd)
−s/2a∗jisHs−1(x)ϕ(x) +O2, (2.2)

where Φ(.) and ϕ(.) are the distribution function and the density function of N(0, 1), Hs(.)’s are the Hermite polyno-
mials, and Om stands for the terms of the m-th order with respect to N−1

1 and N−1
2 . The coefficient a∗jis’s are given

by

a∗ji1 = −1

2
(−1)i+1tr(Σi) + k2i {µ′

jΣ
2
id+ tr(Σi)µ

′
jΣid},

a∗ji2 = −1

2
{tr(ΣjΣi) + (µj − µi)

′Σi(µj − µi)}

−1

2
k2i {tr(ΣjΣi)d

′Σid+ 2tr(Σi)d
′ΣjΣid+ d′ΣiΣjΣid+ 2d′ΣjΣ

2
id+

1

2
(d′Σid)

2},

a∗ji3 = (µj − µi)
′ΣiΣjd+ 2k2iµ

′
jΣidd

′ΣiΣjd,

a∗ji4 = −1

2
d′ΣjΣiΣjd− 1

2
k2i {d′Σidd

′ΣjΣiΣjd+ (d′ΣiΣjd)
2}.

We can easily obtain the following corollary under the assumption (1.2).

Corollary 2.1. Suppose that the condition of Theorem2.1 and (1.2) hold. Let

Lj = (d′d)−1/2{L̂(X) + µ′
jd}.

Then for large N1 and N2,

P (Lj ≤ x) = Φ(x) + ϕ(x)

[
−
kσ(j)

2
√
n
D−1

0 D1H1(x)−
kσ(j)

8n
D−2

0 D2
1H3(x)

+
2∑

i=1

n−1
i

4∑
s=1

(D0)
−s/2ajisHs−1(x)

]
+O3/2, (2.3)
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where Dk = d′Akd, σ(1) = σ(2) + 1 = 2. The coefficient ajis’s are given by

aji1 = −(−1)i+1 p

2
+ k2i {µ′

jd+ pµ′
jd},

aji2 =
1

2
{p+ (µj − µi)

′(µj − µi)} −
1

2
k2i {3(p+ 1)D0 +D2

0/2},

aji3 = (µj − µi)
′d+ 2k2iµ

′
jdD0,

aji4 = −1

2
D0 − k2iD

2
0.

2.2 Asymptotic expansion for the quadratic discriminant function

We derive an asymptotic expansion of the sample quadratic discriminant function under the assumption (1.2). The
following lemmas are very important.

Lemma 2.1. If W is a random matrix distributed as Wishart distribution Wp(n,Σ), where n is a positive integer
and Y is any p-variate random vector which is independent of W with P (Y = 0) = 0 then

Y ′W−1Y + log |W | ∼ V −1
n−p+1Y

′Σ−1Y + log |Σ|+
p∑

i=1

log Vn−i+1, Vn−i+1 ∼ χ2
n−i+1,

where χ2
m is the chi-square distribution with m degrees of freedom. Moreover, Y ′Σ−1Y and Vn−i+1(i = 1, . . . , p) are

mutually independent.

Lemma 2.2 (characteristic function of noncentral chi-square distribution). Let Z be a random variable distributed as
normal distribution with mean µ and variance 1. Then

E[exp(itZ2)] =
1√
2π

∫ ∞

−∞
exp

{
−1

2
(z − µ)2 + itz2

}
dz = (1− 2it)−1/2 exp

{
µ2it

1− 2it

}
.

The proofs of the above two lemmas can be seen in Muirhead (1982) and Fujikoshi et al. (2010).

Lemma 2.3. Let X be p-variate normal random vector with mean vector 0 and covariance matrix Ip, and let

g(t1, t2) = g(t1, t2;η1,η2,Γ1,Γ2) = E[exp{t1(X − η1)Γ1(X − η1) + t2(X − η2)Γ2(X − η2)}],
L(t1, t2) = L(t1, t2;η1,η2,Γ1,Γ2) = tr[(Ip − 2t1Γ1 − 2t2Γ2)

−1Γ1]

+ {η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)
−1Γ1(Ip − 2t1Γ1 − 2t2Γ2)

−1{η1 − 2t2Γ2(η1 − η2)}.

Then

g(t1, t2) = |Ip − 2t1Γ1 − 2t2Γ2|−1/2 exp

{
−1

2
η′
1η1 + t2(η1 − η2)

′Γ2 (η1 − η2)

+
1

2
{η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)

−1{η1 − 2t2Γ2(η1 − η2)}
}
,

∂g(t1, t2)

∂t1
= g(t1, t2)L(t1, t2),

∂L(t1, t2)

∂t1
= L(t1, t2;η1,η2,Γ1,Γ2) = 2tr[{(Ip − 2t1Γ1 − 2t2Γ2)

−1Γ1}2]

+ 4{η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)
−1{Γ1(Ip − 2t1Γ1 − 2t2Γ2)

−1}2{η1 − 2t2Γ2(η1 − η2)},
g(t1, t2;η1,η2,Γ1,Γ2) = g(t2, t1;η2,η1,Γ2,Γ1),

∂g(t1, t2)

∂t2
= g(t1, t2)L(t2, t1;η2,η1,Γ2,Γ1).

The proof is given in Appendix. Using these lemmas, We obtain an asymptotic expansion of Q̂(X) under the
assumption (1.2) as in the following theorem.

Theorem 2.2. Let X be an observation vector coming from Πj(j = 1, 2), and let Qj = (d′d)−1/2{Q̂(X)/2 + µ′
jd}.

