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Abstract

In this paper we obtain a higher order asymptotic unbiased estimator for the
expected probability of misclassification (EPMC) of the linear discriminant function
when both the dimension and the sample size are large. Moreover, we evaluate the
mean squared error of our estimator. We also study a numerical comparison for
the performance of our estimator with other estimator base on Okamoto (1963),
Fujikoshi and Seo (1998). It is shown that the bias and the mean squared error of
our estimator is less than the others.

1 Introduction

Let Πk (k = 1, 2) be two p-variate normal populations with the mean vector µk (k = 1, 2)
and the covariance matrix Σ, where µ1 ̸= µ2, Σ is positive definite and these parameters
are unknown, that is,

Π1 : Np(µ1,Σ), Π2 : Np(µ2,Σ).

Let X̄k and S be the sample mean vectors and the pooled sample covariance matrix,
based on a sample of Nk observations from Πk (k = 1, 2), respectively.

The observation X may be classified by the linear discriminant function W : Rp → R
defined by

W (X) =
(
X̄1 − X̄2

)′
S−1

{
X − 1

2

(
X̄1 + X̄2

)}
,

where a′ is the transpose of a. The classification rule with W (X) is the following way: a
new observation X is classified as coming from Π1 if W (X) > 0 and from W ≤ 0, that
is,

W (X) > 0 ⇒ X ∈ Π1, W (X) ≤ 0 ⇒ X ∈ Π2.

∗E-mail: nakagawa.stat@gmail.com
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The performance of the classification rule is evaluated by its probabilities of misclassifi-
cation:

P (2|1) = Pr(the rule classifies X to Π2|X ∈ Π1),

P (1|2) = Pr(the rule classifies X to Π1|X ∈ Π2).

For the linear discriminant rule with using the true values of the parameters, P (2|1) =
P (1|2) = Φ(−∆/2), where Φ is the distribution function of N(0, 1), ∆ is the Mahalanobis
distance defined by ∆2 = (µ1 −µ2)

′Σ−1(µ1 −µ2). In the case that the parameter µ1, µ2

and Σ are unknown, we use the expected probabilities of misclassification (EPMC), i.e.,

e(2|1) = Pr (W (X) ≤ 0|X ∈ Π1) , e(1|2) = Pr (W (X) > 0|X ∈ Π2)

In general, it is hard to obtain the exact evaluation of the EPMC’s. There are considerable
works for their asymptotic approximations. It may be noted that there are typically two
types (type-I, type-II) of their approximations. The type-I approximations are the ones
under a framework such that N1 and N2 tend to large and p is fixed, and the type-II
approximations are the ones under a framework such that N1, N2 and p tend to large. For
the type-I approximations, Okamoto (1963) gave an asymptotic expansion for the EPMC
of W (X). Moreover, McLachlan (1974) gave asymptotic unbiased estimator of the EPMC
up to terms of O(N−2) where N = N1+N2. For the type-II approximations, Deev (1970)
gave an asymptotic expansion for the EPMC of W (X) in the case N1 = N2. Wyman
et al. (1990) is compared the accuracy of several approximations for W (X) in the case
N1 = N2, and pointed that the approximation due to Raudys (1972) has overall the best
accuracy for the combinations of the parameters considered in their study. Fujikoshi and
Seo (1998) gave an asymptotic approximation as an extension of Raudys (1972). Fujikoshi
(2000) gave an asymptotic expansion and error bound. However, as their approximations
are the function of unknown parameter ∆, it must be estimated in practice. The purpose
of this paper is to construct an asymptotic unbiased estimator of EPMC and to evaluate
the performance of several estimating methods in simulation study.

The present paper is organized in the following way. In section 2 an asymptotic
expansion of EPMC, as the type-II approximation, is derived. In section 3 we construct a
higher order asymptotic unbiased estimator, and evaluate the mean squared error (MSE)
of its estimator for the type-II approximation. In section 4 we compared the performances
of our estimator with other methods based on Fujikoshi and Seo (1998) and Okamoto
(1963). In section 5 we present a discussion and our conclusions.

2 Asymptotic expansion

In this section we derive an asymptotic expansion of EPMC under the type-II approxi-
mation framework. We denote the distribution function of W (X) for X coming from Π1

by

Pr (W (X) ≤ w|X ∈ Π1) = g(w;N1, N2,∆
2).

