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Abstract

This paper presents reference priors for non-regular model whose support depends on an unknown

parameter. A multi-parameter family which includes both regular and non-regular structures is con-

sidered. The resulting priors are obtained by asymptotically maximizing the expected α-divergence

between the prior and the corresponding posterior distribution. Some examples of reference priors

for typical multi-parameter non-regular distributions such as the location-scale family of distribu-

tions and the truncated Weibull distribution are also given.
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1. Introduction

In Bayesian inference, when there is no prior information, we often begin inference by using

objective priors such as non-informative or default priors. Then we are often faced with a problem

of the selection of objective prior in a given context. One of the most widely used objective priors

is the Jeffreys prior proposed by Jeffreys (1961). The Jeffreys prior is proportional to the positive

square root of the Fisher information function in one-dimensional case. On the other hand, the

reference prior was proposed by Bernardo (1979) and was extended by Berger and Bernardo (1989)

in the presence of nuisance parameters. The reference prior is defined by maximizing the Kullback-

Leibler (KL) divergence between the prior and the posterior under some regularity conditions.

This prior maximizes the expected posterior information to the prior, i.e., the prior is the ‘least

informative’ prior in some aspects. In the context of the reference priors, Ghosh et al. (2011)

derives the priors which asymptotically maximize a more general divergence measure (called the

α-divergence) between the prior and the corresponding posterior under some regularity conditions.

We note that the α-divergence smoothly connected the KL divergence (α → 0), the reverse KL

divergence (α → 1), the squared Bhattacharyya-Hellinger divergence (α = 1/2) and the chi-square

divergence (α = −1) (see e.g. Amari (1982) and Cressie and Read (1984)). Recently, Liu et

al. (2014) extends the result of Ghosh et al. (2011) to a multi-parameter model with or without

nuisance parameters for regular parametric family. Beside the prior selection problem, statistical

inference and prediction based on the α-divergence have been also developed in recent years (see
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e.g. (Corcuera and Giummolè, 1999; Ghosh et al., 2008; Ghosh and Mergel, 2009; Maruyama et al.,

2019).

However, Ghosh et al. (2011) and Liu et al. (2014) deal with the regular parametric models and

these results are not applied for non-regular cases whose supports of the density depend on unknown

parameter. For example, the uniform and shifted exponential distributions have the parameter

dependent supports and such non-regular distributions are also important in applications. For

examples, the auction and search models in structural econometric models have a jump in the density

and the jump is very informative about the parameters (e.g. Chernozhukov and Hong (2004)). In

such non-regular cases, for example, the asymptotic normality of the posterior distribution does not

hold (Ghosal and Samanta (1995)). Ghosal and Samanta (1997) shows the prior which maximizes

the KL divergence for a non-regular one-parameter family of distributions. In non-regular case, the

prior which is different from the Jeffreys prior is derived. For a multi-parameter case, Ghosal (1997)

gives the reference prior based on the KL divergence for multi-parameter non-regular model from

the perspective of information theory. As related results, Ghosal (1999) also derives probability

matching priors and Hashimoto (2019) derives moment matching priors for the same non-regular

model as that of Ghosal (1997).

In this paper, we consider a certain multi-parameter family of distributions P = {f(·; θ, φ) | θ ∈
Θ, φ ∈ Φ} which includes both regular and non-regular structures. In other words, this model is

regular with respect to φ for fixed θ, and is non-regular with respect to θ for fixed φ. In this paper,

we call θ and φ, respectively. For example, the shifted exponential distribution with the density

function f(x; θ, φ) = φ−1e−(x−θ)/φ (x > θ, φ > 0) belongs to this family of distributions. For such

model, the reference priors based on the expected α-divergence for α < 1 are derived by using the

higher order asymptotic expansion for the posterior distribution. The results in this paper are a

kind of generalizations of the result in Ghosal (1997) which is used the expected KL divergence. The

resulting reference priors are different forms from Ghosal (1997) except for α = 0. However, in the

location-scale family (see Example 1), if θ is the parameter of interest, the reference prior for (θ, φ)

is the same as Ghosal (1997)’s one which is the right invariant Haar measure when −1 < α < 0

and 0 < α < 1. In other words, in this case, our prior has loss-robustness for −1 < α < 1. On the

other hand, if φ is the parameter of interest, the resulting prior for (θ, φ) is not same as that of

Ghosal (1997), that is, our prior does not have loss-robustness for −1 < α < 1 in such case. This is

very interesting phenomenon. Furthermore, for α = −1, that is, the chi-square divergence, we also

derive a new reference prior when φ is the parameter of interest.

This paper organizes as follows: in Section 2, we introduce the higher order asymptotic repre-

sentations for posterior density in non-regular case and the definition of the maximum α-divergence

prior in the presence of a nuisance parameter. In Section 3, we derive the marginal reference priors

for the non-regular parameter θ in the presence of the regular nuisance parameter φ for −1 < α < 1.

