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Abstract

In this study, we consider the likelihood ratio test (LRT) for a normal

mean vector when the data have a monotone pattern of missing obser-

vations. We derive the modi�ed likelihood ratio test (MLRT) statistics

by using the decomposition of the likelihood ratio (LR). Further, we in-

vestigate the accuracy of the upper percentiles of these test statistics by

Monte Carlo simulation.
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1 Introduction

In statistical data analyses, testing a problem with missing data is an important prob-

lem. In this study we consider the one-sample test for a normal mean vector with mono-

tone missing data. For the one-sample problem with k-step monotone missing data, the

closed-form expressions for the MLEs of the mean vector and covariance matrix were given

by Jinadasa and Tracy (1992). Kanda and Fujikoshi (1998) discussed the properties of

the MLEs in the case of k-step monotone missing data using the conditional approach.

The one-sample problem of the test for the mean vector with monotone missing data has

been discussed by many authors. For discussions related to Hotelling's T 2-type statistic,

see Krishnamoorthy and Pannala (1999); Chang and Richards (2009); Seko, Yamazaki

and Seo (2012); and Yagi and Seo (2014), among others. For a discussion of the LRT

statistic, see Krishnamoorthy and Pannala (1998) and Seko et al. (2012). For the two-
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sample problem, Seko, Kawasaki and Seo (2011) derived Hotelling's T 2-type statistic, the

LRT statistic, and their approximate upper percentiles with two-step monotone missing

data. In addition, Yu, Krishnamoorthy and Pannala (2006) derived an approximate dis-

tribution for Hotelling's T 2-type statistic using another approach. Recently, Yagi and

Seo (2015a, 2015b) gave the approximate upper percentiles of the simpli�ed Hotelling's

T 2-type statistics for testing the equality of mean vectors and simultaneous con�dence

intervals with general k-step monotone missing data including the two- or three-step case.

In this paper, for the one-sample test, we give the LRT statistic for general monotone

missing data and propose MLRT statistics by using the decomposition of the LR. This

decomposition follows from Bhargava (1962) and Krishnamoorthy and Pannala (1998).

This paper is organized in the following way. In Section 2, we �rst present the assumptions,

notation and preliminaries. In Section 3, we derive the LRT statistic and MLRT statistics,

which converges to the χ2 distribution faster than the LRT statistic when the sample size

is large. In Section 4, some simulation results for three- and �ve-step monotone missing

data cases are presented to investigate the accuracy of the upper percentiles of the null

distribution of the MLRT statistics.

2 Assumptions, notation and preliminaries

We consider the one-sample problem of testing for a mean vector with a k-step monotone

missing data pattern. Let xi be a pi×1 normal random vector with the mean vector µi and

covariance matrix Σi, where µi = (µ)i = (µ1, µ2, . . . , µpi)
′, and Σi is the pi × pi principal

submatrix of Σ(= Σ1) with p = p1 > p2 > · · · > pk > 0. Suppose that xi1,xi2, . . . ,xini

are independent and identically distributed samples from xi, i = 1, 2, . . . , k, n1 > p.

Further, let xi, i = 1, 2, . . . , k be mutually independent. Note that k denotes the number

of steps. That is, the above data set is called k-step monotone missing data (see Figure

1, where �∗� indicates a missing observation).
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Figure 1. k-step monotone missing data

For a k-step monotone sample or k-step monotone missing data pattern, see Bhargava

(1962), Srivastava and Carter (1983), Little and Rubin (2002), and Srivastava (2002),

among others. In this paper, we adopt the notation from Yagi and Seo (2015b). As for

the partitions of Σ, for 1 ≤ i < j ≤ k, let (Σi)j be the principal submatrix of Σi of order

pj × pj; we de�ne

Σi = (Σ1)i, Σ1 = Σ =

(
Σi Σi2

Σ′
i2 Σi3

)
, Σi−1 =

(
Σi Σ(i−1,2)

Σ′
(i−1,2) Σ(i−1,3)

)
, i = 2, 3, . . . , k.

