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ABSTRACT

In this paper, we consider Akaike information criterion (AIC) for ANOVA model with a simple
ordering (SO) 01 < 03 < --- < 0; where 04,...,0;, are population means. Under an ordinary
ANOVA model without any order restriction, it is well known that an ordinal AIC, whose
penalty term is 2 x the number of parameters, is an asymptotically unbiased estimator of a risk
function based on the expected K-L divergence. However, in general, under ANOVA model with
the SO, the ordinal AIC has an asymptotic bias which depends on unknown population means.
In order to solve this problem, we calculate the asymptotic bias, and we derive its unbiased
estimator. By using this estimator we provide an asymptotically unbiased AIC for ANOVA
model with the SO, called AICso. A penalty term of the AICso is simply defined as a function

of maximum likelihood estimators of population means.
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1. Introduction

In real data analysis, analysts can consider many statistical models. Nevertheless,
in many cases, we assume that considered models satisfy some regularity conditions.
For example, in the case of deriving a maximum likelihood estimator (MLE), we often
assume that the MLE is a solution of a likelihood equation. If this assumption holds,
in general, the MLE has good properties such as consistency and asymptotic normality.
Furthermore, if additional mild conditions hold, statistics based on the MLE have also
good properties, e.g., Akaike information criterion (AIC) becomes an asymptotically
unbiased estimator of a risk function based on the expected K-L divergence, and a penalty
term of AIC can be simply expressed as 2x the number of parameters. In addition, it can
be shown that the null distribution of a likelihood ratio statistic converges to chi-squared

distribution. Thus, when certain regularity conditions hold, we can get good models (or
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statistics) from the viewpoint of usefulness and estimation accuracy.

On the other hand, when some parameters of the considered model are restricted,
regularity conditions are not satisfied. In particular, when the parameters 64, ..., 0y are
restricted as 0; < 0y < -+ < 6, this restriction is called a simple ordering (SO), and
the SO is very important in applied statistics. The main advantage of considering order
restrictions is that some information can be reflected in the model. As a result, we
can expect that estimation accuracy can be improved. For example, let Xq,..., X be
independent random variables, and let X; ~ N(p;, o? /n;) where n; > 0. Then, when the
assumption of the SO is true, the MLE of p; for the model with the SO is more efficient
compared with the MLE for the model without any restriction. Specifically, the MLE fi;
of p; for the non-restricted model is given by fi; = X;. On the other hand, under the
assumption of the SO, from Robertson et al. (1988) the MLE fi; so can be obtained as

¢
M, (i=1,...,k).

fli,so = min max
nj

;e <v u;u<li Zj:u

For these MLEs, Brunk (1965), Lee (1981) and Kelly (1989) showed that

@) X mE( — )Y > X niEl(iso — )2,
(b)  El(fu — )2 > El(fuso — )], (i=1,....k),
() P(aiso—mil <t) >P(lps — il <t), (¢>0,i=1,....k),

respectively. Furthermore, from Hwang and Peddada (1994), the result of (c) was ex-
tended to the case of elliptical distributions. Thus, considering order restrictions yields
good estimators from the viewpoint of estimation accuracy.

However, models with order restrictions are not easy to use. Anraku (1999) considered
AIC for k-clusters ANOVA model with the SO, and showed that a general AIC, whose
penalty term is 2x the number of parameters, is not an asymptotically unbiased estimator
of a risk function. Furthermore, its asymptotic bias depends on unknown parameters.
Moreover, Yokoyama (1995) considered a parallel profile model with a random-effects
covariance structure proposed by Yokoyama and Fujikoshi (1993). Variance parameters
of the random-effects covariance structure are restricted as the SO, and Yokoyama (1995)
investigated the likelihood ratio test for testing the adequacy of this structure. In this
test, they showed that the null distribution of the likelihood ratio test statistic does
not necessarily converge to chi-squared distribution. In addition, they also showed that
the limiting distribution of the test statistic depends on unknown variance parameters.
As can be seen from these two examples, derived results from the model with order
restrictions are not easy to use even if the assumed restriction is very simple such as
the SO. Based on these, in this paper we focus on AIC for ANOVA model with the

SO. Deriving an unbiased estimator of the asymptotic bias which depends on unknown
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parameters, we propose AIC for ANOVA model with the SO, called AICg0o.
Finally, we would like to recall that AIC is defined as

AIC = —21(%) + 2p, (1.1)

where 7 is the MLE of a parameter x, [(-) is a log-likelihood function and p is the number
of independent parameters. Hereafter, in order to avoid confusion, if Z is derived based
on the model without any order restriction, we refer to the AIC given by (1.1) as an
ordinal AIC. Similarly, if z is derived based on the model with a order restriction, we
refer to the AIC given by (1.1) as a pseudo AIC (pAIC).

The remainder of the present paper is organized as follows: In Section 2, we derive
MLEs of parameters and a risk function for ANOVA model with the SO. In Section 3,
we define several notations, and we provide one important lemma for calculating the
asymptotic bias. In Section 4, we provide AIC for ANOVA model with the SO, called
AICg0o. In Section 5, we introduce different AICgps for several special cases. In Section
6, we confirm that performance of the AICgo through numerical experiments. In Section

7, we conclude our discussion. Technical details are provided in Appendix.

2. ANOVA model with a simple order restriction

Let X;; be a observation variable on the jth individual in the 7th cluster, where i =
1,....kand j=1,...,N;. Here,let k >2and N =N;+--- ,Ng,and let N—k—6 > 0.
Moreover, assume that X;;,..., Xyy, are mutually independent random variables. In

this setting, we consider the model

Xij ~ N(6170-2>7 (21)
where 01, ...,0;, and 0 > 0 are unknown parameters. Furthermore, we assume that the
parameters 64, ..., 0, are restricted as

0, <0y <--- <O (2.2)

Thus, the restriction (2.2) is the SO. Let © be a set defined as © = {(01,...,0;)" €
R¥ | 0 < 0y < --- < 6;}. Then, the model (2.1) with the restriction (2.2) is equal
to ANOVA model whose mean parameters are restricted on ©. Here, we put 8 =

(61,...,0x). In addition, let 6, = (61 «,...,0k ) and o2 denote the true parameters

2

2, we assume that

of @ and o2, respectively. Finally, for the true parameters 0, and o
0. € © and o2 > 0.



2.1. Maximum likelihood estimator

In this subsection, we derive MLEs of unknown parameters for the model (2.1) with
the SO. Let N = (Ny,...,Ng). Suppose that X is an N-dimensional vector which
has all X;;, (i =1,...,k, j=1,...,N;). In other words, X can be written as X =
(X115, Xij, ..., Xin, ). Furthermore, for any ¢ with 1 < ¢ < k, define

1 N; 1 k N;
Xi= 2 X 5" = N DO (X - X)) (2:3)
vj=1 i=1 j5=1

Hence, X; and &2 are the sample mean and variance, respectively. We put X =
(X1,...,Xg)". Note that under the ordinal ANOVA model without any order restriction,
the MLEs of 8 and 2 are X and &2, respectively. Here, since X;;'s are mutually in-
dependent, from normality of X;;, a log-likelihood function [(6,0?%; X) can be expressed

as
N

1(0,0% X) = 5 log(2mo?) —
N

=7 log(2mo?) —

Here, for any a = (a1,...,a,) € RP and b = (by, ...

Note that (2.5) is a complete norm. Then, for any o2 > 0, the maximization problem of

1(6,0%; X) on O is equal to the minimization problem of

H(0) =ZN¢(X1~ —0:)* = | X - 0|y, (2.6)

on ©. Needless to say, this minimization problem is equal to the minimization of H*(0) =

H(0) = || X —0||n on O. Recall that the norm || -|| 5 is the complete norm, and the set

© is the non-empty closed convex set. Therefore, for any X € RF, there exists a unique

point @ in © such that 6 minimizes H*(0) on O, (see, e.g., Rudin, 1986). This implies

that existence and uniqueness for the MLE 6 = (4, ...,0;)" of 8 hold. Moreover, from

Robertson et al. (1988), for any i with 1 < i < k, 6; is given by
: SN,

f; = min max

2.7
0;1<v usu<i Z] uN ( )
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On the other hand, it is easily checked that the MLE 62 of o2 can be obtained by
differentiating the function 1(8, 0%; X) with respect to (w.r.t.) o2 as

1 k
AQZNZ

=1 j=1

N; 1 k
2 V N \2
+_§1Ni(§<i_9i) ,

because 1(0,02; X) is a concave function w.r.t. o2.

2.2. Risk function and bias

Let X™* be a random variable, and let X™* ~ i.i.d. X. Then, a risk function based on

the expected Kullback-Leibler divergence can be defined as

E[E*[—21(9762;X*)]]

Zz 1N( 0)2 =R

=E | Nlog(2m6?) + — (say). (2.8)
o

0-2

Note that in the case of the ordinal ANOVA model, a risk function R is given by R =
E[E,[-2/(X,52; X*)]]. Since the maximum log-likelihood 1(8,52; X) can be written as

) N N
1(0,6% X) = -5 log(276?) — o> (2.9)

if we estimate the risk function R by —21(8,2; X), then the bias B, which is the differ-
2,

X) and R, can be expressed as

Eica Nills - éi)Q] — N. (2.10)

ence between the expected value of —2/ (é o

2
No:

G2

~

52

B=E[R—-{-20(0,6%X)}]=E [ } +E

Next, we evaluate the bias B. Let S and T be random variables defined by

kN k
1 - . 1 _ .
S = EZZ(XU_XZ'P? T = ;ZNi(Xi—ei)Q-
* =1 j=1 T

Note that S is distributed as x3 _, where x%_, is the chi-squared distribution with N —k
degrees of freedom. Furthermore, since X1, ..., X;n, are independently distributed as
normal distributions, we obtain S 1. X where the notation * I x means that * and % are
mutually independent. In addition, from (2.7), 0 is a function of the random vector X.
Thus, T is also a function of X and it holds that S L T. Using S and T, it holds that
N62 /02 =S + T and we obtain

No? N? N? N? 1

i _ A . 2.11
62 Né62Jo2 S+T S 1+T/S (2.11)




In addition, noting that (1 +x)"! =1 — 2 + ¢*2? where x > 0 and 0 < ¢* < 1, (2.11)

can be expanded as

No? N? NZ2T L N?T?
= — e + O
62 S S2 S3
where C* is a random variable with 0 < C* < 1. Hence, from S ~ X?\f—k and S LT, we
have
No?2 N?2 N2E[T N27?
02 N—-k—-2 (N—k-2)(N-k—4) S3

=N+k+2+O0NY)—E[T]|+ON YHYE[T] + E [o* N;TT . (2.12)

Similarly, using (1 4+ y)™' =1 — ¢*y where y > 0 and 0 < ¢* < 1, we get

S N0 — 0;)?

52

o
N YL Nl —0)? N Y NilBi. =0 1
o2 S+T o2 S 1+7/S
_ N Y NilBia —6)” W NT Y NilBie — 6:)°
02 S o2 52
= sz—lNl(el*_Xl+X1_éi)2 _C*NTZi'C—l NZ(HZ* 91)2
o2 S o2 S2
N Zf—l Nl(e%* XZ)Z . & ZI;—l N’L(X’L 91 *)(Xz - éz)
o2 S 02 S
NT . NT Sk N — 6:)?
S o2 S2 ’

where C* is a random variable with 0 < C* < 1. Here, for any ¢ with 1 <14 < k, it holds
that S L X;, S L 6;, SLT and X; ~ N(0; ..,02/N;). Therefore, we obtain

S N0 — éi)2]
2

Nk 2N
T N—k—-2 N—k-— 2

0'2 ZN B X o él)]

NE[T] NT SF L Ny(0;.. — 6;)?
Noro2 T|¢ 02 52
—k+ON1) - W g ZN —0;..)(X; — 0;)
- N — k—2 o2 !

(2.13)




Thus, from (2.12) and (2.13), it holds that

2 A A AY
o [2] e [ Bl 0]
o) lof
N+2(k+1) 2N g izk:N(X- 0:.)(Xi—0;)| +J,  (2.14)
= N_k_z 0_3 P 7 1 T,% (] ? Y *
where J is given by
_ _ L N2T? NTSF L Ni(05.. — 6;)?
J=0ON"H+0O(N 1)E[T]—|—E{C 3 1—E C = =1 52’ .

Here, from the definition of 8, it holds that | X — 8|y < | X — ||~ for any 6 € ©.
Moreover, from the assumption, the true value 6, satisfies 8, € ©. Thus, it holds that
IX = 6ll5 < [|X — 6.~ and

1 — N 1
T= 5 SN~ 07 = 5 (IX — Blln) < (1 — 6w’
* =1 T O
1 & _
= p ZNZ(Xz — 91'7*)2 = K, (S&y),
* =1

where K ~ x%. Therefore, by using the above inequality, we get 0 < E[T] < E[K] = k
and E[T] = O(1). In addition, noting that 0 < C* < 1, we have

L N2T? N2T2] N2E[T?]
’E{C S3 } E[ S3 } " (N—k—2)(N—k—4)(N—-Fk—6)
<O(N"HE[K? = O(N"H(2k + k*) = O(N™1).
This implies
) E [C* NZTQ} =O(N™)
53

Noting that the triangle inequality ||6, —8||n < ||0.—X||n+|| X —0||n and | X — 8| x <
| X — 6,||n, we obtain |0, —0||n < 2||0, — X ||n. Hence, since 0 < C* <1 and T < K,
the following inequality holds:

E|(C*

o2 S2

*

NT ¥ Ni(6;, — 9})2]

NT Sk Ni(6;. — 9})2]

SIN-_k—2)(N-k—4) { (16- éHN)Q]SO(N‘1>E[4K2]=0(N‘1)-



This implies
NT S Ni(9s,e — 6)?

B o2 S2

C

Thus, from the definition of J, we obtain J = O(N™!). From (2.10) and (2.14), the bias

B can be expressed as

k
2N 1 _ _ A
* =1

Hence, in order to correct the bias up to the order of N1, we must calculate the expected
value in (2.15).

3. Notation and main lemma

In this section, we provide the lemma to calculate the expected value in (2.15). First,

we define several notations.