Then for large N1 and N2,

P (Qj ≤ x) = Φ(x) + ϕ(x)n−1/2
3∑

s=1

bjsHs−1(x) +
2∑

i=0

n−1
i

6∑
s=1

(d′d)−s/2bjisHs−1(x) +O3/2,
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where n0 = n. The coefficient bjs’s and bjis’s are given by

bj1 = (−1)j−1kjD1/2, bj2 = −(1 + kj)D1/2, bj3 = (−1)j−1D1/2,

bj01 = (−1)j−1{T2/4 + k2jD2/2}, bj02 = −T2/4− (k2j + 2kj)D2/2− k2σ(j)D
2
1/8,

bj03 = (−1)j−1
{
(1 + 2kj)D2/2 + kj(1 + kj)D

2
1/4
}
, bj04 = D2/2− (1 + 4kj + k2j )D

2
1/8,

bj05 = (−1)j−1(1 + kj)D
2
1/4, bj06 = −D2

1/8,

bji1 = (−1)j(p2 + 3p)/4 + (p+ 1)(µj − µi)
′d/2,

bji2 = −(p2 + 3p)/4− (4p+ 5)((µj − µi)
′(µj − µi))

2/4− (p+ 2)(µj − µi)
′(µj − µi)/2,

bji3 = −(p+ 1)µ′
jdD0 + (p+ 4)(µj − µi)

′dD0/2 + (p+ 2)(µj − µi)
′d/2,

bji4 = −(p+ 1)D0/2− 3((µj − µi)
′(µj − µi))

2/2,

bji5 = (µj − µi)
′dD0,

bji6 = ((µj − µi)
′(µj − µi))

2/4,

where Tk = tr(Ak).

Proof.
Since Xj1, . . . ,XjNj are normal random vectors with mean vector µj and covariance matrix Σj and are mutually

independent, X̄j is distributed as p-variate normal distribution with mean vector µj and covariance matrix N−1
j Σj ,

and njSj is distributed as Wishart distribution Wp(nj ,Σj). Suppose that Vjk is the chi-square random variable with
degrees of freedom nj − k + 1. From Lemma 2.1 and 2.2,

E

[
exp

{
it

2

(
(X − X̄j)

′S−1
j (X − X̄j) + log |Sj |

)}∣∣∣∣X,Sj

]
= E

[
exp

{
it

2

(
njV

−1
jp (X − X̄j)

′Σ−1
j (X − X̄j) + log |n−1

j Σj |+
p∑

k=1

log Vjk

)}∣∣∣∣∣X, Vjk, k = 1, . . . , p

]

= exp

[
itnj
2Vjp

Ωj

(
1− itnj

NjVjp

)](
1− itnj

NjVjp

)−p/2
(
exp

{
it

2

(
log |n−1

j Σj |+
p∑

k=1

log Vjk

)})
.

Let

vjk =

√
nj − k + 1

2

(
Vjk

nj − k + 1
− 1

)
,

then vjk = Op(1) follows from the central limit theorem. The following result is given by using above formulae.

exp

[
itnj
2Vjp

Ωj

(
1− itnj

NjVjp

)](
1− itnj

NjVjp

)−p/2

= eitΩj/2

[
1 +

it

2

{
p

nj
+Ωj

(
p− 1

nj
+
it

nj
−

√
2

nj
vjp +

2

nj
v2jp

)}
+Ω2

j

(it)2

4nj
v2jp

]
+Op(n

−3/2
j ), (2.4)

where Ωj = (µj −X)′Σ−1
j (µj −X).

exp

{
it

2

(
p∑

k=1

log Vjk

)}
= 1 +

it

2

p∑
k=1

(
vjk√
nj

−
v2jk
nj

)
+

(it)2

8

(
p∑

k=1

vjk√
nj

)2

+Op(n
−3/2
j ). (2.5)

From (2.4), (2.5), E[vjk] = 0, E[v2jk] = 1 and Lemma 2.1,

E

[
exp

{
it

2

(
(X − X̄j)

′S−1
j (X − X̄j) + log |Sj |

)}∣∣∣∣X]
= exp(itΩj)

[
1 +

1

nj

{
it

2

(
−p(p− 1)

2
+ (p+ 1)Ωj

)
+

(it)2

4
(p+Ω2

j )

}]
+Op(n

−3/2
j ). (2.6)

Suppose that X belongs to Πj , and let

ψj(t) = E[eitQ(X)/2].
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From Lemma 2.3 and (2.6),

ψj(t) = g(it/2,−it/2)|Σ1Σ
−1
2 |it/2

[
1 +

1

n1

{
it

2

(
−p(p− 1)

2
+ (p+ 1)L1

)
+

(it)2

4
(p+ (L2

1 + L11))

}
+

1

n2

{
− it
2

(
−p(p− 1)

2
+ (p+ 1)L2

)
+

(it)2

4
(p+ (L2

2 + L22))

}]
+O3/2, (k = 1, 2),

where

Lk =
1

g(t1, t2)

∂g(t1, t2)

∂tk

∣∣∣∣
(t1,t2)=(it/2,−it/2)

, Lkk =
∂

∂tk

1

g(t1, t2)

∂g(t1, t2)

∂tk

∣∣∣∣
(t1,t2)=(it/2,−it/2)

, (k = 1, 2).

From (1.2) and (2.1), we have

Σ1 = Ip +
k2√
n
A, Σ2 = Ip −

k1√
n
A. (2.7)

For j = 1, the parameters of g and L are given as follows.

