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Abstract

In this paper, we derive the asymptotic distributions of the charac-

teristic roots in multivariate linear models when the dimension p and

the sample size n are large. The results are given for the case that the

population characteristic roots have multiplicities greater than unity,

and their orders are O(np) or O(n). Next, similar results are given for

the asymptotic distributions of the canonical correlations when one of

the dimensions and the sample size are large, assuming that the order

of the population canonical correlations is O(
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1. Introduction

The large-sample asymptotic distributions of the characteristic roots in

discriminant analysis and canonical correlation analysis were derived under

normality by Hsu (1941a, b) and Anderson (1951). The results were ex-

tended by considering nonnormal cases and by obtaining their asymptotic

expansions, and the results for various such cases were presented by many

authors; see, for example, Sugiura (1976), Fujikoshi (1977), Muirehead (1978,

1982), Glynn and Muirhead (1978), and Muirhead and Watermaux (1980).

However, it is known that these large-sample approximations become less

accurate as the number of the response variables, that is, the dimensionality,

becomes larger. To overcome this, the distributions of the characteristic roots

have been studied in high-dimensional situations, where the dimension and

the sample size are both large. More precisely, for discriminant analysis with

q+1 groups, based on n samples of p variables, the asymptotic distributions

of the characteristic roots were obtained by Fujikoshi et al. (2008), under a

high-dimensional asymptotic framework in which p/n → c ∈ [0, 1) and q is

fixed. For canonical correlation analysis of p variables and q(≤ p) variables,

Fujikoshi and Sakurai (2009) obtained the asymptotic distributions of the

canonical correlations when p/n → c0 ∈ [0, 1) and q is fixed.

For these high-dimensional approximations, it was assumed that the pop-

ulation characteristic roots are simple. In this paper, we extend the results

to cases in which the population characteristic roots have arbitrary multi-

plicities. The characteristic roots in discriminant analysis can be treated as

a special case of those of a multivariate linear model. We also consider high-

dimensional distributions in which the order of the characteristic roots of the

noncentrality matrix in the multivariate linear model is O(pn) or O(n). For

the case of canonical correlations, the populations canonical correlations are

assumed to be O(p) or O(1).

Our results show that the consistency found in the sample roots in the
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large-sample case does not hold in the high-dimensional case. We discuss

with some applications.

2. Characteristic Roots in the Multivariate

Linear Model

We consider a multivariate linear model of p response variables y1, . . . , yp

on a subset of k explanatory variables x1, . . . , xk. Suppose that there are n

observations y1, . . . ,yn and x1, . . . ,xn on each of y = (y1, . . . , yp)
′ and x =

(x1, . . . , xk)
′, respectively, and let Y = (y1, . . . ,yn)

′ and X = (x1, . . . ,xn)
′

be the n × p and n × k observation matrices of y and x, respectively. The

multivariate normal linear model is written as

Y ∼ Nn×p(XΘ,Σ⊗ In), (2.1)

where Θ is a k × p unknown matrix of coefficients, Σ is a p × p unknown

covariance matrix, and In is the identity matrix of order n. The notation

Nn×p(·, ·) means the matrix normal distribution such that the mean of Y is

XΘ and the covariance matrix of vec (Y) is Σ ⊗ In, where vec (Y) is the

np × 1 vector formed by stacking the columns of Y under each other. We

assume that n− k > p and rank(X) = k.

Let C be a given q × k matrix of rank(C) = q(≤ k). When testing or

estimating the rank of CΘ, it is important to study the distribution of the

nonzero characteristic roots of ShS
−1
e ,

ℓ1 > · · · > ℓm > 0, m = min(p, q), (2.2)

where

Se = Y′(In −PX)Y, Sh = (CΘ̂)′{C(X′X)−1C′}−1CΘ̂ (2.3)

and Θ̂ = (X′X)−1X′Y. Here, without loss of generality, we may assume

that ℓ1 > · · · > ℓm > 0, since the probability that the ℓi’s are equal is 0. It

is well known (see, e.g., Anderson, 2003) that Se and Sh are independently
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distributed as a Wishart distribution Wp(n−k,Σ) and a noncentral Wishart

distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2), respectively, where

Ω̃ = Σ−1/2(CΘ)′{C(X′X)−1C′}−1CΘΣ−1/2. (2.4)

In a multivariate regression model, we are often interested in the case C = Ik.

Consider the characteristic roots used in discriminant analysis with (q+1)

p-variate normal populations and common covariance matrix Σ. Let µi be

the mean vector of the ith population. Suppose that a sample of size ni is

available from the ith population, and let yij be the jth observation from

the ith population. Let us denote the between-group and within-group sum

of squares and product matrices by

Sb =

q+1∑
i=1

ni(ȳi − ȳ)(ȳi − ȳ)′, Sw =

q+1∑
i=1

(ni − 1)Si,

respectively, where ȳi and Si are the mean vector and sample covariance

matrix of the ith population, and ȳ is the total mean vector defined by

(1/n)
∑q+1

i=1 niȳi, where n =
∑q+1

i=1 ni. In general, Sw and Sb are independently

distributed as a Wishart distribution Wp(n − q − 1,Σ) and a noncentral

Wishart distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2), respectively, where

Ω̃ = Σ−1/2

q+1∑
i=1

ni(µi − µ̄)(µi − µ̄)′Σ−1/2, µ̄ = (1/n)

q+1∑
i=1

niµi. (2.5)

The characteristic roots of SbS
−1
e are used for testing and estimating the

number of non-zero characteristic roots of Ω̃, which is the dimensionality

in discriminant analysis. For further details, see, for example, Fujikoshi,

Ulyanov, and Shimizu (2010). These characteristic roots can be regarded as

a special case of the multivariate linear model; this is easily seen by taking

k = q + 1 and choosing Y, C, X and Θ as follows:

Y = (y11, . . . ,y1n1 , . . . ,yq+1,1, . . . ,yq+1,nq+1)
′, C = (Iq, −1q) ,

X =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq+1

 , Θ =


µ

′
1

µ
′
2

...
µ

′
q+1

 ,
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where 1n is an n× 1 vector whose elements are all one. Then, Sh = Sb and

Se = Sw.

