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ABSTRACT

In this paper, we consider Akaike information criterion (AIC) and C} criterion for ANOVA model with a
tree ordering (TO) 6, < 6;, (j =2,...,1) where 64,...,0; are population means. In general, under ANOVA
model with the TO, the AIC and the C} criterion have asymptotic biases which depend on unknown
parameters. In order to solve these problems, we calculate (asymptotic) biases, and we derive its unbiased
estimators. By using these estimators, we provide an asymptotically unbiased AIC and an “unbiased” C)
criterion for ANOVA model with the TO, called AICto and TOC), respectively. Penalty terms of derived
criteria are simply defined as a function of an indicator function and maximum likelihood estimators.

Furthermore, we show that the TOC),, is the uniformly minimum-variance unbiased estimator (UMVUE).
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1. Introduction

In real data analysis, ANOVA model is often used for analyzing cluster data. Moreover, a model
whose parameters pq, ...,y are restricted such as a Sinple Ordering (SO) given by p; < --- < py,
is also important in the field of applied statistics (e.g., Robertson et al., 1988). In addition, Brunk
(1965), Lee (1981), Kelly (1989) and Hwang and Peddada (1994) showed that maximum likelihood
estimators (MLEs) for mean parameters of ANOVA model with the SO are more efficient than those
of ANOVA model without any restriction when the assumption of the SO is true.

On the other hand, in general, the classical asymptotic theory does not hold for the model with
parameter restrictions. For example, Anraku (1999) showed that an ordinal Akaike information
criterion (AIC, Akaike, 1973) for ANOVA model with the SO, whose penalty term is 2x the number
of parameters, is not an asymptotically unbiased estimator of a risk function. In order to solve this
problem, Inatsu (2016) derived an asymptotically unbiased AIC for ANOVA model with the SO,
called AICgp. Furthermore, a penalty term of the AICgo can be simply defined as a function of
MLESs of mean parameters. Nevertheless, there are other important restrictions in applied statistics.

In this paper, we consider ANOVA model with a Tree Ordering (TO) given by 1 < pj (j =
2,...,1). For this model, we derive an asymptotically unbiased AIC, called AICtqo. Similarly, we
also derive an ”"unbiased” C), criterion (Mallows, 1973) for this model.

The remainder of the present paper is organized as follows: In Section 2, we define the true model
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and candidate model. Moreover, we derive MLEs of parameters in the candidate model. In Section
3, we provide the AIC for ANOVA model with the TO, called AICto. In Section 4, we provide the
C), criterion for ANOVA model with the TO, called TOC,. In addition, we show that the TOC), is
the uniformly minimum-variance unbiased estimator (UMVUE). In Section 5, we confirm estimation
accuracy of the AICto and the TOC,, through numerical experiments. In Section 6, we conclude

our discussion. Technical details are provided in Appendix.

2. ANOVA model with a tree order restriction

In this section, we define the true model, and candidate models with order restrictions. The MLE

for the considered candidate model is given in Subsection 2.3.

2.1. True and candidate models

Let Y;; be a observation variable on the jth individual in the sth cluster, where 1 < i < k¥,
j=1,...,N; for each i, and k* > 2. Here, we put N = Ny +---+ N« and Y; = (Yi1,...,Yin,) for
each i. Also we put Y = (Y/,...,Y.) and N = (Ny,..., Np-)".

Suppose that Yi1,..., Yy n,. are mutually independent, and Y;; is distributed as
ijj ~ N(Mi,*aai)a (21)

for any i and j. Here, ;. and o2 are unknown true values satisfying ;. € R and o2 > 0,

respectively. In other words, the true model is given by (2.1).
Next, we define a candidate model. Let Qq,...,Q; be non-empty disjoint sets satisfying Q)1 U
- UQr ={1,2,...,k*}, where 2 < k < k*. Then, we assume that Yjq,...,Ys-n,. are mutually

independent, and distributed as

Yij ~ N, 0?), (2.2)
where pi1, . . ., g and o?(> 0) are unknown parameters. In addition, for the parameters p1, . . . , fg-,
we assume that

1 gV s < k7 VulauQ € QS> Huy = Hug, (23)
and
2<t <k, "WEQL pg=< v, (2.4)

where ¢ € 1. Then, a candidate model M is defined as the model (2.2) with (2.3) and (2.4). In
particular, the order restriction (2.4) is called a Tree Ordering (TO). For example, when k* = 7,
k=401 ={1,3,7} Q2= {2}, Q3 = {4,5} and Q4 = {6}, the unknown parameters pi,..., 7

for the candidate model M are restricted as

1 = pg = pr < po, 1 = 3 =y S fg = s, 1 = s = pr < -

2.2. Notation and lemma

In this subsection, we define several notations. After that, we provide the related lemma. Let [

be an integer with [ > 2. Then, define

Ny={zeN|z I} ={1,...,1}.
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Moreover, let x1,...,2z; be real numbers, and let Ny,...,N; be positive numbers. We put x =
(z1,...,2;) and N = (Ny,...,N;). Furthermore, let A = {a,...,a;} be a non-empty subset of
N;, where a1 < --- < a; when i > 2.

Next, define

SRR SN LS .Y
Z 2 scaNs Ny

A= (Tay,y---s
secA

For example, when | = 10 and A = {2,3,5,10}, 4, T4 and fféxN) are given by

/ ~
xa = (2,23,75,710), Ta=T2+T3+T5+ 10,
SN _ Noxo + N3xz + Nsxs + Nigzio

AT Ny + N3+ N + Ny
In particular, when A has only one element a, i.e., A = {a}, it holds that x4 = (z,), Ta = 2,
and az(N) = x4. On the other hand, when A = Ny, it holds that x 4 = «. For simplicity, we often

represent x( ) as @ 4. In addition, let A®) be a set defined as

AY = {(&n ) eR'| Y e N\ {1}, oy <}
{(xl,..., ERl\x1<x2,...,m1§ml}.

Furthermore, for any integer ¢ with 1 < ¢ <, we consider a family of sets ji(l) defined by
TV ={JCN | 1eJ, #J =i},
where #.J means the number of elements of the set J. For example, when [ = 4, it holds that

TP ={{1}}, AV ={{1,20,{1,3},{1,4} }, 7Y = {{1,2,3},{1,2,4},{1,3,4} },
<4>—{{1234}} {N, }.

Here, note that j(l) ={ {1} } and jl(l) = { N, } for any [ > 2. Similarly, for any integer i with
1 < i<l and for any set J with 7, we consider the following set AD(]):

1

A(l)(J) ={(z1,...,71) € R | Vsed o=z, "teN\J z < Tt}
Note that when J = Ny, it holds that N; \ J = (). In this case, the proposition
Viel, x1 < x4
is always true. For example, when [ = 4, it holds that

A(4)({1}) ={x=(21,...,704) ER* | 2y <9, 21 < 3, 71 < T4},
AN({1,2}) = {x € R* | 21 = @3, 71 <73, T1 < 74},
A(4)({173}) ={z € R* | 21 =3, 21 < T2, 71 < 24},
AW{1,4}) = {z e R* | 21 = 24, 21 < 72, 71 < 73},
AD({1,2,3})
AW({1,2,4}) ={z e R* | 2y = 23 = 24, 71 < w3},
A(4)({1,3,4}) ={zx ¢ R* | x1 = x3 = x4, 1 < T2},
A(4)({1,2,3,4}) ={xz e R* | x1 = xo = 3 = 24}.

={x cR* |z =2y = 23, 71 < 14},



It is clear that these eight sets are disjoint sets and

4
U U A9 ={z eR! |21 <y, 21 <3, 21 < a4} =AY,
i=1 jc 7@

Similarly, in the case of [ > 2, it holds that

!
U U A(l)(J) ={x € R! |21 <x9,...,21 <y} = Am? (2:5)
=1 je g

and AW (J)N AO(J*) = () when J # J*.

