
Bartlett correction to the likelihood ratio test

for MCAR with two-step monotone sample

Nobumichi Shutoh

Graduate School of Maritime Sciences, Kobe University

email address: shutoh@maritime.kobe-u.ac.jp

Takahiro Nishiyama

Department of Business Administration, Senshu University

Masashi Hyodo

Department of Mathematical Sciences, Graduate School of Engineering,

Osaka Prefecture University

Assuming that two-step monotone missing data are drawn from a multi-

variate normal population, this paper derives the Bartlett-type correction

to the likelihood ratio test for Missing Completely At Random (MCAR)

which plays an important role in the statistical analysis of incomplete

datasets. The advantages of our approach are confirmed in Monte Carlo

simulations. Our correction drastically improved the accuracy of the type

I error in Little’s (1988) test for MCAR, and performed well even on

moderate sample sizes.

Keywords and Phrases Asymptotic expansion; Bartlett correction;

Missing completely at random; Monotone missing data.

Mathematics Subject Classification 62H15; 62E20.

1



1 Introduction

When statistically analyzing missing data, the missing mechanism is important be-

cause it justifies or invalidates the application of the statistical method. Although

specifying the missing mechanism in a likelihood function is a natural approach,

misspecifying the missing mechanism leads to severe bias in the result. Even when

the missing mechanism can be specified exactly, its parameters must be estimated

along with the population parameters. These missing mechanism parameters are

nuisance parameters.

To conduct a missing data analysis without specifying the missing mechanism,

we must determine the ignorability of the missing mechanism. The ignorabolity con-

dition holds if the Missing At Random (MAR) and parameter distinctness are both

satisfied (for details, see Little and Rubin, 2002). Under ignorability, we can apply

methods based on direct maximum likelihood. Typically, the estimators returned by

direct maximum likelihood have no closed forms, implying that their exact ditribu-

tion cannot be theoretically obtained (see e.g., Srivastava and Carter, 1986). Kanda

and Fujikoshi (1998) obtained closed forms and the exact distribution of the direct

maximum likelihood estimators in monotone missing data, a special case that often

manifests as dropout of the samples. However, the obtained estimators take more

complicated forms than those of complete data. In the last two decades, researchers

have developed direct likelihood methods for statistically analyzing monotone miss-

ing data with ignorability. As discussed in Hao and Krishnamoorthy (2001), Batsidis

et al. (2006), and Tsukada (2014), most of these methods were developed for two-

step monotone missing data under the following settings; for j = 1, . . . , N , observe

i.i.d. copies of X ∼ Np(µ,Σ) denoted by x′
j = (x′

1j, x′
2j). For j = N1 + 1, . . . , N ,

x2j are missing from N2 ≡ N − N1 samples, where x2j is a (p − d)-dimensional

partitioned sample vector with p > d > 0.

More simply, for small sample sizes with missing data, we can apply statistical

methods to complete datasets after listwise deletion, or simpler estimators based
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on pairwise deletion. However, in applying these methods to missing data, we

must restrict the conditions of the missing mechanism, i.e., Missing Completely

At Random (MCAR). To this end, we focus on testing the statistical inference

for the satisfaction of MCAR. The classical MCAR test was pioneered by Little

(1988). He developed a likelihood ratio test that asymptotically follows the chi-

squared distribution under MCAR, which were implemented in statistical software.

An alternative test, based on the generalized least squares criterion, was proposed

by Kim and Bentler (2002). Recently, Li and Yu (2015) proposed an approximate

test for MCAR under the nonnormal model. However, approximate tests for MCAR

tend to fail at small sample sizes. For instance, the false rejection of the MCAR

hypothesis in Little’s test (i.e., type I error) is likely to increase on small datasets.

This paper considers a Bartlett-type correction of the likelihood ratio test pr-

posed by Little (1988), which dramatically reduces the occurence of type I error

without a complicated critical value. The correction is applied to two-step monotone

missing data, for which various statistical methods have been developed. Because

the test statistic depends not only on the ratio of determinants of Wishart matrices

but also on the quadratic form of the difference of the sample mean vectors, we

alternatively derive them by Nagao’s (1973) perturbation method.