3.1. Notation

Let [ be an integer with [ > 2 and let nq,...,n; be positive numbers. We put n =
(n1,...,n;)". For any I-dimensional vector & = (x1,...,2;)" € R!, and for any 4, j with
1 <i<j<I, we write zj; ;) = (z4,...,2;)". Note that x[; ;) is a (j — 4 + 1)-dimensional

vector whose the sth element is x; 1 where 1 < s < j—1i+ 1. In particular, x|; ;) = ;

and @[ ;) = x. Let

T ong Mg Mg

S§=1

j 7 j / .
— () DemiMsTs D sy MsTs M 51P[i4)
Lli,j) = E :xs’ T = .
S=1

For simplicity, we often represent a’sflnj)] as T[; j- Note that Tj; ;) = z;.
Next, let A’ be a set defined by

A ={(ay,...,a)) €R' | a3 < ay <--- < ay}
={(ar, .. .,@) eR' [ 1<t <I—1, a <ap},

and let A} and A! be sets defined by
Aa:{(«r17...,xl)/€Rl|:L'1:x2:::L'l}’
and

Aé:{(xl"'Wml),eRl|I1<x2<"'<xl}
:{(l'l,...7$l)/€Rl | 1§t§l_17 Il)'t<xt+1}-



We define A! = R!. Moreover, for any integer ¢ with 1 <14 <, we write
W= {(wy,...,w;)) €N |1 <t <4, w1 <wy, wo=0, w; =1}
Hence, for example, in the case of | = 2, the sets W7 and W3 are given by
Wi ={2'} Wi ={12)},
and in the case of [ = 3, the sets W3, W3 and W3 are given by
Wi ={(3)}, Wy ={(13), (2,3)}, Wi={(123)}
Furthermore, in the case of [ = 4, the sets Wi, Wi, Wi and Wj are given by

Wil = {(4)/}7 Wg = {(174)/7 (2’4)/7 (374)/}a W{;l = {(17274),7 (17374)/7 (27374)/}7
Wi =1{(1,2,3,4)'}.

Note that the number of elements of WZZ is ;_1C;_1. Also note that, for any element
w = (wi,...,w;) in W), w is an i-dimensional vector and w; = [. From the definitions
of Wi and W!, W! has the unique element w = (1)’ and W} has the unique element

w = (1,...,1). Furthermore, for any i (i = 1,...,l) and for any w € W), we define a

/

set Al(w) as follows. First, in the case of i = 1, W! has the unique element w = (1),

and we define

Al(w) = {(z1,...,2) R |2y =ap = --- =17} = AL,
On the other hand, in the case of 2 < i <[, for any element w = (w1, ..., w;) in W!, we
define
Al(w) ={(a1,...,a) € A | 1 <t <i—1, aw, < A,y
0 S S S 1 — 17 Wo = 07 A14w, = aws+1}7
={(@1,..., ;) ER | 1<t <i—1, Ty, < Tupyy,s
0<s<i—1, wp=0, Ti4w, =+ =Tu,,,}- (3.1)
Thus, from (3.1), the element & = (x1,...,7;)" in Al(w) satisfies
Tl = =Ty < Ty =0 = Ty < o0 < Ty, = = Ty
In particular, when i = [, W} has the unique element w = (wy,...,w;)" = (1,...,1)’, and

it holds that
Al(w) = {(z1,...,2)) €ER | 21 <29 < -+~ < 27} = AL
Here, we provide several examples. When [ = 2, A?(w) and A3(w) can be expressed as

.A%(UJ) = .A% = {JI € RQ | xr1 = .TQ}, Ag(’UJ) = A% = {iB c Rz ‘ T < 5132}.



In addition, when [ = 3, for each s (s = 1,2,3), A3(w) can be expressed as

=A} ={x cR® | 21 = 25 = 23},
={xeR®|zy <xo=u3}, (ifw=(1,3)€cW))
={xcR® |2y =25 <23}, (fw=(2,3) W)
= A3 ={x e R®| 21 < 2 < 23}

EEEE

S

R

Therefore, in general, it holds that

A=) U Aw), (3.2)

=1 wweWw!

and
(i,w) # (i*,w*) = A(w) N AL (w*) = 0. (3.3)

Next, for any ¢ and j with 1 < i < j <[, we define a matrix D™, First, when i = j,

2,7

let DET;) be a 1 x 1 matrix and let DZ(Z) = 0. On the other hand, when 7 < j, let Df’;)
be a (j —i) X (j —i+ 1) matrix and let the sth row of DEZ) (1 < s < j—1i) be defined by

1 ’ —1 / )
= Ny irs—11 = Niiys g . (34)
(n[i,H—s—l] s =1l Ni+ts,j] lite.d)
Hence, for example, when [ = 4, DEZ)’S (1 <i<j<4) are given by
D = D = B = Dy =0
Dyy = D) = DY = (1 - 1),

—nNo —ns3 —MNn3g —MN4g
1 1
D(n) — na+ns no+ns D(n) — n3+ng ns+ng
1,3 ni ng -1 ’ 2,4 ng n3 _ ’
ni+nsg ni+nsz na+ns na+mns
1 —MNn9 —n3 — N4
nz+ng+ng nz+nsz+ng na+ng+ng
D(") — n1 na —ns3 —_n
1,4 ni+nz ni+na nz+ng nz+ng
n1 n2 ns _ 1

ni+nz+ns ni+nz+ng ni+nz+ng

For simplicity, we often represent Dz(z) as D ;.
Finally, we define a function n, ™ Let nl(n) be a function from R! to A, and let n(n) ()

l
be defined by

n™ () = argmin ||z — y|2,
ye Al

for any & = (x1,...,2;)" € R'. For simplicity, we often represent n(n) as 1;. Note that
y y l

m(x) is well-defined because (R, || ||) is a Hilbert space and A’ is the non-empty closed

convex set (see, e.g., Rudin, 1986). Also note that n;(x) is an [-dimensional vector. Let
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m(x)[s] be a sth element of n(x) (1 < s < [). Then, from Robertson et al. (1988),

m(x)[s] can be expressed as

. Z;]:u n;x;

m(@)ls] = i, e S = I IR Pl (3:5)
In addition, we define n;(x) = x.
3.2. Main lemma

The following lemma holds.

Lemma 3.1. Let k be an integer with £ > 2, and let nq,...,nx; be positive numbers.
Let &1, ..., &, be real numbers, and let 72 be a positive number. Suppose that z1,. ..,z
are independent random variables, and z; ~ N(&;,72/n;), (i = 1,...,k). We put n =

(n1,...,ng), €= (&,...,&) and * = (z1,...,x)". Then, it holds that

k
1 n .
E ;Zni(%‘ — &) (i — 1Y ()[i])

i=1

k—1

=Y (k=P (nM@e |J Afw)

=1 W;'IDEWF

Proof. See Appendix. O

4. AIC for ANOVA model with the simple ordering

In this section, we derive AIC for ANOVA model (2.1) with the SO. First, we calculate
the expected value in (2.15). From (2.3), X1, ..., X} are mutually independent, and for
any 4, with 1 < i < k, it holds that X; ~ N(0;.,02/N;). Furthermore, from (2.7) the
MLE 6 can be expressed as 0= n(N)(X ). Hence, from Lemma 3.1, the expected value

n (2.15) can be written as

k
1 _ _ R
2 Z Ni( X — 0;) (X5 — 0;)
* =1

k—1
:Z —i)P(oe | Af(w)|=0Q. (say)

'w;'wGWf

Thus, noting that @@ = O(1), substituting @ into (2.15) yields

B=2k+1)— Q+ONH=2k+1)-2Q+O0O(N1). (4.1)

2N
N—-k—-2
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Therefore, in order to correct the bias up to the order of N=!, we only have to add
2(k+1)—2Q to —2[(9, 6%; X). However, it is easily checked that @ depends on the true

values 01 »,...,0, and o2. Thus, we must estimate Q. Here, let

and let
m = #M, (4.2)

where the notation #M means that the number of elements of M. From the definition
of m, m is a discrete random variable, and its possible values are 1 to k. For example,
if 0,

== ék, then = 1, and if 6; < 6y < -+ < ék, then m = k. Similarly, if
0, <f0p=--- = ék, then 1 = 2. Here, from the definitions of 7 and A¥(w), we have

'w,'wEWik
This implies
k k—1 )
Elk—m] =) (k—i)P(h=i) =) (k—i)P|0ec [ Af(w)]|=0Q.
i=1 i=1 wi;wEWEF

Thus, k — m is an unbiased estimator of Q). Therefore, from (4.1) we obtain
E2(m+1)] =E2(k+1) —2(k—m)] =2k +1)—-2Q = B+O(N™').

Hence, adding 2(ri + 1) (instead of 2(k + 1) — 2Q) to —21(8,5%; X), we obtain AIC for
ANOVA model with the SO, called AICg0.

Theorem 4.1. Let [(,5%; X) be the maximum log-likelihood given by (2.9), and let 1n
be the random variable given by (4.2). Then, the AICgo is defined by

AICso := —21(0,62; X) + 2(1h + 1).
In addition, for the risk function R given by (2.8), it holds that
E[AICSo] =R+ O(N_l).

Remark 4.1. The AICgo is derived under the order restriction (2.2). However, we can

also derive the AICgp even if we change a part of inequalities in (2.2) to “ = ”. For

example, when k = 4 we can derive the AICgq for the model (2.1) with

01 = 05 < 03 = 0. (4.3)

12



In this case, putting Ny = Ny + Na, N5 = N3+ Ny, 601 =02 = 1 and 03 = 04 = po, and
replacing

Xll,--~;X1N17X217--~,X2N2 _>Y11;~--7Y1N1*7
X31,...,X3N37X41,...,X4N4 —)Ygl,...,YgN;,

the model (2.1) under (4.3) is equal to the model

Yij ~ N(pi,02), (i=1,2, j=1,...,N})

(2

under the restriction p; < pe. Hence, by using the same argument, we can derive the
AlCso.

Remark 4.2. The AICgo is an asymptotically unbiased estimator of the risk function
R and the order of the bias is N~!. Similarly, for the ordinal ANOVA model without
any order restriction, the ordinal AIC is also an asymptotically unbiased estimator of
the risk function R, and the order of the bias is N~!. Thus, the AICso is as good as
the AIC from the viewpoint of estimation accuracy of risk functions. In addition, the
penalty term of AICgq is 2(m + 1), and from (4.2), 7 is simply defined as the function
of the MLE. Therefore, also from the viewpoint of usefulness, the AICgo is as good as
AIC.

5. AICgo for several special cases

In this section, we provide the AICgo for several special cases.

5.1. AICso when the true variance o? is known

In this subsection, we assume that the true variance o2 is known in ANOVA model
(2.1). Then, under this assumption and the SO, the MLEs él, . ,ék of 01,...,0; are
given by (2.7) because (2.6) does not depend on the variance parameter. Furthermore, in
this case, the risk function based on the K-L divergence, R; can be written by replacing

6% with 02 in (2.8) as

Ry = E[E,[-21(,02; X*)]]
Zle Ni(0;.. — 6;)?

2
Yo

Zle Ni(ei,* - X+ X, — 91)2]
2

=E | Nlog(2ro?) + N +

= Nlog(2ro?) + N+ E

= Nlog(2ro2) + N +k —2Q + E

(5.1)
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Note that under the ordinal ANOVA model without the SO, when o2 is known the risk R;
is given by Ry = E[E,[-2l(X,02; X*)]]. Here, from (2.4), the maximum log-likelihood
l (é, 02; X) can be expressed as

1(0,02; X)

Y * )

k
N 1
=-5 log(2mo?) ~ %5 Z

N; k

! > ON(X; - 0;). (5.2)

=1 j5=1 * =1

* N

Hence, the bias B; which is the difference between the expected value of —2I (0 02; X)

) * )

and Rq, can be expressed as

kK N;
B, :E[Rl—{—Ql(é,O'i;X)}] =N+k-2Q-E %ZZ
—k) =

“N+k-2Q— (N 2k — 2Q.

Recall that the random variable 7m given by (4.2) satisfies E[k — 7] = Q. Therefore, we

obtain the following corollary.

Corollary 5.1. Let 1(8,02; X) be the maximum log-likelihood given by (5.2), and let
m be the random variable given by (4.2). Then, under ANOVA model (2.1) with the SO

and known variance o2, the AICg0 is given by
AlCgo = —2[(0 o2 X) + 2m.

Y * )

Moreover, it holds that
E[AICs0] = Ry,

where R; is the risk function given by (5.1).

Remark 5.1. When the true variance o2 is known, the AICgg is an “unbiased” estimator
of the risk function R;. In addition, under the ordinal ANOVA model without the SO,

when o2 is known the ordinal AIC is an “unbiased” estimator of the risk function R;.

5.2. AICsp with known variance weights
In this subsection, we consider the following model:
Xij ~ N(O;,1:0%), (i=1,....k j=1,...,N;), (5.3)

where 61,...,0; and o2 are unknown parameters, and ¢1,...,¢, are known positive

weights. Furthermore, also in this model, we assume the SO given by (2.2) for the

parameters 61, ...,0;. Here, let
N; k N;
= 1 _ 1 1 =

14



Note that under the ordinal ANOVA model (5.3) without the SO, the MLEs of 6; and

o? are given by X, and o2, respectively. In this setting, we put X = ():(1, e ,)?'k)'.