Next, given an integer s with 1 < s < [ and a real number a. Then, for the vector ¢ = (z1,...,2;)’,
let x[s;a] be an [-dimensional vector whose sth element is a and tth element (¢ € N; \ {s}) is x.
For example, if = (1,4,4,3)’, then x[2;—1] = (1,—1,4,3)" and =[4;5] = (1,4,4,5)". Moreover,
for any integer s with 1 < s <[ and for any set J = {j1,...,Js} of js(l), we define a matrix DL(,N)
where j; < .-+ < js when s > 2. First, in the case of s = 1, the family of sets Jl(l) has only one set
J = {1}, and we define DSN) = 0. On the other hand, in the case of s > 2, the matrix DSN) is the

s — 1 x s matrix whose ith row (1 <i < s—1) is defined as

1

~7NJ[Z‘ + 1; _NJ\{]',L.+1}]/.
NJ\{ji+1}

For example, when [ = 4, it holds that
(N) _ (N) _ pIN) _ p@IN) _
D{l} =0, D{L?} - D{1,3} - D{1,4} =1 -1,
(N) Nirw; —1 S E (N) P -1
D{17273} - NlﬁlN?’ No Nl_JrlN3 ) D{1,2,4} - N1]¢1N4 Ny N1_+N4 )
NiANz - NiANe NitN2 Nt

N N.
D(N) — N1+1N4 71 N1+4N4
N N3 Y

{1,3,4} — 1 _
Ni1+N3  Ni+Ns3
N, 1 Ns Ny
N1+N3+Ny N1+N3+Ng  N1+N3+Ny
D(N) — N1 N> -1 Ny
{1,2,3,4} N1+%2+N4 N1+%2+N4 N1+Na+Ny
1 2 N3 -1

Ni1+N2+N3z  Ni1+N2+N3  Ni+N2+N3

For simplicity, we often represent DSN) as Dj.
Furthermore, we define a function nl(N) from R! to AW, For each vector & = (z1,...,2;)" € R,
nl(N)(:c) is defined as
!
r/l(N) (x) = argmin Z Ni(z; — ). (2.6)
y=(y1,..,y1) €AD 7
(N) (N)

In addition, let ;"' (x)[s] be the sth element (1 < s <) of ;"' (). Note that well-definedness of

nl(N) can be derived by using the Hilbert projection theorem (see, e.g., Rudin, 1986). For simplicity,
we often re (N)
present 1, ' (x) as m(x).

Finally, we provide the following lemma:

Lemma 2.1. The following three propositions hold:



(1) It holds that

l

R={J U n'(a%),

=1 Jeji(l>

i (AD)) At (AD) =0 (7 £,
(2)  For any integer ¢ with 1 <4 <[ and for any set J with ji(l), it holds that
n ! (A(l)(J)> ={x=(z1,....,5)) €R' | Dyx; >0, "t e N\ J, T; <z}, (2.7)

where the inequality s > 0 means that all elements of the vector s are non-negative.
(3) Let i be an integer with 1 <4 <[, and let J be a set with J € ji(l). Let @ = (z1,...,2;)" be

an element of R!. Assume that x satisfies
zen ! (A(l)(J)> .
Then, it holds that
Vseld, mx)s| =25, "teN\J, )t =z
In particular, for the case of J = Ny, if a satisfies
xcn H(AV()) = {xz cR' | Djz; > 0},
then, the following proposition holds:
Vs e, m(x)[s] = .

The proof of Lemma 2.1 is given in Appendix 1.

2.3. Maximum likelihood estimators for unknown parameters

In this subsection, we derive MLEs for unknown parameters in the candidate model M. First
of all, we rewrite the candidate model. For any integer s with 1 < s < k and for all elements
qf), e ,qf,s) of Qg, let X, = (Y;QS), . "}ZY)),’ where v is the number of elements in (),. We put
X = (X],.... X}, 1

s) — * ¢ — SEH
,qu) ng) sy

and @ = (01,...,0;)". In addition, define ny, = Nq(s) 4.+ Nq<s) and n = (n1,...,nk)". Note that
1 v
ny+---4+ng =N+ -+ Nig- = N. Then, the candidate model can be rewritten as

Xo ~ Nbs,02), t=1,...,n,,

with
01 < 0,...,01 < 0.

Here, a parameter space © for the candidate model is defined as follows:

0 ={(a1,...,ar) €R* | "u e N, \ {1}, a1 < ay}.



Next, we consider a log-likelihood for the candidate model. Let

1 &
= Xsv, :1a"'7k7

and let X = (X1,..., X.)". Then, since X,;’s are independently distributed as normal distribution,

a log-likelihood function 1(0,0%; X) is given by

l(0,a2;X)———log 210?) ZZ Xy — 0,)

s=1t=1

:—glog 2ma?) ZZ st — X, —%Zns()@—

s=1t=1 s=1

Hence, for any o2 > 0, a maximizer of [(8,02; X) on © is equivalent to a minimizer of

k
X)=> ny(X,—0,)°
s=1
on O. In other words, the MLE 6 = (91, e ,ék)’ of @ is given by

6 = argmin H(6; X).
6coO

We would like to note that the MLE 6 can be written by using (2.6) as n(")( X) =

(2.8)

6. Here, we put

X =x = (z1,...,71)". Then, from Lemma 2.1, there exists a unique integer o with 1 < o < k and

a unique set J with J € jcgk) such that
Djxj; >0, vﬁGNk\J, ry<zg.
For this set J, it holds that

S Y anewe Y e neXe
w e J7 ew =7, = ceJ — celJ

>eeg Me > eeg Me 7

v

Therefore, the MLE fi = (fi1,...,0x) of p = (u1,...,ux) can be written as
YieQs f;=0,, (s=1,....k).

On the other hand, the MLE 62 of 02 can be written as

1 k ns ~ 1 k B R
6‘2:N;;(Xst—Xs)z‘i‘NZ”S(XS_QS)Z
1 k ng N;
=2 (X -0 NZZ CRON
s=1t=1 i=1 j=1

because the function (8, 02; X) is a concave function with respect to (w.r.t.) o

(2.9)

(2.10)

(2.11)



3. Akaike information criterion for the candidate model

In this section, we derive an asymptotically unbiased AIC for the candidate model M. Here, we

assume the following two conditions:

(C1) The inequality N — &k — 6 > 0 holds.
(C2) For the true parameters py , ..., fg= «, it holds that

A4 A4
1<" s <k, "up,ug € Qs;  fhuy,x = fuy,x

and
Vt € Nk} \ {1}7 vl/ € Qta Mg, < Moy %,

where g € Q1.

Hence, the condition (C2) means that the true model is included in the candidate model. In addition,
for any integer s with 1 < s < k and for any integer u with u € Qs, we put fi, « = 05 .

Next, we define a risk function. Let Y, = (Y1’7*7 ..., Y+ )" be a random vector, and let Y be
independent and identically distributed as Y. Furthermore, for any integer s with 1 < s < k and
for all elements q%s), e ,qq()s) of Qs, we define X, = (Yq/is):*’ . .,1’(]'55)7*)’. In addition, we put
X, = (X1, ..., X},)". Here, using the log-likelihood I(, 0%,Y,) of Y., we define the following

risk function Rj:

Ry = E[Ey. [-2l(1,6%Y.)]]
No? N S Nipi e — 1)

=E | Nlog(2m6%) + — = (3.1)
o 6
Note that —2x the maximum log-likelihood is given by
—21(f1,6%,Y) = Nlog(2r6?) + N. (3.2)

By using —2I(f1,62;Y), we estimate the risk function R;. A bias By, which is the difference between

the expected value of —2I(f1,6%;Y) and Ry, can be expressed as

- No? Sty Ni(pie — f)?
By =E[R; — {-2I(1,6*Y)}] =E [ P } +E =1 ’&; | -N
No? S ng(ls, — 6,)?
) EALES - D5 KIEICE Sl Vg I Y
Bk 5
Next, we evaluate By. Define
1 N 1 k
S SE AN SR P
* s=1t=1 * s=1

Note that S and X are independent, and S is distributed as the chi-squared distribution with
N — k degrees of freedom because X,;’s are independently distributed as normal distribution and
the condition (C2) holds. Furthermore, from (2.9), since 6 is a function of X, the statistic 7" is also

a function of X. Hence, S and T are also independent. From (2.11), using S and T we can write

7



N62 /02 = S+ T. Therefore, by using these results and the same technique given by Inatsu (2016),
we obtain

k
2N 1 _ _ -
Bi=2(k+1) - B | = D na(Xe = 0e.)(Xe = 0:)| +O(NT). (3.3)