It is also shown that there is generally no reference prior for α ≤ −1. In a similar way, we derive

the marginal reference prior for the regular parameter φ in the presence of the non-regular nui-

sance parameter θ for −1 < α < 1. It is also shown that there is generally no reference prior for

α < −1. Further, we give the explicit form of the marginal reference prior for φ in the case of

α = −1. Overall reference priors for (θ, φ) are calculated by using Berger and Bernardo (1989)’s

algorithm (for details, see Subsection 2.2). As examples, we show the reference priors in the case of
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the (non-regular) location-scale family of distributions and the truncated Weibull distribution with

known shape parameter.

2. Assumptions and formulations

2.1. Setting

In this paper, we consider the same family of non-regular distributions as that of Ghosal (1997)

and Ghosal (1999). Let X1, . . . , Xn be independent and identically distributed (i.i.d.) observations

from a density f(x; θ, φ) (θ ∈ Θ ⊂ R, φ ∈ Φ ⊂ R) with respect to the Lebesgue measure, where Θ

and Φ are parameter spaces of θ and φ, respectively. For simplicity, we consider a scalar θ and φ,

respectively. When φ is vector-value, we may also consider in the same manner. We assume that for

all θ ∈ Θ and φ ∈ Φ, f(x; θ, φ) is strictly positive and forth times differentiable in θ and φ on a closed

interval S(θ) := [a1(θ), a2(θ)] depending only on unknown parameter θ and is zero outside S(θ).

Namely, θ is a non-regular parameter and φ is a regular parameter. For example, the two-parameter

shifted exponential distribution which has a truncation parameter θ and a scale parameter φ belongs

to this family. Note that for a given θ, the family of distributions P = {f(·; θ, φ) | θ ∈ Θ, φ ∈ Φ} is

regular with respect to φ. It is permitted that one of the endpoints is free from θ and may be plus

or minus infinity. We assume that the endpoints a1(θ) and a2(θ) of the support are continuously

differentiable functions of θ. Let π(θ, φ) be the joint prior density of (θ, φ), and π(θ) and π(φ) be

marginal prior densities of θ and φ, respectively. We assume that the prior density π(θ, φ) is three

times continuously differentiable in a neighborhood of (θ, φ). Further, we assume the conditions

which ensure the validity of the second order asymptotic expansion of the posterior distribution

such as Ghosal (1999).

In order to have a limit of the posterior distributions, Ghosh et al. (1994) show that it is necessary

that the set S(θ) is either increasing or decreasing in θ, that is, S(θ) satisfies either S(θ) ⊆ S(θ+ ε)

for ε > 0 or S(θ) ⊆ S(θ + ε) for ε < 0, respectively. For this reason, we may assume S(θ) is

decreasing without loss of generality. Indeed, the case where S(θ) increases with θ may be reduced

to the case where S(θ) decreases by the reparametrization θ 7→ (−θ). As an example of family with

non-monotone support, one directed family of distribution is discussed by Akahira and Takeuchi

(1987). For such family of distributions, the reference priors are discussed by Berger et al. (2009) and

Wang and Sun (2012). However, we do not deal with such distributions in this paper. When S(θ) is

decreasing, the set {a1(θ) ≤ Xi ≤ a2(θ), i = 1, 2, . . . , n} can be expressed as {θ̂n(X1, . . . , Xn) ≥ θ}
where θ̂n := min{a−1

1 (X(1)), a
−1
2 (X(n))}, X(1) := min1≤i≤nXi and X(n) := max1≤i≤nXi. If a1 does

not depend on θ, then we interpret the above θ̂n as a−1
2 (X(n)) while it is interpreted as a−1

1 (X(1)) if

a2 does not depend on θ. We note that θ̂n − θ = Op(n
−1) (n → ∞). Hereafter, we omit “n → ∞”

for simplicity. Let φ̂n be a solution of the the modified likelihood equation

n∑
i=1

∂

∂φ
log f(Xi; θ̂n, φ̂n) = 0.

Smith (1985) showed the consistency for the special case when θ is a location parameter, but the

argument can easily be generalized. Hence, we may assume that (θ̂n, φ̂n) is consistent estimator of
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(θ, φ). We put

σ :=
1

n

n∑
i=1

∂

∂θ
log f(Xi; θ̂n, φ̂n), b2 := −

n∑
i=1

∂2

∂φ2
log f(Xi; θ̂n, φ̂n)

and we note that σ → c(θ, φ) and b2 → λ2(θ, φ) almost surely, where

c(θ, φ) := E

[
∂

∂θ
log f(X1; θ, φ)

]
, λ2(θ, φ) := E

[
− ∂2

∂φ2
log f(X1; θ, φ)

]
.