The remainder of this paper is organized as follows. Section 2 simplifies the test

statistic derived by Little (1988) to a form useful for our purpose. Section 3 lists the

auxiliary results and derives the main result of this paper. Section 4 demonstrates

the advantages of our correction test in Monte Carlo simulations of small sample

sizes. Conclusions are presented in Section 5, and the proofs are detailed in Appendix

A.
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2 Likelihood ratio test statistic for MCAR

This section derives the likelihood ratio test for MCAR. As shown in Li and Yu

(2015) of Proposition 1, the MCAR test in this case reduces to the testing of

H : xj
i.i.d.∼ Np(µ,Σ) (j = 1, . . . , N1) and x1j

i.i.d.∼ Nd(µ1,Σ11) (j = N1 + 1, . . . , N)

versus

A : xj
i.i.d.∼ Np(µ,Σ) (j = 1, . . . , N1) and x1j

i.i.d.∼ Nd(ν1,Γ11) (j = N1 + 1, . . . , N).

At least one of the two equations µ1 = ν1 and Σ11 = Γ11 is violated, where µ and

Σ are decomposed as

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Here, µ1 is a d(< p)-dimensional subvector of µ and Σ11 is a d× d submatrix of Σ.

Little (1988) proposed the likelihood ratio test statistic −2 lnΛ, where

Λ =
LH(µ̃, Σ̃, µ̃1, Σ̃11)

LA(µ̂, Σ̂, ν̂1, Γ̂11)
.

Let LH(µ̃, Σ̃, µ̃1, Σ̃11) and LA(µ̂, Σ̂, ν̂1, Γ̂11) be the likelihoods with maximum like-

lihood estimators (MLEs) under H and A, respectively. The MLEs of µ,Σ,µ1,Σ11

under H, denoted by tildes placed over the parameters, were derived by Anderson

and Olkin (1985). The MLEs of µ,Σ,ν1,Γ11 under A are distinguished by hat

symbols over the parameters.

In the assumed special case of the two-step monotone sample, we have

−2 lnΛ = q +N1[tr(SF Σ̃
−1)− p− ln |S−1

F |+ ln |Σ̃−1|] (2.1)

+N2[tr(SL,11Σ̃
−1
11 )− d− ln |S−1

L,11|+ ln |Σ̃−1
11 |],
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where

q = N1(xF − µ̃)′Σ̃−1(xF − µ̃) +N2(x1L − µ̃1)
′Σ̃−1

11 (x1L − µ̃1),

xF =

(
x1F

x2F

)
, xℓF =

1

N1

N1∑
j=1

xℓj, x1L =
1

N2

N∑
j=N1+1

x1j,

SF =

(
SF,11 SF,12

S ′
F,12 SF,22

)
, SF,ℓm =

1

N1

WF,ℓm, SL,11 =
1

N2

WL,11,

WF,ℓm =

N1∑
j=1

(xℓj − xℓF )(xmj − xmF )
′,WL,11 =

N∑
j=N1+1

(x1j − x1L)(x1j − x1L)
′,

µ̃ =

(
µ̃1

µ̃2

)
, µ̃1 =

N1

N
x1F +

N2

N
x1L, µ̃2 = x2F − Σ̃′

12Σ̃
−1
11 (x1F − µ̃1),

Σ̃ =

(
Σ̃11 Σ̃12

Σ̃′
12 Σ̃22

)
, Σ̃11 =

N1

N
SF,11 +

N2

N
SL,11, Σ̃12 = Σ̃11S

−1
F,11SF,12,

Σ̃22 = SF,22 + S ′
F,12S

−1
F,11(Σ̃11 − SF,11)S

−1
F,11SF,12

for ℓ,m = 1, 2.

In a complete dataset, the distribution of the likelihood ratio test statistic is

usually invariant under an affine transformation CX, where C is a p×p nonsingular

matrix. Unfortunately, such transformation invariance does not generally hold for

two-step monotone sample. However, by restricting C, we can recover a similar

property.

Lemma 2.1. Suppose that C is a p× p nonsingular matrix with the block decompo-

sition:

C =

(
C11 O12

C21 C22

)
,

where C11, C21, and C22 are a d× d constant matrix, a (p− d)× d constant matrix,

and a (p−d)×(p−d) constant matrix, respectively. O12 denotes a d×(p−d) matrix

filled with zeros. Then, the distribution of the test statistic −2 lnΛ is invariant under

the transformation X 7→ CX.