Next, define n; = N; /u;, for any i (1 < i < k). Then, X; is distributed as N(6;,02/n;).
Therefore, putting n = (ng,...,ng)’

1(6,0%; X, 1) can be written by

and ¢ = (t1,...,t), the log-likelihood function

1(0,0% X 1)
k k N
1 N o1 1 )
_—§ZN¢IOgLZ‘—Elog(2ﬂ'O’ )—?ZZ : (XZJ—Qz)
1=1 1=1 j=1
k k N; k
1 N 2 1 1 - < 2 1 < 2
=1 =1 j=1 =1
k k N
1 N 5 1 1 «— = 1 = )
= —§;N¢10gw — 5 log(2mo”) — ?; L_ij_l(Xij = Xi)7 = o5 X Ol

Thus, by using the same argument as in Subsection 2.1, the MLEs of 6; and ¢2, §; and

A~

62, respectively, are give by

A Yo X,
0; = min max%, (i=1,...,k),
v;10<v wu<i Zj:u n;
N; k
29 1 1 < = 1 = 2
i=1 " j:l i=1

Next, we put @ = (01,...,0;)" and Ry = E[E,[—21(8,

function. Furthermore, the maximum log-likelihood (8,

®>> D>
Q> Q>>
N
PR
N— :
n
B 2
g 2
=)
o
g 3
7
-+
=
@)
=
n
e

k
2~ 1 N ~
1(0,6% X 1) = -5 ZN log i — = log(2m6?) — - (5.4)
Moreover, by using the same argument as in Subsection 2.2, the bias By = E[Ry —

{—21(8,62; X, 1)}] can be expressed as

k
B 2N 1 . - 2 .
By=2(k+1) - 3 —5F = ;nZ(XZ —0;.)(Xs —0;)| +O(NTh.
Here, define
k N
M= J{0:}, m*=H#M (5.5)
=1

Then, we obtain the following corollary.

Corollary 5.2. Let 1(6,6%; X, 1) be the log-likelihood given by (5.4), and let m* be
the random variable given by (5.5). Then, under ANOVA model (5.3) with the SO, the
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AICg0 is given by
AlCso = —21(0,6%; X, 1) + 2(m* + 1).

Furthermore, it holds that E[AICso] = Rz + O(N~!) where Ry is the risk function
defined by Ry = E[E,[—21(0,52; X*,1)]].

Remark 5.2. Under ANOVA model (5.3) with the SO, when o2 is known, the AICso
can be derived as AICgo = —21(9, 02; X, 1) + 2m*. Furthermore, for the risk function
Rs = E[E, [-2(0,02; X*,1)]], it holds that E[AICso] = Rs.

5.3. Multivariate ANOVA model with the SO

Let Vj(i) = (Vj(lZ ), - Vj(;))’ be a p-dimensional random vector on the jth individual
in the ith cluster, where ¢ = 1,...,k and 7 = 1,...,N;. Here, let £k > 2, p > 2 and
N = N1+ -+ Ng. In this setting, we assume N — k —6 > 0. Moreover, we assume that

Vl(l), ceey V]\(,i) are mutually independent. Then, we consider the following model
VY~ Ny(w + 8ia, 721, + paa’), (12 >0, 72+ pa’a > 0), (5.6)

where w = (w1, ...,w,)’, and d1,...,0, 72 and p are unknown parameters. In addition,
I, is a p X p unit matrix, and @ = (aq,...,a,)’ is a known non-zero vector. Here, without
loss of generality, we may assume that 6; = 0. Moreover, the parameters d1,...,0; are

restricted as
01 <0 <--- < 0y (5.7)

In other words, we consider the SO restriction for the parameters d1, . .., ;. For example,
under the model (5.6), when a = 1, this model is a parallel profile model considered by
Yokoyama and Fujikoshi (1993), where 1, is a p-dimensional vector of ones.

Next, we decompose the model (5.6). Let hy,...,h, be p-dimensional vectors with
hlh, =0, (u#u*), hlh, =1 and h; = (a’a)"'/2a. Define Hy = (ha,...,h,) and
H = (hy, Hs). Then, considering H’Vj(i) we get

RV ~ NWjw + (a'a) /25,72 + pa'a), (1<i<k, 1<j<N;), (58

and
HVY ~ Ny (Hyw, 72L,1), (1<i<k 1<j<N,). (5.9)

Here, we replace h’le(i) with Y;;. In addition, we put hjw + (a’a)'/25; = ¥; and
72 + pa’a = ¢2. Then, the model (5.8) is equal to

Yij ~ N(Wi,6?), (°>0, 1<i<k, 1<) <N, (5.10)
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and the parameters 91, ..., are restricted as
U <y <-o- <

Furthermore, since HJ Vl(l) ..., H} sz,i) are independent and identically distributed,
putting Hyw = (p1, ..., pp—1)" = p the model (5.9) can be expressed as

Zg ~ N(ps, %), (12>0,1<s<p-—1,1<t<N). 5.11
il

Note that Y11,...,Yen,, Z11,. .., Z(p—1)n are mutually independent. Also note that the

parameters fi1, ..., (p—1 are not restricted. Here, let
TR TLAAL
_ P B, o
Vs 2 Vi &= 5 200 (Y — V' (i=1k),
Jj=1 =1 j=1
1 =
s Zs = Zs_Zszv :17“'7 _17
NZ RS DD ICIEEARC p—1)

and let Y = (Y1,...,Y%)". Since p, and 72 are not restricted, it is easily checked that
the MLEs of us and 72 are Z, and 72, respectively.

Next, we put Y = (Y11,...,Yan,)s Z = (Z11,..., Zp—1yn) and 9 = (01,...,0%)".
Then, the log-likelihood function I(9,¢2;Y) of Y, is given by

N
1(9,6%Y) = — log(2ms?) ~%a ZZ

1= 1] 1
N Al 1 &
= — " log(2 — == ) Ni(Yi —9,)%
5 Og 7T§ QgQ;; 2g2; ( )

Similarly, the log-likelihood function I(u,72%; Z) of Z is given by

-1 N
N(p—1) 1 3
(g 75 2) =~ L= og(2m7?) = 55 373" (Ze — a)?
s=1t=1

By using the same argument as in Subsection 2.1, the MLEs of ¢; and <2, J; and ¢2 can
be expressed as
: SN

¥; = min max
A )
;1< usu<i Zg —u N

~2 1 v\ 2 1 \/ q \2
== (Yi; = Yi)"+ = > Ni(Yi —04)7,
N N;; J N;

respectively. Note that the joint log-likelihood of Y and Z, I[(9,<2, u, 7%, Y, Z) satisfies
that (9,62, 1, 7%, Y, Z) = 1(9,s%Y) +1(n, 7% Z) because Y and Z are independent.
Here, let Y* and Z* be random vectors satisfying (Y*,Z2*) ~ i.d.d. (Y,Z). Then,
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the risk function Ry can be written as Ry = E[E,[-21(9,¢2,Z,72Y*,Z%)]] =
E[E.[-21(9,2,Y")]] + E[E,[-20(Z,7%, Z*)]], where , 9 = (d1,...,9;) and
Z = (Zi1,...,Zp—1). In order to calculate the bias which is the difference between the
expected value of —2[ (1§, ¢2,Z,7%Y,Z) and Ry, it is sufficient to calculate

E[E.[-21(9,¢% Y )] + 21(9,<% V),
and
E[E.[-21(Z,7% Z*)] + 21(Z,7%; Z)].
Here, it is easily checked that
E[E.[-20(Z,7% Z*)| +21(Z,7%; Z)] =2p + O(N ).

On the other hand, define

k
M= [}, mt =#M. (5.12)
=1

Then, using the same argument as in Section 4, we have
B[E,[—21(0,¢% V)] +21(9,¢% V)] =2(m! + 1) + O(N ). (5.13)
Therefore, we obtain the following corollary.

Corollary 5.3. Under the model (5.6) with the order restriction (5.7), the AICgo is

given by A
AlCso = —20(9,¢%, Z,7%Y, Z) + 2(m' + 1+ p).

Furthermore, it holds that E[AICgo] = Ry + O(N™1).

Remark 5.3. Under the model (5.6) with the order restriction (5.7), when both 72
and p, are known (i.e., both ¢? and 72 are known), the AICso can be derived as
AlCso = —20(9,¢2,Z,72;Y,Z) + 2(m! + p — 1). Moreover, for the risk function
Rs = E[E,[—21(9,<2, Z,72;Y*, Z*)]], it holds that E[AICgo] = Rs.

? Tk

We introduced six models thus far. In other words, the model (2.1) when o2 is unknown
(Case A), and known (Case B). Moreover, the model (5.3) when o2 is unknown (Case
C), and known (Case D). Finally, the model (5.10) and (5.11) when both ¢Z and 72 are
unknown (Case E), and known (Case F). The properties of the AICgo and the ordinal

AIC for these six models are summarized in Table 5.1.

18



5.4. Comparison of the AICgo and the pseudo AIC (pAIC) under certain

candidate models

Let k be an integer with k& > 2, and let WF be the set defined as in Subsection 3.1
where 7 is an integer with 1 < i < k. Moreover, for any ¢ (i = 1,...,k) and for any
w € WF, we define a set CF(w) as follows. First, in the case of i = 1, W¥ has the unique

element w = (k)’, and we define
Ch(w) = {(z1,...,2) €R¥ |2y =29 = --- = 13} =CF.

On the other hand, in the case of 2 < i < k, for any element w = (wy,...,w;)" in WEF,

we define

CHw) ={(z1,...,21) €R* |1 <t <i—1, 2y, < Ty,

0<s<i—1, wp=0, T140w, =+ = Tu,,,}-(5.14)
Thus, from (5.14), the element @ = (1, ..., ;) in CF(w) satisfies
L1 = =Ty, < Tl = = Tapy < -+ < Tigp,_, = - = Tp.
In particular, when i = k, WF has the unique element w = (wq,...,w) = (1,..., k),
and it holds that
Ch(w) = {(z1,...,2) €R¥ | 2y <ap < --- < a3} =CF.
Here, let X be independent random variables where s = 1,...,kand t = 1,..., N,.

Then, for any ¢ with 1 < i < k and for any w € WF, we consider ANOVA model
Xy ~ Ns,0%), (s=1,....,k, t=1,...,N,),

with @ = (01, ...,0x) € C¥(w). For example, when k =5, i = 3 and w = (w1, wq, w3)' =
(1,3,5)" € Cg, above model is equal to ANOVA model with 6, < 0y = 03 < 0, = 05.
Recall that the number of elements of Wf is ,_1C;_1. Hence, it holds that

k
> H#wWh =2kt
=1

This implies that we can consider 2°~! models. In this subsection, these models are
candidate models.

Next, we consider the AICgo and the pseudo AIC (pAIC) for these candidate models.
Recall that the pAIC is defined as

pAIC = —21(6) + 2p,
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where [(-) is a maximum log-likelihood, p is the number of independent parameters in the
candidate model, and 0 is the MLE which is derived under the order restricted model. In
this setting, we define the minimum AICgp model and the minimum pAIC model. Let
My, ..., Mar—1 be candidate models, and let AICgo(M,) and pAIC(M,) be values of
the AICso and the pAIC in the candidate model M, respectively. Then, we define that
the candidate model M, is the minimum AICgo model if M, satisfies the following two

conditions:

(ml) For any candidate model M, it holds that AICgo(M,) < AICg0(My).

(m2) For any candidate model Mg« with AICgo(M,) = AICso(M,g+), it holds that
#(M,) < #(My+) where #(M,) is the number of independent parameters in the
candidate model M, (j =1,...,2%71),

Similarly, by replacing AICgo with pAIC in the conditions (m1) and (m2), we also define
the minimum pAIC model. Then, the following theorem holds.

Theorem 5.1. Let k (> 2) be an integer, and let My,..., Mar—1 be candidate models
defined as in Subsection 5.4. Then, the minimum AICgp model is equal to the minimum
pAIC model.

Proof. Let M, be the minimum AICso model, and let QA@, e é,(f) be the MLEs of
01,...,0; in the model M, respectively. First, we consider the case of not ég‘” =...=
é,ﬁq). Hence, there exists a number ¢ (2 < ¢ < k) and natural numbers wq, ..., w; with

wy < --- < w; where w; = k such that

é(q) B é(q? _ ZSiwjfl-‘rl N X

w4 )
ZSIU}J’,]_-F]. NS

(J=1,...,9), (5.15)

and ég?f << é&f}. Note that wo = 0. Here, let (2 be a —2x maximum log-likelihood
in the model M,. Furthermore, from (5.15) it holds that m = i. Therefore, AICgo(M,)

can be written as
AICso(My) = 1D 4 2(1 +4).

Moreover, from the definition of the minimum AICgo model, the model M, is ANOVA

model with
Owgr1 = = 0w, <Ouwyp1 = =0, < < Oup_ 41 =" =0y,

In this model, the number of independent parameters is ¢ + 1. Thus, pAIC(M,) is also
(D +2(1 4 4). Hence, we get AICso(M,) = pAIC(M,). On the other hand, from the
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definition of M, it holds that

pAIC(M,) = AICgo(M,) = min AlCgo(M,,)

1<u<2k—1

< min AlICso (./\/lu) (5.16)

1<u<2k=1, uzq

Furthermore, from the definitions of the AICgop and the pAIC, it is clear that
AICgo (M) < pAIC(M,,). Therefore, combining this inequality and (5.16), we obtain

pAIC(M,) < min AICgo(M,,) < min pAIC(M,,).

T 1<u<2F-1, u#g T 1<u<2F-1, u#g

Hence, for any candidate model M,,, it holds that pAIC(M,,) < pAIC(M,,). In addition,
for any candidate model M, with pAIC(M,) = pAIC(M,+), it holds that #(M,) <
#(Myx). In fact, if pAIC(M,,) = pAIC(M,+) and i* = #(M+) < #(M,) = 1, it holds

that
AICg0(M,) = pAIC(M,) = pAIC(My+) > AICgo(My»).

However, since i* = #(My») < #(M,) = 1, this implies that M, is not the minimum
AICgo model. This is a contradiction. Hence, for any candidate model M, with
pAIC(M,) = pAIC(M,x), it holds that #(M,) < #(My+). Therefore, the minimum
pAIC model is M. Similarly, by using the same argument, we can also prove the case
of 80 = ... — G0, -

Recall that the AICgo is the asymptotically “unbiased” estimator of the risk function.
Furthermore, in general, the pAIC is the asymptotically “biased” estimator of the risk
function. However, Theorem 5.1 means that the minimum AICgo model based on the
AICg0 is equal to the minimum pAIC model based on the pAIC although the AICgqo
and pAIC are asymptotically unbiased and biased estimators, respectively. In other
words, when we consider the model selection problem for these candidate models using
the AICgo or the pAIC, we may use the pAIC.