3. Derivation Method

When we consider the distribution of the characteristic roots of ShS
−1
e

in (2.3), we may assume that Se are Sh are independently distributed as

Se ∼ Wp(n− k, Ip), Sh ∼ Wp(q, Ip; D̃ω), (3.1)

where D̃ω = diag(ω1, . . . , ωp), and ω1 ≥ · · · ≥ ωp ≥ 0 are the characteristic

roots of Ω̃. In this paper, we assume that

n− k ≥ p ≥ q. (3.2)

Then, the first q characteristic roots ℓ1 > · · · > ℓq are positive, and the

remaining p − q roots are zero. Similarly, ωq+1 = · · · = ωp = 0, since

rank(Ω̃) ≤ q. We can express Sh as

Sh = ZZ′, Z; p× q, (3.3)

where the columns of Z are independently distributed as Np(·, Ip), E(Z) =

(D1/2
ω O)′, and Dω = diag(ω1, . . . , ωq). Consider a transform from (Sh,Se)

to (B,W) given by

B = Z′Z, W = B1/2(Z′S−1
e Z)−1B1/2. (3.4)

Then, it is known (Fujikoshi et al., 2007; Wakaki et al., 2014) that

R0: The nonzero characteristic roots of ShS
−1
e are the same as those of

BW−1, or equivalently of S−1/2
e ShS

−1/2
e , and

W ∼ Wq(m, Iq), B ∼ Wq(p, Iq;Dω), (3.5)

where W and B are independent, and m = n− k − p+ q.
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Note that the characteristic roots ℓ1 > · · · > ℓq are defined in terms

of the q × q matrices W and B with a reduced size. When q is fixed and

m tends to infinity, Fro R0 we can use the perturbation method, which was

developed for large-sample asymptotic theory. In general, consider a sequence

{Sm | m = 1, 2, · · · } of q×q positive definite random matrices. Suppose that

we are interested in the asymptotic distribution of the characteristic roots

ℓ1 > · · · > ℓq > 0 of Sm. Assume that there exists a q× q diagonal matrix Λ

such that the random matrix

Vm =
√
m(Sm −Λ) (3.6)

converges in distribution to that of a random matrix V. Here, let λ1 >

· · ·λh ≥ 0 be the distinct diagonal elements ofΛ and let qα be the multiplicity

of λα, α = 1, . . . , h, i.e.,

Λ =


λ1Iq1 O · · · O
O λ2Iq2 · · · O
...

... · · · ...
O O · · · λhIqh

 . (3.7)

Our problem is to obtain the limiting distribution of

ℓ̃i =
√
m(ℓi − λα), i ∈ Jα, α = 1, . . . , h, (3.8)

where Jα is the set of integers q1+ · · ·+qα−1+1, · · · , q1+ · · ·+qα with q0 = 0.

Let V be partitioned as

V =


V11 V12 · · · V1h

V21 V22 · · · V2h
...

... · · · ...
Vh1 Vh2 · · · Vhh

 , Vij; qi × qj.

Then, it is known that

R1: The limiting distribution of ℓ̃i, i ∈ Jα, is given by the distribution of

the characteristic roots of Vαα, α = 1, . . . , h.
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Methods similar to R1 were used in Hsu (1941a, b), Anderson (1963), Eton

and Tayler (1991), and other studies.

On the other hand, there is a case in which λh = 0 and the distribution of

Vhh degenerates, depending on the condition assumed for the noncentrality

matrix. Such cases were first considered by Hsu (1941a) and Anderson (1951).

In order to treat a more general case, consider a case such that Sm is expanded

as

Sm = Λ+
1√
m
Q(1) +

1

m
Q(2) +

1

m
√
m
Q(3) +Op(m

−2). (3.9)

PutQ = Q(1)+(1/
√
m)Q(2)+(1/m)Q(3), and letΛ, Q andQ(i) be partitioned

as

Λ =

(
Λ1 O
O λhIqh

)
, Q =

(
Q[11] Q[12]

Q[21] Q[22]

)
, Q(i) =

(
Q(i)

[11] Q(i)
[12]

Q(i)
[21] Q(i)

[22]

)
,

where Q[22] and Q(i)
[22] are qh × qh matrices. The asymptotic distribution of

ℓ̃i =
√
m(ℓi − λα), i ∈ Jα, α = 1, . . . , h − 1 can be obtained by the method

R1. For the derivation of asymptotic distribution of ℓi, i ∈ Jh, we can use

the following result:

R2: The larst qh characteristic roots ℓi, i ∈ Jh are given by those of

Lh = λhIqh +
1√
m
Q[22] −

1

m
Q[21]ΘQ[12] +

1

m
√
m

{
Q[21]ΘQ[11]ΘQ[12]

−1

2
Q[21]Θ

2Q[12]Q[22] −
1

2
Q[22]Q[21]Θ

2Q[12]

}
+Op(

1

m2
), (3.10)

where

Θ =

 θ1rIq1 · · · O
...