To simplify the form of the test statistic presented in (2.1), we state an auxiliary

lemma. Furthermore, by matrix manipulations such as inverting the matrix via

block decomposition (see e.g., Lemma 7 of Shutoh (2012)), we can simplify the form

of the likelihood ratio test statistic presented in (2.1).
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Theorem 2.2. Suppose that we observe a two-step monotone sample from a mul-

tivariate normal distribution; that is, we draw xj (j = 1, . . . , N1) samples from a

p-dimensional normal distribution and observe x1j (j = N1 + 1, . . . , N) on the first

d characteristics of the same distribution. The likelihood ratio test statistic for H is

then obtained as

−2 lnΛ = z′
(

1

N
(WF,11 +WL,11 + zz′)

)−1

z +N

{
ln

∣∣∣∣ 1N (WF,11 +WL,11 + zz′)

∣∣∣∣
+ tr[(WF,11 +WL,11)(WF,11 +WL,11 + zz′)−1]− d

}
−N1 ln

∣∣∣∣ 1N1

WF,11

∣∣∣∣−N2 ln

∣∣∣∣ 1N2

WL,11

∣∣∣∣ (2.2)

where

z =

√
N1N2

N
(x1F − x1L).

Remark 2.3. The test statistic for H obtained by Theorem 2.2 is independent of

x2j (j = 1, . . . , N1).

3 Distribution of the test statistic and its Bartlett’s type correction

This section derives the main result of this article, i.e., the Bartlett correction to

the MCAR testing based on two-step monotone sample assumed in Section 1. The

proof of this result relies heavily on the properties of the likelihood ratio test statistic

described in Section 2. In particular, by Lemma 2.1, we can assume that Σ = Ip

holds without loss of generality.

For simplicity, we consider the distribution of T obtained by replacing N1, N2

and N with n1 = N1 − 1, n2 = N2 − 1 and n = n1 + n2 in the coefficients of (2.2),

respectively:

T = z′
(
1

n
(WF,11 +WL,11 + zz′)

)−1

z + n

{
ln

∣∣∣∣1n(WF,11 +WL,11 + zz′)

∣∣∣∣
+ tr[(WF,11 +WL,11)(WF,11 +WL,11 + zz′)−1]− d

}
−n1ln

∣∣∣∣ 1n1

WF,11

∣∣∣∣− n2ln

∣∣∣∣ 1n2

WL,11

∣∣∣∣.
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Note thatWF,11 ∼ Wd(n1, Id),WL,11 ∼ Wd(n2, Id), z ∼ Nd(0, Id), which are mutually

independently distributed.

To obtain the asymptotic null distribution of T in a large-sample asymptotic

framework for two-step monotone sample:

n1, n2 → ∞, γg =
ng

n
→ cg ∈ (0, 1) (g = 1, 2), (3.1)

we rewrite the Wishart matrices with

Y1 = (y
(1)
ij ) =

√
n1

2
ln

(
1

n1

WF,11

)
, Y2 = (y

(2)
ij ) =

√
n2

2
ln

(
1

n2

WL,11

)
.

The natural logarithm of matrices is defined in Nagao (1973). Furthermore, the

symmetry of Y1 and Y2 holds by Lemma 2.1 of Nagao (1973). After some algebra,

we obtain

T = T0 +
1√
n
T1 +

1

n
T2 +

1

n
√
n
T3 +Op(n

−2),

where t0 = z′z + trY2 − trY2
1,

T1 = −
√
2z′Y1z +

√
2

3
trY3 −

√
2trY1Y2 +

2
√
2

3
trY3

1,

T2 = −z′Y2z − 1

2
(z′z)2 + 2z′Y2

1z +
1

6
trY4 −

1

2
trY2

2 −
2

3
trY1Y3 + 2trY2

1Y2 − trY4
1,

T3 is a homogeneous polynomial of degree 5 in terms of (z, Y1, Y2), and Yi =∑
g γ

1− i
2

g Y i
g for g = 1, 2 and i = 1, 2, 3, 4, The subscript g denotes the group of

missing patterns in
∑

runs 1–2. As z and Yi’s are independently distributed, the

characteristic function of T is given by

φ(t) ≡ E[exp(itT )] = E(Y1,Y2)[Ez [exp(itT )]].