Remark 5.4. Needless to say, for these candidate models, we can also use the AICgo.
Here, we would like to note that, in general, the result of Theorem 5.1 does not hold when

2k—1

the number of candidate models is smaller than . For example, when we consider

the nested candidate models, in general, the minimum AICgo model is not equal to the

minimum pAIC model.

6. Numerical experiments

Let X;; be a random variable distributed as N(6;,0%/N;) where 1 <i <4, 1< j < N;
and N1 = --- = N4. Moreover, let N = N1 4+ Ny 4+ N3+ Ny4. In this section, we consider
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the following four candidate models:

Model 1: ANOVA model with 6 =0y = 03 = 04,
Model 2: ANOVA model with 6 <y =03 = 04,
Model 3: ANOVA model with 6; <0y <03 =0y,
Model 4 : ANOVA model with 6y <6y <035 <6y.

Thus, these four models are nested. From 100,000 monte calro simulation runs, we
compare performance of the AICgo and the pAIC. In the gth simulation, where (1 <
g < 100000), let é@ucs@’ cee éz(;,]z)ucso and JAQS;II)CSO be MLEs of the parameters 01, ...,04

and ¢? for the minimum AICso model, respectively. Similarly, let éng) AIC - - - ,éfgl)) AIC
and &2&)10 be MLEs of the parameters 6, ...,60; and ¢? for the minimum pAIC model,

respectively. Here, since the risk function of ANOVA model with the SO is given by
(2.8), the estimator

NO‘% + Z?:l Nz(ez,* — éZ)Q

5 j A2y _ A2
R(61,...,04,6°) = Nlog(2m6~) + = =

is an unbiased estimator of the risk function. Based on this, we evaluate performance of
the AICgo and the pAIC as

I j(a) 20
PEAICSO = 100000 Z R(el,AICSO7 e 704,AICSO 14 AICso)7
q=1
bR B 1 100000 " é(q) é(q) A2(q)
PAIC = 100000 ; (01 patcs -+ 04 patc: 02 patc)-

Thus, the PE1cg, and the PE,a1c are estimated values of risk functions for the minimum
AICso model (the model selected by using the AICgp) and the minimum pAIC model
(the model selected by using the pAIC), respectively.

Next, in this simulation, we consider the following true models:

Case1: 01 =0,=2, 5=0,=28, 0> =2,
Case 2: 01 =15, =18, 03 =2.1, 6, =24, 0> =2,
Case 3: 91:92:93264:2.5, 0'2:2.

In Case 1, Model 3 and 4 include the true model, and in Case 2, Model 4 includes the
true model. Moreover, in Case 3, Model 1, 2, 3 and 4 include the true model. For these
cases, we set N = 40 and N = 200. The values of the PEaice, and the PE,a1c in the
cases 1-3 are given in Table 6.1-6.3, respectively.

From Table 6.1-6.3, we can see that the AICgq is an asymptotically unbiased estimator
of the risk function. Recall that from the definitions of the AICso and the pAIC, the
value of the AICg( is equal to or smaller than that of the pAIC. We can confirm that this
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inequality holds for all cases. Moreover, for the values of the PEaicy, and the PE,a1c,
from Table 6.1 and 6.2, we can see that the PEajcg,, is smaller than the PE,A1c in Case
1 and 2. Thus, compared with the pAIC, model selections using the AICgo are better
from the viewpoint of the risk for the selected model in Case 1 and 2. On the other hand,

in case 3, the model selection using the pAIC is better.

7. Conclusion

In this paper, we derived the AICgo for ANOVA model with the simple order restric-
tion. We showed that the AICgo is the asymptotically unbiased estimator of the risk
function. Furthermore, we also showed that if the true variance is known, the AICgqo is
the unbiased estimator. We would like to note that since the penalty term of the AICgq
is simply defined as the function of the MLEs, the AICgo is very useful for analysts.
Thus, from the viewpoint of usefulness and estimation accuracy of the risk function, the
AICg0 is as good as the ordinal AIC. Furthermore, Theorem 5.1 shows that under certain
candidate models, the selected models based on minimizing the AICso and the pAIC
are the same model. In addition, from numerical experiments we could confirm that the

AICq0 is an unbiased estimator of the risk function.

Appendix

In this section, we define several notations. Next, we show seven lemmas, Lemma A-G,
and using Lemma F and Lemma G we prove Lemma 3.1.

/

First, we define the inequality of vectors. Let = (z1,...,2p) and y = (y1,...,¥p)’

be p-dimensional vectors, and let 0, be a p-dimensional vector of zeros. Then, define

x>0, ic{l,...,p}, ; >0,
r>ysx—y >0,

Furthermore, for some proposition P, we define an indicator function 1;py as

1 _ 1 if P istrue
P} ~= Y 0 if P isnot true

Appendix A: Lemma A and its proof

Lemma A. Let [ be an integer with [ > 2, and let ny,...,n; be elements of Ryg. Let
n=(ny,...,n;),and let € = (x1,...,7;)" be a vector of R!. Then, the following (i), (ii)
and (iii) hold:
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(i)

For all integers a, b and ¢ with 1 < a < b < ¢ <, it holds that

Zlap] 2 Tla,] & Tlab] = To+1,e] © Tla,e] = T[ot1,¢]s (A.1)
and

j[a,b] < :E[a’c} = :Ifj[ayb} < :E[b+1,c] & j[a,c] < i’[b+1,c]- (A.Q)
Let ¢ be an integer with 2 < i <[, and let wq,...,w; be integers with w; < wy <

- < w; and w; = [. Put wg = 0. Then, if
Tl14wo,wi] < Tl4wr,we] <00 < Tigw; 1 ,w;] (A.3)
is true, for all integers s and t with 1 < s <t <4, it holds that
Tlgws—1,ws] < Tlldws_1,we]- (A.4)
Let ¢ and j be integers with 1 < i < 7 <[. Then, it holds that

[7, b] 2 [b—l—l ]] (Vb c N Wlth 1 S b < j) = D[w]m[m] Z OJ_Z (A5)

Proof. First, we prove (i). Let a, b and ¢ be integers with 1 < a < b < ¢ <[. In this

setting, we show Z(, p) < Tja,q € T[a,p] < Tlo41,¢]- Lt Tlap] < Tla,e]s 1€ Ta,b] — Tla,q < 0-

Then, we get

Z(a,b] = Tla,e] = — = - —

b b
ZJ —a T Djma T Dy T

[a b] Na,c]

1 Ry
_an (~ ] )_ZJ_~b+1 Y]
i

Na,b) a,c] Na,c]

_ c
—Z”y% (n[Na . — Na, b]) B Zg_~b+1 i %]

a5 a,c] Ma,c]
_ zb:n (g ) g %
7\ a0 a ] Mac]

~ b c
Np+1,] (Zj:a njxj Zj:b+1 ”j$j> [b+1 q

Ta,b] Nb11,

Hence, noting that 711 ¢/7[q,q 1S positive, we have

[b+1 c] (
Ma,c]
& Tlap) = T[o+1,c] < 0& Za,b) < Tlb+1,c]-

Tlab] ~ Tla <0 Tlab] — Tpp41,) <0
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Therefore, it holds that Tjqp < T[4,c] & T[ap) < T[p41,q- Moreover, by considering its

contraposition, T(q 5] = T[a,c] € T[a,b] = T[p+1,q also holds. In addition, noting that

j[a,b] > j[b—l—l,c]
S Nq, b}’ﬁ[b+1 AZ(ab] = Ta,b] ™ b+1,e] T[b41,¢]

b+1 ] an.rj > n [a,b] Z Nn;T;

Jj=b+1

b—|—1 c] E UTES] +nb—|—lc § n;T4 Znab E Ny +nb+1 c] E USRS

j=b+1 Jj=b+1 j=b+1

b+1c]§ :”J%>”ac E: njxj
j=b+1

(&

S miTp >, Ny
j=a "“J17] j=b+1""7J _ _
& —= > —= S Tla,e] 2 Tlo+1,q)
Na,d] Mo+1,¢]

we get Tlqp] = Tlpt+1,q < Tla,q = Tpp+1,¢- Finally, by considering its contraposition, we
also get Tiq 5] < T[p11, € Tla e < T[p4+1,¢]- LThus, it holds that (A.1) and (A.2).

Next, we prove (ii). Assume that (A.3) is true. Let s and ¢ be integers with 1 <
s <t <4 Whent =2and s =1, from (A.3) it holds that Zp 1w, ;w] < T[14ws,wsl-
Moreover, from (A.2) Zptw, wi] < Zli4ws,we] YIS T(tw, 1 wi] < Zli4w,_1,ws]- LTHUS,
we get T(1tw, w.] < T[1+w,_,,w,]- Hence, if t = 2, (ii) is proved. Therefore, we consider

the case of t > 3. Since (A.3) is true, we obtain
Tl < < Tltwp_g,we—a] < T4ws_o,wi_1] < L[l4we1,we]" (A.6)
Here, using (A.2) and the last inequality of (A.6), Z[1 1w, 5w, 1] < T{14w_1,we]s WE get
T1gws—owi—1] < Tl4ws_o,we]- (A.7)

Thus, if s =t — 1, (ii) is proved.
Finally, we consider the case of s < t — 1, i.e., there exists ¢ with ¢ > 2, such that
s =t —q. Here, we put v =t — 1. Note that from (A.7) the inequality T[4y, | w,] <

T[14w,_1,w,] Dolds. In this setting, (i) is proved as follows:

1. Combining Tp4w, w,] < Tli4w, .,w,] and the inequality Tpyw, 5w, ;] <
T4w,_1,w,] N (A6), we obtain T 1w, 5w, 1] < Tli4wy 1w

2. Again, by using (A.2), we get T(11w, 5w, 1] < Z[14wy_s,w,]-

3. Here, if v — 1 = s, (ii) is proved. On the other hand, if s < v — 1, replacing v — 1
with v, and we go back to the step 1.

Therefore, using above method we obtain (ii).
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Finally, we prove (iii). Let ¢ and j be integers with 1 < ¢ < j < [, and let b be an
integer with 7 < b< j,ie,1<b<j—1. Weput s=b—i+1. Notethat 1 <s<j—1.
Recall that from (3.4), the sth row of the matrix D, ; is given

N[iits—1] [o.its=1] Nits,j] [i-s.]

Therefore, the sth element of the vector D; ;x[; ;) can be expressed as

(;"/' ' — ')w[' ]
ﬁ[i7i+5—1] [iits—1] 771/[1,_’_8,-7] [i+s.5] 5]

1 / —1 / / / /
(ﬁ[i,i+51] hits=1D Nits,j] [HS’J]) (Floits-1p Pt
N ips ) Pliits—1]  Pops ;) Tlitsa]

= - = = Zliits—1] — Llits,j] = L[i,b] = T[b+1,5]-
N[jit+s—1] Nits,j]

Hence, if Di,jm[i,j] > 0;_;, then we obtain Zib] = T[b+1,5] >0, i.e., Z[ib] > Z[b+1,5]- On
the other hand, if Z[; y) > Tp41 51, i-€-, Ti,p] — Tp+1,5] = 0 for any integer b with 7 < b < 7,
then, we get D; jx(; ;) > 0;_;. Thus, (A.5) holds. O

Appendix B: Lemma B and its proof

Lemma B. Let [ be an integer with [ > 2, and let ny,...,n; € Rygandn = (n1,...,n;)".

Let * = (z1,...,2;) € R', and let i be an integer with 2 < i < [. In addition, let

wi,...,w; € N, and let wy < we < -+ < w; where w; = [. Put wg = 0. Assume that
m(@)[1] = --- = m(x)wi],
m(x)wr +1] =+ = m(x)[ws],
n(®)[wi—1 +1] = - = mi(@)[wil,
and
(@) [wi] = Taw; w,), (1 <5 <) (B.1)

Moreover, also assume that

T < Tliqwrwe] < < T[14wiy,wi]- (B.2)
Then, the following two propositions hold:
(i)  Let s be an integer with 1 < s <. If the inequality

D1+wt_1,wtx[1+wt,1,wt} Z Owt*’wt—lfl (B'3)

26



holds for any integer ¢t with s <t <, then, the following inequality also holds:
D1+ws—27ws—1m[1+wsf27wsfl] > Ows—l—ws—2—17 (B4)

where we define 0y = 0.

(i)  For any integer ¢ with 1 <t < ¢, it holds that
D1+wt_1,wtm[1+wt,1,'wt} Z Owt*’wt—lfl' (B'5)

Proof. First, we prove (i). We would like to recall that, from (3.5) n;(x)[ws—1] is given
by

M) = B R Tl ()

Here, assume that

F* > w, 1 st. v* = argmin ( max f[u,v]). (B.7)

VUS> Ws—1 wuSws—1
Note that the assumption (B.7) is equal to

min max I —  max T 1. B.S
VV2Ws—1 WUSWs—1 [1,0] wu<ws_1 [,07] ( )

Then, from (B.6) and (B.8) we have

m(x)[ws—1] = max Ty, .
usuSws—1

Furthermore, noting that

max j[u,v*] > j[l—l—wﬁ,,g,v*}
UUSWs 1

we also get

() [ws—1] > T4, 500 (B.9)

Incidentally, since v* satisfies the inequality v* > w,_1, there exists a number ¢ such that

s<t<iand 14+ w;_; <v* <w;. Based on this, we consider the following two cases:

Kl

Case 1 : £[1+ws—2»wt—1] [14+w¢—1,0%]

Kl

<
Case 2 : i‘[1+w572»wt71] = [14+w—1,0%]"

It is clear that Case 1 is the negation of Case 2. Next, we show that both Case 1 and
Case 2 are false. In fact, if Case 1 is true, i.e., the inequality Ty, o .w, 1] < T[14w1,0%]
is true, from (A.2) we obtain T 1w, 4w, 1] < T[14w,_o,0+]- Lhus, using this inequality

and (B.9) we get
77!<x)[ws—1] > f[1+w5_2,wt_1}- (BlO)

Recall that we assume the inequality (B.2). Hence, from (A.4) it holds that
j[1-|—ws—27ws—1] < j[1-1-1113—2ﬂﬂt—1]‘ (B11>
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Therefore, combining (B.10) and (B.11), we obtain
m(x)[Wws—1] > Tp4w, 5w, 1] (B.12)

However, from the assumption (B.1), it holds that n(x)[ws—1] = Zp4w, 5w, .- This
result and (B.12) contradict. Hence, Case 1 is false. Next, we consider Case 2. Suppose

that Zpiiw, 5w, 1] = Tli4w,_,,0+] 18 true. Then, from (A.1) we have 14y, 50+ >

T[14w, ,,0+]- Combining this inequality and (B.9), we get

m(x)[ws—1] > Taw, 1 ,00)- (B.13)
Here, when v* = wy, from (B.13) it holds that

m(@)[ws—1] Z T,y w,]-

On the other hand, when 1 4+ w;_1 < v* < wy, from the assumption (B.3), it holds that

Diyw, 1w ®[14w,ywi] = Ow,—w,_,—1. Using this inequality and (A.5) we obtain
j[1—|—wt,1,v*] > j[l—l—v*,wt}-

Again, from (A.1) it holds that Zj; 4w, | v*] = T[14w,_,,w,]- Substituting this inequality
into (B.13) yields m(x)[ws—1] > Z[14w,_,,w,]- Thus, in both cases it holds that

nl(w)[wS—l] > E[l‘i’wt—lywt]' (B14)

Here, recall that from the assumption (B.1), the equality m;(x)[ws—1] = Zj14w, 5w, 1]
holds. Therefore, combining this equality and (B.14) it holds that

T 4w, —g,ws—1] > T 4w, 1w, (B'15)

Note that from the definitions of s and ¢, the inequality s —1 < ¢—1 holds. Thus, (B.15)
and (B.2) contradict. Therefore, Case 2 is false. Hence, both Case 1 and Case 2 are false.