Next, we calculate the expectation in (3.3). Here, the following theorem holds:

Theorem 3.1. Let [ be an integer with [ > 2. Let ni,...,n; and 72 be positive numbers, and
let &,...,& be real numbers. Let x1,...,x; be independent random variables, and let z, ~
N(&s, 72 /ng), (s=1,...,0). Put n = (ny,...,n), € = (&,...,&) and & = (x1,...,2;)". Then, it
holds that

=

l
13 o - e - @)

Il
.M“

I
N

(i—1DP | m(x U AW
JeJ}

1

Details of the proof of Theorem 3.1 are given in Appendix 2 and 3.
Note that Xi,..., X} are mutually independent, and X, ~ N(0 ., 02/n,) for any integer s with
1 < s < k. Also note that from (2.8) the MLE 0 is given by 6 = n(n)( X). Therefore, from Theorem

3.1, the expectation in (3.3) can be expressed as

O'QZnS s — s,*( —9 ] [ 22”3 s_ 37* (Xs_nlgn)(x)[s])

k

=N w-1P(be |J ADW) | =L, (say).

u=2 JeTy
Thus, since L = O(1), we obtain

2N
N—-k—-2

Hence, in order to correct the bias, it is sufficient to add 2(k + 1) — 2L to —2I(f1,52;Y). However,

By =2k+1)— L+ON 1Y =2k+1)-2L+0O(N1).

it is easily checked that L depends on the true parameters 0y .,..., 0 . and 2. For this reason, we

must estimate L. Here, we define the following random variable m :

k
=14+ 1y 4.y (3.4)
a=2

It is clear that m is a discrete random variable and its possible values are 1 to k. Incidentally, from
the definitions of A®)(.J), 1 and @, it holds that

bc | AW()e=m=k+l-uesk-m=u-1,
Jegk

for any integer u with 1 < u < k. Therefore, the random variable k — m satisfies

k

Ek—m]=) (u-1)P|6c (] AP | =L

u=2 JeJk



Hence, in order to correct the bias, instead of 2(k + 1) — 2I, we add
2k +1)—2(k—m)=2(m+1)

to —21(f1,6%Y). As a result, we obtain Akaike information criterion for the candidate model M
with the TO, called AICtq.

Theorem 3.2. Let I(f1,52;Y) be the maximum log-likelihood given by (3.2), and let 7 be a random
variable given by (3.4). Then, Akaike information criterion for the candidate model M with the
TO, called AICt¢ is defined as

AICto = —2I(f1,6%Y) 4+ 2(m + 1).
Furthermore, for the risk function R; defined by (3.1), it holds that

E[AICTo] = Ry + O(N ).

4. C, criterion for the candidate model

In this section, we derive an unbiased C), criterion for the candidate model M. Here, we assume

the following condition:
(C1*) The inequality N — k* — 2 > 0 holds.

Hence, we do not assume that the true model is included in the candidate model. First, we consider
the risk function based on the prediction mean squared error (PMSE). The risk function Ry based
on the PMSE is given by

i

k* N, k*
1 . 1 .
Ry =E |Ey, | > > Y (Viju—u)?| | =N+E o Y " N — f1:)? ] - (4.1)
* =1

* =1 j=1

Next, we define the following random variables:

1 1 &
v S foog2o L _y2
yz.,ﬁij:lyw (i=1,....k"), & N;;(Yw Y;)?. (4.2)

Note that Yi,..., Yy and 62 are mutually independent, and Y; ~ N(p; «,02/N;) and No?/o2 ~

XA w+ because Yi1,...,Yyn, are independently distributed as normal distribution. Then, we esti-
mate the risk function Ry by using
(N —k* — 2)?—2. (4.3)
o
Here, from (2.11) the MLE 62 can be written as
~2 1 e *21k* *A2—21k* A2
o :N;;(Yzj—yi) +N;Ni(Yi_Ui) =0 +N;Ni(Yz‘—Mi) : (4.4)
Therefore, (4.3) can be expressed as
& N-k =2\ 1 «
(N—k;*—Q)_zzN—k*—H( Vo2 /o2 >022_;N(Y fis)? (4.5)



On the other hand, from (2.9) and (2.10), it can be seen that ji, ..., fiz- are functions of X1, ..., X}.
Moreover, for any integer s with 1 < s < k, it holds that

X, = 1 i:Xst > ZYW Z N,Y,. (4.6)
s ZqEQs

t=1 9 4eqQ, j=1 qEQs 7 4eqQ.,
Thus, Xi,..., X, are functions of Yi,..., Y, and fi1,..., ig- are also functions of Yi,..., Yi-.
Hence, noting that Yi,..., Yy and 52 are independent, and N52/02 ~ x3_,.. and E[(x%_,-) '] =

(N — k* —2)71, the expectation of (4.5) can be written as

A2
E[(N e —2) 2 }:N—k*—2+E

E*
52 Z Y Hix) F (fi e — ﬂi)}Ql

.
=N-2+2E 22]\7 (Vi — ptin) (i — 1) | + E 2ZN Wi — [4i) ]
T i=1
1 & 1
=N -2-2B | Ni(Yi— pi)i OQZNM,*—;%)?]- (4.7)
* =1 * =1

Therefore, by using (4.1) and (4.7), the bias By which is the difference between the expected value
of (4.3) and Ry, is given by

5 (1 .
By, =E |:R2—(N—k*_2)0_2:| =242E O—QZNz(Y;_MZ’*)MZ]

=2+2E ;Z Z Ny(Yy = g )itq | - (4.8)

Here, for any integer s with 1 < s < k, we put

N * N *
>qeq, Nalq, :quQs afa, = o0 (4.9)

ZqEQS Nq s

Then, combining (2.10), (4.6) and (4.9), (4.8) can be expressed as

Zns s as*és]
Zns S as*( 5_0

Hence, noting that X ~ N(as «,02/ns), we have

By =2+2E

=2-2E + 2B

U2Zns s 7 Qs x X]

B2_2(k+1—2E[ Zn s — o) (X —és)].

Furthermore, by using the same argument as in Section 3, we get

UZZnS s — ) (X —és)] = E[k — 1),

where m is given by (3.4). Thus, it is clear that

By =2(k+1) — 2E[k — ] = E[2(rh + 1)].

10



This implies that in order to correct the bias, it is sufficient to add 2(m+1) (instead of Bs) to (4.3).
As a result, we obtain the C), criterion for the candidate model M with the TO, called TOC,,.

Theorem 4.1. A C), criterion for the candidate model M with the TO, called TOC), is defined as
5.2
TOC, := (N —k* — 2)? +2(m+1),
where 62, 52 and 1 are given by (2.11), (4.2) and (3.4), respectively. Moreover, for the risk function
Ry given by (4.1), it holds that
E[TOC,] = Rs.
Remark 4.1. The TOC), is the unbiased estimator of R,. Furthermore, unbiasedness of the TOC,

holds even if the true model is not included in the candidate model M.
In addition, for unbiasedness of the TOC),, the following theorem holds:

Theorem 4.2. The TOC, is the uniformly minimum-variance unbiased estimator (UMVUE) of
Rs.

~

Proof. As we mentioned before, the random variable m is a function of él, cee ék, and él, e, Oy
are functions of Xi,...,X}. Furthermore, Xi,..., X} are functions of Yi,...,Y,.. Thus, /1 is a
function of Y1,. .., Y3. On the other hand, since fiy, ..., fix- are functions of Y7, ..., Yy, from (4.4),
we can see that both 62 and &2 are functions of Y7, ..., Ys-. Therefore, from the definition of the
TOC,, the TOC, is a function of 6% and Yi,..., Y. Incidentally, noting that Yiy,..., Y n,. are
mutually independent, and Y;; ~ N(p; «, 02) where 1 < i < k* and 1 < j < N, the joint distribution

function f(y; p«,02) can be written as

(s b 09)
k* N; k*
1 1 _9 - _\2 Ni,uz',* _
= ro?) 2 &P —2022 N, +]Zl(yij ~ i) +; 2 B Cps
where g; and C' are given by
N; k*
I 1 )
yz:j Yij, C_RZN#%*
7j=1 =1
Here, define
k* N;
To=> (NY2+Y (Vi -V)? |, Ti=Yi (i=1,....k).
i=1 j=1

Then, (Ty,T1,...,Tx-)" is a complete sufficient statistic (see, e.g., Lehmann and Casella, 1998).