For example, we can express Σ1 as

Σ1 =

p3︷ ︸︸ ︷ p2−p3︷ ︸︸ ︷ p1−p2︷ ︸︸ ︷
Σ3 Σ(2,2)

Σ(1,2)

Σ′
(2,2) Σ(2,3)

Σ′
(1,2) Σ(1,3)


}
p3}
p2 − p3}
p1 − p2

.

Using this notation, we can express Σ̂ concretely (see Jinadasa and Tracy (1992)).
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Let

Ei =

ni∑
j=1

(xij − xi)(xij − xi)
′, xi =

1

ni

ni∑
j=1

xij, i = 1, 2, . . . , k,

d1 = x1, di =
ni

Ni+1

[
xi −

1

Ni

i−1∑
j=1

nj(xj)i

]
, i = 2, 3, . . . , k,

N1 = 0, Ni+1 = Ni + ni (=
i∑

j=1

nj), i = 1, 2, . . . , k.

Then, we note that Σ̂ is given by

Σ̂ =
1

n1

H1 +
k∑

i=2

1

Ni+1

F i

[
H i −

ni

Ni

Li−1,1

]
F ′

i,

where

H1 = E1, H i = Ei +
NiNi+1

ni

did
′
i, i = 2, 3, . . . , k,

L1 = H1, Li = (Li−1)i +H i, i = 2, 3, . . . , k,

Li1 = (Li)i+1, Li =

(
Li1 Li2

L′
i2 Li3

)
, i = 1, 2, . . . , k − 1,

G1 = Ip1 , Gi+1 =

(
Ipi+1

L′
i2L

−1
i1

)
, i = 1, 2, . . . , k − 1,

F 1 = G1, F i = F i−1Gi, i = 2, 3, . . . , k.

When k = 3, we can see that the above result of Σ̂ coincides with the result in the

three-step case (see Yagi and Seo (2014)).

By the same derivation in Jinadasa and Tracy (1992), the MLE of Σ under H0 can be

written as

Σ̃ =
1

n1

V 1 +
k∑

i=2

1

Ni+1

P i

[
V i −

ni

Ni

Ri−1,1

]
P ′

i,

where

V i =

ni∑
j=1

xijx
′
ij, i = 1, 2, . . . , k,
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and

R1 = V 1, Ri = (Ri−1)i + V i, i = 2, 3, . . . , k,

Ri1 = (Ri)i+1, Ri =

(
Ri1 Ri2

R′
i2 Ri3

)
, i = 1, 2, . . . , k − 1,

Q1 = Ip1 , Qi+1 =

(
Ipi+1

R′
i2R

−1
i1

)
, i = 1, 2, . . . , k − 1,

P 1 = Q1, P i = P i−1Qi, i = 2, 3, . . . , k.

3 LRT and MLRT statistics

Consider the following hypothesis:

H0 : µ = µ0 vs. H1 : µ ̸= µ0,

where µ0 is known. Without loss of generality, we can assume that µ0 = 0. Then, the

LR is given by

λ =
k∏

i=1

(
|Σ̂i|
|Σ̃i|

) 1
2
ni

,

where Σ̂i is the MLE of Σi under H1, and Σ̃i is the MLE of Σi under H0, as in Section 2.

We note that the null distribution of the LRT statistic Q(= −2 log λ) is asymptotically

a χ2 distribution with p degrees of freedom. However, it may be noted that the upper

percentiles of the χ2 distribution are not a good approximation to those of the LRT

statistic when the sample size is not large. For example, Table 1 gives the simulated

values of the upper percentiles of Q and the actual type I error rates for the three- and

�ve-step monotone missing data cases. It may be seen that the upper percentiles of the

χ2 distribution are useful as an approximation to the upper percentiles of Q for cases in

which the sample size is considerably large.