This implies that the assumption (B.7) is not true. Thus, we obtain

argmin max Tpy.] | = Ws—1,
VU Ws—1 wuSws—1

in other words, it holds that

R L I

Therefore, from (B.16) it holds that n(x)[ws—1] > T}, ,) for any integer r with 1 +
ws—g < 1 < wy_y. Again, using m(x)[ws—1] = Tptw, sw, 1] W€ 80t Tltw, s, 1] =

T[rw, - Moreover, from (A.1) we have Tp4w, ,r—1] = T[pw, ,- Here, we replace

r — 1 with b. Then, b is the integer satisfying 1 + ws_o < b < w,_1 and it holds that
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Tl4w, 08 = Tp+1,w,_y]- Lhus, from (A.5), this implies D1 jw, 5w, 1 Bl14w, o,we 1] =
0w, ,—w,_,—1. Consequently, (B.4) is proved, This implies that (i) holds.
Next, we prove (ii). Since we have already proved the first proposition (i), in order to

prove (ii), it is sufficient to prove that
Dl+wz‘717wiw[1+wi_1,wi] > O’wi_wifl_]-'
Here, we consider n;(x)[w;]. Recall that from (3.5) n;(x)[w;] is given by
m(x)wi] = min  max Tpy.

Noting that w; = [, we get

m(x)[w;] = vr}g%h urggﬁz Tiuo] = urgeﬁtﬁz Tluw,]- (B.17)

Also note that, from (B.1) the equality n(z)[w;] = Z[14w,_, w; holds. Therefore, using

v

this equality and (B.17) we obtain Ty, ;. w, T[pw, for any integer r with 1 +
wi—1 < r < w;. Again, by using the same argument as in the proof of (i), we have

Diyw, 1w Tli+wi 1 ,wi] = Ow;—w;_,—1. Thus, combining this result and (i), (ii) is proved.

O
Appendix C: Lemma C and its proof
Lemma C. Let [ be an integer with [ > 2, and let ny,...,n; € Ryg, n = (n1,...,mn;),
£,...,§ € Rand 72 > 0. Let z1,...,2; be independent random variables, and for

any integer s with 1 < s <[, let x5 ~ N(&,72/ng). Put © = (21,...,2;)". Then, the

following four propositions hold:
(i)

l
R=J U o' Aw),

=1 w;’wEWﬁ
m(Ai(w)) Ny (A (w?) =0, ((4,w) # (17, w)).
(i)  For the set Al (w) = A}, it holds that
x e (Aj(w)) & Dy > 01 (C.1)

Moreover, for any integer ¢ with 2 <4 <[ and for any element w = (w1, ..., w;) €
W, it holds that

T c nl_l(Ai(w)) S0<t<i— 17 D1+wt7wt+1w[1+wt7wt+1] > Opt,w’

0<s<i-2, j[1+w37ws+1] < j[1+w5+laws+2]’ (C2)

where wy = 0 and, pt . = Wiy — wy — 1.
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(iii)  For any integer ¢ with 1 < i <[ and for any element w = (w1, ...,w;) € W, it
holds that
zen "(A(w)=0<t<i-1, gz)l+w)] =" =mnx)|w]
- f[l—l—wt,wt_,_l]?

where wg = 0.

(iv)  For any integer ¢ with 1 <4 <[, it holds that

Y Pren '(Aw))=P|m=e |J Alw)

w;wve w;weWi

Proof. First, we prove (i). From the definition of the function 7;(-), we get m;(R!) C A’
Hence, from (3.2) and (3.3) it is clear that (i) holds. Second, we prove (iv). Here,
note that from (i) it holds that n; ' (Al(w)) N n; ' (AL (w*)) = 0. Thus, the events
z € n; (A (w)) and = € n; ' (AL (w*)) are disjoint. Therefore, from the definition of
the probability we obtain

S Pen l(Alw)=P|ze |J n'(Alw)

wiwEW; wiweW!
Furthermore, from the inverse image, we also get
ze |J nml'Aw)en@e () Aw).
wi;weW! wi;weW!
Hence, (iv) is proved
Next, we prove (ii). First, we prove the right-arrow = in (C.1). = € n; ' (A} (w)), i.e.,
m(xz) € AL (w). Then, from the definition of A} (w), we get

m(@)[1] =m(®)2] =---=m(@)[]=a (say).

This implies that n;(x) = &1;. In addition, from the definition of the function #; it holds
that

min lz = yl7 = Iz —m@)ll;, = =z — a1 (C.3)

Moreover, noting that A} (w) C A! we have

. 2 . *12 . 2
min (| — < min xr — = min (| — Oé]_ .
wiy o~y < min =yl = i o - a2

Here, note that the norm || — a1;||2 is a convex function with respect to (w.r.t.) «
on R!. Thus, there exists a unique point i, which maximizes ||z — a1;||? w.r.t. a.

Therefore, we obtain

min |lz — y||2, < || — aminlil- (C.4)
ye Al

30



Hence, combining (C.3) and (C.4), the inequality ||z — &1;]|2 < || — aminli||% holds.
Therefore, from uniqueness of ay,i, we obtain & = api,. On the other hand, oy, can
be obtained by differentiating the function ||@ — a1;||3 w.r.t. a as omin = T because

the function ||z — a1;||2 is the convex function. Thus, it holds that
m(@)[1] = m(®)[2] = --- = m(@)[l] = zpy- (C.5)
Here, recall that n;(x)[s] is given by (3.5). Hence, n;(x)[1] can be written as

m(@)[1) = min s, (©6)

Moreover, from (C.5) we get n(x)[1] = Z[; ;). Therefore, combining this equality and
(C.6), it holds that Zp; ,j > Ty for any integer v with 1 < v < [. Thus, from (A.1) we
obtain Z[; . > Zj,11,. Hence, from (A.5) this implies that Dy x; ;) > 0;—1. Conse-
quently, the right-arrow = in (C.1) is proved.

Next, we prove the left-arrow < in (C.1). Let Dy x(1,;) > 0;—1. Then, from (A.5) it
holds that Ty ,) > Zj,41, for any integer v with 1 < v < I. Again, from (A.1) we have
T[4 > T,y Hence, combining this result and (C.6) we get mi(x)[1] = Zj1;. On the
other hand, from (3.5), n;(x)[l] can be expressed as

m(@)l) = max (., (eXy

Here, since the inequality Z[; ] > Z[41,] holds, from (A.1) we obtain Zp ;j > Zjq1,-
This result and (C.7) yield n(x)[l] = Z[;;. Thus, it holds that n;(x)[1] = nm(x)[l]. In
addition, from the definition of 1; we have n;(x)[1] < --- < m(2)[l]. Therefore, combining
this inequality and the equality n;(x)[1] = n(x)[l], we get n(x)[1] = --- = m(x)[l]. This
implies that m;(z) € Al (w), i.e., z € 7, ' (Al (w)). Hence, the left-arrow < in (C.1) is
proved. Therefore, (C.1) is proved.

Next, we prove (C.2). First, we show the right-arrow = in (C.2). Let i be an integer
with 2 <4 <[, and let w = (wy,...,w;)" be an element with w € W!. Here, we put
wo = 0. Furthermore, assume that € n; ' (Al(w)). Note that w; = [. Then, since
m(z) € Al(w) the following equalities hold:

m(x)[1] = - = m(x)w] = ?1,
m(x)[w + 1] = -+ = n(x)[w2] = d2,
m(@)wi—y +1) = =m(@)w)] =&, (say).

Moreover, the inequality 4; < --- < 0; also holds. We put 6 = (51, ce ,81)’. Then, n;(x)

can be written by using & as m(x) = (6,1/ From the definitions

w1 —wo? "t Wi —W;—1 )

31



of m; and || ||, using n;(x) = (511w1 g 0, 1, . ) we get
Ws+1
min |z -yl = |z - m(z)|l;, = Z Y nulre = 8e41)* (C.8)
yeA s=0 u=1+4+wg

Define for each § = (81,...,d;) € R? a function

Therefore, the right hand side in (C.8) can be written as f(8). Incidentally, since Al(w) C
A! the following inequality holds:

- 2

mln T — min ||z — = min C.9

i o=yl < min o~y = nin £(6). (©9)

Here, there exists a positive number ¢ such that the e-neighborhood of 4, U(S ; €) satisfies

U(d;¢) € A! because & € Al and A! is an open set. By combining this result and (C.9)

we have

mln T — < min < min 0"). C.10

in o~ gl < in f3) < minf(6") (©10)

Hence, from (C.8) and (C.10) it holds that f(8) < f(8*) for any 6* € U(d;¢). Thus, the

point & minimizes the function f(8). On the other hand, since f(8) is a convex function

w.r.t. & on RY, there exists a unique point dmin = (1,min; - - -  Os,min)’ Which minimizes

f(8). Therefore, noting that f(9) is convex, we get 8 = Omin. Furthermore, the point
Omin can be obtained by differentiating the function f(d) w.r.t. d as

m(x)[L+we] = = m(@)[Wes1] = 041 = Srt1,min = Z(1twe,wess)s (C.11)

for any integer ¢t with 0 < ¢ < ¢ — 1. Here, since oy < - < 51, for any integer s with
0 < s<7—2it holds that

f[l"t‘ws:werl] < f[1+ws+17ws+2]' (C12)

Therefore, (C.11) and (C.12) imply that the all assumptions in Lemma B are
satisfied. Thus, from (B.5), for any integer ¢ with 0 < ¢ < i — 1 it holds that
D1 w, we ®li4wwis] = Ow,yy—w,—1. Hence, by considering this result and (C.12), the
right-arrow = in (C.2) is proved.

Next, we prove the left-arrow < in (C.2). Let ¢ be an integer with 2 < i <[, and let

w = (wy,...,w;)" be an element with w € W!. We put wg = 0. Assume that

D1+wt7wt+lw[1+wt,wt+1] > 0wt+1_wt_1 (0 <t<i-— 1)7 (013)
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and
j[1+wsyws+1] < j[1+ws+1aws+2] (0 <s<i— 2)' (014)

Then, from the definitions of / || ||, and n;(x), it holds that

2
- Z Hw[l-i-wt,wwl] —m(x )[1+wt’wt+1 H”[1+wt wip1l’ (C.15)

In addition, since 1;(€)[1 4w, w,,,] € A¥H1 "¢, for any integer ¢ with 0 <t <i— 1, the
inequality holds:

||w[1+wt7wt+1] - Tll( )[1+wtawt+1 ||n[1+wt wiyq]

(C.16)

2 min Hw[l-l-wt,wt+1] - 5[1+wt7wt+1] Hn[1+wt,wt+1] .

6[1+wt,wt+1] eAwt+1 —wg

Next, we evaluate the right hand side in (C.16). Here, we replace w11 — W, T[14w,,wy 1]
and 14wy wig1] with g, Y,y =Y = (yl,...,yg)' and N[l,g] = N = (Nl,...7Ng)/,
respectively. Then, the right hand side in (C.16) can be rewritten as

min ||33[1+wt weia] — O+ |
_ Wi Wi, Wit 1] 1M1 Ly ]
6[1+wt wt+1]€Awt+1 we Wttt

= min ly = 8w w1 = lly =15 (@) - (C.17)

5[1+wt wiy1] €A9

in the case of g = 1, i.e., wey; = wy + 1, since ngN)(y) = y, it is clear that néN)(y) =

Y = T(w,,wee1] = Tt41 = T[l4ws,weyq]- ON the other hand, in the case of g > 2, from

. and the definition ot the matrix D); ; = , we get
C.13) and the definition of th ix D; ; = D{")

(n)
D1+’wt7wt+1m[1+wt,wt+1} > O'wt+1_wt_1 A D1+wt wt+1y[1,g} > 09—1

= DMy, >0, (C.18)
Moreover, we obtain
DYy > 051 = y € (™)) 7 (AD), (C.19)
because we have already proved (C.1). Furthermore, from (C.5) we get
y e M) HAD = N @)1 = = 1N ()g] = Ty = Fitwown- (C-20)
Therefore, combining (C.18), (C.19) and (C.20) we obtain

D1+wt,wt+1 w[1+wt,wt+1] Z Owt+1 —ws—1

= M @)] = =N (Y)[9] = Flatwsweea)-
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Thus, by using this result, (C.15), (C.16) and (C.17) imply that

i—1
||£B - nl(m)H?@ > Z ||m[1+wt,wt+1} - j[1+wtawt+1]1wt+l_wt ||3L[1+whwt+1]' (0'21)
t=0
Here, we put b = (Z[1,1,11%, s T[1 4w, we] Loy —01 s -+ - T[14ws —1,w3] Lo, —1w;, ) - From (C.14),
since h € A' we get
2 . 2
x—n(x = min ||z —
|z —m(x)[l;, Inin | [
< |l — R,
1—1
= Z Hm[1+wt7wt+1} - j[1+wt7wt+1]1wt+l_wt "i[1+wt’wt+1] . (022)
t=0

Hence, (C.21) and (C.22) imply that ;(x) = h. In addition, noting that h € Al(w), it
also holds that € i, ' (Al(w)). Thus, the left-arrow < in (C.2) is proved. Consequently,
(i) is proved.