2 can be written by using (Tp, T4, ..., Tk-)" as

.
1
~2 2
* =% (TO—ZNZTZ),
=1
2

o° is a function of the complete sufficient statistic (Tp,T7,...,Tk-)". Hence, the TOC, which is a

Moreover, since &

function of 2 and Y7, ..., Yy, is also a function of the complete sufficient statistic. Therefore, since
the TOC,, is the unbiased estimator of Ry, from Lehmann-Scheffé theorem (see, e.g., Knight, 1999),
the TOC), is the UMVUE of R,. O
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5. Numerical experiments

In this section, we confirm estimation accuracies of the AICto and the TOC), through numerical
experiments. Let X;; ~ N(6;,0%), where i = 1,2,3,4 and j = 1,...,N; for each i. We set
Ny = Ny = N3 = N4. Furthermore, we put N = Ny + Ny + N3 + N4. In this setting, we consider
the ANOVA model with the following restriction:

Vi€ {2,3,4}, 6, <40,
Hence, in this candidate model, the parameter space © is given by
O ={0=(01,0.,05,01) €R* | Vj € {2,3,4}, 61 <0;}.
Here, for comparison, we define the following two criteria:

fAIC : = —21(f1,6%Y) +2(4 + 1),
52
[Cp:= (N —k* —2) 2 +2(4+1).
o
Thus, the penalty term of both the fAIC and the fC), is 2x the number of parameters. Note
that since the parameters are restricted, the fAIC and the fC, are not necessary (asymptotically)
unbiased estimators of risk functions in general.

Next, in this numerical experiments, we consider the following true parameters:

Casel: 61 =1, 0,=2, 0;=3, 0,=4, 02 =1,

Case 2: 6, =1, 0, =1.05, 3 =1.05, 04 = 1.05, 0> =1,
Case3: 61 =1,0,=1,0;=1,60,=1, 62 =1,
Cased: 61 =2, 0,=14, 63=08, 0, =02, 0> =1.

We would like to note that the vector of true parameters @ = (61, ...,60,4)" is an interior point of ©
in Case 1. Similarly, in Case 2, 6 is an interior point of ©, but 6 is very close to the boundary. On
the other hand, 6 is a boundary point of © in Case 3. Moreover, in Case 4, 6 is not included in ©.
Therefore, the true model is included in the candidate model when Case 1-3. However, in Case 4,
it is not included. From 1,000,000 Monte Carlo simulation runs, we confirm estimation accuracies

of four criteria. Obtained results are given in Table 5.1 — 5.4.

Table 5.1  Estimation accuracy of four criteria in Case 1

N R AlCro  fAIC Ry TOC, fC,
12 47.08 3747 37.70 15.82 15.82 16.05
36 10875 106,75  106.78 | 39.97  39.97  40.00

100 289.30 288.64 288.64 104.00 104.00 104.00

200 572.81 572.53 572.53 204.00 204.00 204.00
1000 284293  2842.87  2842.87 1004.00  1004.00  1004.00
10000 || 28383.78 28383.90 28383.90 || 10004.00 10004.00 10004.00
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Table 5.2  Estimation accuracy of four criteria in Case 2

N R AlCro  fAIC Ry TOC, fC,,
12 43.20 37.07 39.15 14.92 14.92 16.99
36 107.19 10583  107.84 38.92 38.92 40.93
100 | 288.08  287.63  289.53 | 102.93  102.94  104.84
200 || 57171 57152  573.30 || 20296  202.96  204.74
1000 || 2842.03  2842.01  2843.33 | 1003.11  1003.12  1004.44
10000 || 28383.61 28383.52 28383.73 | 10003.82 10003.83 10004.03

Table 5.3  Estimation accuracy of four criteria in Case 3

N R AlCro  fAIC Ry TOC, fC,
12 43.02 37.12 39.29 14.91 14.91 17.09
36 107.13  105.83  108.01 38.91 38.91 41.09

100 288.04 287.60 289.78 102.91 102.91 105.09
200 571.65 571.47 573.64 202.91 202.91 205.09
1000 2841.82  2841.74  2843.91 1002.91 1002.91  1005.09
10000 || 28382.69 28382.59 28384.77 || 10002.91 10002.91 10005.09

Table 5.4 Estimation accuracy of four criteria in Case 4

N R AICro  fAIC Ry TOC, fC,
12 42,67 41.87 45.54 19.26 19.24 22.91
36 117.64 11852  122.31 53.25 53.26 57.06

100 321.39 322.62 326.48 144.11 144.13 147.99
200 640.13 641.46 645.40 286.06 286.05 289.99
1000 3190.87 319231  3196.31 1422.00  1422.04  1426.04
10000 || 31887.66 31888.95 31892.95 || 14202.00 14201.98 14205.98

From Table 5.1, we can see that the AICto and the fAIC are asymptotically unbiased estimators
of the risk R; in Case 1. Furthermore, the TOC), and the fC|, are unbiased and asymptotically
unbiased estimators of Ry, respectively. Similarly, from Table 5.2 we can see that the result of Case
2 is similar to that of Case 1. Nevertheless, estimation accuracies of the fAIC and the fC), in Case 2
are not good even if the sample size N is less than 1000. On the other hand, in Case 3, from Table
5.3 we can see that the AICto is the asymptotically unbiased estimator of R; and the fAIC has
the asymptotically bias. Similarly, the TOC), is the unbiased estimator of Ry and the fC), has the
asymptotic bias. Finally, from Table 5.4 we can see that the three criteria AICtqo, fAIC and fC),

have asymptotic biases in Case 4. However, the TOC,, is the unbiased estimator of Ra.
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6. Conclusion

Under ANOVA model with the tree ordering, we derived the asymptotically unbiased AIC and
the unbiased C), criterion, called AICto and TOC), respectively. In particular, the TOC, is the
unbiased estimator even if the true model is not included in the set of candidate models. Moreover,

we show that the TOC), is the UMVUE. We confirmed these results through numerical experiments.

Appendix 1: Proof of Lemma 2.1

In this section, we prove Lemma 2.1. First, we provide the following lemma.
Lemma A. The following three propositions hold:

(1) Let A and B be non-empty subsets of N;, and let AN B = (). Then, it holds that
TA<IB=>ZTA<ZTaup <ZTRB.

(2) Let Aand By,...,B; be non-empty subsets of N;, and let A and By, ..., B; be disjoint. Then,

it holds that
Vje{l,...,z‘}, T4 <ZB; = TA <ZTB, (Al)

where B is given by

Similarly, it also holds that
Vje{l,...,i}, ZB; <ZTpa=>2ZB < T4g. (A2)

(3) Let A, B and C be non-empty subsets of N;, and let A, B and C be disjoint. Then, it holds

that
Ta<ZTo, Tp < To = TauB < ZTo- (A3)

Proof. First, we prove (1). Let A and B be non-empty and disjoint subsets of N;, and let Z4 < Zp.
Then, multiplying both sides by Ng = > ven N, we get
NB.fA < NB.fB = Z Nyxyp.
beB

Furthermore, adding NaZ 4 to both sides we have

(NA—FNB).@A < NAi’A—i—Zme’b: ZNaZ’a—i—ZNbxb.
beB acA beB

In addition, dividing this inequality by Ni+ Ng = Y acaNa+ > e Ny we obtain

Y aca NaTa + 3 e p NoTo
ZaeA Nq + ZbeB Ny

Here, recall that A and B are disjoint. Therefore, it holds that

ZaeA Nqzq + ZbeB Nyxp . ZseAuB Nsxs — Zaop
pr— _— U .
YacaNa+ e No > seaun Vs
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Hence, Z4 < Tayup holds. By using the same argument, we can also prove that T up < Zp holds.
Thus, the proposition (1) holds.