When S(θ) is monotone decreasing, we can show that c(θ, φ) > 0. Hereafter, we may assume that

c(θ, φ) > 0. Let u := nσ(θ − θ̂n) and v :=
√
nb(φ − φ̂n) be normalized random variables of θ

and φ, respectively. From Appendix in Ghosal (1999) the joint posterior density of (u, v) given

X = (X1, . . . , Xn) has the asymptotic expansion up to the order O(n−3/2)

π(u, v|X) =
1√
2π

eu−(v2/2)

{
1 +

1√
n
D1(u, v) +

1

n
D2(u, v) +O

(
n−3/2

)}
(1)

for u < 0, where

D1(u, v) =
π̂01
π̂00b

v +
2a11
σb

uv +
a03
b3

v3,

D2(u, v) =
π̂10
π̂00σ

(u+ 1) +
π̂02

2π̂00b2
(v2 − 1) +

a20
σ2

(u2 − 2)

+
2(π̂01/π̂00)a11 + 3a12

σb2
(uv2 + 1) +

π̂01a03
π̂00b4

(v4 − 3)

+
2a211
σ2b2

(u2v2 − 2) +
2a11a03
σb4

(uv4 + 3) +
a203
b6

(v6 − 15)

with

π̂rs =
∂r+s

∂θr∂φs
π(θ̂n, φ̂n), ars =

1

(r + s)!n

n∑
i=1

∂r+s

∂θr∂φs
log f(Xi; θ̂n, φ̂n)

for r, s = 0, 1, 2, . . . , and note that ars → Ars(θ, φ) almost surely, where

Ars(θ, φ) =
1

(r + s)!n
E

[
∂r+s

∂θr∂φs
log f(X1; θ, φ)

]
for r, s = 0, 1, 2, . . . . Note that σ = a10 and b2 = −2a02. From (1) we can find that the ran-

dom variables u and v are the first order asymptotic independent and their first order asymptotic

marginal posterior distributions are the exponential and the normal distributions, respectively (see

also Ghosal and Samanta (1995)). From (1) we can obtain the second order asymptotic marginal

posterior densities π(u|X) and π(v|X). The second order asymptotic marginal posterior density of
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u is given by

π(u|X) =

∫
π(u, v|X)dv

=eu

[
1 +

1

n

{(
π̂10
π̂00σ

+
2(π̂01/π̂00)a11 + 3a12

σb2
+

6a11a03
σb4

)
(u+ 1)

+

(
a20
σ2

+
2a211
σ2b2

)
(u2 − 2)

}
+O

(
n−2

) ]
(2)

for u < 0, while that of v is given by

π(v|X) =

∫
π(u, v|X)du

=
1√
2π

e−v2/2

[
1 +

1√
n

{(
π̂01
π̂00b

− 2a11
σb

)
v +

a03
b3

v3

}

+
1

n

{(
π̂02

2π̂00b2
− 2(π̂01/π̂00)a11 + 3a12

σb2
+

4a211
σ2b2

)
(v2 − 1)

+

(
π̂01a03
π̂00b4

− 2a11a03
σb4

)
(v4 − 3) +

a203
b6

(v6 − 15)

}
+O

(
n−3/2

)]
.

(3)

2.2. Reference prior as a maximizer of the expected divergence

As we mentioned in Section 1, the reference prior was firstly proposed by Bernardo (1979).

The reference prior is defined by maximizing the expected KL divergence between the prior and

the corresponding posterior under some regularity conditions. Clarke and Barron (1994) showed a

rigorous proof of the derivation of reference priors from the perspective of information theory (see

also Ghosal and Samanta (1997)). Now, we define the reference prior in the sense of Berger and

Bernardo (1989) under a more general divergence measure.

For simplicity, we consider the two-parameter model f(x; θ), where θ = (θ1, θ2) ∈ Θ1×Θ2 ⊂ R2.

We assume that θ1 is a parameter of interest and θ2 is a nuisance parameter. Let π(θ) = π(θ1, θ2) =

π(θ2|θ1)π(θ1) be a joint prior density of θ = (θ1, θ2). Then the reference prior with a general

divergence is defined by the following (see also Liu et al. (2014)).

Definition 1. When the conditional prior π(θ2|θ1) is chosen as a reasonable prior on a compact

subset of Θ2, the marginal reference prior for θ1 with a general divergence is define by

π(θ1) = argmax
π(θ1)

∫
D (π(θ1), π(θ1|x))m(x)dx, (4)

where D(π(·), π(·|x)) is a divergence measure between the prior π(θ1) and the corresponding posterior

π(θ1|x), and m(x) is the marginal density of X = (X1, . . . , Xn) with respect to the joint prior

π(θ) = π(θ1, θ2).

The reference prior for (θ, φ) is given by the following algorithm by Berger and Bernardo (1989).

1. Choose the reference prior for θ2 given θ1 as π∗(θ2|θ1).
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2. Choose a sequence Θ2,1 ⊂ Θ2,2 ⊂ · · · of compact subsets of Θ2 such that ∪∞
l=1Θ2,l = Θ2.