η1 = 0, η2 = Σ
−1/2
1 (µ2 − µ1), Γ1 = Ip, Γ2 = Σ

1/2
1 Σ−1

2 Σ
1/2
1 . (2.8)

From (2.7) and (2.8), we obtain the following expansion.

g(it/2,−it/2)|Σ1Σ
−1
2 |it/2 = exp

[
− it

2
(1− it)D0 +

1√
n

{
k2(1− it)

2
D1 −

(k2 + it)(1− it)

2
D1

}
+

1

n

{
(it)2 − it

4
T2 −

k22(1− it)

2
D2 +

(1− it)2{(it)2 + (k2 − k1)it+ k22}
2

D2

}]
+O3/2,

L1 = p+ (it)2D0 +O1/2, L2 = p+ (1− it)2D0 +O1/2,

L11 = 2p+ 4(it)2D0 +O1/2, L22 = 2p+ 4(1− it)2D0 +O1/2.

Hence, we obtain the following expansion of ψ1.

ψ1(t) = exp

{
− it(1− it)

2
D0

}[
1 +

1√
n

{
1

2
(−k1it+ (1 + k1)(it)

2 − (it)3
}
D1

+
1

n

{
(it)2 − it

4
T2 +

1

2

{
−k21it+ (k21 + 2k1)(it)

2 − (1 + 2k1)(it)
3 + (it)4

}
D2

+
1

8

{
k2it+ (1 + k1)(it)

2 − (it)3

2

}2

D2
1

}

+
1

n1

{
it

2

(
p2 + 3p

2
+ (p+ 1)(it)2D0

)
+

(it)2

4

{
p+ (p+ (it)2D0)

2 + 2p+ 4(it)2D0

}}
+

1

n2

{
− it

2

(
p2 + 3p

2
+ (p+ 1)(1− it)2D0

)
+

(it)2

4

{
p+ (p+ (1− it)2D0)

2 + 2p+ 4(1− it)2D0

}}
+O3/2.

The expansion of ψ2 is given by replacing the parameters (it, k1, k2, n1, n2) of ψ1 with (−it, k2, k1, n2, n1). Inverting
ψj(j = 1, 2) formally, we obtain the desired result.

3 The criterion for selecting between the linear and quadratic discrim-
inant functions

3.1 Derivation of the criterion

In this section, we consider the expected misclassification probabilities PL and PQ of L̂(X) and Q̂(X), respectively.
We assume that a priori probabilities are 1/2. Then PL and PQ are given by

PL =
1

2

{
1− P

(
L1 ≤ 1

2
(d′d)1/2

)
+ P

(
L2 ≤ −1

2
(d′d)1/2

)}
,

PQ =
1

2

{
1− P

(
Q1 ≤ 1

2
(d′d)1/2

)
+ P

(
Q2 ≤ −1

2
(d′d)1/2

)}
,

respectively.
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Theorem 3.1. We obtain the limiting misclassification probabilities of PL and PQ which are equal. Moreover, the
term of 1/2-th order with respect to N−1

1 and N−1
2 of PQ − PL is vanished. Let

D(A,d) = lim
n→∞

n(PQ − PL).

Then D(A,d) is given by following formula.

D(A,d) = ϕ(D
1/2
0 /2)

6∑
s=1

D
−s/2
0 Hs−1(D

1/2
0 /2)cs,

where the coefficient cs’s are given by

c1 = −T2/2− (k21 + k22)D2 + {k21(p+ 1)D0 − (p+ 1)D2
0}/k1 + {k22(p+ 1)D0 − (p+ 1)D2

0}/k2,
c2 = T2/2 + (k21 + k22 + 2)D2/2 + (k21 + k22)D

2
1/8

+ {(p2 + p)/2 + (4p+ 5)D2
0/4 + (p+ 1)D2

0 − k21(3(p+ 1)D0 +D2
0/2)}/k1

+ {(p2 + p)/2 + (4p+ 5)D2
0/4 + (p+ 1)D2

0 − k22(3(p+ 1)D0 +D2
0/2)}/k2,

c3 = −2D2 − (1 + k21 + k22)D
2
1/4 + {−D2

0 − (p+ 1)D0 + 2k1D
2
0}/k1 + {−D2

0 − (p+ 1)D0 + 2k2D
2
0}/k2,

c4 = D2 + 3D2
1/4 + {(p+ 1)D0 + 3D2

0/2− 2k21D
2
0}/k1 + {(p+ 1)D0 + 3D2

0/2− 2k22D
2
0}/k2,

c5 = −3D2
1/4−D2

0/k1 −D2
0/k2,

c6 = D2
1/4 +D2

0/2k1 +D2
0/2k2.

Proof. The result is easily obtained from Theorem 2.1 and 2.2.

We obtain a criterion for selecting between the linear and the quadratic discriminant functions as D(A,d). Then
if D(A,d) is negative, we can consider that Q̂(X) is better than L̂(X). Otherwise, we can consider that L̂(X) is
better than Q̂(X). However, A and d are unknown parameters which should be estimated. We may consider to use
simple estimators,

d̂ = S−1/2(X̄1 − X̄2), Â =
√
nS−1/2(S1 − S2)S

−1/2. (3.1)

But it is insufficient for a criterion for selecting between the linear and the quadratic discriminant functions only by
replacing the unknown parameters with these estimators. Because, Â is not consistent, D(Â, d̂) does not converge in

probability to D(A,d) for large samples. Moreover, E[D(Â, d̂)] do not converge to D(A,d). Therefore, we correct
the bias in the next section.