Then, it is easily seen that

Pr (W (X) ≤ w|X ∈ Π2) = 1− g(−w;N2, N1,∆
2).

The EPMC’s of the classification rule are given by

e(2|1) = g(0;N1, N2,∆
2), e(1|2) = g(0;N2, N1,∆

2).

2



Hence, it is sufficient to study the distribution of W (X) for X coming from Π1. In
the following we assume that X is distributed as Np(µ1,Σ). Assuming that the initial
sample K = (X̄1, X̄2,S) is fixed, W (X) is conditionally distributed as N(µ1(K), σ2(K)),
where µ1(K) and σ2(K) depend on the initial sample. Then the conditional probability
of misclassification, PK(2|1), can be expressed as

PK(2|1) = Φ(T ), T = −µ1(K)

σ(K)
, (2.1)

where

µ1(K) =
(
X̄1 − X̄2

)′
S−1

{
µ1 −

1

2

(
X̄1 − X̄2

)}
, σ2(K) =

(
X̄1 − X̄2

)′
S−1ΣS−1

(
X̄1 − X̄2

)
.

The EPMC can be obtained by evaluating EK [PK(2|1)], where EK [·] is the expectation
with respect to K. Let Z =

√
mΣ−1/2(X̄1 − X̄2), A = nΣ−1/2SΣ−1/2 and

z1 =

√
N

σ2(K)

(
X̄1 − X̄2

)′
S−1

(
X̄2 +

N1

N

(
X̄1 − X̄2

)
− µ2

)
,

where m = N1N2/N and n = N − 2. Then

Z ∼ Np(δ, Ip), A ∼ Wp(n, Ip), z1 ∼ N(0, 1)

and they are independent, where δ =
√
mΣ−1/2(µ1−µ2) and δ′δ = m∆2. By using these

variables, we can express T as

T = − 1√
mN

T
−1/2
3

{
N2T1 +

1

2
(N1 −N2)T2

}
+

1√
N
z1 (2.2)

where

T1 = δ′A−1Z, T2 = Z ′A−1Z, T3 = Z ′A−2Z. (2.3)

By using the similar distribution reduction in Fujikoshi and Seo (1998), we have the
following lemma.

Lemma 2.1. Suppose that n − p + 1 > 0. Then the statistic (T1, T2, T3) in (2.3) can be
expressed in the term of independent standard normal variable zi (i = 2, 3) and chi-squared
variables yi (i = 1, ..., 5) with fi degrees of freedom as follow,

T1 =

√
m∆

y2

{
z2 +

√
m∆+ z3

(
y1y3

y4(y5 + z23)

)1/2
}
,

T2 =
1

y2

{
y1 + (z2 +

√
m∆)2

}
, T3 =

1

y22

{
y1 + (z2 +

√
m∆)2

}(
1 +

y3
y4

)
,

where f1 = f3 = p− 1, f2 = n− p+ 1, f4 = n− p+ 2 and f5 = p− 2.

The proof of this lemma is given in appendix. From this lemma, T can be written as
the function of variables yj’s and zj’s, i.e., T = T (y1, ..., y5, z1, z2, z3). Note that fj’s tend
to infinity as N1, N2 and p become large. Let

uj =
√

fj

(
yj
fj

− 1

)
.
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It is well known that uj is asymptotically distributed as N(0, 2) when fj tends to infinity.
Using this property, the expansion of T up to the term of O3/2 can be obtained as follow

T = T(0) + T(1) + T(2) + T(3) +O2 (2.4)

where T(j)’s are given in Appendix and Oj means the term of jth order with respect to
(N−1

1 , N−1
2 , p−1). Evaluating the expectation, E[Φ(T )], up to the term of O1 leads to the

following theorem.

Theorem 2.1. Suppose that X comes from Π1 : Np(µ1,Σ). Then, under the type-II
approximation framework, e(2|1) can be expanded as

e(2|1) = eAE(2|1) +O2, eAE(2|1) = Φ(ν) + ϕ(ν)F1(∆),

where

ν = ν
(
∆2
)
= −1

2

(
N − p

N − 1

)1/2{
∆2 +

(N1 −N2)(p− 1)

N1N2

}{
∆2 +

N(p− 1)

N1N2

}−1/2

and F1(∆) is the term of O1 given in Appendix.