3. Set Kl(θ1) =
(∫

Θ2,l
π∗(θ2|θ1)dθ2

)−1
and pl(θ2|θ1) = Kl(θ1)π

∗(θ2|θ1)1{θ2 ∈ Θ2,l}.
4. The marginal reference prior for θ1 at stage l is calculated by using (4):

π∗
l (θ1) = argmax

π(θ1)

∫
D (π(θ1), πl(θ1|x))ml(x)dx,

where ml(x) =
∫
Θ1×Θ2,l

f(x|θ1, θ2)π(θ1)pl(θ2|θ1)dθ1dθ2 and

πl(θ1|x) =
∫
Θ2,l

πl(θ1, θ2|x)dθ2 =
∫
Θ2,l

f(x|θ1, θ2)π(θ1)pl(θ2|θ1)
ml(x)

dθ2.

5. Let θ0,1 be a fixed point in Θ1. The reference prior for (θ1, θ2) with a nuisance θ2 is obtained

by

π∗(θ1, θ2) = lim
l→∞

(
Kl(θ1)π

∗
l (θ1)

Kl(θ0,1)π
∗
l (θ0,1)

)
π∗(θ2|θ1),

provided the limit exists.

We note that the bigger the divergence between prior and posterior is, the less information in

a prior is. In this paper, we consider the α-divergence which includes the KL divergence (Amari,

1982; Cressie and Read, 1984). The α-divergence between the prior and the posterior is defined by

Dα(π(·), π(·|X)) :=
1−

∫
πα(θ1)π

1−α(θ1|x)dθ1
α(1− α)

(5)

for α ∈ R \ {0, 1} and θ1 ∈ Θ1 ⊂ R. Then the expected α-divergence between the prior and the

posterior is defined by the following functional

Rα(π) :=

∫
Dα(π(·), π(·|X))m(x)dx =

1−
∫
[
∫
πα(θ1)π

1−α(θ1|x)dθ1]m(x)dx

α(1− α)
, (6)

where m(x) is the marginal density of X = (X1, . . . , Xn) with respect to the joint prior π(θ) =

π(θ1, θ2) (see Ghosh et al. (2011), Liu et al. (2014)). Note that the α-divergence smoothly connects

the KL divergence (α → 0), the reverse KL divergence (α → 1), the squared Bhattacharyya-

Hellinger divergence (α = 1/2), and the chi-square divergence (α = −1). Let Ln(θ1) be the

likelihood function of the parameter θ1. From the relation π(θ1|x)m(x) = Ln(θ1)π(θ1) we can

express as

Rα(π) =
1−

∫∫
πα+1(θ1)π

−α(θ1|x)Ln(θ1)dxdθ1
α(1− α)

=
1−

∫
πα+1(θ1)Eθ1 [π

−α(θ1|X)]dθ1
α(1− α)

, (7)

where Eθ1 denotes the conditional expectation of X given θ1. In Section 3 and 3.3, we derive the

reference priors which maximize (7) for the multi-parameter non-regular family of distributions P.

Hereafter, we assume α < 1 for some technical reasons described later.
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3. Reference priors via α-divergence

We consider the two-parameter model f(x; θ, φ) which includes both regular parameter φ and

non-regular parameter θ defined in the previous section.

3.1. Reference priors for the non-regular parameter in the presence of the regular nuisance parameter

In this subsection, we assume that θ is the parameter of interest and φ is the nuisance parameter.

We derive the marginal reference prior for θ under the α-divergence in the sense of Berger and

Bernardo (1989). First of all, we note that the joint prior density π(θ, φ) is rewritten by π(θ, φ) =

π(φ|θ)π(θ). In the first step, we assign the conditional Jeffreys prior π(φ|θ) ∝
√

λ2(θ, φ) on a

compact subset of Φ to the parameter φ given θ (Ghosh et al. (2011)). Then we may maximize the

following functional with respect to π

Rα(π) =
1−

∫
πα+1(θ)Eθ[π

−α(θ|X)]dθ

α(1− α)
, (8)

where Eθ denotes the conditional expectation of X = (X1, . . . , Xn) given θ. In order to derive the

prior which maximizes the expected α-divergence, we may calculate the expectation Eθ[π
−α(θ|X)].

Since the exact calculation of this expectation is not easy, we consider the asymptotic approximation

of Eθ[π
−α(θ|X)] by using the first order asymptotic representation of the marginal posterior density

of θ in (1). Here, we use the computation method called the shrinkage argument which is a Bayesian

approach for frequentist computations (see Ghosh (1994), Datta and Mukerjee (2004)). Then we

have the following lemma.

Lemma 1. For α < 1, the second order asymptotic approximation of Eθ[π
−α(θ|X)] is given by

Eθ

[
π−α(θ|X)

]
=n−α

∫
c(θ, φ)−α

1− α

[
1 +

1

n

{
α2

1− α

(∂/∂θ)π(θ, φ)

π(θ, φ)

1

c(θ, φ)

+
2α2

1− α

A11(θ, φ)

c(θ, φ)λ2(θ, φ)

(∂/∂φ)π(θ, φ)

π(θ, φ)
+ S(θ, φ)

}
+O(n−2)

]
π(φ|θ)dφ, (9)

where S(θ, φ) is some continuous function which does not depend on the prior density π(θ), and

π(φ|θ) ∝
√
λ2(θ, φ) is the conditional Jeffreys prior for φ given θ on a compact subset of Φ.