3.2 Correcting the bias

We have the criterion for selecting between the linear and the quadratic discriminant functions in Theorem 3.1.
But this include the unknown parameters A, d. When replacing these parameters with the estimators (3.1), D(Â, d̂)
have the asymptotic bias for D(A,d). So we will correct the bias of the criterion. The criterion can be given as a
linear combination of the following terms.

tr(A2)(d′d)l/2, (d′d)l/2d′A2d, (d′d)l/2(d′Ad)2, (d′d)l/2. (l ∈ Z). (3.2)

Theorem 3.2. We obtain the criterion D∗ which correct the bias as the following formula. Define

D∗(A,d) = ϕ(D
1/2
0 /2)

6∑
s=1

D
−s/2
0 Hs−1(D

1/2
0 /2)c∗s,
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where the coefficient c∗s’s are given by

c∗1 = −{T2/2− (p2 + p)/k1 − (p2 + p)/k2} − (k21 + k22){D2 − (p+ 1)D0/k1 − (p+ 1)D0/k2}
+ {k21(p+ 1)D0 − (p+ 1)D2

0}/k1 + {k22(p+ 1)D0 − (p+ 1)D2
0}/k2,

c∗2 = {T2/2− (p2 + p)/k1 − (p2 + p)/k2}/2 + (k21 + k22 + 2){D2 − (p+ 1)D0/k1 − (p+ 1)D0/k2}/2
+ (k21 + k22){D2

1 − 2D2
0/k1 − 2D2

0/k2}/8
+ {(p2 + p)/2 + (4p+ 5)D2

0/4 + (p+ 1)D2
0 − k21(3(p+ 1)D0 +D2

0/2)}/k1
+ {(p2 + p)/2 + (4p+ 5)D2

0/4 + (p+ 1)D2
0 − k22(3(p+ 1)D0 +D2

0/2)}/k2,
c∗3 = −2{D2 − (p+ 1)D0/k1 − (p+ 1)D0/k2} − (1 + k21 + k22){D2

1 − 2D2
0/k1 − 2D2

0/k2}/4
+ {−D2

0 − (p+ 1)D0 + 2k1D
2
0}/k1 + {−D2

0 − (p+ 1)D0 + 2k2D
2
0}/k2,

c∗4 = {D2 − (p+ 1)D0/k1 − (p+ 1)D0/k2}+ 3{D2
1 − 2D2

0/k1 − 2D2
0/k2}/4

+ {(p+ 1)D0 + 3D2
0/2− 2k21D

2
0}/k1 + {(p+ 1)D0 + 3D2

0/2− 2k22D
2
0}/k2,

c∗5 = −3{D2
1 − 2D2

0/k1 − 2D2
0/k2}/4−D2

0/k1 −D2
0/k2,

c∗6 = {D2
1 − 2D2

0/k1 − 2D2
0/k2}/4 +D2

0/2k1 +D2
0/2k2.

Then

E[D∗(Â, d̂)] = D(A,d) +O(n−1/2).

Proof.
From the central limit theorem, we can obtain the following,

Zj =
√
Nj(X̄j − µj) = Op(1), Wj =

√
nj(Sj −Σj) = Op(1), (j = 1, 2).

Then the following statistics are expanded as

tr(Â)(d̂′d̂)l/2 = tr
{√

nS−1(S1 − S2)
}{

(X̄1 − X̄2)
′S−1(X̄1 − X̄2)

}l/2
= tr

{
(A+ k

−1/2
1 W1 − k

−1/2
2 W2)

2
}
(d′d)l/2 +Op(n

−1/2),

(d̂′d̂)l/2d̂′Âkd̂ =
{
(X̄1 − X̄2)

′S−1(X̄1 − X̄2)
}l/2

(X̄1 − X̄2)
′S−1{

√
n(S1 − S2)}S−1{

√
n(S1 − S2)}S−1(X̄1 − X̄2)

= (d′d)l/2d
{
A+ k

−1/2
1 W1 − k

−1/2
2 W2

}2

d+Op(n
−1/2),

(d̂′d̂)l/2(d̂′Âd̂)2 =
{
(X̄1 − X̄2)

′S−1(X̄1 − X̄2)
}l/2 {

(X̄1 − X̄2)
′S−1{

√
n(S1 − S2)}S−1(X̄1 − X̄2)

}2
= (d′d)l/2

{
d(A+ k

−1/2
1 W1 − k

−1/2
2 W2)d

}2

+Op(n
−1/2),

(d̂′d̂)l/2 =
{
(X̄1 − X̄2)

′S−1(X̄1 − X̄2)
}l/2

= d′d+Op(n
−1/2).

Moreover, W1 is independent of W2 and the following formulae can be seen in Fujikoshi et al. (2010).

E[Wj ] = O, E[WjBWj ] = tr(BΣj)Σj +ΣjBΣj ,

where B is an arbitrary constant matrix. Thus we obtain the following,

E
[
tr(Â)(d̂′d̂)l/2

]
= (d′d)l/2{tr(A2) + (p2 + p)/k1 + (p2 + p)/k2}+O(n−1/2),

E
[
(d̂′d̂)l/2d̂′Âkd̂

]
= (d′d)l/2{d′A2d+ (p+ 1)d′d/k1 + (p+ 1)d′d/k2}+O(n−1/2),

E
[
(d̂′d̂)l/2(d̂′Âd̂)2

]
= (d′d)l/2{(d′Ad)2 + 2(d′d)2/k1 + 2(d′d)2/k2}+O(n−1/2),

E
[
(d̂′d̂)l/2

]
= (d′d)l/2 +O(n−1/2).

Using these formulae, replacing tr(A2)(d′d)l/2, (d′d)l/2d′A2d, (d′d)l/2(d′Ad)2 with

(d′d)l/2{tr(A2)− (p2 + p)/k1 − (p2 + p)/k2},
(d′d)l/2{d′A2d− (p+ 1)d′d/k1 − (p+ 1)d′d/k2},
(d′d)l/2{(d′Ad)2 − 2(d′d)2/k1 − 2(d′d)2/k2},

respectively, we obtain the desired result.
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4 Numerical study

In this section, We perform numerical study for investigating the performance of D∗ and other selection method.
We assume that

d = (
√
p, . . . ,

√
p)′/p, Σ1 = Ip, Σ2 = Ip + C · diag(1, . . . , p)/p,

in numerical studies. The expected misclassification probabilities are calculated by the Monte Carlo simulation with
100,000 iterations.