3 Derivation of the estimator QTW

Under the type-I framework, several estimating techniques of EPMC are reviewed in
Siotani et al. (1985). McLachlan (1974) derived a higher order asymptotic unbiased
estimator by using asymptotic expansions. In this section, by using the similar technique
in McLachlan (1974), we derive a higher order asymptotic unbiased estimator under the
type-II framework.

We consider a following estimator for EPMC,

QTW = Φ(ν̂) +Q1, ν̂ = ν
(
D2

s

)
,

where Q1 is the term of O1, D
2
s = f2D

2/n− f1/m and D2 = (X̄1 − X̄2)
′S−1(X̄1 − X̄2).

To construct an asymptotic unbiased estimator up to the term of O1, we define Q1 such
that the bias of QTW is O2. The bias of QTW can be expressed as

Bias(QTW ) = EK [PK(2|1)−QTW ] = e(2|1)− E[Φ(ν̂)]−Q1.

From Theorem 2.1, e(2|1) can be expanded as Φ(ν)+ϕ(ν)F1(∆)+O2, and the expansion
of E[Φ(ν̂)] up to the term of O1 is given in the following lemma.

Lemma 3.1. Suppose that X comes from Π1 : Np(µ1,Σ). Then, under the type-II
framework, E[Φ(ν̂)] can be expanded as

E[Φ(ν̂)] = Φ(ν) + ϕ(ν)G1(∆) +O2,

where G1(∆) is the term of O1 given in Appendix.

From Theorem 2.1 and Lemma 3.1, it follow that

Bias(QTW ) = ϕ(ν){F1(∆)−G1(∆)} −Q1 +O2.
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Therefore, let Q1 = ϕ(ν){F1(∆)−G1(∆)}, the bias of QTW becomes O2. From this, the
estimator of EPMC defined by

QTW = Φ(ν̂) + Q̂1, Q̂1 = ϕ(ν̂){F1(Ds)−G1(Ds)} (3.1)

is asymptotically unbiased up to the term of O1. We call this estimating technique TW
method.

Moreover, ν̂ can be expanded as

ν̂ = ν(1 + ν(1) + ν(2) + ν(3)) +O2,

where ν(i)’s are given in appendix. Then the variance of our estimator is given by the
following.

Var(QTW ) = E[Q2
TW ]− E[QTW ]2 = ν2ϕ(ν)2E

[
ν2
(1)

]
+O3/2

=
ϕ(ν)2

4

(
N − p

N − 1

)(
f1 + 2m∆2

(f1 +m∆2)2
+

1

f2

)
(∆2 + f1 (N + 2N2) /N1N2)

2

∆2 + f1N/N1N2

+O3/2.

Thus, we have the MSE of our estimator as follows.

MSE(QTW ) = E
[
{QTW − P (2|1)}2

]
= Var(QTW ) + {E[QTW ]− P (2|1)}2

=
ϕ(ν)2

4

(
N − p

N − 1

)(
f1 + 2m∆2

(f1 +m∆2)2
+

1

f2

)
(∆2 + f1 (N + 2N2) /N1N2)

2

∆2 + f1N/N1N2

+O3/2.

Therefore, the mean squared error of our estimator converges to 0 in O1 under the type-II
asymptotic framework.

4 Simulation study

We study the accuracy of asymptotic approximations and the performance of the es-
timator of EPMC. Without loss of generality, we assume that µ1 = (−∆/2, 0, ..., 0)′,
µ2 = (∆/2, 0, ..., 0)′ and Σ = Ip. Let eOK(2|1;∆) denotes the asymptotic expansion up
to the second order with respect to (N−1

1 , N−1
2 , n−1) due to Okamoto (1963, 1968). For

the type-II approximation, Fujikoshi and Seo (1998) gave the asymptotic approximation
defined by eFS(2|1;∆) = Φ(γ) where

γ = −1

2

(
N − p

N

)1/2{
∆2 +

p

N1N2

(N1 −N2)

}{
∆2 +

pN

N1N2

}−1/2

.