The proof of Lemma 1 is given in Section 4. We note that the equation (9) does not hold for

α ≥ 1 as is evident from the right-hand-side expression in (9). For α < 1, we have the following

theorem.

Theorem 1. The marginal reference priors for θ in the presence of the nuisance parameter φ are

given by

π(θ) ∝


(∫

c−α(θ, φ)π(φ|θ)dφ
)−1/α

(−1 < α < 0, 0 < α < 1),

exp

(∫
log c(θ, φ)π(φ|θ)dφ

)
(α = 0),

(10)

while the marginal reference priors for θ generally do not exist for α ≤ −1.
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The proof of Theorem 1 is given in Section 4.

Remark 1. When α = 0 in Theorem 1, we may interpret α → 0 as α = 0 because the expectation

(9) is not defined for α = 0. In this case, the α-divergence corresponds to the KL divergence. Note

that the marginal reference prior (10) for α = 0 is the same as the marginal reference prior based

on the expected KL divergence in Ghosal (1997). As a related result, Ghosal (1999) derive the

probability matching prior with θ as the parameter of interest is given by

π(θ) ∝
(∫

c−1(θ, φ)π(φ|θ)dφ
)−1

. (11)

We note that the prior (11) is slightly different from the maximum KL divergence prior (10) for

α = 0.

3.2. Reference priors for the regular parameter in the presence of the non-regular nuisance parameter

Next, we consider the case where the regular parameter φ is assumed to be more interest than

the non-regular parameter θ, that is, we assume that φ is the parameter of interest and θ is the

nuisance parameter. In a similar way to Subsection 3.1, we derive marginal reference priors for φ

based on the maximization of the expected α-divergence. The joint prior density can be written

by π(θ, φ) = π(θ|φ)π(φ). Since the conditional prior density π(θ|φ) is a function of θ for fixed φ,

we use the conditional prior density π(θ|φ) ∝ c(θ, φ) on a compact subset of Θ (see Ghosal and

Samanta (1997)). Note that this prior is known as a non-informative prior for non-regular case.

If S(θ) is monotone increasing, then we may put π(θ|φ) ∝ |c(θ, φ)| because c(θ, φ) < 0 in such

case. Having fixed this conditional prior, marginal reference priors for φ is given by maximizing the

following expected α-divergence

Rα(π) =
1−

∫
πα+1(φ)Eφ[π

−α(φ|X)]dφ

α(1− α)
, (12)

where Eφ denotes the conditional expectation of X = (X1, . . . , Xn) given φ. In order to derive the

prior which maximizes (12), we give the second order asymptotic approximation of Eφ[π
−α(φ|X)]

by using the shrinkage argument in a similar way to Subsection 3.1.
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Lemma 2. For α < 1, the second order asymptotic approximation of Eφ[π
−α(φ|X)] is given by

Eφ

[
π−α(φ|X)

]
=n−α/2

[∫
Bα(θ, φ)π(θ|φ)dθ

+
1

n

{
− α2

1− α

(
πφφ(φ)

π(φ)
H

(α)
1 (φ) +

πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)
− 3α2(2− α)

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
+

α(α+ 1)

(1− α)

((
πφ(φ)

π(φ)

)2

H
(α)
1 (φ) +

πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)

+
3α(α+ 1)

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
− α

1− α

(
− 2

πφφ(φ)

π(φ)
H

(α)
2 (φ)− 2

πφ(φ)

π(φ)
H

(α)
2,φ (φ) + 2

(
πφ(φ)

π(φ)

)2

H
(α)
2 (φ)

+
πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)

− 3α

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
+ S(φ)

}
+O(n−2)

]
,

(13)

where S(φ) is a continuous function, not involving π(φ), Bα(θ, φ) := ((2π)α/2λ−α(θ, φ))/
√
1− α,

H
(α)
1 (φ) :=

∫
Bα(θ, φ)

2λ2(θ, φ)
π(θ|φ)dθ,

H
(α)
2 (φ) :=

∫
Bα(θ, φ)

λ2(θ, φ)

πφ(θ|φ)
π(θ|φ)

π(θ|φ)dθ,

H
(α)
3 (φ) :=

∫
2A11(θ, φ)Bα(θ, φ)

c(θ, φ)λ2(θ, φ)
π(θ|φ)dθ,

H
(α)
4 (φ) :=

∫
A03(θ, φ)Bα(θ, φ)

λ4(θ, φ)
π(θ|φ)dθ,

and H
(α)
2,φ (φ) = (∂/∂φ)H

(α)
2 (φ), and π(θ|φ) ∝ c(θ, φ) is the conditional prior for θ given φ on a

compact subset of Θ.

The proof of Lemma 2 is given in Section 4. As we mentioned in Subsection 3.1, we note that

the equation (2) does not hold for α ≥ 1 as is evident from the right-hand-side expression in (2).