4.1 Comparison of Cross-Validation method and D∗

We consider Cross-Validation(CV) as one of an estimation method of the expected misclassification probability. Let
Xi1, . . . ,XiNi be a training samples from Πi(i = 1,2), and let d(X,µ1,µ2,Σ1,Σ2) be arbitrary discriminant function
which involves unknown parameters, then the expected misclassification probabilityPd is given as

Pd(X, X̄1, X̄2,S1,S2) =
1

2

{
P (d(X, X̄1, X̄2,S1,S2) > 0

∣∣X ∈ Π1) + P (d(X, X̄1, X̄2,S1,S2) ≤ 0
∣∣X ∈ Π2)

}
,

where estimators of these parameters are given by (1.1). Suppose that X̄
(−k)
j , S

(−k)
j are the sample mean and the

sample covariance matrix by using training samples which are deleted Xjk(k = 1, . . . , Nj , j = 1, 2), that is,

X̄
(−k)
j =

1

Nj − 1

Nj∑
i=1,i̸=k

Xji, S
(−k)
j =

1

Nj − 2

Nj∑
i=1,i̸=k

(Xji − X̄j)(Xji − X̄j)
′.

Then we obtain the CV estimation of Pd as the following:

P̂
(CV )
d =

1

2

{
P̂

(CV )
d (2|1) + P̂

(CV )
d (1|2)

}
,

P̂
(CV )
d (2|1) = 1

N1

N1∑
k=1

χ(d(X1k, X̄
(−k)
1 , X̄2,S

(−k)
1 ,S2) > 0),

P̂
(CV )
d (1|2) = 1

N2

N2∑
k=1

χ(d(X2k, X̄1, X̄
(−k)
2 ,S1,S

(−k)
2 ) ≤ 0),

where χ(A) is defined as follows. If A is true, then χ(A) = 1. Otherwise, χ(A) = 0. By using CV estimation, we
obtain a criterion DCV for selecting between the linear and the quadratic discriminant functions, that is,

DCV = P̂
(CV )
Q − P̂

(CV )
L .

Hence if DCV is negative, we can consider that Q̂(X) is better than L̂(X). Otherwise, we can consider that L̂(X) is
better than Q̂(X). The asymptotic bias of CV estimation is 0, that is,

E[P̂CV
d ] → Pd (n→ ∞).

However, CV estimation takes heavy costs of calculating. Hence it is hard to use it in practice.
Table 1 gives the expected misclassification probabilities for different p, C, N1 and N2. Here the columns L and

Q are the expected misclassification probabilities by using only L̂(X) and Q̂(X), respectively. The columns D∗ and
DCV are the expected misclassification probability by selecting between the linear and the quadratic discriminant
functions with using D∗ and DCV , respectively, and using the selected discriminant function. The numerical values
on the double line and the line are the minimum and value without significance difference from the minimum in each
row, respectively.

From Table 1, we can see that the performance of D∗ is better than DCV when C is small, but the performance
of D∗ is worse then DCV when C is large.

4.2 Method of using hypothesis test and D∗

We performed the numerical study for investigating the performance of D∗ and DCV in the previous section.
From the result of numerical study, performance of D∗ is worse than DCV when the difference between two covariance
matrices is large. Because the setting of numerical study does not match the framework of asymptotic expansion.
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p C N1 N2 L Q D∗ DCV

2 0.0 25 25 0.320325 0.334350 0.324745 0.324765
2 0.1 25 25 0.322985 0.336480 0.32751 0.32835
2 0.5 25 25 0.333875 0.342335 0.33764 0.33803
2 1.0 25 25 0.344855 0.335850 0.34176 0.341045
2 5.0 25 25 0.374740 0.241970 0.27009 0.24881
2 9.0 25 25 0.383625 0.190830 0.207125 0.19246

2 0.0 50 50 0.313940 0.320265 0.31576 0.31678
2 0.1 50 50 0.318275 0.323405 0.32003 0.32047
2 0.5 50 50 0.326185 0.326880 0.327385 0.326675
2 1.0 50 50 0.335995 0.321925 0.32833 0.32798
2 5.0 50 50 0.364975 0.232475 0.245315 0.23346
2 9.0 50 50 0.377285 0.180920 0.185035 0.18094

5 0.0 25 25 0.342425 0.385365 0.34248 0.3532
5 0.1 25 25 0.344355 0.384790 0.34437 0.354565
5 0.5 25 25 0.353150 0.381590 0.35336 0.36343
5 1.0 25 25 0.361285 0.358925 0.361265 0.361665
5 5.0 25 25 0.384420 0.199435 0.36015 0.20249
5 9.0 25 25 0.391675 0.131620 0.34082 0.13179

5 0.0 50 50 0.325875 0.354550 0.325875 0.3321
5 0.1 50 50 0.329885 0.357905 0.329875 0.336875
5 0.5 50 50 0.335370 0.348430 0.335455 0.33994
5 1.0 50 50 0.348325 0.327540 0.348055 0.336055
5 5.0 50 50 0.374350 0.167090 0.31971 0.167125
5 9.0 50 50 0.380630 0.104740 0.284115 0.10474

Table 1: Comparison of D∗ and DCV

Hence it is insufficient for selecting of these discriminant functions only by using D∗. Therefore, we suggest using the
hypothesis test in addition to D∗.