The expectation with respect to z is described by the following formula:

Ez [exp(itT )] = (1− 2it)−
d
2

∫
Rd

exp(it{trY2 − trY2
1})
[
1 +

(it)√
n
T1

+
1

n

{
(it)T2 +

(it)2

2
T 2
1

}
+

1

n
√
n

{
(it)T3 + (it)2T1T2

+
(it)3

6
T 3
1

}
+Op(n

−2)

]
ϕ(z;0, (t)1Id)dz,
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where ϕ(u;η,Ξ) denotes the probability density function of u, which follows a mul-

tivariate normal distribution and takes parameters (η,Ξ), and (t)i = (1− 2it)−i.

Furthermore, using the results of Lemma 2 derived by Hyodo et al. (2015) and the

technique stated in Section 7 of Nagao (1973), and extending the results in Section

2 of Nagao (1973), the asymptotic probability density function of Yg (g = 1, 2) is

obtained as

c∗ · etr
[
1

2
(ng − d+ 1)

√
2

ng

Yg −
ng

2
e

√
2
ng

Yg

]
(3.2)

×
[
1 +

d− 1

2

√
2

ng

trYg +
1

12ng

{(3d2 − 6d+ 2)(trYg)
2 + dtrY 2

g }+Op(n
−2)

]
where c∗ is defined in formula (2.5) of Nagao (1973). The probability density function

of (Y1, Y2) is expressed as

E(Y1,Y2)[Ez [exp(itT )]] = (1− 2it)−
f
2

∫
Rd(d+1)

[
1 +

1√
n
A1 +

1

n
A2

+
1

n
√
n
A3 +Op(n

−2)

]
ϕ(y;0,Ψ)dy

where f = d(d+ 3)/2, y′ = (y′
1,y

′
2), y

′
g = (y

(g)
11 , . . . , y

(g)
pp , y

(g)
12 , . . . , y

(g)
p−1,p),

Ψ = Cov(y
(a)
ij , y

(b)
kℓ ) =

1

2
(δikδjℓ + δiℓδjk){(t)1(δab −

√
γaγb) +

√
γaγb},

A1 = (it)Ez [T1]−
√
2

6

∑
g

trY 3
g√
γg

,

A2 = − γ̃

24
d(2d2 + 3d− 1) +

p1
12

∑
g

trY 2
g

γg
− 1

12

∑
g

trY 4
g

γg
− 1

12

∑
g

(trYg)
2

γg

+
1

36

{∑
g

(trY 3
g )

2

γg
+

2(trY 3
1 )(trY

3
2 )√

γ1γ2

}

+(it)Ez [T2] + (it)Ez [T1]

(
−
√
2

6

∑
g

trY 3
g√
γg

)
+

(it)2

2
Ez [T

2
1 ],

A3 is the sum of the homogeneous polynomials of degrees 1, 3, 5, 7, and 9 in the

elements of (Y1, Y2), δij denotes the Kronecker delta, and γ̃ =
∑

g γ
−1
g .

The expectations of A1 and A3 can now be calculated using the following auxil-

iary lemma:
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Lemma 3.1. Suppose that z1, . . . , zs are i.i.d. copies of a random variable Z follow-

ing a distribution that satisfies E[zrj ] = 0 if r is an odd number and E[zrj ] ̸= 0 other-

wise, for j = 1, . . . , s and r ∈ N. Furthermore, for k ∈ N and ij ∈ N (j = 1, . . . , s),

we define the set of integer partitions of k:

Pk =

{
(i1, . . . , is)

∣∣∣∣ s∑
j=1

ij = k

}
and another set

Ek =

{
(i1, . . . , is)

∣∣∣∣E[ s∏
j=1

z
ij
j

]
= 0,

s∑
j=1

ij = k

}
.

Then, if k is odd, there exists Pk = Ek.

Proof: If all of the ij’s (j = 1, . . . , s) are even numbers, then k is clearly even also.

Note that E[
∏s

j=1 z
ij
j ] = 0 holds if and only if ij is odd for at least one j.

By Lemma 3.1, we have∫
Rd(d+1)

A1 · ϕ(y;0,Ψ)dy =

∫
Rd(d+1)

A3 · ϕ(y;0,Ψ)dy = 0.

Finally, after applying the moments of the multivariate normal random variables to

all terms inA2, we obtain the characteristic function φ(t) and the Bartlett correction

to T .