Next, we prove (2). Let A and By, ..., B; be non-empty and disjoint subsets of N;. Assume that
Ta < Tp, for any integer j with 1 < j <. Here, multiplying both sides of T4 < Zp, by ]\731, we

have
Np, s < Np,Zp, = g Nz,
seB;

and multiplying both sides of 4 < Zp, by N By, We get
NBT'EA < N32f32 = Z Ntl't.
teB;
Thus, using these two inequalities we obtain
25631 NSxS + ZI‘EBQ Ntxt — ESGBl Nsxs + Zt€B2 Ntxt
NBI + NB2 ZSEBl NS + Et€B2 Nt
Moreover, noting that B; and By are disjoint, we get
25631 NS$S + EtGBQ Ntmt - Zu€B1uBg Nu.’L'u o :Z'B B
= —_— U .
25631 NS + ZtGBQ Nt ZueB1UB2 Nu ' ’

Hence, 4 < Zp,up, holds. Here, we put By U Bs = C. Then, it holds that 4 < Z¢. From

Ta <

this inequality and z4 < Zp,, using the same argument we obtain 4 < Zcup,; = TB,uB,UBs- BY
repeating this process, we get (A.1). Furthermore, (A.2) and (A.3) can be proved by using the same
argument. Thus, the propositions (2) and (3) are proved. O

Next, we prove Lemma 2.1.

Proof. When [ = 2, the statements of Lemma 2.1 are equivalent to Lemma C given by Inatsu
(2016), and it is already proved. Therefore, we prove the case of [ > 3.
First, we prove (1) of Lemma 2.1. From (2.5) it holds that

!

U U AV ={xeR' | z; <zy,...,21 <17} = AD,

i=1 e g
and AW (J) # AW (J*) where J # J*. Therefore, from the definition of the inverse image, it is clear
that (1) holds because n; is the function from R! to A().

Next, using mathematical induction we prove (2) and (3) of Lemma 2.1. Thus, assume that

Lemma 2.1 is true when | = 2,...,¢ — 1. In this assumption, we prove that Lemma 2.1 is also true
when [ = ¢q. Here, in the case of i = 1, jl(q) has only one set J = {1}. First, for this set J, we show

the inclusion relation D of (2.7). Let & = (z1,...,2,)" be an element of R? satisfying
Djxz; >0, "te N\ J, Z5 < ;.
Here, note that z; = z1. Hence, for any integer ¢t with 2 <t < ¢, the inequality ; < x; holds. This
implies that © € A@(.J) c AW, Meanwhile, let
q
Hy(85) = Y Nu(zy — 6u).

u=1
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Then, noting that € A9, we get

0< Hy(é;x) < Hy(x;x) = 0.
S (6;x) < Hy(w; x)

Therefore, it holds that

H,(6;x)=H,(x;x) =0.
53& ¢(0;x) = Hy(z:; )

This equality means that n,(x) = & € A@(J). Thus, we obtain n,(x) € A@(J). Therefore,
xzemn;! (A9(J)) holds. Hence, the inclusion relation > of (2.7) in the case of J = {1} is proved.
Next, we show C of (2.7). Let y = (y1,...,y,)" be an element of R satisfying y € n; " (A(‘I)(J)).
In other words, we assume that

ny(y) = argmin H,(§;y) = a = (aq,...,aq) € A(q)(J).
scA@

Here, noting that A(9)(J) is an open set, there exists an e-neighborhood U(e;¢) of a such that
U(a;e) € AW (J). Thus, for any element v = (71,...,7,) of R? satisfying v € U(a;e) € A it

holds that
Hy(a;y) < Hy(v;y)-

This implies that o is a local minimizer of H,(d;y). In addition, since H,(d;y) is a strictly convex
function on R? with respect to (w.r.t.) 4, the local minimizer a is a unique global minimizer.
Moreover, it is clear that the global minimizer is y because H,(d;y) is non-negative and H,(y;y) =

0. Therefore, we get @ = y and it holds that
ny(y) = =y € AD(J),.

Hence, for any s with s € N, \ J, the inequality y; < y, holds. Consequently, the inclusion relation
C of (2.7) in the case of J = {1} is proved.

Next, for any ¢ with 2 < ¢ < ¢ — 1, we prove the inclusion relation D of (2.7). Let ¢ be an integer
with 2 <i < ¢ —1, and let J be a set with J € ji(q). Assume that © = (z1,...,2,) is an element
of R? satisfying Dyxz; > 0 and z; < z; for any ¢t € Ny \ J. Here, the function Hy(o;x) can be

expressed as

x) = Z Ny(zq — ag)? ZN — ay)? Z Ni(my — a)?
d=1

seJ teNg\J

= Hyj(as;2g) + Hyn\g(an,\ g5 TN\ g)-
Therefore, it is easily checked that

_min (a’m)_anlﬁ?#J> wr(egsy) + Hyn\ g (TN, 75 TN\ ) (A.4)

In addition, we put Ty — (yl,...,y#J)/:y, aj = (Bl,...,ﬁ#J)/:ﬁ, NJ = (nl,...,n#J)’:n

and J* = Ny ;. By using these notations, we obtain

H#J aJ,mJ ZN —Oés Znu u— —H#J(,B, ),

seJ
and

aJrenj?#J) H#J(aJ; wJ) Be rﬁl(ﬂﬂ H#J(IB7 )
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Recall that Lemma 2.1 is true when [ = 2,...,¢—1 from the assumption of mathematical induction.
Moreover, it also holds that D(JN)m 7 = 0. This inequality is equal to D(J*)y g+ > 0. Furthermore,

noting that J* =Ny and 2 < #J < ¢ — 1, from (3) of Lemma 2.1 we get

min H#J(Oéj;xj): min H#J(:Ba )

a EA#D) ,@ CAG)
:Znu(yu—gy ZN s —Ty)% (A.5)
u=1 seJ

Hence, from (A.4) and (A.5), it holds that

min H,(o;x) > Ny(zs — 7 7)* Z Ni(zy — x0)2. (A.6)

acAl@)

seJ teNg\J

Here, let v = (71,...,74)" be a g-dimensional vector whose sth element (s € J) is Z; and tth

element (¢t € Ny \ J) is ;. Then, from the assumption, for any ¢t € N, \ J it holds that z; < .
Thus, from the definition of ~, we obtain v € A(@. Hence, the following inequality holds:

min Hy(o; )qu(’y;a:):ZNs( —Zj)? Z Ni(zp — x4)2 (A7)

AlD)
ac sed tEN\J

Therefore, from (A.6) and (A.7) we get

min Hy(o;x) = Hy(v; ).
acAld)

This implies that

ng(x) = argmin H,(a; ) = 7.
acAla)

Noting that from the definition of ~, we have v € AW (J), ie., x € nq_l (A(‘J)(J)). Consequently,
for any ¢ with 2 <1i < ¢ — 1, the inclusion relation D of (2.7) is proved.

Next, we prove the inclusion relation C of (2.7). Let 7 be an integer with 2 <i < ¢—1, and let J
be a set with J € Ji(q). Also let « = (x1,...,x4)" be an element of R? satisfying « € 0, (A ().

In other words, we assume that
ne(x) = (a1,...,00) = € AD(J).
Here, from the definition of A(@(.J), for any s € J and for any ¢ € N, \ J, it holds that a; = a; and

oy < ay. Incidentally, from the definition of n,, we get

q

min N;(z Z Ny(zs — a)? Z Ni(me — o)?
i=1

dcAla)
€ seJ teNg\J

=Y Ny(ws—ar)*+ Y Ni(we—ar)”.

seJ teNg\J
In addition, for the subvector v* = (’yl,'y{\]q\ ;)', we consider the following function:
= ZNS(% -m)’+ Z Ny(zy — 7).
seJ teNg\J
Noting that o = (o1, \ ;)" € Al=#I+1)(11}) and A@~#7+1({1}) is an open set, there exists
an e-neighborhood U(a*;¢) of a* such that U(a*;e) ¢ A= #/+D({1}). Let ¢ = ({4, ---,¢,), and
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let ¢* = ((q, C&qv)’ € U(a*;€). Moreover, let £ = (§1,...,&;)" be a g-dimensional vector whose sth
element (s € J) is & = (1, and tth element (t € N, \ J) is & = (;. Then, noting that £ € A we

obtain
H(¢ @) = ZN( Q)+ Z Ni(2e — ZN Z Ny(xp —&)°
seJ teNg\J seJ teNg\J
q
> mi — - = .
> 621;&) ' N;(z ZN a)? Z Ni(z; — a)? = H(a*; )
i=1 seJ teN,\J

Thus, a* is a local minimizer of H(~*; ). In addition, since H(vy*;x) is a strictly convex function

*

on RI=#/+1 wr.t. 4* the local minimizer a* is a unique global minimizer of H(~*;x). Moreover,

the global minimizer can be obtained by differentiating H (y*;x) w.r.t. v* as

ar =25, o=z (teN;\J).