For α < 1 and α 6= −1, we have the following theorem.

Theorem 2. The marginal reference priors for φ in the presence of the nuisance parameter θ are

9



given by

π(φ) ∝


(∫

λ−α(θ, φ)π(θ|φ)dθ
)−1/α

(−1 < α < 0, 0 < α < 1),

exp

(∫
log λ(θ, φ)π(θ|φ)dθ

)
(α = 0),

(14)

while the marginal reference priors for φ generally does not exist for α < −1.

The proof of Theorem 2 is omitted since it is similar to that of Theorem 1 in Subsection 3.1.

Remark 2. Note that the marginal reference prior (14) for α = 0 is the same as the marginal

reference prior under the expected KL divergence in Ghosal (1997). As a related result, Ghosal

(1999) derive the probability matching prior with φ as the parameter of interest, given by

π(φ) ∝
(∫

λ−1(θ, φ)π(θ|φ)dθ
)−1

. (15)

Next, we consider the case α = −1. In this case, the α-divergence corresponds to the chi-square

divergence. We note that the reference priors which maximizes the expected chi-square divergence

are also discussed by Clarke and Sun (1997), Ghosh et al. (2011) and Liu et al. (2014) for regular

parametric family.

Putting α = −1 in (13), we have

Eφ [π(φ|X)]

=n1/2

[∫
B−1(θ, φ)π(θ|φ)dθ

+
1

n

{
πφ(φ)

π(φ)

(
−H

(−1)
2,φ (φ)− 3

2
H

(−1)
4 (φ)

)

+

(
πφ(φ)

π(φ)

)2

H
(−1)
2 (φ) +

πφφ(φ)

π(φ)

(
−1

2
H

(−1)
1 (φ)−H

(−1)
2 (φ)

)
+ S(φ)

}
+O(n−2)

]
.

Further, we put

M1(φ) :=−H
(−1)
2,φ (φ)− 3

2
H

(−1)
4 (φ),

M2(φ) :=H
(−1)
2 (φ),

M3(φ) :=− 1

2
H

(−1)
1 (φ)−H

(−1)
2 (φ).

(16)

10



By using (16), we can rewrite

Eφ [π(φ|X)] =n1/2

[∫
B−1(θ, φ)π(θ|φ)dθ

+
1

n

{
πφ(φ)

π(φ)
M1(φ) +

(
πφ(φ)

π(φ)

)2

M2(φ) +
πφφ(φ)

π(φ)
M3(φ) + S(φ)

}
+O(n−2)

]
.

(17)

Then we have the following theorem concerning with the marginal reference prior for φ under the

expected chi-square divergence.

Theorem 3. For α = −1, the marginal reference prior for φ in the presence of nuisance parameter

θ is given by

π(φ) ∝ exp

(∫
(∂/∂φ)M3(φ)−M1(φ)

2(M2(φ) +M3(φ))
dφ

)
, (18)

where the integral in (18) is the indefinite integral, and M1(φ), M2(φ) and M3(φ) are functions of

φ defined by (16).

The proof of Theorem 3 is given in Section 4. From Theorem 3 we can find that it appears a

new prior distribution which is different from (14). From theorems 1 and 3, the results of the case

α = −1 change depending on whether we are interested in θ or φ. This interesting phenomenon has

beed also pointed out by Ghosh et al. (2011) and Liu et al. (2014) in a regular parametric family.

3.3. Some examples

In this subsection, we show some examples concerned with the reference priors given in theorems

1, 2 and 3. To compute reference priors, we use Berger and Bernardo (1989)’s algorithm which is

mentioned in Subsection 2.2. We also discussed the differences of reference priors between α-

divergence and KL divergence.

Example 1 (Location-scale family). Let f0 be a strictly positive density on [0,∞) and consider

the family f(x; θ, φ) = φ−1f0{(x − θ)/φ} (x > θ), where θ is a location parameter and φ is a

scale parameter. We note that the support of the density depends on θ. Further, we assume that

the right-hand limit of f0(x) at x = 0 exists. For example, the shifted exponential distribution

with the density function f(x; θ, φ) = φ−1e−(x−θ)/φ (x > θ, φ > 0) belongs to this (non-regular)

location-scale family. In this case, we have

c(θ, φ) = f0(0+)/φ, λ2(θ, φ) = c1/φ
2,

where c1 is the constant number defined by c1 =
∫
{1 + xf ′

0(t)/f0(t)}2f0(t)dt. If θ is the parameter

of interest and φ is the nuisance parameter, we adapt the conditional reference prior π(φ|θ) =√
λ2(θ, φ) ∝ φ−1 on the sequence Φ1 ⊂ Φ2 ⊂ · · · of compact set of Φ such that ∪∞

l=1Φl = Φ. Then

the marginal reference prior (10) for −1 < α < 0 and 0 < α < 1 is the improper uniform distribution

π(θ) ∝ 1, and by using Berger and Bernardo (1989)’s algorithm in Section 2, the resulting reference

11



prior is given by π(θ, φ) ∝ φ−1 for −1 < α < 0 and 0 < α < 1. For α = 0, by using the second

equation of (10), the reference prior for (θ, φ) is also given by π(θ, φ) ∝ φ−1 which is the same as

the result of Ghosal (1997). In this case, for −1 < α < 1, the reference prior is given by π(θ, φ)

which is the right invariant Haar measure, and it is known that the right Haar measure has a very

attractive properties (see Chang and Eaves (1990)).