Therefore, we consider the MLRT statistic, which converges to the χ2 distribution faster

than the LRT statistic even when the sample size is small.
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Table 1 : The upper percentiles of Q(= −2 log λ) and the actual type I error rates

(p1, p2, p3) = (8, 4, 2) (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

n1 q(α) αq q(α) αq

10 41.98 0.567 � �
20 20.74 0.167 46.86 0.478
30 18.53 0.112 33.86 0.230
40 17.70 0.092 30.91 0.161
50 17.18 0.082 29.52 0.131
100 16.29 0.064 27.15 0.084
200 15.88 0.057 26.03 0.065
400 15.68 0.053 25.53 0.057
∞ 15.51 0.050 25.00 0.050

Note. q(α): the upper 100α percentiles of Q, αq = Pr{Q > χ2
p,α},

n2 = n3 = · · · = n5 = 10, α = 0.05.

Using the notation in Section 2, we de�ne

Σ(i,3)·i+1 = Σ(i,3) −Σ′
(i,2)Σ

−1
i+1Σ(i,2), i = 1, 2, . . . , k − 1.

Then we decompose λ as λ =
∏k

i=1 λi, where

λi =

(
|Σ̂(i,3)·i+1|
|Σ̃(i,3)·i+1|

)Ni+1
2

, i = 1, 2, . . . , k − 1, λk =

(
|Σ̂k|
|Σ̃k|

)Nk+1
2

.

We note that the values of λi, i = 1, 2, . . . , k are mutually all independent (see Hao and

Krishnamoorthy (2001)). Using an asymptotic expansion of the null distribution of λi,

we can derive a modi�ed LR as

λ∗ =
k∏

i=1

λρi
i ,

where

ρi = 1− 1

2Ni+1

(pi + pi+1 + 2), i = 1, 2, . . . , k − 1, ρk = 1− 1

2Nk+1

(pk + 2).

For simplicity, in order to show the derivation of the value of ρi, we �rst derive an

asymptotic expansion of the null distribution of λi in the case of k = 2. For k = 2, we
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have λ = λ1λ2, where

λ1 =

(
|Σ̂(1,3)·2|
|Σ̃(1,3)·2|

)n1
2

, λ2 =

(
|Σ̂2|
|Σ̃2|

)N3
2

.

We note that W 1(= n1Σ̂(1,3)·2) follows a Wishart distribution, Wp1−p2(Σ(1,3)·2, n1−p2−

1). Let w1 be a (p1 − p2)× 1 vector such that

n1Σ̃(1,3)·2 = W 1 + (n1 − p2)w1w1
′.

Then λ1 can be written as

λ1 =
|W 1|

n1
2

|W 1 + (n1 − p2)w1w1
′|

n1
2

.

Further, letting

1

n1 − p2 − 1
W 1 = Ip1−p2 +

1√
n1 − p2

V 1,

w1 =
1√

n1 − p2
z1,

then the characteristic function of Q1(= −2 log λ1) can be expanded as

E[exp{it(Q1)}]

= E
[
exp{(it)z′

1z1}
(
1− 1

√
n1

(it)z′
1V 1z1

+
1

n1

{
(it)(p2 + 1)z′

1z1 −
1

2
(it)(z′

1z1)
2 + (it)z′

1V
2
1z1 +

1

2
(it)2(z′

1V 1z1)
2
})]

+O(n
− 3

2
1 ).

Therefore, inverting the characteristic function, we have

Pr(Q1 ≤ x) =Gp1−p2(x) +
1

n1

[β1Gp1−p2(x)− β1Gp1−p2+2(x)] +O(n−2
1 ),

where

β1 = −1

4
(p1 − p2)(p1 + p2 + 2),

and Gp(x) is the distribution function of a χ2-variate with p degrees of freedom. There-

fore, if ρ1 = 1 − (p1 + p2 + 2)/(2n1), then the cumulative distribution function of Q∗
1(=
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−2ρ1 log λ1) is given by

Pr(Q∗
1 ≤ x) = Gp1−p2(x) +O(n−2

1 ).