For testing H0 : Σ1 = Σ2 against H1 : Σ1 ̸= Σ2, the modified likelihood ratio test statistics is given as follows.

T = −2ρ log Λ,

where

ρ = 1− 2p2 + 3p− 1

6(p+ 1)n

 2∑
j=1

n

nj
− 1

 ,

Λ =
|S1|n1 |S2|n2

|S|n
.

Moreover, we are given following result when the null hypothesis H0 is true.

P (T ≤ x) = P (χ2
f ≤ x) +O2

where f = p(p+1)/2. The proof of the above lemma can be seen in Muirhead (1982). We consider that the difference
between two covariance matrices is large when P (χ2

f > T ) < α, where α is significance level and χ2
f is chi-square

random variable with degree of freedom f . Hence, we obtain a criterion for selecting between the linear and the
quadratic discriminant functions as follows. Let

DH = P (χ2
f > T ),

then if DH is lower than α, then we consider that the difference between two covariance matrices is large. Thus we
select the quadratic discriminant function. On the other hand, if DH is not lower than α, then we consider that the
difference between two covariance matrices is small. Hence we consider selecting between the linear and the quadratic
discriminant functions by using D∗. So we suggest the following selection method D∗

H .

STEP 1. We decide significance level α.
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STEP 2. If DH < α, We select the quadratic discriminant function. Otherwise, we go next step.

STEP 3. We select between the linear and quadratic discriminant functions by D∗.

We perform numerical study for comparison of performances of D∗, DCV , DH and D∗
H in the following. Here we

obtain the selection method DH as follows. If DH is lower than α, then we select the quadratic discriminant function.
Otherwise, we select the linear discriminant function. Table 2 gives the expected misclassification probabilities for
different p, C, N1 and N2. The column DH and D∗

H are the expected misclassification probability for selecting between
the linear and quadratic discriminant functions by using DH and D∗

H , respectively, and using the selected discriminant
function. Here the number in the parentheses is the significance level.

p C N1 N2 L Q D∗ DCV DH(0.01) DH(0.05) DH(0.1) D∗
H(0.01) D∗

H(0.05) D∗
H(0.1)

2 0.0 25 25 0.3205 0.3328 0.3245 0.3251 0.3210 0.3221 0.3236 0.3246 0.3250 0.3258
2 0.1 25 25 0.3229 0.3364 0.3271 0.3276 0.3235 0.3250 0.3265 0.3273 0.3280 0.3287
2 0.5 25 25 0.3316 0.3383 0.3348 0.3348 0.3326 0.3341 0.3351 0.3351 0.3357 0.3362
2 1.0 25 25 0.3428 0.3359 0.3408 0.3404 0.3432 0.3422 0.3408 0.3407 0.3401 0.3394
2 5.0 25 25 0.3747 0.2433 0.2717 0.2501 0.2455 0.2436 0.2435 0.2443 0.2435 0.2434

2 0.0 50 50 0.3146 0.3198 0.3161 0.3165 0.3149 0.3155 0.3162 0.3163 0.3165 0.3168
2 0.1 50 50 0.3169 0.3229 0.3194 0.3196 0.3172 0.3180 0.3189 0.3195 0.3197 0.3201
2 0.5 50 50 0.3279 0.3271 0.3281 0.3273 0.3283 0.3282 0.3282 0.3281 0.3280 0.3279
2 1.0 50 50 0.3351 0.3235 0.3296 0.3281 0.3311 0.3277 0.3266 0.3275 0.3260 0.3256
2 5.0 50 50 0.3653 0.2334 0.2460 0.2342 0.2334 0.2334 0.2334 0.2334 0.2334 0.2334

2 0.0 100 100 0.3105 0.3136 0.3113 0.3118 0.3106 0.3112 0.3116 0.3114 0.3117 0.3120
2 0.1 100 100 0.3162 0.3190 0.3172 0.3173 0.3164 0.3169 0.3173 0.3172 0.3174 0.3177
2 0.5 100 100 0.3241 0.3210 0.3225 0.3225 0.3233 0.3227 0.3219 0.3222 0.3221 0.3215
2 1.0 100 100 0.3321 0.3155 0.3217 0.3204 0.3185 0.3164 0.3159 0.3170 0.3159 0.3158
2 5.0 100 100 0.3622 0.2283 0.2318 0.2283 0.2283 0.2283 0.2283 0.2283 0.2283 0.2283

5 0.0 25 25 0.3431 0.3848 0.3431 0.3533 0.3440 0.3467 0.3494 0.3440 0.3467 0.3495
5 0.1 25 25 0.3452 0.3854 0.3453 0.3556 0.3460 0.3485 0.3508 0.3461 0.3485 0.3508
5 0.5 25 25 0.3536 0.3807 0.3537 0.3627 0.3542 0.3566 0.3590 0.3542 0.3567 0.3590
5 1.0 25 25 0.3619 0.3604 0.3619 0.3626 0.3626 0.3636 0.3634 0.3627 0.3636 0.3634
5 5.0 25 25 0.3858 0.1999 0.3617 0.2028 0.2010 0.2001 0.1999 0.2009 0.2001 0.1999

5 0.0 50 50 0.3255 0.3542 0.3256 0.3326 0.3262 0.3280 0.3304 0.3262 0.3281 0.3304
5 0.1 50 50 0.3282 0.3577 0.3282 0.3353 0.3287 0.3304 0.3327 0.3287 0.3304 0.3327
5 0.5 50 50 0.3381 0.3507 0.3381 0.3436 0.3392 0.3415 0.3430 0.3392 0.3415 0.3430
5 1.0 50 50 0.3457 0.3283 0.3453 0.3354 0.3411 0.3358 0.3337 0.3409 0.3358 0.3337
5 5.0 50 50 0.3737 0.1685 0.3191 0.1686 0.1685 0.1685 0.1685 0.1685 0.1685 0.1685