4.1 Comparison of accuracy

The first is a comparison of the accuracy of eAE(2|1;∆) with eFS(2|1;∆) and eOK(2|1;∆).
The configuration of the values of N1, N2, p and ∆ are N1, N2 = 10, 20, 30, 40, p =
5, 10, 20, 30, 40 and ∆ = 1.05, 1.68, 2.56, 3.29 satisfying N − p − 2 > 0. The value of
∆ correspond to 0.30, 0.20, 0.10, 0.05 defined by Φ(−∆/2). For each of the configura-
tions, a corresponding EPMC, e(2|1), is obtained by Monte Calro simulation: e(2|1) =
B−1

∑B
i=1 ci(2|1), where ci(2|1) is the conditional probability of misclassification, defined

by (2.1), for ith iteration.
The overall performance of the several asymptotic approximations across all config-

urations of parameters is described graphically in Figure 1, which is a scatter plot of
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e(2|1) [x-axis] versus each asymptotic approximation [y-axis]. In each graph, the circular
(●), square (■), triangle (▲) mark denote the approximation eAE(2|1;∆), eFS(2|1;∆)
and eOK(2|1;∆), respectively. Table 1 gives the approximated values of e(2|1) by each
methods in the case p = 10. From Figure 1 and Table 1, the approximation eAE(2|1;∆)
are better than the other ones.

Figure 1: True EPMC values [x-axis] versus asymptotic approximations values [y-axis].
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4.2 A comparison of performance of EPMC estimators

Next, we compare our estimator in (3.1) with the other estimating methods. Under
the type-I approximation framework, McLachlan(1974) suggested an estimating method
called M method. The bias of its estimator is O3 under the type-I approximation frame-
work. Under the type-II approximation framework, we can consider two estimating meth-
ods, which are based on eAE(2|1;∆) and eFS(2|1;∆) with ∆2 replace by ∆̂2, respectively.
We call them AE and FS method, respectively. ∆̂2 is given by

∆̂2 =


n− p− 3

n
D2 − pN

N1N2

if ∆̂ ≥ 0

0 otherwise
.

∆̂2 have consistency for ∆2 under the both approximation frameworks. Moreover, we call
our new estimating method TW method. Because ∆2 ≥ 0, TW should be modified by
changing Ds into 0 if Ds < 0. The values of N1, N2, p and ∆ were chosen as follows,

N1, N2 = 10, 20, 30 N = N1 +N2, p/N = 0.2, 0.3, ..., 0.8,

∆ = 1.05, 1.68, 2.56, 3.29, satisfying N − p− 2 > 0.

The performance of each estimator is evaluated by MSE, B−1
∑B

i=1 {êi(2|1)− e(2|1)}2,
where B is the number of iteration in Monte Calro simulation and êi(2|1) denotes a
estimation of e(2|1) in i th iteration.

Figure 2 shows the box plot of bias E[ê(2|1)]− e(2|1) for several configurations of N1,
N2 and p. Figure 3 shows the box plots of the difference of MSE for AE, FS and M versus
TW for several configurations of N1, N2 and p. From Figure 2 and 3, we can see that M
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Table 1: Values of approximations and simulation in the case p = 10.

(N1, N2) ∆ e(2|1) eOK(2|1;∆) eFS(2|1;∆) eAE(2|1;∆)

(10, 10) 1.05 0.41378 0.67276 0.41243 0.41423

1.68 0.32707 0.38883 0.32477 0.32757

2.56 0.21887 0.20270 0.21411 0.21956

3.29 0.14977 0.10625 0.14261 0.15021
(10, 20) 1.05 0.43789 0.63900 0.43941 0.43794

1.68 0.32245 0.35939 0.32418 0.32306

2.56 0.19271 0.17791 0.19192 0.19315

3.29 0.11767 0.09130 0.11495 0.11778
(20, 10) 1.05 0.34516 0.42634 0.34254 0.34527

1.68 0.25910 0.28092 0.25707 0.25948

2.56 0.15752 0.15509 0.15512 0.15785

3.29 0.09714 0.08458 0.09394 0.09694
(20, 20) 1.05 0.37076 0.44067 0.37099 0.37080

1.68 0.26532 0.28023 0.26595 0.26552

2.56 0.15127 0.14725 0.15091 0.15136

3.29 0.08742 0.07808 0.08644 0.08748
(10, 30) 1.05 0.44907 0.62125 0.45188 0.44894

1.68 0.32061 0.34608 0.32351 0.32086

2.56 0.18131 0.16766 0.18202 0.18192

3.29 0.10473 0.08506 0.10358 0.10505
(30, 10) 1.05 0.31524 0.35036 0.31177 0.31508