As with the case of λ1, by the perturbation method, the cumulative distribution function

of Q2(= −2 log λ2) can be written as

Pr(Q2 ≤ x) =Gp2(x) +
1

N3

[β2Gp2(x)− β2Gp2+2(x)] +O(N−2
3 ),

where

β2 = −1

4
p2(p2 + 2).

Therefore, if ρ2 = 1− (p2 + 2)/(2N3), then the cumulative distribution function of Q∗
2(=

−2ρ2 log λ2) is given by

Pr(Q∗
2 ≤ x) = Gp2(x) +O(N−2

3 ).

As a remark, for k-step monotone missing data case, the MLRT statistic Q†(= −2ρ log λ)

can be obtained by the above result, where

ρ = 1− 1

2p

{
k−1∑
i=1

1

Ni+1

(pi − pi+1)(pi + pi+1 + 2) +
1

Nk+1

pk(pk + 2)

}
.

It holds that the cumulative distribution function of Q† is given by

Pr(Q† ≤ x) = Gp(x) +O(n−2
1 ).

We note that the value of ρ coincides with that of Krishnamoorthy and Pannala (1998)

when k = 2.

4 Simulation studies

In this section, we will study the numerical accuracy of the upper percentiles of the

MLRT statistics using the actual test sizes. In order to investigate the accuracy of the

approximation for the one-sample case, we compute the upper percentiles of Q, Q∗, and
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Q† with monotone missing data by Monte Carlo simulation. For each parameter, the sim-

ulation was executed 106 times using normal random vectors generated from Npi(0, Ipi),

i = 1, 2, . . . , k.

In Tables 2 and 3, we provide the simulated upper 100α percentiles of Q, Q∗ and Q†

for the three-step and �ve-step cases. Further, we provide the actual test sizes, αq, αq∗

and αq† , given by

αq = Pr{Q > χ2
p,α}, αq∗ = Pr{Q∗ > χ2

p,α}, and αq† = Pr{Q† > χ2
p,α},

respectively, where χ2
p,α is the upper percentile of the χ2 distribution with p degrees of

freedom. It may be noted from Tables 2 and 3 that each value of q, q∗ and q† is closer to

the upper percentiles of the χ2 distribution with p degrees of freedom, χ2
p,α, when the n1

becomes large. It is seen from Table 2 that q∗(α) for (p1, p2, p3) = (8, 4, 2) and (15, 12, 9)

is a considerably good approximate value when n1 is greater than 20. Similarly, it is

seen from Table 3 that q∗(α) for (p1, p2, p3.p4, p5) = (15, 12, 9, 6, 3) is a considerably good

approximate value when n1 is greater than 20 without regard to the sample size of ni,

i ≥ 2. It may be noted from the simulation results that the MLRT statistic Q∗ converges

to the χ2 distribution faster than the MLRT statistic Q† in almost all cases.

In conclusion, we have developed the MLRT statistics Q∗ and Q† with general monotone

missing data in one-sample problem. Our MLRT statistics are considerably more accurate

than the χ2 approximation, even for small samples.
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Table 2: The upper percentiles of Q(= −2 log λ), Q∗(= −2 log λ∗),

Q†(= −2ρ log λ) and the actual type I error rates

Sample Size Upper Percentile Type I Error Rate

n1 n2 n3 q(α) q∗(α) q†(α) αq αq∗ αq†

(p1, p2, p3) = (8, 4, 2)

α = 0.05

10 10 10 41.98 16.77 24.49 .567 .072 .221
20 10 10 20.74 15.58 16.16 .167 .051 .061
30 10 10 18.53 15.52 15.72 .112 .050 .054
40 10 10 17.70 15.55 15.65 .092 .051 .052
50 10 10 17.18 15.52 15.57 .082 .050 .051
100 10 10 16.29 15.50 15.51 .064 .050 .050
200 10 10 15.88 15.48 15.49 .057 .050 .050