5 0.0 100 100 0.3177 0.3338 0.3177 0.3215 0.3181 0.3192 0.3208 0.3181 0.3192 0.3208
5 0.1 100 100 0.3219 0.3379 0.3219 0.3257 0.3224 0.3236 0.3250 0.3224 0.3236 0.3250
5 0.5 100 100 0.3274 0.3303 0.3275 0.3291 0.3288 0.3298 0.3301 0.3289 0.3298 0.3301
5 1.0 100 100 0.3357 0.3072 0.3330 0.3134 0.3112 0.3086 0.3080 0.3112 0.3086 0.3080
5 5.0 100 100 0.3645 0.1530 0.2792 0.1530 0.1530 0.1530 0.1530 0.1530 0.1530 0.1530

Table 2: Comparison of D∗, DCV , DH and D∗
H

From Table 2, we can see that D∗
H is better then D∗ and DCV , and performance of D∗

H is the same as performance
of DH in the cases that C is large. In most cases that the difference between two covariance matrices is small, the
performances of all selection method are about same. In the case of C = 1, D∗

H better than DH . Moreover, the
performances DH and D∗

H depend on signification level α, but in the cases of α = 0.01, 0.05, 0.1, the performances are
very close.

5 Conclusion

As the first, We suggest the method D∗ for selecting of the linear and the quadratic discriminant functions by
using the asymptotic expansion when the difference between two covariance matrices is small. In the case that the
difference between two covariance matrices is small, D∗ is better then DCV . However, D∗ is worse then DCV when
the difference between two covariance matrices is large. So secondly, we suggest selection method D∗

H of using the
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hypothesis test in addition to D∗. We see performance of D∗
H in the numerical studies. The performance of D∗

H is
better then performance other selection method, or equally. However from numerical studies, the performance of D∗

H is
worse than DCV when p is large. Because the asymptotic expansions usually do not give good approximation formulae
for large p. It may be possible to improve our selection method with using asymptotic expansions in high-dimensional
and large samples framework, that is, both N , and p become large, which is left for future work.

Appendix

A.1 Proof of lemma 2.1

Proof. Since W ∼Wp(n,Σ),

Y ′W−1Y ∼ Y ′Σ−1/2W−1
0 Σ−1/2Y , log |W | ∼ log |Σ|+ log |W0|

where W0 ∼Wp(n, Ip). Let W0 be partition as

W0 =

(
W11 W12

W21 W22

)
,

where W11 : 1× 1, and let

M =

(
1 −W12W

−1
22

O Ip−1

)
.

Then we can obtain the following, (see e.g. Fujikoshi. et al. (2010))

W−1
0 = W0 =

(
W11 W12

W21 W22

)−1

=

(
0 0
0 W−1

22

)
+

(
1

−W−1
22 W21

)
W−1

11.2

(
1 −W12W

−1
22

)
,

|W0| = |MW0M
′| =

∣∣∣∣ W11.2 O
O W22

∣∣∣∣ =W11.2|W22|,

where W11.2 =W11 −W12W22W21. Moreover, since W0 ∼Wp(n, Ip), W11.2 is distributed as W1(n− p+1, 1), that is
the chi-square distribution with degree of freedom n− p+1, and W22 ∼Wp−1(n, Ip−1), W11.2 is independent of W22.
Let H = (H1,H2) be the orthogonal matrix such that H1 = Σ−1/2Y , then

Y ′Σ−1/2W−1
0 Σ−1/2Y ∼ Y ′Σ−1/2HW−1

0 H ′Σ−1/2Y

=W−1
11.2Y

′Σ−1Y .

Therefore, we obtain the desired result.

A.2 Proof of lemma 2.2

Proof.

E[exp{itZ2}] =
∫ ∞

−∞
exp{itz2} 1

(2π)1/2
exp

{
−1

2
(z − µ)2

}
dz

=

∫ ∞

−∞

1

(2π)1/2
exp

{
itz2 − 1

2
(z2 − 2zµ+ µ2)

}
dz

=

∫ ∞

−∞

1

(2π)1/2
exp

{
−1

2
((1− 2it)z2 − 2zµ+ µ2)

}
dz

=

∫ ∞

−∞

1

(2π)1/2
exp

{
−1

2
(1− 2it)

(
z − µ

(1− 2it)

)2

− itµ2

(1− 2it)

}
dz

= (1− 2it)−1/2 exp

{
− itµ2

(1− 2it)

}
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A.3 Proof of Lemma 2.3

Proof.

g(t1, t2) = E [exp {X ′ (t1Γ1 + t2Γ2)X + 2 (t1η
′
1Γ1 + t2η

′
2Γ2)X + t1η

′
1Γ1η1 + t2η

′
2Γ2η2}]

=

∫ ∞

−∞
(2π)−p/2 exp {−x′x/2} exp {x′ (t1Γ1 + t2Γ2)x+ 2 (t1η

′
1Γ1 + t2η

′
2Γ2)x+ t1η

′
1Γ1η1 + t2η

′
2Γ2η2} dx

=

∫ ∞

−∞
(2π)−p/2 exp

[
−1

2
{x′(Ip − 2t1Γ1 − 2t2Γ2)x− 4 (t1η

′
1Γ1 + t2η

′
2Γ2)x− 2t1η

′
1Γ1η1 − 2t2η

′
2Γ2η2}

]
dx

=

∫ ∞

−∞
(2π)−p/2 exp

[
1

2

{
x− 2 (Ip − 2t1Γ1 − 2t2Γ2)