1.68 0.23233 0.24230 0.22931 0.23203

2.56 0.13513 0.13503 0.13280 0.13519

3.29 0.07897 0.07394 0.07679 0.07896
(20, 30) 1.05 0.38022 0.44019 0.38178 0.38023

1.68 0.26554 0.27638 0.26724 0.26570

2.56 0.14649 0.14212 0.14664 0.14634

3.29 0.08176 0.07431 0.08137 0.08179
(30, 20) 1.05 0.34213 0.37860 0.34166 0.34215

1.68 0.24208 0.25070 0.24223 0.24232

2.56 0.13496 0.13336 0.13441 0.13485

3.29 0.07556 0.07102 0.07499 0.07569
(30, 30) 1.05 0.35168 0.38389 0.35259 0.35177

1.68 0.24412 0.25068 0.24520 0.24429

2.56 0.13253 0.13078 0.13281 0.13261

3.29 0.07261 0.06874 0.07249 0.07272
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is worse than TW, AE and FS. The MSE of TW is not less than AE and FS, but the
bias of TW is better than AE and FS. Table 2 and 3 give the values of estimators by M,
FS, AE and TW in the case that p/N = 1/5 and 4/5, respectively. From Table 2 and 3,
we can see that TW has the smaller bias than the other methods. Table 4 and 5 give the
values of 100 × (the MSE of other estimators − MSE(TW)) in the case that p/N = 1/5
and 4/5, respectively.

From above results, our estimator is better than other estimators.

Figure 2: Box plots of the bias E[ê(2|1)]− e(2|1)
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Figure 3: Box plots of the MSE of other estimators − MSE(TW)
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Table 2: Bias of M, FS, AE and TW in the case p/N = 1/5.

(N1, N2) ∆ M FS AE TW

(20, 20) 1.05 0.01973 0.01659 0.01618 0.00892
1.68 0.00218 0.01587 0.01508 0.01012
2.56 -0.00560 0.01191 0.01179 0.00714
3.29 -0.00752 0.00951 0.00995 0.00484

(10, 30) 1.05 0.03825 0.02484 0.02147 0.00578
1.68 -0.00158 0.02660 0.02338 0.01100
2.56 -0.01472 0.01798 0.01682 0.00823
3.29 -0.01473 0.01329 0.01367 0.00591

(30, 10) 1.05 0.00995 0.00813 0.01137 0.00958
1.68 0.00230 0.01164 0.01435 0.01106
2.56 -0.00253 0.00995 0.01206 0.00777
3.29 -0.00460 0.00858 0.01037 0.00537

Table 3: Bias of M, FS, AE and TW in the case p/N = 4/5.

(N1, N2) ∆ M FS AE TW

(20, 20) 1.05 -0.30721 -0.00037 0.00114 -0.00025
1.68 -0.32105 0.01798 0.02065 0.01088
2.56 -0.30114 0.02599 0.03115 0.01601
3.29 -0.26048 0.02585 0.03332 0.01733

(10, 30) 1.05 -0.41768 -0.00309 -0.00423 -0.00969
1.68 -0.41237 0.02160 0.02177 0.00487
2.56 -0.36578 0.03950 0.04268 0.01591
3.29 -0.30974 0.04136 0.04768 0.01914

(30, 10) 1.05 -0.28066 -0.00787 -0.00352 0.00353
1.68 -0.28670 0.00698 0.01215 0.01162
2.56 -0.26635 0.01862 0.02559 0.01714
3.29 -0.23155 0.02131 0.03003 0.01838
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Table 4: Values of the MSE of other estimators − MSE(TW) in the case p/N = 1/5.

(N1, N2) ∆ M FS AE

(20, 20) 1.05 0.527 0.028 0.034
1.68 0.064 0.031 0.027
2.56 0.005 0.010 0.005
3.29 -0.005 0.008 0.006

(10, 30) 1.05 2.324 0.059 0.049
1.68 0.296 0.139 0.111
2.56 0.020 0.056 0.034
3.29 -0.012 0.028 0.021

(30, 10) 1.05 0.246 -0.038 -0.027
1.68 0.018 -0.008 0.005
2.56 -0.004 -0.006 0.001
3.29 -0.006 0.001 0.006

Table 5: Values of the MSE of other estimators − MSE(TW) in the case p/N = 4/5.