Therefore, noting that a; < ayz, we have ;7 < ;.

Next, we prove DL(]N)CCJ > 0. We replace ; and N; with y = (y1,...,%:;) and n = (n1,...,n;),
respectively. In addition, we put J* = N;. Note that x; = y = yy«. Also note that y is an
i-dimensional vector and 2 <1 < g — 1. Recall that from (1) of Lemma 2.1, it holds that

U U ;! (Au) )>

s=1 e g™

! (AOW)) Nt (AD) =0 (£ 0.

In order to prove DSN) xy; > 0, we show y € n; ! (A(i) (NZ)) using proof by contradiction. Thus,
we assume that there exists an integer s with 1 < s < ¢ — 1 and a set J** of js(i) such that
yemn, ! (A(i)(J **)) . Recall that from the assumption of mathematical induction, Lemma 2.1 is
true when [ = 2,...,¢—1. Furthermore, since i < g—1, from (2) of Lemma 2.1, y € 77;1 (A(i)(J**))

is equivalent to
DS’ZZyJ** >0, Yy <Yy (tENi\J**).

Here, by using (2) of Lemma A, we get % < #y,\ - Moreover, using (1) of Lemma A we have

gj= < yn, = Zj. Therefore, combining z; < x; (t € Ny \ J), we get
Yy <zp (reNg\J). (A.8)
Note that there exists a set J*** with J*** ;Ct J satisfies gy« = T j««= and
Dy = DN e >0, Ty <3y (v EJ\J™). (A.9)
Hence, for the set J***, from (A.8) and (A.9) it holds that
DL(]]:J;)*mJ*** >0, Zjger <my (ueNg\J™).

As we proved before, this implies that x € 1, ! (A(‘I)(J ***)) However, this result is a contradiction
because J # J**, x € n;! (A(J)) and n; ! (AD(J)) N n, ! (A@(J***)) = (). Therefore, we
obtain y € ni_l (A(i) (NZ)) From (2) of Lemma 2.1, this result is equivalent to D&?)y > 0. This
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inequality can be written by using IV, J and x; as DSN)wj > 0. Thus, for any ¢ with 2 <4 < ¢g—1,
the inclusion relation C of (2.7) is proved.

Finally, in the case of i = ¢, i.e., J = Ny € j(q), we prove (2.7). First, we prove the inclusion
relation D of (2.7). Let ® = (1,...,24)" € R?, and let Djx; > 0. Recall that the following relation
holds:

U U no (A<q> ))

s=1 jeg®
n,t (A9W)) nmgt (A =0 (£,

Again, we consider proof by contradiction. Hence, we assume that there exists an integer s with
1<s<qg—1andaset J* of j(q) satisfying « € nq_l (A(‘I)(J*)). Thus, as we mentioned before, it

holds that
Dypxyp >0, T <z (tENq\J*).

We would like to recall that 1 € J* and the number of elements in J* is s. Here, if s = ¢ — 1, then
N, \ J* has only one element a satisfying a > 1. Therefore, it holds that

TN \{a} < Za-

However, this inequality is a contradiction because D jx; > 0. Hence, s satisfies 1 < s < ¢ — 2.

Incidentally, note that there exists a element t* of N, \ J* which satisfies
Yt e N\ (J*U{t*}), o < a4
Therefore, form (2) of Lemma A we get
INN\(JU{tr}) S T
In addition, since Z; < x¢«, from (3) of Lemma A we obtain
:Z"Nq\{t*} < Tyx

However, this inequality is also contradiction because D jx; > 0. Thus, we get s = ¢q. This implies
that J* = Ny € J(q) and x € 17;1 (A(Q) (Ng)). Therefore, the inclusion relation D of (2.7) in the
case of i = ¢ is proved. Next, we prove C. Assume that x € nq_l (A(Q) (Nq)). In other words, it

holds that
ny(xz) = a € AD(N,).

From the definition of A(@(N,), we get @ = 1,a, where 1, is a g-dimensional vector and every
element of 1, is equal to one. Here, again we consider proof by contradiction. Therefore, we assume

that there exists an integer s with 2 < s < ¢ which satisfies
qu\{s} < Tg. (AlO)

Meanwhile, for the function H,(d; ) given by

Hy(6:2) = Na(za — 6a)%,



it is easily checked that

5Ien,ig> H,(6;z)=H)(o;x) = ZNa(% —a)?, (A.11)

because x € n, L (A((I) (Nq)) is true. Here, it is clear that the following inequality holds:

q q

N, (zg 2 > min N ( Ny(zqg — T )2 A.12
; ( /BGRa ;z;és a:;;z;és ( R }) ( )

Hence, combining (A.11) and (A.12) we get

q
min H,(d;x) > Z No(zg — :Z‘Nq\{s})g. (A.13)
deAl a=1, a#s

Let B be a g-dimensional vector whose sth and tth (t € Ny \ {s}) elements are x, and ZTy,\{(s},
respectively. Then, the inequality (A.13) can be written by using 3 as

H,(8:x) > H,
53{}1) ¢(0;) .(B; ).

On the other hand, from the assumption (A.10), we obtain

H,(8:x) < H,
513% ¢(0;x) (B x),

because 3 € A@. Thus, we have

62&{;1{ ((8;) = Hy(B; ),

and this means that n,(x) = 8. However, this result is a contradiction because ny(x) = o and
a # 3. Hence, for any integer s with 2 < s < ¢, it holds that Ty \ (s} > @s. This inequality is
equivalent to Dy, xy, > 0. Therefore, the inclusion relation C of (2.7) in the case of i = ¢ is proved.
Consequently, (2) of Lemma 2.1 is proved.

Finally, we prove (3) of Lemma 2.1. When J # Ng, we have already proved in the proof of (2)
of Lemma 2.1. Thus, we prove the case of J = N,. Let « € nq_l (A(q) (Nq)). Then, it holds that
n,(x) = a € A (N,) and « can be written as o = a,. Here, for the function H,(d;x) defined by

Hq(5§ ;l:) = ZNa(fEa - 5(1)27

we obtain

H,(6 ) =Y Nu(rg —a)?
Jnin Hy(8;2) = Hy(@) = 3 N(za = )

M=

Na(za = B8)> =D Na(wa — Zn,)> = Hy(Tn, 145 ), (A.14)

a=1

> min
BER

2
Il
—_

because x € n;l (A(Q) (Ng)) holds. On the other hand, since 7y, 1, € AD we get

~—

H,(6;%) < Hy(n,1
Shin Ho(0;2) < Ho(n,1g; @).

By combining this inequality and (A.14), we have

égﬁg) Hy(6;x) = Hy(Tn, 14 ).

This implies ny(x) = a = Ty, 14. Therefore, (3) of Lemma 2.1 is proved. O
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Appendix 2: Technical lemma

In this section, we provide two technical lemmas. Using Lemma 2.1 and provided two lemmas,

we prove Theorem 3.1 in Appendix 3.

Lemma B. Let vy,...,v be independent random variables, and let vy ~ N(&,72/N,) where
1 <s <, 2 > 0, &,...,6§ € Rand Ny,...,N; € Ryg. Let N = (Nl,...,Nl)/, v = (vl,...,vl)’
and € = (&1,...,&) . In addition, for any integer i with 1 < i <[ and for any set J with J € ji(l),

define
S(J) = ZNS(US _55)(1)3 - IDJ)'

seJ

Then, the following two propositions hold:

(1) If J # Ny, then vy,\ g, (Djvs),S(J))" and vy are mutually independent.
(2) if J =Ny, then ((Djv;)’,S(J))" and v; are mutually independent.

Proof. First, we prove (1). From the assumption, v is distributed as the multivariate normal
distribution with a diagonal covariance matrix. Therefore, noting that the two sets J and N; \ J
are disjoint sets, it can be shown that the two subvectors v; and vy, s are also distributed as
(multivariate) normal distributions and these are mutually independent.