−1
(t1Γ1η1 + t2Γ2η2)

}′
(Ip − 2t1Γ1 − 2t2Γ2)

·
{
x− 2 (Ip − 2t1Γ1 − 2t2Γ2)

−1
(t1Γ1η1 + t2Γ2η2)

}
+2(t1Γ1η1 + t2Γ2η2)

′ (Ip − 2t1Γ1 − 2t2Γ2)
−1

(t1Γ1η1 + t2Γ2η2) + t1η
′
1Γ1η1 + t2η

′
2Γ2η2

]
dx

= |Ip − 2t1Γ1 − 2t2Γ2|−1/2 exp
[
2(t1Γ1η1 + t2Γ2η2)

′ (Ip − 2t1Γ1 − 2t2Γ2)
−1

(t1Γ1η1 + t2Γ2η2)

+ t1η
′
1Γ1η1 + t2η

′
2Γ2η2] .

From the above result, we can easily obtain g(t1, t2;η1,η2,Γ1,Γ2) = g(t2, t1;η2,η1,Γ2,Γ1). By using 2t1Γ1 =
(Ip − 2t2Γ2)− (Ip − 2t1Γ1 − 2t2Γ2),

t1η
′
1Γ1η1 + t2η

′
2Γ2η2 + 2(t1Γ1η1 + t2Γ2η2)

′ (Ip − 2t1Γ1 − 2t2Γ2)
−1

(t1Γ1η1 + t2Γ2η2)

=
1

2
η′
1(Ip − 2t2Γ2)η1 −

1

2
η′
1(Ip − 2t1Γ1 − 2t2Γ2)η1 + t2η

′
2Γ2η2

+
1

2
{{η1 − 2t2Γ2(η1 − η2)} − (Ip − 2t1Γ1 − 2t2Γ2)η1}′ (Ip − 2t1Γ1 − 2t2Γ2)

−1

· {{η1 − 2t2Γ2(η1 − η2)} − (Ip − 2t1Γ1 − 2t2Γ2)η1}

=
1

2
η′
1(Ip − 2t2Γ2)η1 + t2η

′
2Γ2η2

+
1

2
{η1 − 2t2Γ2(η1 − η2)}′ (Ip − 2t1Γ1 − 2t2Γ2)

−1 {η1 − 2t2Γ2(η1 − η2)} − η′
1{η1 − 2t2Γ2(η1 − η2)}

= −1

2
η′
1η1 + t2(η1 − η2)

′Γ2(η1 − η2)

+
1

2
{η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)

−1{η1 − 2t2Γ2(η1 − η2)}.

Let A, B, C and M be arbitrary p× p matrix, then we obtain the following formulae.

|Ip + hC| = exp{log |Ip + hC|} = exp{htr(C) +O(h2)} = 1 + htr(C) +O(h2),

|A+ (t+ h)B| = |A+ tB + hB| = |A+ tB||Ip + h(A+B)−1B|
= |A+ tB|

[
1 + htr{(A+B)−1B}+O(h2)

]
, (A.3.1)

tr
{
M(A+ (t+ h)B)−1

}
= tr

[
M(A+ tB)−1{Ip + hB(A+ tB)−1}−1

]
= tr

[
M(A+ tB)−1{I + hB(A+ tB)−1 +O(h2)}

]
= tr [M(A+ tB)]− htr

[
M(A+ tB)−1B(A+ tB)−1

]
+O(h2). (A.3.2)

From (A.3.1) and (A.3.2),

d

dt
|A+ tB| = lim

h→0

1

h
{|A+ (t+ h)B| − |A+ tB|} = |A+ tB|tr

{
(A+ tB)−1B

}
,

d

dt
tr
{
M(A+ tB)−1

}
= lim

h→0

1

h

[
tr
{
M(A+ (t+ h)B)−1

}
− tr

{
M(A+ tB)−1

}]
= −tr

[
M(A+ tB)−1B(A+ tB)−1

]
.
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By using the these result,

∂g(t1, t2)

∂t1
=

[
∂

∂t1
|Ip − 2t1Γ1 − 2t2Γ2|−1/2

]
exp

{
−1

2
η′
1η1 + t2(η1 − η2)

′Γ2 (η1 − η2)

+
1

2
{η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)

−1{η1 − 2t2Γ2(η1 − η2)}
}

+ |Ip − 2t1Γ1 − 2t2Γ2|−1/2 exp

{
−1

2
η′
1η1 + t2(η1 − η2)

′Γ2 (η1 − η2)

+
1

2
{η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)

−1{η1 − 2t2Γ2(η1 − η2)}
}

· ∂

∂t1

{
−1

2
η′
1η1 + t2(η1 − η2)

′Γ2 (η1 − η2)

+
1

2
{η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)

−1{η1 − 2t2Γ2(η1 − η2)}
}

= g(t1, t2)tr[(Ip − 2t1Γ1 − 2t2Γ2)
−1Γ1]

+ {η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)
−1Γ1(Ip − 2t1Γ1 − 2t2Γ2)

−1{η1 − 2t2Γ2(η1 − η2)},
∂L(t1, t2)

∂t1
= L(t1, t2;η1,η2,Γ1,Γ2) = 2tr[{(Ip − 2t1Γ1 − 2t2Γ2)

−1Γ1}2]

+ 4{η1 − 2t2Γ2(η1 − η2)}′(Ip − 2t1Γ1 − 2t2Γ2)
−1{Γ1(Ip − 2t1Γ1 − 2t2Γ2)

−1}2{η1 − 2t2Γ2(η1 − η2)}
∂g(t1, t2)

∂t2
= g(t1, t2)L(t2, t1;η2,η1,Γ2,Γ1).
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