. . .
...

O · · · θh−1,hIqh

 , θir = (λi − λh)
−1, i = 1, . . . , h− 1.

Expansion formulas similar to (3.10) were used in Lawley (1956,1959), Fu-

jikoshi (1977b), etc.
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4. High-Dimensional Asymptotic Distributions

in Multivariate Linear Models

4.1. High-Dimensional Asymptotic Framework

We are concerned with the distribution of the characteristic roots of

ShS
−1
e , where Sh and Se are given in (2.3), which is the same as those of

BW−1 (see R1 in Section 3), where B and W are given in (3.4). Large-sample

asymptotic distributions were studied by Hsu (1941a), Anderson (1951), and

others, under the assumptions that (i) p, q, and k are fixed; (ii) n tends to

infinity; and (iii) the order of Dω is O(n). For high-dimensional approxima-

tions, we assume that n, p, and k tend to infinity, but the ratio p/n tends

to c0 ∈ (0, 1), and k/n tends to zero. The q × q noncentrality matrix Dω

depends on n and p, and it is assumed to be Dω = O(n) and Dω = O(np).

Our high-dimensional assumptions are summarized as follows.

A1 : q is fixed, k is fixed or tends to infinity, p and n tend to infinity,

c = p/n → c0 ∈ [0, 1), k/n → 0.

A2 : ωi = O(n), i = 1, . . . , q.

A3 : ωi = O(pn), i = 1, . . . , q.

Specifically, we consider two cases: (1) A1 & A2, (2) A1 & A3. Note that

under A1, m = n− k − p tends to ∞.

In general, the asymptotic distribution of the characteristic roots ℓ1 >

· · · > ℓq depends on the multiplicity of the population characteristic roots

ω1 ≥ · · · ≥ ωq. Under A2, it is assumed that the population characteristic

roots have arbitrary multiplicities as follows:

ω1 = · · · = ωq1 = nλ1,

ωq1+1 = · · · = ωq1+q2 = nλ2,
... (4.1)

ωq−qh+1 = · · · = ωq = nλh,
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where the λi’s are O(1) and λ1 > λ2 > · · · > λh ≥ 0. Here,
∑h

α=1 qα = q.

Note that we assume that the multiplicities of the ωi’s do not depend on n

and p. The assumption (4.1) can be expressed in matrix notation as

Dω = nΛ =

(
Λ1 O
O λhIqh

)
, (4.2)

where Λ1 = Diag
(
λ1Iq1 , . . . , λqh−1

Iqh−1

)
. Here, Diag means a bock diagonal

matrix.

Similarly, under A3, we assume that

ω1 = · · · = ωq1 = npδ1,

ωq1+1 = · · · = ωq1+q2 = npδ2,
... (4.3)

ωq−qh+1 = · · · = ωq = npδh,

where the δi’s are constants and δ1 > δ2 > · · · > δh ≥ 0. In matrix notation,

we have

Dω = np∆ = np

(
∆1 O
O δhIqh

)
, (4.4)

where ∆1 = Diag
(
δ1Iq1 , . . . , δqh−1

Iqh−1

)
.

4.2. Case in which Dω = nΛ = O(n)

In this section, we assume that Dω = nΛ = O(n) with λα as in (4.2).

Let

U =
1
√
p
(B− pIq − nΛ), V =

1√
m
(W −mIq). (4.5)

Then, noting that B and W are Wishart distributions, we have that for a

given q × q symmetric matrix K,

E {etr(KV)} = etr(K2)
{
1 + O(m−1/2)

}
, (4.6)

E {etr(KU)} = etr
{
K2(Iq + 2(n/p)Λ)

}{
1 + O(p−1/2)

}
. (4.7)
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Results (4.6) and (4.7) show that the limiting distributions of U and V are

normal. The random matrices B and W are expressed in terms of U and V

as
1

p
B = Iq +

n

p
Λ+

1
√
p
U,

1

m
W = Iq +

1√
m
V.

The characteristic roots of BW−1 are the same as those of

W−1/2BW−1/2 =
p

m

(
1

m
W

)−1/2(
1

p
B

)(
1

m
W

)−1/2

= Dµ +
1√
m
X+Op(m

−1),

where

Dµ = Diag(µ1Iq1 , . . . , µrIqr),

X = −1

2
(VDµ +DµV) +

√
p/mU,

and µα = p/m + (n/m)λα, α = 1, . . . , r. Here, Op denotes the order in

probability notation. Let X be partitioned as

X =


X11 X12 · · · X1r

X21 X22 · · · X2r
...

... · · · ...
Xr1 Xr2 · · · Xrr

 , Xij; qi × qj. (4.8)

Below, we will show that X converges in distribution to a random matrix

X̃ = (X̃ij). Therefore, by R1 in Section 2, we have that the limiting dis-

tribution of
√
m(ℓi − µα), j ∈ Jα, is the same as the distribution of the

characteristic roots of X̃αα. Therefore, we consider the limiting joint distri-

bution of {X11, . . . ,Xhh}, based on the characteristic function method. Let

T = (tij) be a q × q symmetric matrix having (1 + δij)tij/2 as its (i, j)th

element. Here, δij is the Kronecker delta, i.e., δij = 0(i ̸= j) and δii = 1. Let

T be partitioned into submatrices as T = (Tαβ), where Tαβ is a qα× qβ sub-

matrix. The joint characteristic function of {X11, . . . ,Xhh} can be expressed
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as follows:

C(T11, . . . ,Trr) = E

[
etr

(
i

r∑
α=1

TααXαα

)]

= E

[
etr

{
i

r∑
α=1

Tαα

(
−µαVαα +

√
p/mUαα

)}]
= E

[
etr
{
−iDµTV + i

√
p/mDTU

}]
,

where

DT = Diag(T11, . . . ,Thh), DµT = Diag(µ1T11, . . . , µhThh).