Next, we prove that ((Djv;)’,S(J)) and v; are functions of v, and these are mutually inde-
pendent. Here, the case of J = {1} is clear because ((Djv;)’,S(J)) = (0,0)’. Thus, we consider
the case of J # {1}. Since

ZNS’L—)J(US - z_JJ) = 07

it holds that

S(‘]) - ZNS(US - gs)(vs - 1_)J) = ZNS(US — U7 _gs)(vs - Q_JJ)

seJ seJ
= ZNS(US - T)J)2 - Zsts(Us - T)J)'
seJ seJ
Here, let
1
A= (g {1 - 2003 (B.1)
J

where diag(IN;) means the diagonal matrix whose (a,a) element is the ath element of the vector
Nj. Then, S(J) can be expressed as

S(J) = (Av;) (Avy) — (&5(diag(N1))"/?) Av,.

Hence, ((Djvy)’,S(J))" is the function of ((Djvys)’',(Avys)")". Therefore, it is sufficient to prove
that ((Dyvs)’, (Avy)") and v; are independent. Note that the vector ((Djv;)’, (Avy),0;) can

written by
D v, D,
A’UJ = A 5 vy,
vy N}/NJ
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and vy are distributed as multivariate normal distribution. Thus, ((Djv;)’, (Av;)") and v; are

distributed as (multivariate) normal distributions. Hence, in order to prove its independence, it is

/

sufficient to prove that the covariance of ((Djv;)’,(Av;)) and oy is the zero vector. Here, the

covariance of D vy and vy can be expressed as
Cov[Djvs,05] = D;Var[v;)N;/Ny. (B.2)
Furthermore, noting that Var[v;] = 7%(diag(IN;)) !, (B.2) can be written as
Cov[D vy, 5] = (7%/N;)D(diag(N;))"'Ny = (72 /N;)D j14;.

In addition, from the definition of the matrix D, it holds that D;14; = 0. Therefore, we get

Cov[Djv;,v;] = 0. Similarly, the covariance of Av; and v, is given by
Cov[Av,,vy] = (1°/N;)Aly,,

and it holds that Alx; = 0 from (B.1). Thus, we have Cov[Av;,v;] = 0. Therefore,
((Dyjvs),(Avy)') and ©v; are independent. This implies that ((Djv;)’,S(J)) and v; are

independent. Hence, (1) is proved. On the other hand, by using the same argument, we can also

prove (2).
O]
Lemma C. Let vq,...,v; be independent random variables defined as in Lemma B, and let
AOD{Y) = {(z1,...,1) €R | 21 < x9,..., 31 < 31}

Then, it holds that

B ll{ven (A0 ZN Vs (Vs — & ]

=k ll{veA(”({l})} X % ZNS%(”S - fs)]

s=1
= E[liyeam ] = lE[l{UEnfl(A(w({u))}] =IP(ve nfl(A(l)({l})))- (C.1)

Proof. From the definition of an indicator function, it is clear that the fourth equality holds. On

the other hand, for the first and third equalities, we must prove
ven (AV({1}) & ve AV({1}).

However, we have already proved this relation in (2.7). Therefore, we prove the second equality.

For any integer s with 1 < s <, we define
\/NS(US_és) _ b _fs\/Ns
- S s .

T T

Note that z1,..., 2 are independent and identically distributed as N(0,1). Furthermore, it holds

that l

!
%ZNSUS(US Zzs zs + bs) (C.2)
s=1

s=1
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In addition, for any integer ¢t with 2 <t <[, putting

VN
VN1

= Gy,
the following relation holds:
UEA(Z)({I})<:>2§t§l, v <vp e 2<t<l alzr+b1)—b < z.
Here, define
E ={(c1,...,c) €R | 2<t <1, ag(e; +b1) — by < et}
Then, for the vector z = (21,..., %), it holds that v € AD({1}) & 2z € E,. Using this result and

(C.2), we obtain
l
Ell{vewm})} ) ZN% s — &s) ] =E |lzer) XZzs(szrbs)
s=1

l
://E {Zzs(zs+bs)}H‘Z’(ZS)le"'dzlv (C.3)

where ¢(z) is the probability density function of standard normal distribution. Here, when [ = 2,

Inatsu (2016) proved that (C.3) is equal to IE[1{,ca0)(f13)3]- Hence, we prove the case of I > 3.
First, for any integer s with 2 < s <[ we define

R = oy)dy.

s(x+b1)—bs

In addition, let

and let
a, = / ( / 2oz + bs)qb(zs)sz) I FG)|oGda, ()
—00 as(z14b1)—bs 2<t<l, ts
where s = 2,...,l. Then, (C.3) can be written as
! l !
// {Zzs(zs—l—bs)}qu(zs)dzl---dzl:ZGS. (C.5)
B s=1 s=1 s=1

Next, we calculate G; and G. Using the integration by parts, G; can be expressed as

e° oo !
_(b( Zl + b1 (HF 21 > —|—/_ (b(Zl) <H Fs(21)> dz
/ ¢ 2’1 2:1 + b1 (H F 21 ) dz1. (CG)

G, =

Here, noting that
d

TZIFS(21) = —asgb(as(zl + bl) - bs)
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and the first term of the right hand side of (C.6) is zero, (C.6) can be written as

0o l
G = /_OO B(21) (1;[2 Fs(z1)> dz
l

+/_OO $(21)(z1 +b1) Q> _{—asd(as(z1 +b1) — by)} Il FEG)]pda (€7

s=2 2<t<l, ts

Next, we calculate G;. Here, note that

/ 2a(20 + b)0(28)d20 = [=0(25) (25 + b)) or 2000, + / b(ze)dze

s(z1+b1)—bs s(z14+b1)—bs
= as(21 + b1)p{as(z1 + b1) — bs} + Fy(z1). (C.8)

Hence, substituting (C.8) into (C.4) yields

~ !
G, :/_ 6(=1) (H Fs(zl)> iz

[ et ) -0k [ TT RG) | da ©9

2<t<l, t£s

Therefore, using (C.7) and (C.9) we get

Zi:Gs:l/_Zﬁb(Zl) (t[ﬂ(%)) dz :l/'”/ELIi[QS(ZS)le"'dZZ

=IE[1zery] = E[lyean )yl (C.10)

Thus, by substituting (C.10) into (C.5), we obtain (C.1). O

Appendix 3: Proof of Theorem 3.1

In this section, we prove Theorem 3.1. First, we provide the following lemma.

Lemma D. Let n;, no and 72 be positive numbers, and let &, and & be real numbers. Put
n = (n1,n2). Let z; and x2 be independent random variables distributed as xs ~ N(&, 72 /ns),

(s =1,2), and let & = (z1,22)". Then, the following two propositions hold:

(P1) For any integer ¢ with 1 <7 < 2, and for any set J with J € ji(Q), it holds that

1 _(n
P [hngmW 3 el = €:)(an =35 >>]

seJ
= (i—1)P(DMx; > 0). (D.1)

(P2) The following equality holds:

E [1 S (s — € (s — 1" <w>[s]>] —P (V@) e AP(N). (D)
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Proof. First, we prove (D.1). When ¢ = 1, i.e., J = {1}, noting that z; = z1, the equality (D.1)
is clear. On the other hand, when i = 2, i.e., J = Ny, the equality (D.1) is equivalent to (P1) of
Lemma F given by Inatsu (2016), and it is already proved. Similarly, the proof of (D.2) is equivalent
to the proof of (P2) of Lemma F given by Inatsu (2016). Therefore, lemma D is proved. O

Next, we consider the following lemma:
Lemma E. Let [ be an integer with [ > 2. Assume that the following proposition (P) is true:

(P) Let Ni,...,N; and ¢? be positive numbers, and let (1,...,(; be real numbers. Let y1,...,
be independent random variables, and let ys ~ N((s,¢%/Ns) where s = 1,...,l. Put N =
(N1,...,Ny), ¢ = (C1y--.,¢) and y = (y1,...,y)". Then, for any integer i with 1 < i <
and for any set J with J € jz-(l), it holds that

j : _(N
E {D(N>y >0} 2 N CS)( ( ))
seJ

= (i —1)P(DNy, > 0). (E.1)

Under the assumption (P), the following proposition (P*) holds:

(P*) Let ni,...,n;11 and 72 be positive numbers, and let &;,...,&41 be real numbers. Let
r1,...,7;,1 be independent random variables, and let z, ~ N(&,, 72 /n,) where s = 1,...,1+1.
Put n = (ny,...,n41), € = (&1,...,&+1) and @ = (z1,...,2541)". Then, for any integer i

with 1 <¢ <[+ 1 and for any set J with J € \71.(“1), it holds that

1 _(n
B ll{Df]n)mJZO}ﬂ ZnS(xS - fs)( Ts — 1'57 ))]

seJ
= (i—1)P(DVz,; > 0). (E.2)

Moreover, the following equality holds:

+1
QZns Ts — &) (ms — i (2 >[s1>]
1+1
Z(z—l)P My1(x U AEY )| (E.3)
1=2 JEJZH—I

Note that Lemma D and Lemma E yield Theorem 3.1. Hence, we prove Lemma E.