Finally, in the proof of (ii), we have already proved (C.5) and (C.11). Thus, (iii) is

proved. Therefore, Lemma C is proved. O

Appendix D: Lemma D and its proof

Lemma D. Let v,...,v; be independent random variables, and let vs ~ N(&s,72/ns)
where 1 < s < 1. Let 72 > 0, &,...,§ € R, ny,...,n; € Rug, m = (ny,...,n;)" and
v = (v1,...,v). Then, for any i and j with 1 <i < j <[, it holds that

D; jvy; 51 L vy 5, (D.1)
and
J
Ui 51 L Z ns(vs — &) (Vs — Vjs j))- (D.2)

Proof. First, we prove (D.1). when i = j, since D; ; = 0 it is clear that D; jvj; ;) L v j)-

Hence, we prove the case of i < j. Noting that v}; ;; can be written as

n'. .
- [4,4]
Vli 5] = /ﬁ‘[z i Vli,j]

we get
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Thus, it is sufficient to prove Cov[D; jvy; j1,7pi ;1] = 0. Here, for any s with (1 <s <
j — i), the sth row of D ; is given by (3.4), it holds that

1 n —1 n )
=~ 1,i+85— "R i+8,] 1‘—'5""1:0'
(n[i,m—l] b g )

Therefore, we obtain

1

Cov[D; vy 51, Ui 5] = DiijTQdiag(ni_l, NG )mn[i7j]
2
.
Dzj]-j +1 — Oj Iz
Mfi,j)
where diag(ay, ..., ap,) is a pxp diagonal matrix whose (s, s)th element is as. This implies
D; jvji, 5 L Vpi 5)-

Next, we prove (D.2). when i = j, since 0}; ;) = v; we get

Z ( gs)( Vs — zg]) 0.

Hence, it is clear that (D.2) holds. Thus, we prove the case of i < j. From the definition
of v}; 41, it is easily checked that

Zns 15,1 (Vs — Uji,5) = 0.

By using this result, we have

J
Zns Us s Vs — 1»]]) = ZnS({US - £S - 6[7‘73}} + Q_J[i’j])(vs N @[ZJ})
= Zns(vs — i) — &) (vs [i.g1)
J
= Zns( — U[i,j] Znsfs Uli,j1)-
Here, putting
1,
A = diag(n; V2 31/2) {Ij—z-l-l e /z,a]} ’
[,4]
we get
J
2 mslvs = &6)(vs = Wi1) = (Avg ) (Avgi ) = (Vi - V/7565) A
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Therefore, it is sufficient to prove Awy ;) L vj; ;. by using the same argument, it is
easily checked that ((Awy; ;1) ) ;1) ~ Nj—it2(*,%). Thus, we prove Cov[Avy; ;1,7 5] =

0;_;iy1. From the definitions of Awvy; ;1 and vy; 5, we obtain

2 2

T ) _ _ T
Cov[Avy; 51, U} 5] = i ']A diag(n; ', ... e h np j) = mAlj—z‘H

1,] 2,7

T 1/2 1/2 11,

== dlag(ni yeeey s ){1'—¢+1— = npy '1'—i+1}:0'—i+1-
i ] ’ ’ Ay ’

This implies Awy; jj 1L v}; ). Therefore, (D.2) holds. O
Appendix E: Lemma E and its proof
Lemma E. Let vq,...,v; be independent random variables defined as in Lemma D, and

let

Aé:{(xl"'Wml),eRl|I1<x2<"'<xl}
:{(l'l,...7$l)/€Rl | 1§t§l_17 Il)'t<xt+1}-

Then, it holds that

E

l
1
Lwent (A X 73 D Mavs(Vs = fs)]
s=1

=E

l
1
1{1)6.»4%} X ﬁ ZnsU.S(Us - fs)]
s=1
= Bl peay] = Bl ey anyl = P € m 7 (A)).

Proof. From the definition of the indicator function, it is clear that the fourth equality

holds. Therefore, first, we show the first and third equalities. In other words, we show
ven H(A) e ve A

If v € Al it holds that

. 2
Inin lv—yll; =0,

because A} C A'. Hence, noting that m;(v) = v € Al we get v € ;7 '(A}). On the
other hand, recall that for the element w = (wy,...,w;) = (1,...,1) € W}, the set Al
is equal to the set Al(w). Thus, if v € ;' (A}) = ;! (Al(w)), from (C.2) of Lemma C

we obtain

U+0,1) < Vpn+41,2) < -0 < Up4(-1),0-

Hence, noting that v, q = vs, we get v1 <wg <--- <. This implies v € A%.
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Next we show the second equality. For any s with 1 < s <[, we put

\/n_s(vs_gs) =z, b, = 58\/77/_8
T T

These 21, ..., 2 are independently distributed as N(0,1). Moreover, using z; and bs we

have

! !
1
§Znsvs(vs — &) :Zzs(zs-i-bs). (E.1)
s=1 s=1
Furthermore, for any ¢ with 2 <t <[, putting

N

ng—1

= A¢—1,

it holds that
vGA%@ZStgl, Vi1 < 2<t<Il, ap_1(ze—1 +br_1) — by < z.
Here, let
E ={(c1,...,q) € R! |2 <t <1, ag_1(ct—1+bi—1) — by < ¢t}

Then, for the element z = (21,...,2)’, it holds that v € Al & 2z € E;. By using this
result and (E.1), we get

l
l{zeEl} X Z zs(zs + bs)

s=1

l
1
]‘{’UE.Aé} X QZnsvs(vs—fs) =k

s=1

! !
://E {Zzs(zs+bs)}H¢(Zs)d21"'dzl, (E.2)

where ¢(x) is the probability density function of standard normal distribution. We prove
(E.2) in the order of [ =2, =3 and [ > 4.

First, when [ = 2, (E.2) can be written as

E

/ / {z1(21 + b1) + 22(22 + b2) }d(21)P(22)dz1d2o
—o0 Jay(z14+b1)—bs

:/_ 21(2’1 +b1)¢(21) {/ Cer bbb ¢(22)d22}d21

+ /_ O; 6(21) { / ) (22 + bz)¢(z2)dz2} dz. (E.3)

zZ2
1(z14+b1)—b2

Using the integration by parts formula, the first part of the right hand side in (E.3) can
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be expressed as

/_oo z1(2’1 + b1)¢(21) {/O: s ¢(22)d2’2} dz;

—¢(21)(21 + b1) {/O: - ¢(22)d22}]

+ / / ¢(21)¢(22)d21d22
— o0 a1(21+b1)—b2

+/m¢%xa+mn—mwm@ﬁwﬂ—mﬂwl

= / / P (21)P(22)dz1dzs
—oo Jay(z1+b1)—b2

_/_ ai(z1 + b1){o(a1(z1 + b1) — b2) }p(z1)dz1.

On the other hand, noting that

/ 22(22 + b2)p(22)dzo = [—¢(22)(22 + bQ)]Z?(zlerl)sz
a1(z1+b1)—b2

+Lm B(2)dz

1(z1+b1)—b2
= al(zl + b1)¢(a1(21 + bl) — b2)

—|'/ ¢(22)d22,

1(z14+b1)—b2

the second part of the right hand side in (E.3) can be written as

/ P(z1) / 29(22 + b2)P(22)dze p dzy
—00 a1(z1+b1)—b2

= /_OO a1(z1 + b1){P(ar(z1 + b1) — b2) }(z1)dz1

+/ / P(21)P(22)dz1dz;.
—oo Ja1(z14b1)—b2

Therefore, the right hand side in (E.3) is equal to

2/ / 6(21)6(22)d1dzr = 2B[1 (zepy] = 2B[1 (pens)
— 0o a1(21+b1)—b2

Therefore, when [ = 2, Lemma E is proved.
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Next, we consider the case of [ = 3. In this case, (E.2) can be written as

00 00 00 3 3
/ / / Z zs(zs + bs) H (zs)dz1dzadzs
—o0 Jai(z1+b1)—bz Jaz(z2+b2)—bs

s=1 s=1

= /Oo 21(21 —+ bl)(b(zl) {/OO ¢(22) (/OO ¢<23)d23> dZQ} le
—o00 a1(z1+b1)—b2 a2(z2+b2)—b3
/ qb 251) {/al(Zlerl) b, (2’2 -|- bQ)Qb(ZQ) (/aQ(Z2+b2) b, gb(Zg)ng) dZQ} dzl

/ / (21)p(22) (/ z3(z3 + bg)(b(zg)dz;),) dz1dzy. (E.4)
a1(z1+b1)—b2 az(z2+b2)—b3

Again, using the integration by parts formula, the first part of the right hand side in

(E.4) can be expressed as

_¢(21)(Z1 i bl) {/al(zl+b1)_b2 Gb(ZQ) </az(z2+b2)—b3 ¢<z3)dZ3) sz}]

oo

v / 6(:1)0(22)6zs)drddz

—oo Jay(z1+b1)—bz Jaz(z2+b2)—bs3

+/ d(21)(z1 + b1){—a1¢(ai1(z1 + b1) — b2)} ¢(2z3)dzzdzy
—0o0 alag(zl—i—bl)—bg

= / / / ¢(z1)¢(z2)¢(23)d21dz2d23
—oo Jai(z1+b1)—bs Jaz(z2+b2)—b3
—/ / ai(z1 + b1)d(z1)d{ar(z1 + b1) — b2} P(23)dz1dzs.
araz(z1+b1)—bs

Moreover, noting that

{/ ZQ(ZQ + bg)gb(Zg) (/ ¢(23)d23> dZQ}
a1(z1+b1)—b2 a2(z2+b2)—bs

—¢(22)(22 + b2) </ ¢(z3)d23)]
az(za+b2)—bs3 a1(z14+b1)—bs

+Am Lw b(22)(23)dzadlz;

1(z14+b1)—b2 2(z2+b2)—b3

—/ CLQ(ZQ -+ b2)¢(Z2)¢{a2 (22 -+ bz) — bg}dZQ
ay(z1+b1)—b2
= ai(z1 + b1)¢{ai(z1 + b1) — ba} ¢(z3)dz3

aras(z1+b1)—bs

_|_/aoo /aoo d(22)P(23)dzadzs

1(z14b1)=b2 Jaz(z2+b2)—b3

_/ az(z2 4 b2)p(z2)p{az(z2 + ba) — bz}dza,
a1(z1+b1)—b2
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the second term of the right hand side in (E.4) can be written as

/ / aq (2’1 + b1)¢(2’1)¢{a1 (21 + bl) — b2}¢(z3)dz1dzg
—oo Jajaz(z1+b1)—bs

] / O(21)0(2)0(2)dz1 dznd

—oo Jai(z1+b1)—b2 Jaz(z2+b2)—bs

— / / d)(Zl)az(Zz + b2)¢(2’2)¢5{a2(22 + bg) — bg}dzleQ.
— o0 al (2‘1—|—b1)—b2

Similarly, noting that

(/ z3(z3 + bg)¢(23)dZ3)
az(z2+b2)—b3

= =00z + 0 vy + [ b(z3)dzs

a2 (z2+b2)—bs

:nm@+mmwx@+mwwﬂ+/’ b(z5)dzs,
a2(z2+b2)—bs

the third term of the right hand side in (E.4) can be expressed as

/ / ( : ¢<21)a2 (ZQ —+ b2)¢(22)¢{a2(22 + bg) — b3}d21d22
—oo Jay1(z1+b1)—bs

+/ / / P(21)9(22) P (23)dz1dzodz3.
—oo Jai(z1+b1)—b2 Jaz(z2+b2)—bs

Therefore, using these results the right hand side in (E.4) is given by

; /—oo /a1 (z1+b1)—b2 /a ¢<Z1)¢<22)¢(2'3)d21d2’2dz3 - 3E[1{Z€E3}]

2(z2+b2)—bs
= 3E[l{yeazy)-

Thus, when [ = 3, Lemma E is proved.
Finally, we prove the case of [ > 4. In this case also we use the same argument as in

the proof of | =2 and [ = 3. For any s with 1 < s <[ —1, let

Fy(x) = / Foy1(zs41)0(2s41)d2s 11,
a/s(w+b5)_bs+l
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and let Fj(z) = 1. Then, it holds that

a1(z1+b1)—b2

B / /OO {/OO F3(z3)¢(z3)d23} d(21)P(22)dz1dzo
—oo Jai(z1+b1)=b2 az(z2+b2)—bs

:/ / / / Fy(2)6(2:)dz
—oo Jay(z1+b1)—b2 ai—2(Zi—2+bij_2)—bi—1 ai—1(zi—1+bi—1)—b;

i—1

[T ¢(z)dz - dis. (E.5)

j=1

/OO F2<Z2)¢(Z2)d252} ¢(21)d21

Furthermore, for any ¢ with 1 <7 <[ — 1, it holds that

%Fi(zi) = —a;Fiy1{ai(zi +b;) — biy1}dlai(zi + bi) — biv1}. (E.6)

Using these results, (E.2) can be expressed as

l
//E {Zzs(zs—f—bs)}Hgb(zs)dzl---dzl =G+ Go + Gs, (E?)

s=1

G = /OO z1(21 + b1) Fi(21)9(21)dz1,

— o0

lil o0 [ee) o0
G=Y / / /
=2 —oo Jai(z1+b1)—b2 ai—2(zi—o+bi_2)—bi_1
1—1

{/ Zi(Zi + bZ)Fz(ZZ)¢(ZZ)dZZ} H d)(Zj)le e di—l N
ai—1(Zi—1+bi—1)—0b;

7j=1
(@) [o@) o0
oL L]
—oo Jai(z14+b1)—b2 aj—2(z1—2+bi_2)—b_1
-1

{/oo z1(z + bl)¢(zz)dzl} H d(z)dz1 - dp_.