Using (4.6) and (4.7), we have

C(T11, . . . ,Trr) =

{
h∏

α=1

etr

(
1

2
i2σ2

αT
2
αα

)}{
1 + O(n−1/2)

}
, (4.9)

where

σ2
α = 2

{
µ2
α +

p

m
+ 2

n

m
λα

}
= 2

{
p

m

( p

m
+ 1
)
+ 2

n

m

( p

m
+ 1
)
λα +

( n

m

)2
λ2
α

}
. (4.10)

Result (5.27) implies that X11, . . . ,Xrr are asymptotically independent, and

σ−1
ααXαα converges to a qα×qα symmetric Gaussian Wigner matrix F in which

the elements are independent, and its diagonal and off-diagonal elements are

distributed as N(0, 1) and N(0, 1/2), respectively. Let

zi =

√
m

σα

(ℓi − µα), i ∈ Jα, α = 1, . . . , h, (4.11)

and

z = (z′
1, . . . , z

′
h)

′,

zα = (zq1+···+qα−1+1, . . . , zq1+···+qα)
′, α = 1, . . . , h, (4.12)
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where q0 = 0. The limiting distribution of zα is the distribution of the

characteristic roots of the qα × qα symmetric Gaussian Wigner matrix Fα,

whose density is given by

fα(zα) =
πqα(qα−1)/4

2qα/2Γqα

(
1
2
qα
) exp(−1

2

∑
i∈Jα

z2i

) ∏
i<j;i,j∈Jα

(zi − zj). (4.13)

Summarizing the above results, we have the following theorem.

Theorem 4.1. Let Sh and Se be the random matrices in (2.3), and let ℓ1 >

· · · > ℓq be the nonzero characteristic roots of ShS
−1
e under n − k ≥ p ≥ q.

Suppose that the characteristic roots of the noncentrality matrix Ω̃ in (2.4)

have arbitrary multiplicities as in (4.1), but the multiplicities do not depend

on n and p. Further, assume A1 and A2 except for the case that c0 = 0 and

λh = 0. Then, the standardized roots z1, . . . , zh defined by (4.11) and (4.12)

are asymptotically independent, and the limiting density of zα is given by

(4.13).

The result when all the nonzero roots ω1, . . . , ωq are simple was derived

by Fujikoshi, Himeno, and Wakaki (2008). Recently Bai, Choi, and Fujikoshi

(2015) attempted to extend the result to the nonnormal case when Ω = O,

while Johnstone (2008) studied the distribution of the largest root ℓ1 when

p/n → c0 ∈ (0, 1) and q/n → c1 ∈ (0, 1).

The characteristic roots d1 > · · · > dq > 0 of Sh(Se + Sh)
−1 are also used

instead of those of ShS
−1
e . The correspondence between those characteristic

roots is as follows:

di =
ℓi

1 + ℓi
, i = 1, . . . , q.

Noting that {ℓ/(1 + ℓ)}′ = (1 + ℓ)−2, we consider the standardized charac-

teristic roots of di defined by

yi =

√
m

σα

(1 + µα)
2

(
di −

µα

1 + µα

)
, i ∈ Jα, α = 1, . . . , h, (4.14)
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and set

y = (y′
1, . . . ,y

′
h)

′,

yα = (yq1+···+qα−1+1, . . . , yq1+···+qα)
′, α = 1, . . . , h. (4.15)

Then, from Theorem 4.1, we have the following asymptotic result.

Corollary 4.1. Under the same assumptions as in Theorem 4.1, the nor-

malized roots y1, . . . ,yh defined by (4.14) and (4.15) are asymptotically inde-

pendent, and the limiting density of yα is given by fα(yα) in (4.13).

4.3. Case in which Dω = np∆ = O(np)

In this section, we assume that Dω = np∆ = O(np) with the δi’s as in

(4.3). Let

Ũ =
1

√
np

(B− pIq − np∆), V =
1√
m
(W −mIq). (4.16)

Here, note that the usual standardization U =
√
nŨ as in (4.5) diverges and

has no limiting distribution, but Ũ has the limiting distribution. In fact, the

characteristic function of Ũ can be expressed as

CŨ(T) = E
{
etr
(
iTŨ

)}
= etr

{
−
√

p/nT(Iq + n∆)
} ∣∣∣∣Iq − 2i

√
np

T

∣∣∣∣−p/2

× etr

{
np∆

i
√
np

T

(
Iq −

2i
√
np

T

)−1
}

= etr(2i2∆T2) + O(n−1/2).

The above result implies that the limiting distribution of Ũ is normal if δh is

positive. In order to see the limiting distribution of Ũ in the case δh = 0, let

Ũ be partitioned as

Ũ =

(
Ũ[11] Ũ[12]

Ũ[21] Ũ[22]

)
, Ũ[22]; qh × qh.
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Similar notation is used for the matrices partitioned from T. Then, if δh = 0,

CŨ(T) = etr(2i2∆1T
2
[11]) + O(n−1/2).