In a similar way to the above, if φ is the parameter of interest and θ is the nuisance parameter,

we may consider the conditional reference prior π(θ|φ) = c(θ, φ) on the sequence Θ1 ⊂ Θ2 ⊂ · · · of

compact set of Θ such that ∪∞
l=1Θl = Θ. Then the marginal reference prior (14) is given by π(φ) ∝

φ(1−α)/α for −1 < α < 0 and 0 < α < 1, and the resulting reference prior is π(θ, φ) ∝ φ(1−2α)/α for

−1 < α < 0 and 0 < α < 1. For α = 0, by using the second equation of (14), the reference prior for

(θ, φ) is given by π(θ, φ) ∝ φ−1 which is the same as the result of Ghosal (1997), but is different

from the case for −1 < α < 0 and 0 < α < 1. For α = −1, we have the marginal reference prior

(18) is given by π(φ) ∝ φ−2, and resulting reference prior for (θ, φ) is given by π(θ, φ) ∝ φ−3. This

prior is neither the right invariant Haar measure nor left invariant Haar measure.

In both cases, resulting reference priors are improper. So, we now check the posterior propriety.

Since, it is not easy to show the posterior propriety for general location-scale family, in particular,

we consider the shifted exponential distribution which belongs to the location-scale family. Let

X1, . . . , Xn be a sequence of random variables from the density f(x; θ, φ) = φ−1e−(x−θ)/φ (x > θ,

φ > 0). and x = (x1, . . . , xn) be the observation from this model. To show the posterior propriety,

it is enough to show that the normalized constant in the posterior density is finite under the priors

π(θ, φ) ∝ φ−1, π(θ, φ) ∝ φ(1−2α)/α for −1 < α < 0 and 0 < α < 1, and π(θ, φ) ∝ φ−3. The

normalized constant in the posterior density is defined by

m(x) =

∫ ∞

0

∫ x(1)

−∞

∏
i=1

1

φ
e−(1/φ)

∑n
i=1(xi−θ)π(θ, φ)dθdφ,

where x(1) := max1≤i≤1 xi. Under the prior π(θ, φ) ∝ φ−1, we have m(x) = Γ(n− 1)/{n(
∑n

i=1(xi−
x(1)))

n−1} < ∞ for n ≥ 2, where Γ(k) is the gamma function defined by Γ(k) =
∫∞
0 xk−1e−xdx.

Further, under the prior π(θ, φ) ∝ φ(1−2α)/α for −1 < α < 0 and 0 < α < 1, we have m(x) =

Γ(n − (1/α))/{n(
∑n

i=1(xi − x(1)))
n−(1/α))} < ∞ for n ≥ max(1/α, 2) (−1 < α < 0, 0 < α < 1).

Finally, under the prior π(θ, φ) ∝ φ−3, we have m(x) = Γ(n+1)/{n(
∑n

i=1(xi − x(1)))
n+1} < ∞ for

n ≥ 2. Hence, resulting improper reference priors for (θ, φ) lead to proper posteriors.

Example 2 (Truncated Weibull distribution). Consider the truncated Weibull distribution with

the truncation parameter θ, the scale parameter φ > 0 and the shape parameter k > 0 with the

density function f(x; θ, φ) = kφkxk−1 exp{−φk(xk − θk)} (x > θ). We assume that the shape

parameter k > 0 is known and θ > 0 in this example, and consider reference priors for (θ, φ). In

this case, we have

c(θ, φ) = kφkθk−1, λ2(θ, φ) = k2/φ2.

We now derive reference priors for (θ, φ) by using the same operation as that of Example 1. If

θ is the parameter of interest and φ is the nuisance parameter, then the reference prior (10) for

−1 < α < 0 and 0 < α < 1 is given by π(θ, φ) ∝ θk−1φ−1. For α = 0, the reference prior (10) is also
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given by π(θ, φ) ∝ θk−1φ−1 which is the same prior as that of Ghosal (1997) under KL divergence.

On the other hand, If φ is the parameter of interest and θ is the nuisance parameter, then the

reference prior (14) is given by π(φ) ∝ θk−1φ−(k/α)+k−1 for −1 < α < 0 and 0 < α < 1. For α = 0,

the reference prior (14) is given by π(θ, φ) ∝ θk−1φ−1 which is the same prior as that of Ghosal

(1997) under KL divergence. For α = −1, the calculation of the prior (18) may be messy. Hence,

we omit it here.