1—1(zi—14+bi—1)—=b j=1
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Next, we evaluate G2. From (E.6), the brace { } of G2 can be expanded as

ai—1(zi—1+bi—1)—bi

= [0(a)(en + BB e ran o+ | S Pz
ai—1(zi—1+bi_1)—b;
—/ ¢(zz)(zz + bi)ain-H{ai(zi + bz) — bi+1}¢{ai(2i + bz) — bH_l}dZi
ai_1(zi—1+bs_1)—b;

=ai—1(zi—1 +bi—1)p{ai—1(zi—1 + bi—1) — b} Fi{ai—1(zi—1 + bi—1) — bi}

i—1(zi—1+bi—1)—b;

_/ ( b )b, (Zz+b ) z—|—l{az(zz+b ) _bl+1}¢{az(zz+bz) _bz+1}¢(2’z)dzz
a;—1(2i—1+b;—1)—

Hence, using this expansion and (E.5), the bracket [ | of G2 can be expressed as

/ / z / z
— 00 (l]( +b])—b2 ai_z( i—2+bi_g)—bi_]

{/ zi(z; + bi)Fi(Zi)¢(Zi)dZi} H d(z)dzy -+ - di—q
ai—1(zi—1+bi—1)—b; j=1
a /—OO /a1(z1+bl)—b2 /Ili—z(Zi—2+bi—2)—bi—1

ai 1(Zi 1+ bic1)d{ai—1(zic1 +bim1) —bi}Fi{ai—1(zic1 + bi—1) — b}

H gb Z] le dZi_l

+/ /Eﬂdmsdzl

lsl

—o0 Jay(z1+b1)—b2 ai—1(zi—1+bi—1)—b;

a;(z + bi)p{ai(zi + b;) — big1 }Fir1{ai(zi +b;) —bit1}

[T ¢(zi)dz - da. (E.8)
=1
Here, when ¢ = 2, from (E.5) we define

a1(z1+b1)—b2 ai—2(Zi—2+bi_2)—bi—1 —o0
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Therefore, from (E.8) we obtain

Ga = / " a4 b)o{an(e 4 br) — b} Fafar (21 + br) = bo(ea)dzn

l—2/ /EH¢stZ1

ls=1
/—OO /a1(21+b1)—b2 /Clz—z(zl—z+bl—2)—b1—1
-1
aj—1(z1—1 + bi—1)p{lar—1(z1—1 + bi—1) — by} H d(zj)dzy - -dz—1.  (E.9)
j=1

Next, we evaluate Gy and G3. From (E.5) and (E.6) we get
Gy = [—¢(21)(21 + b1) Fi(21)] / &(21)F1(21)dz

— /OO (21 -+ b1)¢{a1(21 + bl) — b2}F2{CZ1(Z1 + bl) — bz}¢(2’1)d2’1

/ /EH¢stZ’1

ls=1

—/_ ay (Zl + bl)gb{al (21 + bl) - bg}Fg{al(zl + bl) — bg}gb(zl)dzl (ElO)

Similarly, noting that

{/OO 2 (2 + bl)¢(zl)d2z} =[=0(z)(z1 + b)]ay i1 tbi )b

1—1(z1—14+bi—1)—b;

+ /OO qb(zl)dzl

1—1(zi—1+bi—1)—b;
=a—1(z1—1 + bi—1)P{ar—1(z1-1 + bi—1) — b }

+/ qb(zl)dzl,

1—1(zi—1+bi—1) =Y

G5 can be written as

(o) o o0
a [T
—oo Jai(z1+b1)—b2 aj—2(z1—2+bi_2)—b;_1
-1

ar—1(zi—1 + b—1)p{ar—1(z1—1 + bi—1) — b} H d(zj)dz1 - - dz—
i=1

/ [EHWS Ydzy - - (E.11)

ls=1
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Hence, substituting (E.9), (E.10) and (E.11) into (E.7) yields

//El{z (24 + by) }H¢zs )dz1 -

s=1
= l/ / H gb ZS le dzl = lE[l{zeEl}] = ZE[l{veAi}]'
Erg—1
Thus, when [ > 4, Lemma E is proved. O

Appendix F: Lemma F and its proof

Lemma F. Let n;, ny and 72 be positive numbers, and let &; and &, be real numbers.
Let 1 and x5 be independent random variables, and let x5 ~ N(&;, 72 /ng), (s = 1,2).

Put n = (n1,n2) and = (1, 22)". Then, the following two propositions hold:

(P1) Suppose that i and j are integers with 1 <i < j < 2. Then, it holds that

1 g _(n)
B LD, 20,1 72 2 Ma(ms = &) (@ - %,ﬂ)]
= (j — i)P(D\™ @} ;) > 0;,_). (F.1)

or the element w = € , 1t holds that
(P2) For the el (2) le it holds th

2
iz Z né”)(:v)[s])] =P (n{V (@) € Aw)).  (F2)

Proof. First, we prove (P1). Let i and j be integers with 1 < i < j < 2. Here, when
1 = j it holds that

E ' —(n)
7_2 ns s s Ts [ J]) 0,
(n)

because Ty = Tie Thus, it is clear that (F.1) holds. Hence, it is sufficient to consider

the case of i < 7, (i.e., =1 and j = 2). In this case, the following equality holds:

1 S
Bl pma, 2200 72 Zlns(% = &) (@s — 7y 2})] =X-Y, (F.3)

where X and Y are given by

2
1
X=E 1{D§,n2)w[1,2]201}ﬁ z :1 ns(xs o 55):175] ?
s=

2
_ 1 (n)
Y=E|Lpm, 0y Zln —&)Ty ] .
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Here, we would like to note that

2 _(n)
1 n L1,2
ﬁ Zl ( gs) E1 g = 5_2 ] {nlxl + nox2 — (n1£1 + ﬂgfz)}

—(n)
T2 1wy + naxe — (n1&1 + n2b>)

T2 ny + nNo (m1+m2)
T () M o
2l [ _(n 1&1 282
= = (:1:[12]— L+ )(n1+n2).

Thus, from Lemma D, noting that D§ 2):1:[1 9] L mf ™)

1,2 We get

2
1 (n)
Y =E 1{D§T12)m[1,21201}§zlns fs) 12]]

_(n)
x
= L2 (o Mt nabs
=k l{Dﬁlz) ®[1,21>01} 72 < [1 2] 1 + g (nl + n2)
Ty ni&r + noé
= 12 () _ TE1 T Mas2
=B {D1 ,2 P, 2]>01}} T2 (x[l,Z} n1 + g ) (n1 -+ n2)

In addition, since

2
—(n)} - N(”l& + n2&o T ) ,

)
2 N1 + N9 ni + no

it is clear that the second expectation of the last row is one. Hence, we have

Y =E [ P(D{W a5 > 01). (F.4)

{D(n)a:[l 2]>01}i|

Next, we consider X. Recall that, from (C.1), the fact « € nz_l(.A%(w)) =N D%)w[l,a] >
0, holds. Moreover, from (i) of Lemma C, it holds that R? = 1, ' (A?(w))Uny ' (A%(w*))
and 1, M A (w)) N u L(A2(w*)) = 0. These imply that

Lipmay o201y = Naens ' (w)) =1~ Laens 43wy =1~ Lzens a2y

Therefore, we obtain

1 2
=P ILNC
s=1

Here, it is easily checked that the first expectation of (F.5) is two because

—E

1
Naen; a1 2 D ns(zs—&Jws| . (F.5)
s=1

s ~ N(&,7?/ng). On the other hand, from Lemma E the second expectation

can be written as QE[l{mengl(Ag)}]' Thus, using these results we get

| = 2E[1

fwen; (A3)} (D 20,))

= 2P(D\"ap 5 > 01). (F.6)
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Therefore, substituting (F.4) and (F.6) into (F.3) yields (F.1). Hence, (P1) is proved.
Next, we prove (P2). Recall that from (i) of Lemma C we obtain R? = 5, *(A?) U
1,y 1 (A3) and 1y '(A2) Nny 1(A3) = 0. In addition, from (i) of Lemma C it holds that
z €ny (A7) = m(@)[1] = n2(2)[2] = 211,
and
x €y (A3) = m(z)[1] = 21, na(2)[2] = 22.

Hence, using these results and = € n; ' (A?) < Dgf;)a;[m] > 04, from (P1) of Lemma F

we get

Bl 5> nae— &) - né’”(w)[s])]

2
1 :
=B | Ligent(any 73 D (@ = &) (@s = ‘””[1’2])]
s=1

2
1 _
=E 1{D§f;>w[1,2]201}§ 2—:1 ns(xs — &) (26 — x[l,z})]
= P(D{Y a4 > 0,) = P(z € ;' (A2)).

Finally, from (iv) of Lemma C, we have P(x € n, *(A?)) = P(nén)(zc) € A?). Therefore,
(F.2) holds because A? = A?(w) for the element w = (2)’ € W?. Consequently, Lemma
F is proved. O

Appendix G: Lemma G and proofs of both Lemma G and Lemma 3.1

Lemma G. Let [ be an integer with [ > 2. Assume that the following proposition (P)

1s true:

(P) Let Ny,...,N; and ¢? be positive numbers, and let (i,...,{; be real numbers.
Let y1,. ..,y be independent random variables, and let y, ~ N((s,2/Ns), (s =
1,...,0). Put N =(Ny,....,N)), ¢=((1,...,¢) and y = (y1,--.,y)- Then, for
all integers 7 and j with 1 <17 < j </, it holds that

RS _(N)
E (Lo, 50,22 90 N = ) = 1Y)
. . N
= (j —i)P(D Ny 5 > 0;). (G.1)

2,7

Then, the following proposition (P*) is also true:
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(P*) Let ny,...,n;41 and 72 be positive numbers, and let &1, ..., &1 be real numbers.
Let x1,...,7;11 be independent random variables, and let 2, ~ N(&, 72 /ns), (s =
SU+1). Putn=(ny,....,n41), €= (&1,...,&41) and @ = (21,...,241)".

Then, for all integers ¢ and j with 1 <4 < j <[+ 1, it holds that

1 _ (n)
E 1{D§Z)m[i,j]20j—i}ﬁZns(xs_53)( [7]])]
= (j — )PDMay ;) > 0,-0), (G.2)
and
I+1
B Zns — &)@, — (@ >[s]>]

= Z(z +1-iP |ppa(@)e | A (w)|. (G.3)
i=1 wiweW!

Proof. First, we prove (G.2). Let i and j be integers with 1 < i < j <[+ 1. Here,
when 0 < j —7 <[ — 1, without loss of generality we may replace n,...,n;, &,...,&;,
Ti,...,x; and 72 with Ni,...,Ng, Ciy...,Cgs Y1,-- -, Yy and ¢2, respectively. Note that
g=j—i+land1<g <[l Weput N = (Ny,...,N,) and y = (y1,...,y,)". Since
Ti11t = yr ~ N((,62/Ny) (1 <t < g), from the definitions of the matrix Dgz) and
a:f )], using (G.1) we get

_ =(n)
B {D(n)m[z 71205- Z}TQ ZTLS [Z:]})]
1 (N
=E {D(N) Y[1,61>05-1} 2 ZNt(yt — Ge)(ye — y[(l,g)})]
t=1
N . . n
= (g DP(DMN )y = 0,1) = (j — )P(DW 2y 5 > 0,-4). (G.4)

Hence, when 0 < j —i <1 —1, (G.2) is proved. Therefore, it is sufficient to prove the
case of j —2=1,1.e.,i=1and 7 =1+ 1. In this case, the following equality holds:

I+1

1 _ )
E 1{D§T+1w[171+1]201}ﬁ Zlns( s gS)( Ls [1 l+1])] = X - Y7 (G5>

where

1+1
X=E|l 23 (s - £)
= n — Nel\Ls — XT
(D o200y 77 2 (s = &)
s=1

I+1
1 (n)
Y=E I{Diﬁllwu,zmzm}ﬁ Zlns — &) [Li+1] |
s=
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Here, noting that

I+1
PG N1141] (n) F(m) ~(n)
Z ns(z Ty = 7 2 (x[l,l+1] - 5[1,l+1])x[1,l+1]7
and xgbl)ﬂ] N(é[(fl)ﬂ],TZ/ﬁ[l,lH]), from (D.1), Y can be expressed as

I+1
_ 1 ()
y=E 1{D§:Z-1m[l,l+l]zol}ﬁ Zl ns(2s = &)T [ l+1]]

o NL,1+1] ,_(n) Z(n)  \~(n)
_E_l{Dgf;le[l,m]zol}] { -2 (1z+1] §[1l+1) 1l—|—1]]

~B1

_ (n)
I {nglelm[l,wllzol}] X 1=P(Dy 241 2 00)- (G-6)

On the other hand, from (i) of Lemma C and (C.1) we obtain

+1
l{DiTﬁ-lm[l,H»l]ZOl} =1- Z Z l{wenﬁrll(““gfl(w))}' (G.7)

u=2 w;wEWfﬁ_l

Therefore, X can be expressed as

I+1
Zns Ts 5 5]
L I+1
-3 Y Bl s 22”8 - ]

uzQw;wEWffl

I+1 I+1
=(l+1)-> > E[ fweni (AL (w))) 7 QZns x] (G.8)

U=2 qp: swewltt

where the first term of the last row in (G.8) can be derived by using x5 ~ N(&s, 72 /ns).
Next, for any integer u with 2 < u <[+ 1 and for any element w = (wy,...,w,)" with

w € WL we calculate

E

+1
Heen (A ) 7 QZns s —&s) ] (G.9)

From (ii) of Lemma C, it holds that

—1 1+1
AS 771-1-1(-’41;'_ (’UJ)) < 0<t<u-— 17 D1+wt>wt+1$[1+wt7wt+l] > Owt+1_wt—17