The result implies that the limiting distribution of Ũ[11] is normal, and the

terms of Ũ[12], Ũ[21], and Ũ[22] are Op(n
−1/2). In order to see the Op(n

−1/2)

term in Ũ[22], consider the characteristic function of
√
nŨ[22], which is asymp-

totically approximated as

C√
nŨ[22]

(T[22]) = E
[
etr(i

√
nT[22]Ũ[22])

]
= etr(−i

√
pT[22])

∣∣∣∣Iqr − 2i
√
p
T[22]

∣∣∣∣−p/2

= etr(i2T2
[22])

{
1 + O(p−1/2)

}
.

Therefore, the limiting distribution of
√
nŨ[22] is normal.

In general, using

1

np
B = ∆+

1
√
np

Ũ+
1

n
Iq, and

1

m
W = Iq +

1√
m
V,

we have

m

np
W−1/2BW−1/2 =

(
1

m
W

)−1/2(
1

p
B

)(
1

m
W

)−1/2

= ∆+
1√
m
Q(1) +

1

m
Q(2) +

1

m
√
m
Q(3) +Op(m

−2), (4.17)

where

Q(1) = −1

2
V∆− 1

2
∆V,

Q(2) =
3

8
V2∆+

3

8
∆V +

1

4
V∆V +

m

n
Iq,

Q(3) = − 5

16
V3∆− 5

16
∆V3 − 3

16
V2∆V − 3

16
V∆V2

+
m
√
m

√
np

Ũ− m
√
np

V.
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First we consider the case λh > 0. By a similar argument as in the case

Dω = O(n), we can see that for α = 1, . . . , h, the limiting distribution of

√
m

(
m

np
ℓi − δα

)
, i ∈ Jα

is the same as that of the characteristic roots of the limiting distribution of

Q(1)
αα = (−δα)Vαα. Let

zi =

√
m

τα

(
1

p
ℓi − να

)
, i ∈ Jα, α = 1, . . . , h, (4.18)

and

να =
n

m
δα, τα =

(
2n

m

)
δα, α = 1, . . . , h. (4.19)

Then, the limiting distribution of zi, i ∈ Jα is the same as the limiting dis-

tribution of the characteristic roots of (1/
√
2)Vαα, i.e., a qα × qα symmetric

Gaussian Wigner matrix.

Next we consider the case λh = 0. It is easy to see that the limiting

distribution of zi, i ∈ Jα, α = 1, . . . , h− 1 are the same as in the case λh > 0.

So, we consider asymptotic distribution of ℓi, i ∈ Jh. By using R2 in Section

2, it can be seen that the distribution of {m/(np)}ℓi, i ∈ Jh is asymptotically

expressed as the characteristic roots of

Lh =
1

m

m

n
Iqh +

1

m
√
m

{
m
√
m

√
np

Ũ[22] −
m

√
np

V[22]

}
+Op(m

−2) (4.20)

This implies that the distribution of
√
m(ℓi− p/m), i ∈ Jh, is asymptotically

expressed as the characteristic roots of
√
p

√
m

√
nŨ[22] −

√
np

m
V[22]

whose characteristic function is expanded as

etr

{
1

2
i2
2p

m

(
1 +

n

m

)
T2

[22]

}(
1 + O(m−1/2)

)
.

Now, we define

z̃i =

√
m

τ̃h
(ℓi − ν̃h) , i ∈ Jh (4.21)
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where

ν̃h =
p

m
, τ̃h =

{
2p

m

(
1 +

n

m

)}1/2

. (4.22)

For these zi, i ∈ Jα, α = 1, . . . , h − 1 and z̃i ∈ Jh, using the same vector

notation as in (4.12), we have the following theorem and corollary.

Theorem 4.2. Let Sh and Se be the random matrices in (2.3). Let ℓ1 > . . . >

ℓq be the nonzero characteristic roots of ShS
−1
e under n−k ≥ p ≥ q. We make

the same assumption as in Theorem 4.1, except that we assume A3 instead

of A2. When δh > 0,the standardized roots z1, . . . , zh defined by (5.29) and

(4.21) are asymptotically independent, and the limiting density of zα is given

by (4.13). When δh = 0, the limiting distribution of z1, . . . , zh−1 is the same

as in the case δ > 0. The limiting distribution of z̃i, i ∈ Jh defined by (4.21)

is given by the one with the density fα(z̃h) in (4.13). Further, z1, . . . , zh−1

and z̃h are asymptotically independent.

Corollary 4.2. Suppose the same assumption as in Theorem 4.2 with δh = 0.

Let

ỹi =

√
m

τ̃h
(1 + ν̃h)

2

(
di −

ν̃h
1 + ν̃h

)
, i ∈ Jh. (4.23)

Then, the limiting density fuction of ỹi,∈ Jh is given by fh in (4.13).

5. High-Dimensional Asymptotic Distributions

of Canonical Correlations

5.1. Preliminaries

In this section, we consider asymptotic distributions of the canonical

correlations between the two vectors x, which is p× 1, and y, which is q× 1.