α = 0.01

10 10 10 58.22 22.08 33.96 .393 .018 .105
20 10 10 27.09 20.20 21.11 .059 .010 .014
30 10 10 24.09 20.12 20.44 .032 .010 .011
40 10 10 22.94 20.12 20.28 .024 .010 .011
50 10 10 22.28 20.11 20.19 .020 .010 .010
100 10 10 21.14 20.09 20.12 .014 .010 .010
200 10 10 20.56 20.05 20.05 .012 .010 .010

(p1, p2, p3) = (15, 12, 9)

α = 0.05

20 10 10 47.04 25.17 32.73 .485 .052 .174
30 10 10 34.05 25.08 26.56 .235 .051 .072
40 10 10 31.07 25.06 25.68 .165 .051 .060
50 10 10 29.58 25.00 25.34 .133 .050 .055
100 10 10 27.17 25.00 25.06 .084 .050 .051
200 10 10 26.09 25.02 25.03 .066 .050 .050
400 10 10 25.51 24.98 24.98 .057 .050 .050

α = 0.01

20 10 10 60.58 30.84 42.15 .297 .011 .072
30 10 10 42.08 30.69 32.81 .094 .010 .018
40 10 10 38.13 30.66 31.52 .056 .010 .013
50 10 10 36.29 30.61 31.08 .040 .010 .012
100 10 10 33.28 30.64 30.71 .021 .010 .010
200 10 10 31.91 30.61 30.62 .015 .010 .010
400 10 10 31.25 30.59 30.60 .012 .010 .010

Note. αq = Pr{Q > χ2
p,α}, αq∗ = Pr{Q∗ > χ2

p,α}, αq† = Pr{Q† > χ2
p,α},

χ2
8,0.05 = 15.51, χ2

8,0.01 = 20.09, χ2
15,0.05 = 25.00, χ2

15,0.01 = 30.58.
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Table 3: The upper percentiles of Q(= −2 log λ), Q∗(= −2 log λ∗),

Q†(= −2ρ log λ) and the actual type I error rates

Sample Size Upper Percentile Type I Error Rate

n1 n2 = · · · = n5 q(α) q∗(α) q†(α) αq αq∗ αq†

(p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

α = 0.05

20 10 46.86 25.08 33.06 .478 .051 .179
30 10 33.86 24.99 26.63 .230 .050 .074
40 10 30.91 24.98 25.69 .161 .050 .060
50 10 29.52 24.99 25.39 .131 .050 .055
100 10 27.15 25.02 25.08 .084 .050 .051
200 10 26.03 24.98 24.99 .065 .050 .050
400 10 25.53 25.00 25.01 .057 .050 .050

20 5 48.88 25.14 32.38 .530 .052 .169
40 10 30.91 24.97 25.69 .162 .050 .060
80 20 27.47 25.01 25.15 .089 .050 .052
160 40 26.14 25.01 25.04 .067 .050 .051
320 80 25.56 25.02 25.02 .058 .050 .050
640 160 25.28 25.01 25.01 .054 .050 .050

α = 0.01

20 10 60.36 30.67 42.59 .292 .010 .075
30 10 41.82 30.55 32.89 .092 .010 .018
40 10 37.97 30.63 31.56 .054 .010 .013
50 10 36.16 30.54 31.10 .039 .010 .012
100 10 33.23 30.58 30.70 .021 .010 .010
200 10 31.89 30.60 30.62 .015 .010 .010
400 10 31.26 30.61 30.61 .012 .010 .010

20 5 62.54 30.76 41.42 .337 .011 .068
40 10 37.97 30.56 31.56 .054 .010 .013
80 20 33.65 30.61 30.81 .023 .010 .011
160 40 31.98 30.61 30.63 .015 .010 .010
320 80 31.22 30.54 30.56 .012 .010 .010
640 160 30.91 30.58 30.59 .011 .010 .010

Note. αq = Pr{Q > χ2
p,α}, αq∗ = Pr{Q∗ > χ2

p,α}, αq† = Pr{Q† > χ2
p,α},

χ2
15,0.05 = 25.00, χ2

15,0.01 = 30.58.
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