Theorem 3.2. Under the large-sample asymptotic framework stated in (3.1), the

characteristic function φ(t) is expanded as

φ(t) = (1− 2it)−
f
2

[
1− d

24n
c(γ̃){1− (1− 2it)−1}

]
+O(n−2),

where c(γ̃) = (2d2 + 3d− 1)(γ̃ − 1) + 6d.

Corollary 3.3. Under the large-sample asymptotic framework stated in (3.1), the

distribution function of

TB =

(
1− c(γ̃)

6n(d+ 3)

)
T

is expanded as Pr[TB ≤ x] = Pf (x) + O(n−2), where Pf (x) denotes the distribution

function of the chi-squared distribution with f degrees of freedom.
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Theorem 3.2 and Corollary 3.3 are completed in the Appendix. Finally, we

propose a test based on the Bartlett correction: reject H if TB > χ2
f (α), where

α is the significance level, and χ2
f (α) is the upper 100α% point of the chi-squared

distribution with f degrees of freedom. In the next section, we demonstrate that

TB better-controls the type I error than −2 lnΛ in a simulation study.

4 Simulation study

In this section, the superiority of our test statistic TB over T is demonstrated in

Monte Carlo simulations of type I error correction for selected parameter values.

For this purpose, we simulated the upper 100α% points of the test statistics T

and TB, denoted by T (α) and TB(α) respectively, under H. Here, T (α) and TB(α)

denote the ⌊r · α⌋-th largest value of T ’s and TB’s, respectively, in r replications.

The attained significant levels (ASLs) of the test statistics T and TB are respectively

defined by

ASLT (α) =
♯[T > χ2

f (α)]

r
, ASLB(α) =

♯[TB > χ2
f (α)]

r
.

For each case in all simulations, we set r = 1, 000, 000 and varied α as 0.1, 0.05 and

0.01 (corresponding to ⌊r · α⌋ = r · α = 100, 000, 50, 000 and 10, 000).

In our first simulation study, we set (p, d) = (4, 1), (4, 2), (4, 3), and assumed

equal sample sizes N1 = N2 = 10, 15, 20, 25. We evaluated the ASLB(α) and TB(α)

and compared them with ASLT (α) and T (α), respectively. The results are listed

in Tables 1–9. In all cases, our test statistic TB outperformed T . Furthermore, the

ASL of TB closely approximated α when the sample size is small. In particular, at

smaller dimensionalities d, our proposed test clearly performed better than the T

statistic.

In our next simulation study, we set (p, d) = (4, 2) and N = 50 and 100, with

N1/N2 = 1 and 1/4. The ASLB(α) and TB(α) were calculated similarly to the

first cases, and the results are listed in Tables 10–12. Again, our test statistic TB

consistently outperformed the T statistic. However, when the sample sizes were
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unbalanced, the performances of both test statistics were degraded relative to their

performances on equal sample sizes.

5 Conclusion

In this paper, we discussed the testing the statistical inference for the satisfaction

of Missing Completely At Random (MCAR). If the missing mechanism is MCAR,

we can apply statistical methods on the complete dataset after listwise deletion;

otherwise, we can apply simpler estimators based on pairwise deletion. Therefore,

MCAR plays a very important role in missing-data handling.

The classical MCAR test was derived by Little (1988), who considered a likeli-

hood ratio test statistic that asymptotically distributed as chi-squared distribution

under MCAR. However, approximate tests for MCAR perform poorly on small sam-

ple sizes. To resolve this problem, we proposed a Bartlett-type correction of the

likelihood ratio test proposed by Little (1988), and applied it to two-step monotone

missing data. Our proposed test drastically reduced the type I error without com-

puting a complicated critical value. Furthermore, in Monte Carlo simulations, the

size of the proposed test approximated the nominal significance level even for small

sample sizes.

In conclusion, we recommend our proposed test for two-step monotone missing

data. A test procedure based on the Bartlett-type correction will be developed for

general-monotone missing data in future study.
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A Proofs

A.1 Proof of Theorem 2.2

Applying the following formula:

Σ̃ =

(
Id O12

Σ̃′
12Σ̃

−1
11 Ip−d

)(
Σ̃11 O12

O21 Σ̃22·1

)(
Id Σ̃−1

11 Σ̃12

O21 Ip−d

)
, (A.1)

where Σ̃22·1 = Σ̃22 − Σ̃′
12Σ̃

−1
11 Σ̃12, and applying the formula stated in (A.1) to SF , we

have

− ln |SF |+ ln |Σ̃| = − ln

∣∣∣∣ 1N1

WF,11

∣∣∣∣+ ln

∣∣∣∣ 1N (WF,11 +WL,11 + zz′)