Let S be the sample covariance matrix of (x′, y′)′ based on a sample of

size N = n + 1 from a (p + q)-dimensional normal distribution Nq+p(µ,Σ).
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Without loss of generality, we may assume that q ≤ p. Corresponding to a

partition (x′,y′), we partition µ, Σ, and S as

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, S =

(
S11 S12

S21 S22

)
. (5.1)

Let ρ1 ≥ · · · ≥ ρq ≥ 0 and r1 > · · · > rq > 0 be the population and the

sample canonical correlations between x and y. Then, ρ21 ≥ · · · ≥ ρ2q ≥ 0

and r21 > · · · > r2q > 0 are the characteristic roots of Σ21Σ
−1
11 Σ12Σ

−1
22 and

S21S
−1
11 S12S

−1
22 , respectively. We shall obtain the distribution of the canonical

correlations by deriving the transformed canonical correlations

di = ri/
√

1− r2i , i = 1, . . . , q, (5.2)

whose population transformed canonical correlations are expressed as

γi = ρi/
√
1− ρ2i , i = 1, . . . , q. (5.3)

We use the following notation for diagonal matrices:

Dd = diag(d1, . . . , dq), Dγ = diag(γ1, . . . , γq).

Hsu (1941b) derived the asymptotic distributions of the canonical correla-

tions under a large sample framework;

B0 : p and q are fixed, n → ∞.

However, the results do not work well as the dimension q or p becomes large,

and so some high-dimensional approximations were considered under

B1 : q; fixed, p → ∞, n → ∞, m = n− p → ∞,

c = p/n → c0 ∈ [0, 1).

For the population roots, the following two cases are considered:

B2 : γi = O(1), i = 1, . . . , q,

B3 : γi = O(
√
p), i = 1, . . . , q.
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Under the assumption that all the population roots are simple, in addition

to B1 and B2, Fujikoshi and Sakurai (2009) obtained the following result:
√
n(r2α − ρ̃2α)

d→ N(0, σ2
α), (5.4)

√
n(rα − ρ̃α)

d→ N(0,
1

4
σ2
αρ̃

−2
α ), (5.5)

where

ρ̃α = {ρ2α + c(1− ρ2α)}1/2, σ2
α = 2(1− c)(1− ρ2α)

2{2ρ2α + c(1− 2ρ2α)}.

In particular, letting c = 0 in (5.4) and (5.5), we have the large sample

results:
√
n(r2α − ρ2α)

d→ N(0, 4ρ2α(1− ρ2α)
2), (5.6)

√
n(rα − ρα)

d→ N(0, (1− ρ2α)
2). (5.7)

Here, we note that the high-dimensional asymptotic results (5.4) and (5.5)

depend on p through c = p/n, but the large-sample results (5.6) and (5.7)

do not depend on p and thus are the same for all p. In this paper, we extend

the high-dimensional results to the case in which the population roots have

multiplicity greater than unity. Further, we consider the case in which the

population roots satisfy B3.

Let A = nS, which is distributed as a Wishart distribution Wq+p(n,Σ),

and partition A as

A =

(
A11 A12

A21 A22

)
,

corresponding to a partition of S. Then, d21 > · · · > d2q are the characteristic

roots of A21A
−1
11 A12A

−1
221̇

, where A22·1 = A22 −A21A
−1
11 A12. When we consider

the distribution of the characteristic roots d21 > · · · > d2q or d1 > · · · > dq,

without loss of generality, we may assume (see Fujikoshi and Sakurai, 2010)

that

(i) A22·1 ∼ Wq(m, Iq);

(ii) A21A
−1
11 A12 ∼ Wq(p, Ip;DγGDγ), when the first q × q matrix G of A11

is given; here,G ∼ Wq(n, Iq);

(iii) A21A
−1
11 A12 and A22·1are independent;

18



where m = n− p.

5.2. The Case Dγ = O(1)

Under B2, we assume that the population characteristic roots γi’s have

arbitrary multiplicities as follows:

γ1 = · · · = γq1 = λ1,

γq1+1 = · · · = γq1+q2 = λ2,
... (5.8)

γq−qh+1 = · · · = γq = λh ≥ 0,

where λi’s are fixed constants and λ1 > λ2 > · · · > λh ≥ 0. In a matrix

notation,

Dγ = Λ =

(
Λ1 O
O λhIqh

)
, (5.9)

where Λ1 = Diag
(
λ1Iq1 , . . . , λqh−1

Iqh−1

)
.

Let

H =
√
n(n−1G− Iq), (5.10)

whose limiting distribution is normal, since for any symmetric matrix K,

E {etr(KH)} = etr(K2)
{
1 + O(n−1/2)

}
. (5.11)

The conditional noncentrality matrix of A21A
−1
11 A12 is expressed as

Ω ≡ DγGDγ = nΛ2 +
√
nΛHΛ = Op(n).

Let

U =
1
√
p
(A21A

−1
11 A12 − pIq − nΛ2 −

√
nΛHΛ), (5.12)

V =
1√
m
(A22·1 −mIq). (5.13)
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Each the limiting distributions of U and V are normal. The results can be

seen that for any symmetric matrix K,

E {etr(KV)} = etr(K2)
{
1 + O(m−1/2

}
, (5.14)

E {etr(KU)} = etr
{
K2(Iq + 2(n/p)Λ)

}{
1 + O(p−1/2)

}
, (5.15)

Noting that Dγ = Λ, we have

A−1/2
22·1 A21A

−1
11 A12A

−1/2
22·1 =

p

m

(
Iq +

1√
m
V

)−1/2

×
(
Iq +

n

p
Γ2 +

√
n

p
ΛHΛ+

1
√
p
U

)(
Iq +

1√
m
V

)−1/2

= Dµ +
1√
m
X+Op(m

−1),

where

Dµ = Diag(µ1Iq1 , . . . , µrIqr),

X = −1

2
(VDµ +DµV) +

√
p

m
U+

√
n

m
DγHDγ,

and

µα = p/m+ (n/m)λ2
α, α = 1, . . . , h. (5.16)