(N1, N2) ∆ M FS AE

(20, 20) 1.05 10.750 -0.142 -0.173
1.68 10.498 -0.047 -0.086
2.56 8.390 0.084 0.043
3.29 5.933 0.078 0.047

(10, 30) 1.05 18.451 -0.311 -0.371
1.68 16.614 -0.150 -0.242
2.56 12.081 0.189 0.078
3.29 8.199 0.282 0.189

(30, 10) 1.05 8.611 -0.131 -0.159
1.68 8.246 -0.122 -0.147
2.56 6.512 -0.036 -0.055
3.29 4.633 -0.006 -0.015
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Appendix

A.1 Proof of the consistency of ∆̂2 and D2
s

Let

∆̃2 =
n− p− 1

n
D2 − pN

N1N2

,

then

E[∆̃2] = ∆2, ∆̃2 p−→ ∆2.

where N = N1 +N2, n = N − 2.

Proof. D2 can be expressed in the following.

D2 =
n

m

(z2 +
√
m∆)2 + y1
y2

, (m = N1N2/N),

Then

E[D2] =
n

n− p− 1

( p

m
+∆2

)
Var(D2) =

n2

m2

(n− p− 1) (2p+ 4m∆2) + 2 (p+m∆)2

(n− p− 1)2(n− p− 3)
.

Thus, E[∆̃2] = ∆2 and Var(∆̃2) → 0. From the above ∆̃2 has consistency for ∆2.

Hence, we can easily show that ∆̂2 and D2
s have consistency for ∆2.

A.2 Proof of Lemma 2.1

Suppose that the p× p orthogonal matrices H , Q are given by

H =
(
(z′z)−1/2z, {δ′(Ip −Πz)δ}−1/2

(Ip −Πz)δ,H1

)
, Q =

(
(δ′δ)−1/2δ,Q1

)
.

Let Ã = H ′A−1H and Ã be partitioned as

Ã =

(
Ã11 Ã12

Ã21 Ã22

)
Ã11 : 1× 1.

Then, Ã is distributed as Wp(n, Ip), and

Ã−1 =

(
0 0′

0 Ã−1
22

)
+

(
1

−Ã−1
22 Ã21

)
Ã−1

11.2

(
1 −Ã12Ã

−1
22

)
,

Ã−2 =

(
0 −Ã−1

11.2Ã12Ã
−2
22

−Ã−1
11.2Ã

−2
22 Ã21 Ã−2

22

)
+

(
1

−Ã−1
22 Ã21

)
Ã−2

11.2(1 + Ã12Ã
−2
22 Ã21)

(
1 −Ã12Ã

−1
22

)
.
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where Ã11.2 = Ã11 − Ã12Ã
−1
22 Ã21. Moreover, Ã11.2, Ã22 and Ã

−1/2
22 Ã21 are mutually inde-

pendent, and Ã11.2, Ã22, Ã
−1/2
22 Ã21 are distributed as χ2

n−p+1,Wp−1(n, Ip−1), Np−1(0, Ip−1),
respectively. From above results,

T1 = δ′A−1z = δ′HH ′A−1HH ′z

=
(
(z′z)−1/2(δ′z), {δ′(Ip −Πz)δ}1/2 ,0′

)
Ã−1

(
(z′z)1/2

0

)
= Ã−1

11.2

{
δ′z − (z′z)1/2 {δ′(Ip −Πz)δ}1/2 e′

1Ã
−1
22 Ã21

}
, (e1 = (1, 0, ..., 0)′ : (p− 1)× 1)

= Ã−1
11.2

[
δ′QQ′z −

{
m∆2(z′QQ′z)− (δ′QQ′z)2

}1/2
× e′

1Ã
−1
22 Ã21(

Ã12Ã
−2
22 Ã21

)1/2 {(Ã12Ã
−1/2
22

)
Ã−1

22

(
Ã

−1/2
22 Ã21

)}1/2


=

1

y2

[√
m∆z2 +m∆2

−
{
m∆2

(
y1 + (z2 +

√
m∆)2

)
−
(√

m∆z2 +m∆2
)2}1/2 z̃3

(y5 + z̃23)
1/2

(
y3
y4

)1/2
]

=

√
m∆

y2

{
z2 +

√
m∆− z̃3

(
y1y3

y4(y5 + z̃23)

)1/2
}

=

√
m∆

y2

{
z2 +

√
m∆+ z3

(
y1y3

y4(y5 + z23)