∣∣∣∣. (A.2)

Performing matrix inversion and Σ̃ decomposition, we also obtain

tr(SF Σ̃
−1) =

N

N1

tr[WF,11(WF,11 +WL,11 + zz′)−1] + (p− d), (A.3)

and

q = z′
(

1

N
(WF,11 +WL,11 + zz′)

)−1

z. (A.4)

Equations (A.2)–(A.4) complete the proof of Theorem 2.2.

A.2 Proofs of Theorem 3.2 and Corollary 3.3

To prove the theorem, we first define

J(Y1,Y2)[g(y)] =

∫
Rd(d+1)

g(y) · ϕ(y;0,Ψ)dy,

and

Jz [h(y, z)] =

∫
Rd

h(y,z) · ϕ(z;0, (t)1Id)dz,

where g(y) is a function of the elements of y and h(y,z) is a function of the elements

of Y1, Y2 and z.
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Using the result for multivariate normal random vectors, we obtain

J(Y1,Y2)

[∑
g

trY 2
g

γg

]
=

d

2
(d+ 1){(γ̃ − 2)(t)1 + 2},

J(Y1,Y2)

[∑
g

trY 4
g

γg

]
=

d

4
(2d2 + 5d+ 5){(γ̃ − 3)(t)2 + 2(t)1 + 1},

J(Y1,Y2)

[∑
g

(trYg)
2

γg

]
= d{(γ̃ − 2)(t)1 + 2},

J(Y1,Y2)

[∑
g

(trY 3
g )

2

γg
+

2(trY 3
1 )(trY

3
2 )√

γ1γ2

]
=

3

4
d(4d2 + 9d+ 7)[(γ̃ − 4)(t)3 + 3(t)2 + 1]

+
9

2
d(d+ 1)2{−(t)2 + (t)1}.

Therefore, we have

J(Y1,Y2)

[
d

12

∑
g

trY 2
g

γg
− 1

12

∑
g

trY 4
g

γg
− 1

12

∑
g

(trYg)
2

γg

+
1

36

{∑
g

(trY 3
g )

2

γg
+

2(trY 3
1 )(trY

3
2 )√

γ1γ2

}]
=

d

48
(4d2 + 9d+ 7)(γ̃ − 4)(t)3 −

d

48
(2d2 + 5d+ 5)(γ̃ − 6)(t)2

+
d

24
(d− 1)(d+ 2)(γ̃ − 1)(t)1 +

d

24
(3d2 + 4d− 3). (A.5)

By Lemma 2 of Hyodo et al. (2015), we also have

Jz [T2] = −(t)1tr

(∑
g

Y 2
g

)
− 1

2
p1(p1 + 2)(t)2 + 2(t)1tr

[(∑
g

√
γgYg

)2]

+
1

6
tr

(∑
g

1

γg
Y 4
g

)
− 1

2
tr

[(∑
g

Y 2
g

)2]
− 2

3
tr

[(∑
g

√
γgYg

)(∑
g

1
√
γg

Y 3
g

)]

+2tr

[(∑
g

√
γgYg

)2(∑
g

Y 2
g

)]
− tr

[(∑
g

√
γgYg

)4]
.
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As the folowing relationships hold

J(Y1,Y2)

[
tr

[∑
g

Y 2
g

]]
=

d

2
(d+ 1){(t)1 + 1},

J(Y1,Y2)

[
tr

[(∑
g

√
γgYg

)2]]
=

d

2
(d+ 1), (A.6)

J(Y1,Y2)

[
tr

[∑
g

1

γg
Y 4
g

]]
=

d

4
(2d2 + 5d+ 5){(γ̃ − 3)(t)2 + 2(t)1 + 1},

J(Y1,Y2)

[
tr

[(∑
g

Y 2
g

)2]]
=

d

4
(2d2 + 5d+ 5){(t)2 + 1}+ d

2
(d+ 1)2(t)1,

J(Y1,Y2)

[
tr

[(∑
g

√
γgYg

)(∑
g

1
√
γg

Y 3
g

)]]
=

d

4
(2d2 + 5d+ 5){(t)1 + 1},

J(Y1,Y2)