The joint characteristic function of {X11, . . . ,Xhh} can be expressed as fol-

lows:

C(T11, . . . ,Trr) = E

[
etr

(
i

r∑
α=1

TααXαα

)]
= E

[
etr
{
−iDµTV + i

√
p/mDTU+

√
n/mDλ2TH

}]
,

where

DT = Diag(T11, . . . ,Thh), DµT = Diag(µ1T11, . . . , µhThh),

Dλ2T = Diag(λ2
1T11, . . . , λ

2
hThh).
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Using (5.11), (5.14) and (5.15), we have

C(T11, . . . ,Trr) =

{
h∏

α=1

etr

(
1

2
i2σ2

αT
2
αα

)}
(1 + O(n−1/2)), (5.17)

where

σ2
α = 2

{
µ2
α +

p

m

(
1 + 2

n

p
λ2
α

)
+

n

m
λ4
α

}
=

2n

m2
(n+m)

(
1 + λ2

α

)( p

m+ n
+ λ2

α

)
. (5.18)

Put

zi =

√
m

σα

(d2i − µα), i ∈ Jα, α = 1, . . . , h, (5.19)

and z = (z′
1, . . . , z

′
h)

′ with zα, α = 1, . . . , h as in (4.12). Then, by arguments

as in multivariate linear model we have the following theorem.

Theorem 5.1. Let S be the sample covariance matrix which is decomposed

as in (5.1). Let d2i = r2i /(1 − r2i ), i = 1, . . . , q, where 1 > r21 > · · · > r2q > 0

are the squares of the canonical correlations, i.e., the characteristic roots

of S21S
−1
11 S12S

−1
22 . Suppose that the population canonical correlations have

arbitrary multiplicities as in (5.22), but the multiplicities do not depend on n

and p. Further, assume B1 and B2 except for the case that c0 = 0 and λh = 0.

Then, the standardized roots z1, . . . , zh defined by (5.19) are asymptotically

independent, and the limiting density of zα is given by (4.13).

Corollary 5.1. Under the same assumptions as in Theorem 5.1, consider

the normalized variables of the squares of the canonical correlations and the

canonical correlations themselves defined by

yi =
√
mη−1

α

(
r2i − ξ2α

)
, i ∈ Jα, α = 1, . . . , h, (5.20)

ỹi =
√
m(2ξα)η

−1
α (ri − ξα) , i ∈ Jα, α = 1, . . . , h, (5.21)

where

ξα = (p/n+ λ2
α)

1/2(1 + λ2
α)

−1/2,

ηα =
√
2(m/n)(1 + λ2

α)
−3/2

{
(p/n)(1− λ2

α) + 2λ2
α

}1/2
.
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Then y = (y1, . . . , yq)
′ and ỹ = (ỹ1, . . . , ỹq)

′ have the same limiting distribu-

tion as the one of z.

Here, note that

ξα =

(
µα

1 + µα

)1/2

, ηα =
σα

(1 + µα)2
, α = 1, . . . , h.

5.3. The Case Dγ = O(
√
p)

Under B3, we assume that the population transformed canonical correlations

γi’s have arbitrary multiplicities as follows:

γ1 = · · · = γq1 =
√
pδ1,

γq1+1 = · · · = γq1+q2 =
√
pδ2,

... (5.22)

γq−qh+1 = · · · = γq =
√
pδh ≥ 0,

where δi’s are fixed constants and δ1 > δ2 > · · · > δh ≥ 0. Under (5.22), Dγ

is expressed as

Dγ =
√
p∆ =

√
p

(
∆1 O
O δhIqh

)
, (5.23)

where ∆1 = Diag
(
δ1Iq1 , . . . , δqh−1

Iqh−1

)
. In this case, let

Ũ =
1

√
pn

(A21A
−1
11 A12 − pIq − np∆2 −

√
np∆H∆), (5.24)

and V = 1√
m
(A22·1 −mIq) which is the same one as in (5.13). Then, we have

1

np
A21A

−1
11 A12 = ∆2 +

1√
n
∆H∆+

1

n
Iq +

1
√
np

Ũ,(
1

m
A22·1

)−1/2

= Iq −
1

2
√
m
V +

3

8m
V2 − 5

16m
√
m
V3 +Op(m

−3/2).
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Therefore

m

np
A−1/2

22·1 A21A
−1
11 A12A

−1/2
22·1 = ∆2 +

1√
m
Q̃

(1)
+

1

m
Q̃

(2)

+
1

m
√
m
Q̃

(3)
+Op(m

−2), (5.25)

where

Q̃
(1)

= Q(1)(∆2) +
√

m/n∆H∆,

Q̃
(2)

= Q(2)(∆2)− 1

2

√
m/n (V∆H∆+∆H∆V) ,

Q̃
(3)

= Q(2)(∆2) +
3

8

√
m/n

(
V2∆H∆+∆H∆V2

)
.

Here Q(i)(∆2), i = 1, 2, 3 are the ones obtained from Q(i), i = 1, 2, 3 in (4.17)

by substituting ∆2 to ∆. In general, we have

√
m

(
m

np
A−1/2

22·1 A21A
−1
11 A12A

−1/2
22·1 −∆2

)
= Q̃

(1)

+
1√
m
Q̃

(2)
+

1

m
Q̃

(3)
+Op(m

−3/2).