)1/2
}
, (z3 = −z̃3, z̃3 ∼ N(0, 1))

T2 = z′A−1z = z′HH ′A−1HH ′z

= Ã−1
11.2(z

′z) = Ã−1
11.2(z

′QQ′z) =
y1 + (z2 +

√
m∆)2

y2
,

T3 = z′A−2z = z′HH ′A−2HH ′z

= (z′z)Ã−2
11.2(1 + Ã12Ã

−2
22 Ã21) = (z′QQ′z)Ã−2

11.2

{
1 +

(
Ã12Ã

−1/2
22

)
Ã−1

22

(
Ã

−1/2
22 Ã21

)}
=

y1 + (z2 +
√
m∆)2

y22

(
1 +

y3
y4

)
.

A.3 Calculation of F1(∆)

The expansion of (T1, T2, T3) up to the term of O1 can be given by

Ti = ti,0(1 + ti,1 + ti,2 + ti,3) +O2, i = 1, 2, 3,

where ti,j, (j = 0, 1, 2, 3) is given by

t1,0 =
m∆2

f2
, t1,1 =

1√
m∆

(
z2 + z3

√
f1f3
f4f5

)
− u2√

f2
,

t1,2 =
z3

2
√
m∆

√
f1f3
f4f5

(
u1√
f1

+
u3√
f3

− u4√
f4

− u5√
f5

)
+

u2
2

f2
− u2√

mf2∆

(
z2 + z3

√
f1f3
f4f5

)
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t1,3 =
z3

4
√
m∆

√
f1f3
f4f5

(
−u2

1

f1
− u2

3

f3
+

u2
4

f4
+

u2
5

f5
− z23

f5

+
2u1u3√
f1f3

− 2u1u4√
f1f4

− 2u1u5√
f1f5

− 2u3u4√
f3f4

− 2u3u5√
f3f5

+
2u4u5√
f4f5

)
− u3

2

f2
√
f2

+
u2
2

f4
√
m∆

(
z2 + z3

√
f1f3
f4f5

)
− z3u2

2
√
mf4∆

√
f1f3
f4f5

(
u1√
f1

+
u3√
f3

− u4√
f4

− u5√
f5

)
,

t2,0 =
f1 +m∆2

f2
, t2,1 =

2
√
m∆z2 +

√
f1u1

f1 +m∆2
− u2√

f2
,

t2,2 =
z22

f1 +m∆2
+

u2
2

f2
− u2(2

√
m∆z2 +

√
f1u1)√

f2(f1 +m∆2)
,

t2,3 =
u2
2(2

√
m∆z2 +

√
f1u1)

f2(f1 +m∆2)
− z22u2√

f2(f1 +m∆2)
− u3

2

f2
√
f2
,

t3,0 =
(f1 +m∆2)(f3 + f4)

f 2
2 f4

, t3,1 =

√
f1u1 + 2

√
m∆z2

f1 +m∆2
− 2u2√

f2
+

√
f3u3 +

√
f4u4

f3 + f4
− u4√

f4
,

t3,2 =
z22

f1 +m∆2
+

3u2
2

f2
− 2

√
f1u1 + 4

√
m∆z2√

f2(f1 +m∆2)
+

f3u
2
4

f4(f3 + f4)

−
√
f3u3u4

(f3 + f4)
√
f4

+

√
f3u3

f3 + f4

(√
f1u1 + 2

√
m∆z2

f1 +m∆

)
− 2

√
f3u2u3

(f3 + f4)
√
f2

− f3u4

(f3 + f4)

(√
f1u1 + 2

√
m∆z2

f1 +m∆

)
+

f3u2u4

(f3 + f4)
√
f2f4

,

t3,3 =
3

f2

(√
f1u1 + 2

√
m∆z2

f1 +m∆2

)
− 2u2z2

(f1 +m∆2)
√
f2

− 4u3
2

f2
√
f2

+

√
f3u3u

2
4

f4(f3 + f4)
− f3u

3
4

(f3 + f4)f4
√
f4

+
f3u

2
4

f4(f3 + f4)