Proof. First, we prove (E.2). Suppose that i is an integer satisfying 1 < i <[ and suppose also that
J is a set satisfying J € \71'(1+1). In this case, we replace ny, x; and &; with N = (Ny,..., N;)/,
y=(y1,...,¥;) and ¢ = (¢1,-..,¢), respectively. We put J* = N;. Then, from the assumption
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(E.1), the left hand side of (E.2) can be expressed as

1 —(n
B [1{D§">m20}72 > nalw — &) (ws — 75 >)]

sed

1 (N
= E ll{Dyy)yJ*ZO}ﬂ Z Ni(ye — Ce)(ye — yS* ))]

teJ*
= (i—1)P(DMNy,. >0)= (i - 1)P(D™Mz; > 0). (E.A4)

Hence, we get (E.2). Therefore, it is sufficient to prove the case of i = [+ 1, i.e., J =Njyq € ji(lH).
Here, the left hand side of (E.2) can be rewritten as

1 _(n
E ll{D(Jn)wJ>0}T2 Zns(xs - gs)(xs - .Q?S ))] =X-Y, (E5)

sed

where X and Y are given by

X=E

1 I+1

I+1 ()
", >0} 7 22"3 Ts =& ]

Y=E

First, we calculate Y. Noting that

+1

(n) _ g(m)\=(n)
22”5 s_ (n) 7_2( . an ).’L‘Jn

and isn) ~ N(ggn),TQ/ﬁJ), from (2) of Lemma B we obtain

+1 ( )
Y=E mJ>0} QZnS Ls ]

_ L o
=E _1{D§n)$J20}:| E |:T2(q;f] ) _ ég ))x(J ):|

1{D(,”>m120}} x1=P(DMz, > 0). (E.6)

Next, we calculate X. From (1) of Lemma 2.1, it is easily checked that the following equality holds:

1{Df]n)mJ20} =1- Z Z 1{:B€7]l_+11(A(l+1)(J*))}' (E?)
u=1 J*E‘ZSH'I)

Therefore, X can be expressed by using (E.7) as

I+1
! Zns L gs
1 I+1
- Z > E ll{wen;a(A“HMJ*))}Tz D males - 58)%]

u=1 J* jl+l —
1 +1
l+ 1 Z Z [ {1176"7l+1(A<l+1)(J*))} 2 Zns Tg fs)xs] s (ES)
u= lJ*EJH—l
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where the first term of the last equality in (E.8) is derived by z, ~ N(&,72/ns). Next, for any

integer v with 1 <« <[ and for any set J* with J* € 7!, we calculate
| bt
E 1{w€7]l_+11(A(l+1)(J*))}ﬁ Z ns(zs — &s)Ts | - (E.9)

s=1

Here, recall that from (2) of Lemma 2.1, the following relation holds:
T c 'f] (A(l+1)(J*)) ~ DJ*Q?J* > 0, vt S Nl+1 \ J*, Ty < Ty. (E].O)

Thus, noting that

I+1
1

ﬁzns S S
= % Z ns(rs — &s)Ts + % Z ni (e — &)y

seJ* teNl+1\J*
1 1
] Z ns(zs — &) (Ts — Ty +Tg+) + 2 Z ne(ze — &)t
seJ* tGNl+1\J*
1 _ TLJ* 1
= Y ns(ms — &) (Ts — Tye) + = 5 (T — &) Ty + = > mulw &),

seJ* teN; 1\ J*
the expectation (E.9) can be rewritten as

I+1
1

B Yaen (a7 QZns zs —&s)rs| =G+ H, (E.11)

where G and H are given by

1 _
G=E 1{“36’7@11(A(1+1)(J*))}ﬁ E ’I’Ls(xs _55)($3 —$J*)] ,
L seJ*

nys  _ T\ 1
H=E 1{men;+11(A(z+1)(J*))} ﬁ(CUJ* — &y )T + ) Z ne(xy — &)y
teN; 41\ J*

By using (E.10), Lemma B and (E.4), G can be expressed as

1
G = E[l{\’teNzH\J*, iJ*<xt}] X B 1{DJ*wJ*20}ﬁ Z ( 55)( Ts — fEJ*)]
seJ*

= E[l{thNHl\J*, T g <:1:t}] X (U - 1)E[1{D]*Q:J* 20}]

= (U =1) X E[lyp .0, >0, vtemi\I+, aye<art) = (= 1) X E[lgep awen oy
On the other hand, using (E.10), Lemma B and Lemma C, H can be written as

H = E[l{DJ* €L g* ZO}]

g« _ SN 1
xE 1{Vt€Nl+1\J*7 Tyx <zt ) ?(.%'J* — €J*)$J* + ﬁ Z nt(l't - ét)l't
tENH_l\J*

- E[l{DJ*mJ* ZO}:I X (l + ]- —Uu + 1)E [1{vt€Nl+1\J*, f]*<xt}j|
= ([ +1-ut+ ) XEllge, acen gyl
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Hence, substituting G and H into (E.11) yields

I+1
1+

B | Lgens, (a0 (o)) 73 D ng(ws — &)z | = (1+1) x E[1 fwenh (a0 (g ) (E.12)
s=1

Furthermore, combining (E.12) and (E.8) we get

!
=(+1) Z ) x E[1 {men;ﬂ(A<l+1>(J*))}]
u= l+1
=({+1)E Lwent et oy | = E DELae,mn awen
U= 1 J*GJf’l
= (+1DE[lD,e,>0)] = ((+1)P(Djz; > 0). (E.13)

Thus, substituting (E.6) and (E.13) into (E.5) yields

1 _(n
Lip(a, >0y 72 Z;"s(ws — &) (@, — &Y ))] =[P(Dyz; > 0).
sE.

Hence, the expectation (E.2) for the case of it =1+ 1 (i.e., J = N;11), is proved.
Finally, we prove (E.3). By using (1) and (3) of Lemma 2.1, the left hand side of (E.3) can be

expressed as

+1
B znss &) (@s =it (@ >[s1>]

I+1 I+1
1 n
=B > (1{m€nl+11(A(l+1>(.]))}7_2 S naes — &) (@ — i (2 )[S])>
s=1

i=1 Jeji(ﬂrl)

I+1

=2 2

=2 JEJi(l+l)

( {men } (AUHD (1)} 72 Zn Tr &)(%—w))] : (E.14)

reJ

Here, using (E.2), Lemma B and

(2) of Lemma 2.1, we obtain

2 K {oeni (AT ()} 2 SIS 5?")(”37“—”))]

red

- E[l{VUENH-l\Jv EJ<I“}] x B

1 _
1{DJ9'3J20}7_72 Z n,«(x,« - fr)(xr - IJ)]

reJ
= E[l{vueNz-H\J, EJ<ru}] X (Z - 1)E[1{DJmJZO}] = (Z - 1)P(771+1($) € A(l+1)(‘])) (E15)

Thus, substituting (E.15) into (E.14) yields

1+1
IQZnH &) (ws — T (x >[s1>]

+1

=Y (-1 > Pl eAltV()
= Jeji”“)
+1

“3 G- 1P [mat@ e |J AT
1=2 JEJiHl
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because AUV (J) N AUFD (J*) = ) when J # J*. Therefore, (E.3) is proved. O
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