Let

X ≡ Q̃
(1)

= −1

2
V∆2 − 1

2
∆2V +

√
m/n∆H∆, (5.26)

which is partitioned as in (4.8). Now, we consider the limiting joint distri-

bution of {X11, . . . ,Xhh}, The joint characteristic function of {X11, . . . ,Xhh}
can be expressed as follows:

C(T11, . . . ,Trr) = E

[
etr

(
i

r∑
α=1

TααXαα

)]

= E

[
etr

{
i

r∑
α=1

Tαα

(
−δ2αVαα +

√
m/nδ2αHαα

)}]
= E

[
etr
{
i∆2DT(−V +

√
p/mH)

}]
,

where DT = Diag(T11, . . . ,Thh). Using (5.11) and (5.14), we have

C(T11, . . . ,Trr) =

{
h∏

α=1

etr

(
1

2
i2τ 2αT

2
αα

)}{
1 + O(n−1/2)

}
, (5.27)
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where

τα =
√
2(1 +m/n)δ2α, α = 1, . . . , h. (5.28)

First we consider the case δh > 0. By a similar argument as in the case

Dγ = O(1), we can see that for α = 1, . . . , h, the limiting distribution of

√
m

(
m

np
d2i − δ2α

)
, i ∈ Jα

is the same as that of the characteristic roots of the limiting distribution of

Q̃
(1)

αα = −δ2αVαα +
√
m/nδ2αHαα. Let

zi =

√
m

τα

(
1

p
d2i − να

)
, i ∈ Jα, α = 1, . . . , h, (5.29)

and

να =
n

m
δ2α, τα =

√
2n(n+m)m−1δ2α, α = 1, . . . , h. (5.30)

Then, the limiting distribution of zi, i ∈ Jα is the same as the limiting dis-

tribution of the characteristic roots of a qα × qα symmetric Gaussian Wigner

matrix Fα.

Next we consider the case λh = 0. It is easy to see that the limiting

distribution of zi, i ∈ Jα, α = 1, . . . , h− 1 are the same as in the case λh > 0.

So, we consider asymptotic distribution of d2i , i ∈ Jh. By using R2 in Section

2, it can be seen that the distribution of {m/(np)}d2i , i ∈ Jh is asymptotically

expressed as the characteristic roots of

L̃h =
1

m

m

n
Iqh +

1

m
√
m

{
m
√
m

√
np

Ũ[22] −
m

√
np

V[22]

}
+Op(m

−2). (5.31)

Here, note that the expansion formula (5.31) is the same as that in (4.20) up

to the order Op(m
−3/2). The difinition of Ũ and V in (5.31) is different from

that in (4.20), but the distributions of V in both cases are the same, and

the limiting distributions of Ũ in both cases are also the same. Therefore,

from the distributional results on Lh in (4.20)it follows that the asymptotic

distribution of

z̃i =

√
m

τ̃h

(
d2i − ν̃h

)
, i ∈ Jh (5.32)
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is the same as that in (4.21), where ν̃h and τ̃h are the same as those in (4.22).

For these zi, i ∈ Jα, α = 1, . . . , h − 1 and z̃i ∈ Jh, using the same vector

notation as in (4.12), we have the following theorem and corollary.

Theorem 5.2. Let S be the sample covariance matrix which is decomposed

as in (5.1). Let d2i = r2i /(1 − r2i ), i = 1, . . . , q, where 1 > r21 > · · · > r2q > 0

are the squares of the canonical correlations, i.e., the characteristic roots of

S21S
−1
11 S12S

−1
22 . We make the same assumption as in Theorem 5.1, except that

we assume B3 instead of B2. When δh > 0,the standardized roots z1, . . . , zh

defined by (5.29) and (4.21) are asymptotically independent, and the limiting

density of zα is given by (4.13). When δh = 0, the limiting distribution of

z1, . . . , zh−1 is the same as in the case δ > 0. The limiting distribution of

z̃i, i ∈ Jh defined by (4.21) is given by the one with the density fα(z̃h) in

(4.13). Further, z1, . . . , zh−1 and z̃h are asymptotically independent.

Corollary 5.2. Under the same assumption as in Theorem 5.2 with δh = 0,

let

ỹi =
√
mτ̃−1

h (1 + ν̃h)
2
{
r2i − ν̃h(1 + ν̃h)

−1
}
, i ∈ Jh. (5.33)

Then, the limiting density fuction of ỹi,∈ Jh is given by fh in (4.13). Simi-

larly, let

r̃i =
√
m2
√

ν̃hτ̃
−1
h (1 + ν̃h)

3/2
{
ri −

√
ν̃h(1 + ν̃h)−1

}
, i ∈ Jh. (5.34)

Then, the limiting density fuction of r̃i,∈ Jh is given by fh in (4.13).

6. Concluding Remarks

In general, it is known that under the large-sample asymptotic frame-

work the characteristic roots in a multivariate linear model are consistent,

and the canonical correlations are also consistent. However, from our high-

dimensional asymptotic results we have shown that the characteristic roots
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and the canonical correlation coefficients are not consistent. It will be pos-

sible to construct high-dimensional consistent estimators of the population

characteristic roots and the population canonical correlations.

The present results have been also used to show that some model selec-

tion criteria for estimating the dimensionality in a multivariate linear model

and canonical correlation analysis are high-dimensional consistent. For the

results, see Fujikoshi and Sakurai (2016) and Fujikoshi (2016). It is expected

that our results are basic in studying high-dimensional properties for multi-

variate inferential methods based on characteristic roots.
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