O0<s<u-—2, :z[1+ws>ws+1] < 3_7[1+ws+1,ws+2}7 (G10>
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where wg = 0 and w, = [+ 1. Here, noting that
I+1
72 Z ns (s —

u—1 Wg+1

:Tzzzns = &s)as

q=0 s=1+4wy

u—1 Wg+1

- 22 Z Ns(Ts — EU(Ts = Tligwy wesa]) T Tlitwy,wesn] )

q=0 s=1+4wy
u—1 Wg+1
-2 E : 2 : ns(zs — &s) (s _1’[1+wq,wq+1])
q=0 s=1+4wy
u—1 Wq+1
2 Z Z TLS 1+wq’wq+1]
q=0 s=1+wy
—1 wWg41

= 2 Z Z ns s s ( Tg 1—‘,—’wq wq+1])

q=0 s=1+4wy

1

q=0
(G.9) can be rewritten as

+1

2 1{w€nf+1(Al+1(w))} ZZns

where

u—1 Wg+1

G:Elm@mwﬂmnﬂz:EZ”ss &s)(@s —
q=0 s=1+4wy

i u—1

1

_2 § :n [14wg,wq1] $[1+wqawq+1](x[1+quwq+1] g[1+”~Uqﬂwq+1])7

—G+H, (G.11)

1+wq wq+1]) ’

=5 1{“36"71111 (Aijrl(’w))}ﬁ Z ﬁ[1+quwq+1]j[1+wq’wq+l](f[1+wq7wq+1] - g[1-i-111q,wq+1])

L q=0

It is clear that

_ / — /
(x[1+wo,w1]7 D1+wo,w1m[1+wo7w1]) L JI—(ZC[H—wu_l,wu}?1)1—|—wu4,wuw[1+wu_1,wu]) )

and from (D.1) it holds that Z[j 4w, ,w,. ] L D1tw,,
and (G.10) we obtain

H=E [1{0§t§u—1, Ditwywygq ®twy,wyyq]20

<E |

1{5[1+w0,w1] < <Bl14wy, g ,wal )

1 u—1

q=0
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(G.12)

wes1 L[1fwg,wesq]- LOus, using these

_2 Z [1+wq,wq+1]f[1+wq,wq+1](f[l-{-wq,qu] - £[1+wq7wq+1])] ’ (G~13>



Here, note that Tj11wg,w,] <+ < T[14w,_;,w,] 18 equivalent to

(:Z[1+w0,w1]7 SRR fi[1+wu—1,wu]), € AZ
Furthermore, Z(14wq,wi]y- -+ T[1+w,_1,w,] &€ independent random variable, and it holds
that (1w, w,.] ~ N(E[qu,qu],TQ/ﬁ[qu’qu]) for any g with 0 < g < u — 1. Hence,

from Lemma E we get
E |:1{j[1+w0,w1]<"'<j[1+wu71,wu]}
1 u—1 3 ) ) B
) § :n[1+wq’wq+1]x[1+quwq+1}(x[1+quwq+1} - 5[1+wqﬂlh;(+1])
q=0

— uE [ (G.14)

1{f[1+woyw1]<“'<f[1+wu71,qu}] :

From (G.10), substituting (G.14) into (G.13) yields

H = E |:]-{O§t§u—1, D1+wt,wt+1m[1+wt,wt+1]Zowt+1—wt—1}:|

XUE|:

1{95[1+w0,w1] < <T4wy, g wal )

= ubl [1{0§t§u71, D1+wt’wt+1w[1+wtswt+1]20wt+1_wt_1} X l{j[lJrWOawﬂ<"'<‘f[1+wu71awu]}

= UE[l{mEm__‘_ll(Aij'l(w))}]' (G15)

On the other hand, using (G.10), (G.12) and both (D.1) and (D.2) of Lemma D, we

obtain

1{5"[1+w0,w11 < <B1twy, g ,wal b

G:E[

xE |:]-{0§t§u—1, D1ty w1 @1 4w wg g 1] 20wy g —wy—1}

u—1 Wqg+1

1
T2 Z Z ns(rs — &s) (s — f[1+wq,wq+1]) . (G.16)

q=0 s=1+4wy

Note that D14 wg,wi l14we,wi] L L D1tw, 1w, T[14wey_1,w,]- Moreover, for any g and

q* with q # ¢, the random vector (or variable) D1 w,._ | 1wy« Z[1 4wy 1 w,+] a0d

Wg+1

Z ns(ms - gs)(xs - j[1—}—11)12,10(;%1])

s=1+wq
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are also independent. Therefore, (G.16) can be written as

G=E |:1{j[1+H)077ﬂ1]<”’<3_3[1+wu717um]}
u—1
xE Z {l{oftsufla D1+wt,wt+1w[1+wt,wt+1]Zowt+1—wt—1}
q=0
1 Wq+1
72 Z ns(rs — &) (s — j[1+wq»wq+1])
s=1+wqy
- E |:1{i.[1+w0,w1]<"'<i'[1+wu_1,wu]}
u—1
xE § : {1{0§tﬁu—1, t#q, D1+wt,wt+1w[1+wt,wt+1]Zowt+17wt71}}
q=0

{1{D1+wq»wq+1 T(1twg,wgy1]20wg s —wg-1}

1 Wq+1
ﬁ E ns(xs - Es)(xs - £[1+wq,wq+1})
s=1+4wq
=B |:1{£[1+w0»w1]<"'<£[1+wu—1ku]}
u—1
X : :E |:1{0St§u_17 t#q: D1+wt,wt+1w[1+wt,wt+1]Zowt+17wt71}
q=0
E [1{D1+wq,wq+1m[l+wq,wq+1]Zowq+17wq71}
1 Wqg+1
ﬁ § ns(xs - Es)(xs - £[1+wq,wq+1}) : (G17)
s=1+wq

In addition, since 0 < wy41 —wy —1 <1 —1, from (G.4) we have

E |:1{D1+wq,wq+1 Tl fwg,wy 1] 2O0wg g —wg—1}

Wq+1

1 _
2 Z ns(ws — &s) (s — x[1+wq’wq+1])
s=1+wqy
= (wQ+1 B wq - 1)E |:1{D1+wq,wq+1 w[1+wq,u;q+1]20wq+l7wq71} : (G‘IS)

Thus, substituting (G.18) into (G.17) yields

G=E[l,

u—1

1+w07w1]<'”<£[1+wu_1,wu]}:|
X (Wgp1 —wg — 1)E |:1{O§t§u—1, D1+wt,wt+1w[1+wt7wt+1]zoth_wt_l}]
= E |:1{i[1+w0,w1]<"'<i[1+wu_1,wu]7 OStS’LL—l, D1+wt,wt+1w[1+wt,wt+1]zowt+1—wt—1}:|

X (wy — wo — )
= (l +1 - U)E[l{mEn_l (.Aij'l(w))}]' (Glg)
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Hence, substituting (G.15) and (G.19) into (G.11), we obtain

I+1
1
B {w€"z+1(Al+1(w))} 2 Zns fs)l’s = (Z + 1) [ {w€771+1(-»4l+1(w)}]' (G'ZO)

Consequently, substituting (G.20) into (G.8) yields

+1
X=0+1)q1-> > Bl fzenz, (i )

u=2 w: wewl+1

[+1
=(+DE[1=) Lizent (AL (w)))

u=2 'UJ;'LUEWL+1
_ (n)
= (4 DL o o) = 0+ DPDYY i 2 00, (G21)

where the third equality in (G.21) is derived by using (G.7). Finally, substituting (G.6)
and (G.21) into (G.5), we obtain (G.2).

Next, we prove (G.3). From (i), (ii) and (iii) of Lemma C, we get

+1

= Zns — &) (s — 0 (@ >[s1>]

l+1 I+1
1 (n)
B> > {hmem;www»};gZnsm—£s>< — (e >[s1>}
_“le;wGquj_l s=1

+1
=B {meH(Al“)} 22”8 s (@ )[S])]

41 I+1
+E Z Z { {meﬂl+1(Al+1(w))} 22”8 gs)( nl(—ﬂ( )[5])}

u=2 w;wGWL+1

1 I+1
=B I{Dg 1)4-1"3[1 1+11200} 72 Z ns(zs — &) (s (1 H‘l})
s=1
I+1 u—1 Wgt1
tE Z Z {menl+1(Al+1(w) 7—2 Z Z ns .’17 B x[1+quwq+1]>
U=2 e Wit? q=0 s=1+wy,
1 I+1 +1
=E|Lpm o iuson 3 0 (@ = &)@ —Zpas) |+ D0 G (G.22)
| s=1 U=2 pweWw
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Therefore, from (G.2) and (G.19), (G.22) can be expressed as

+1

= Zns — &) (s — i ()[5])

+1
= ZP(D$1L133[1,Z+1] > Ol) + Z Z (l +1-— U)E[l{me?’lﬁrll(Aifl('w))}]

uzQw;wGWTlﬁl

!
=Pz en (AT +) (+1-u) Y Pl@en (A (w).
u=2 wweWht!
Here, note that A" = A" (w) for the element w € W™, Thus, from (iv) of Lemma,

C, we have

l
P(x € n i (A7) + ) (I+1-u) Y Pz engy (A (w)

u=2 w;wewfj’l

!
= P(my(@) € AT+ (1+1-w)P | m(@) e | A (w)

u=2 'w;wGWffl

l
=3 1-0p (ma@e U Arw

w;’wEWf+1
This implies that (G.3) holds. Hence, Lemma G is proved. O

Consequently, combining Lemma F and Lemma G we obtain Lemma 3.1.

Acknowledgements

The author would like to thank Professor Hirofumi Wakaki and Associate Professor

Hirokazu Yanagihara of Hiroshima University for their helpful comments and suggestions.

References

Anraku, K. (1999). An information criterion for parameters under a simple order restric-
tion. Biometrika, 86, 141-152.

Brunk, H. D. (1965). Conditional expectation given a o-lattice and application. Ann.
Math. Statist., 36, 1339-1350.

Hwang, J. T. and Peddada, S. D. (1994). Confidence interval estimation subject to order
restrictions. Ann. Statist., 22, 67-93.

Kelly R. (1989). Stochastic reduction of loss in estimating normal means by isotonic
regression. Ann. Statist., 17, 937-940.

53



Lee, C. C. (1981). The quadratic loss of isotonic regression under normality. Ann. Statist.,
9, 686-688.

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical
Inference. Wiley.

Rudin, W. (1986). Real and Complex Analysis. McGraw-Hill.

Yokoyama, T. (1995). LR test for random-effects covariance structure in a parallel profile
model. Ann. Inst. Statist. Math., 47, 309-320.

Yokoyama, T. and Fujikoshi, Y. (1993). A parallel profile model with random-effects

covariance structure. J. Japan Statist. Soc., 23, 83—89.

o4



Table 5.1.  Some properties of the AICgo and the ordinal AIC in Case A-F
AlCso Ordinal AIC
Restriction SO Non
Risk E[E,[-21(6, 6% X*)|| E[E,[-2(X,5% X*)]]
Case A || Penalty term 2(m+1) 2(k+1)
Bias to the risk Asymptotically unbiased Asymptotically unbiased
Order of the bias O(N7Y O(N7Y
Restriction SO Non
Risk E[E,[-20(0,02%; X7)]] E[E,[-21(X,02; X))
Case B Penalty term 2m 2k
Bias to the risk Unbiased Unbiased
Order of the bias 0 0
Restriction SO Non
Risk E[E, [-21(0, 6% X*,0)] E[E,[-2(X,5% X*,0)]]
Case C Penalty term 2(m*+1) 2(k+1)
Bias to the risk Asymptotically unbiased Asymptotically unbiased
Order of the bias O(N7Y) O(N71)
Restriction SO Non
Risk E[E, [-21(0, 0% X*,0)] E[E, [-2(X, 0% X*,0)]]
Case D Penalty term 2m* 2k
Bias to the risk Unbiased Unbiased
Order of the bias 0 0
Restriction SO Non
Risk E[E,[-20(0,¢%, Z,7%,Y*, Z")]] | B[E,[-2U(Y, 3, Z,7%Y*, Z*)]]
Case E Penalty term 2(m +1+p) 20k+1+p)
Bias to the risk Asymptotically unbiased Asymptotically unbiased
Order of the bias O(N7Y O(N7Y
Restriction SO Non
Risk E[E,[-20(0,¢% Z,72,Y*, Z*)]] | B[E,[-2U(Y <, Z, 72, Y *, Z*)]]
Case F Penalty term 2(mt +p—1) 20k+p-1)
Bias to the risk Unbiased Unbiased
Order of the bias 0 0
Note: m, m* and m' are given by , (4.2) , (5.5) and (5.12), respectively.
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Table 6.1  Some properties of the AICgp and the pAIC in Case 1
N Model 1 Model 2 Model 3 Model 4 || PEaicg, PEpaic
Risk 146.51 146.49 145.30 145.84 146.43 146.73
40 || AlCso | 146.37 146.10 144.47 144.81
pAIC 146.37 146.40 145.64 147.13
Risk 723.54 719.53 709.82 710.34 710.31  710.42
200 || AICgo | 723.69 719.66 709.69 710.18
pAIC | 723.69 719.69 710.69 712.18
Table 6.2  Some properties of the AICgo and the pAIC in Case 2
N Model 1 Model 2 Model 3  Model 4 || PEaicg, PEpaic
Risk 145.61 145.37 145.39 145.76 146.34  146.42
40 || AICso | 145.49 144.92 144.60 144.63
pAIC 145.49 145.16 145.69 146.76
Risk 719.14 713.68 711.20 710.75 711.85  712.04
200 || AICso | 719.18  713.62  710.97  710.42
pAIC | 719.18 713.63 711.33 711.30
Table 6.3 Some properties of the AICgp and the pAIC in Case 3
N Model 1 Model 2 Model 3 Model 4 || PEaics, PEpaic
Risk 143.55 144.20 144.62 144.99 144.40 144.16
40 || AICso | 143.26 143.73 144.01 144.27
pAIC | 143.26 144.72 146.39 148.09
Risk 708.26 708.76 709.08 709.37 708.86  708.67
200 || AICgo | 708.26 708.75 709.05 709.33
pAIC | 708.26 709.74 711.44 713.15
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