(√
f1u1 + 2

√
m∆2z2

f1 +m∆2

)
− 2f3u2u

2
4

f4(f3 + f4)
√
f2

−
√
f3u3u4

(f3 + f4)
√
f4

(√
f1u1 + 2

√
m∆z2

f1 +m∆2

)
+

2
√
f3u2u3u4

(f3 + f4)
√
f2f4

+

√
f3u3z

2
2

(f3 + f4)(f1 +m∆2)
+

3
√
f3u

2
2u3

(f3 + f4)f2
− 2

√
f3u2u3

(f3 + f4)
√
f2

(√
f1u1 + 2

√
m∆z2

f1 +m∆2

)
− f3u4z

2
2

(f3 + f4)(f1 +m∆2)
√
f4

− 3f3u
2
2u4

(f3 + f4)f2
√
f4

+
2f3u2u4

(f3 + f4)
√
f2f4

(√
f1u1 + 2

√
m∆z2

f1 +m∆2

)
.

Using these expressions, T(j)’s in (2.4) can be written as

T(0) = a1 + a2

T(1) = −
T(0)

2
t3,1 + a1t1,1 + a2t2,1 +

1√
N
z1

T(2) = T(0)

(
3

8
t23,1 −

1

2
t3,2

)
+ a1

(
t1,2 −

1

2
t3,1t1,1

)
+ a2

(
t2,2 −

1

2
t3,1t2,1

)
T(3) = T(0)

(
− 5

16
t33,1 +

3

4
t3,1t3,2 −

1

2
t3,3

)
+ a1

(
t1,3 −

1

2
t3,1t1,2 +

3

8
t1,1t

2
3,1 −

1

2
t1,1t3,2

)
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+ a2

(
t2,3 −

1

2
t3,1t2,2 +

3

8
t2,1t

2
3,1 −

1

2
t2,1t3,2

)
where a1 = aN2t1,0, a2 = a(N1 − N2)t2,0/2 and a = N−1(mt3,0). Then F1(∆) can be
obtained by calculating the following expectation

F1(∆) = E
[
T(2)

]
−

T(0)

2
E
[
T 2
(1)

]
.

where the moments of ti,j’s are given by

E[t1,1] = E[t2,1] = E[t3,1] = 0, E[t1,2] =
2

f2
,E[t2,2] =

1

f1 +m∆2
+

2

f2
,

E[t3,2] =
1

f1 +m∆2
+

6

f2
+

2f3
f4(f3 + f4)

, E[t1,3] = 0, E[t2,3] = E[t3,3] = O2

E[t21,1] =
1

m∆2

(
1 +

f1f3
f4f5

)
+

2

f2
, E[t22,1] =

2f1 + 4m∆2

(f1 +m∆2)2
+

2

f2
,

E[t23,1] =
2f1 + 4m∆2

(f1 +m∆2)2
+

8

f2
+

2f3
f4(f3 + f4)

,

E[t1,1t2,1] =
2

f1 +m∆2
+

2

f2
, E[t1,1t3,1] =

2

f1 +m∆2
+

4

f2
, E[t2,1t3,1] =

2f1 + 4m∆2

(f1 +m∆2)2
+

4

f2
,

and the remainder of the moments of tij’s are O2.

A.4 Calculation of G1(∆)

∆̂2 can be expanded as

D2
s = ∆2 + v1 +O1

where v1 is given by

v1 =
1

m

(√
f1u1 + 2

√
m∆z2

)
− 1√

f2
u2

(
∆2 +

f1
m

)
Then the moment of F1(Ds) is given by

E[F1(Ds)] = F1(∆) + F ′
1(∆)E[v1] +O2 = F1(∆) +O2.

ν̂ can be expanded as

ν̂ = ν(1 + ν(1) + ν(2) + ν(3)) +O2

where ν(j)’s are given by

ν(1) =

(
ξ − 1

2

)
t2,1, ν(2) =

(
3

8
ξ − 1

2

)
t22,1 +

(
ξ − 1

2

)
t2,2,

ν(3) =

(
ξ − 1

2

)
t2,3 +

(
3

4
− 1

2
ξ

)
t2,1t2,2 +

(
3

8
ξ − 5

16

)
t32,1.

where

ξ =
∆2 + (p− 1)N/N1N2

∆2 + (p− 1)(N1 −N2)/N1N2

.
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Then G1(∆) can be obtained by calculating the following expectation

G1(∆) = ν

(
E
[
ν(2)
]
− ν2

2
E
[
ν2
(1)

])
,

The moment of t2,j’s in previous. Moreover, the moment ofG1(Ds) is given by E[G1(Ds)] =
G1(∆) +O2.
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