[
tr

[(∑
g

√
γgYg

)2(∑
g

Y 2
g

)]]
=

d

4
(2d2 + 5d+ 5) +

d

4
(d+ 1)2(t)1,

J(Y1,Y2)

[
tr

[(∑
g

√
γgYg

)4]]
=

d

4
(2d2 + 5d+ 5),

we can write

J(Y1,Y2)[Jz [T2]] =

[
d

24
(2d2 + 5d+ 5)(γ̃ − 6)− d

2
(2d+ 3)

]
(t)2

+

[
− d

12
(2d2 + 5d+ 5) +

d

4
(d+ 1)(d+ 3)

]
(t)1. (A.7)

Further, by Lemma 2 of Hyodo et al. (2015), we can write

Jz [T1] = −
√
2(t)1tr

(∑
g

√
γgYg

)
+

√
2

3
tr

(∑
g

Y 3
g√
γg

)

−
√
2tr

[(∑
g

√
γgYg

)(∑
g

Y 2
g

)]
+

2
√
2

3
tr

[(∑
g

√
γgYg

)3]
,

moreover, from

J(Y1,Y2)

[
tr

(∑
g

1
√
γg

Y 3
g

)
tr

(∑
g

√
γgYg

)]
=

3

2
d(d+ 1){(t)1 + 1}, (A.8)

J(Y1,Y2)

[[
tr

(∑
g

1
√
γg

Y 3
g

)]2]
=

3

4
d(4d2 + 9d+ 7){(γ̃ − 4)(t)3 + 3(t)2 + 1}

+
9

2
d(d+ 1)2{−(t)2 + (t)1}, (A.9)
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J(Y1,Y2)

[
tr

(∑
g

1
√
γg

Y 3
g

)
tr

[(∑
g

√
γgYg

)(∑
g

Y 2
g

)]]
=

3

4
d(4d2 + 9d+ 7){(t)2 + 1}

+
3

2
d(d+ 1)2

×{−(t)2 + 2(t)1}, (A.10)

J(Y1,Y2)

[
tr

(∑
g

1
√
γg

Y 3
g

)
tr

[(∑
g

√
γgYg

)3]]
=

3

4
d(4d2 + 9d+ 7)

+
9

4
d(d+ 1)2(t)1, (A.11)

we obtain

J(Y1,Y2)

[
Jz [T1]

(
−
√
2

6

∑
g

trY 3
g√
γg

)]
= −p1

12
(4d2 + 9d+ 7)(γ̃ − 4)(t)3 (A.12)

+
d

2
(d+ 1){(t)2 + (t)1}.

Furthermore, again by Lemma 2 of Hyodo et al. (2015), we have
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1

2
T 2
1

]
= (t)2

[
tr

(∑
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√
γgYg

)]2
+ 2(t)2tr
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√
γgYg

)2]
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[
tr

(∑
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Y 3
g√
γg
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[
tr

[(∑
g

√
γgYg

)(∑
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Y 2
g
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9
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tr
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γgYg

)3]]2
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(t)1tr

(∑
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γgYg
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Y 3
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)(∑
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g
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γgYg
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γgYg

)(∑
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g
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Y 3
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γgYg

)3]

−4

3
tr

[(∑
g

√
γgYg

)(∑
g

Y 2
g

)]
tr

[(∑
g

√
γgYg
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Along with (A.6) and (A.8)–(A.11), the following relationships hold:

J(Y1,Y2)

[[
tr

(∑
g

√
γgYg

)]2]
= d,

J(Y1,Y2)

[{
tr

[(∑
g

√
γgYg

)(∑
g

Y 2
g

)]}2]
=

3

4
d(4d2 + 9d+ 7)

+
d

4
(2d2 + 5d+ 5)(t)2

+
3

2
d(d+ 1)2(t)1,

J(Y1,Y2)

[{
tr

[(∑
g

√
γgYg

)3]}2]
=

3

4
d(4d2 + 9d+ 7),

J(Y1,Y2)

[
tr

[∑
g

√
γgYg

]
tr

[(∑
g

√
γgYg

)(∑
g

Y 2
g

)]]
=

3

2
d(d+ 1) +

d

2
(d+ 1)(t)1,

J(Y1,Y2)

[
tr

[∑
g

√
γgYg

]
tr

[(∑
g

√
γgYg

)3]]
=

3

2
d(d+ 1),

J(Y1,Y2)

[
tr

[(∑
g

√
γgYg

)(∑
g

Y 2
g

)]
tr

[(∑
g

√
γgYg

)3]]
=

3

4
d(4d2 + 9d+ 7)

+
3

4
d(d+ 1)2(t)1

and therefore

J(Y1,Y2)

[
Jz

[
T 2
1

2

]]
=

d

12
(4d2 + 9d+ 7)(γ̃ − 4)(t)3 + d(d+ 2)(t)2. (A.13)

Combining (A.5), (A.7), (A.12) and (A.13) completes the proof of Theorem 3.2.

The result of Corollary 3.3 is easily derived from Theorem 3.2 by a method similar

to Fujikoshi et al. (2010).
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Table 1: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 1) and
α = 0.1 (χ2

f (α) = 4.605).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 6.483 4.602 0.187 0.100
15 15 5.547 4.601 0.147 0.100
20 20 5.237 4.605 0.132 0.100
25 25 5.075 4.598 0.124 0.100

Table 2: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 1) and
α = 0.05 (χ2

f (α) = 5.991).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 8.710 5.989 0.118 0.050
15 15 7.273 5.984 0.084 0.050
20 20 6.837 5.992 0.072 0.050
25 25 6.618 5.983 0.066 0.050

Table 3: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 1) and
α = 0.01 (χ2

f (α) = 9.210).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 14.996 9.203 0.043 0.010
15 15 11.480 9.196 0.023 0.010
20 20 10.571 9.182 0.018 0.010
25 25 10.199 9.183 0.016 0.010
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Table 4: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 2) and
α = 0.1 (χ2

f (α) = 9.236).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 12.954 9.235 0.239 0.100
15 15 11.142 9.239 0.174 0.100
20 20 10.527 9.240 0.150 0.100
25 25 10.228 9.245 0.138 0.100

Table 5: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 2) and
α = 0.05 (χ2

f (α) = 11.071).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 15.947 11.085 0.156 0.050
15 15 13.434 11.086 0.102 0.050
20 20 12.647 11.075 0.084 0.050
25 25 12.267 11.078 0.075 0.050

Table 6: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 2) and
α = 0.01 (χ2

f (α) = 15.086).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 23.956 15.099 0.061 0.010
15 15 18.609 15.074 0.030 0.010
20 20 17.337 15.085 0.022 0.010
25 25 16.815 15.116 0.018 0.010

Table 7: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 3) and
α = 0.1 (χ2

f (α) = 14.684).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 20.662 14.811 0.301 0.104
15 15 17.913 14.747 0.209 0.102
20 20 16.906 14.713 0.173 0.101
25 25 16.358 14.679 0.154 0.100
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Table 8: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 3) and
α = 0.05 (χ2

f (α) = 16.919).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 24.166 17.068 0.203 0.052
15 15 20.716 16.997 0.127 0.051
20 20 19.502 16.951 0.100 0.051
25 25 18.852 16.912 0.086 0.050

Table 9: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 3) and
α = 0.01 (χ2

f (α) = 21.686).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
10 10 32.867 21.898 0.082 0.011
15 15 26.759 21.757 0.039 0.010
20 20 25.011 21.676 0.027 0.010
25 25 24.194 21.669 0.022 0.010

Table 10: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 2) and
α = 0.1 (χ2

f (α) = 9.236).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
25 25 10.228 9.245 0.138 0.100
10 40 10.850 9.274 0.163 0.101
50 50 9.673 9.227 0.116 0.100
20 80 9.932 9.251 0.127 0.101

Table 11: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 2) and
α = 0.05 (χ2

f (α) = 11.071).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
25 25 12.267 11.078 0.075 0.050
10 40 13.037 11.107 0.094 0.051
50 50 11.596 11.055 0.060 0.050
20 80 11.896 11.088 0.067 0.050
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Table 12: Simulated upper percentiles and ASLs of T and TB for (p, d) = (4, 2) and
α = 0.01 (χ2

f (α) = 15.086).

N1 N2 T (α) TB(α) ASLT (α) ASLB(α)
25 25 16.815 15.116 0.018 0.010
10 40 17.912 15.152 0.025 0.010
50 50 15.859 15.112 0.013 0.010
20 80 16.234 15.099 0.015 0.010
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