Check for the posterior propriety is also omitted here, but we may be able to obtain the sufficient

condition for the finiteness of the normalized constant in the posterior density.

Remark 3. Ghosal (1997) and Ghosal (1999) discussed the important special case where the

factorizations

c(θ, φ) = c1(θ)c2(φ),
√
λ2(θ, φ) = λ1(θ)λ2(φ) (19)

hold. If such factorizations hold, they argued that under KL divergence, the Berger and Bernardo

(1989)’s algorithm yields the reference prior c1(θ)λ2(φ) which does not depend on the order of

importance and the choice of compact sets. However, it does not always hold under α-divergence

as we seen in Examples 1 and 2 even though the factorizations (19) hold. Further, Ghosal (1997)

argued that the invariant property of reference priors under KL divergence for non-regular when the

factorizations (19) hold, while reference priors under α-divergence do not generally hold invariant

property except for α = 0.

4. Proofs

We give proofs of lemmas and theorems in Section 3.

Proof of Lemma 1. We show (9) by using the shrinkage argument which consists following three

steps (see Datta and Mukerjee (2004)). We put u = nσ(θ − θ̂n) in (2). Then we have

π(θ|X) =|nσ|enσ(θ−θ̂n)

·
[
1 +

1

n

{
R̂1(nσ(θ − θ̂n) + 1) + R̂2((nσ)

2(θ − θ̂n)
2 − 2) +O

(
n−2

)}]
(20)

for θ < θ̂n, where

R̂1 =
π̂10
π̂00σ

+
2(π̂01/π̂00)a11 + 3a12

σb2
+

6a11a03
σb4

, R̂2 =
a20
σ2

+
2a211
σ2b2

.

Step 1. We consider a proper prior density p̄(θ), such that the support of p̄(θ) is compact in the

parameter space and p̄(θ) vanishes outside of the support while remaining positive in the interior.

Next, we compute the expectation Eπ̄[π−α(u|X)|X], where Eπ̄[·|X] denotes the expectation with

respect to the posterior density π̄(·|X) under the prior π̄(θ, φ) = p̄(θ)π(φ|θ). First, we compute the

following product

π−α(θ|X)π̄(θ|X) =(n|σ|)1−αe(1−α)nσ(θ−θ̂n)
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·

[
1 +

1

n

{
− αR̂1(nσ(θ − θ̂n) + 1) + ˆ̄R1(nσ(θ − θ̂n) + 1) + k(θ)

}
+O(n−2)

]

for θ < θ̂n, where k(θ) is a continuous parametric function, not involving π(θ) and

ˆ̄R1 =
ˆ̄π10
ˆ̄π00σ

+
2(ˆ̄π01/ˆ̄π00)a11 + 3a12

σb2
+

6a11a03
σb4

, ˆ̄πrs =
∂r+s

∂θr∂φs
π̄(θ̂n, φ̂n) (r, s = 0, 1, . . . ).

Then the expectation of π−α(θ|X) with respect to π̄(·|X) is given by

Eπ̄[π−α(θ|X)|X] =

∫ θ̂n

−∞
π−α(θ|X)π̄(θ|X)dθ

=
(n|σ|)−α

1− α

[
1 +

1

n(1− α)

{
α2R̂1 − α ˆ̄R1 + α(2− α)R̂2 + C

}
+O(n−2)

]
= G(X) (say)

where C is a constant number. Note that in order to compute above integration, we put nσ(θ −
θ̂n) = −t and regard the integration as the expectation of the exponential distribution with mean

parameter (1− α).

Step 2. For θ in the interior point of the support of p̄(θ), we calculate the following expectation

λ(θ) : =

∫
G(x)fn(x; θ)dx =

∫
G(x)

{∫ n∏
i=1

f(xi; θ, φ)π(φ|θ)dφ

}
dx =

∫
λ0(θ, φ)π(φ|θ)dx

where λ0(θ, φ) =
∫
G(x)

∏n
i=1 f(xi; θ, φ)dx. Since

b2 = λ2(θ, φ) + o(1), σ = c(θ, φ) + o(1), ars = Ars(θ, φ) + o(1), (r, s = 0, 1, . . . ),

by using Taylor’s expansion, we have

λ0(θ, φ) =
(n|σ|)−α

1− α

[
1 +

1

n(1− α)

{
α2R1 − αR̄1 + S0(θ, φ)

}
+O(n−2)

]
where S0(θ, φ) is a continuous parametric function, not involving π(θ) and

R1 =
π10
π00c

+
2(π10/π00)A11 + 3A12

cλ2
+

6A11A03

cλ4
,

R̄1 =
π̄10
π̄00c

+
2(π̄10/π̄00)A11 + 3A12

cλ2
+

6A11A03

cλ4

with

c :=c(θ, φ) = E

[
∂

∂θ
log f(X1; θ, φ)

]
, λ2 := λ2(θ, φ) = E

[
− ∂2

∂φ2
log f(X1; θ, φ)

]
,

πrs :=πrs(θ, φ) =
∂r+s

∂θr∂φs
π(θ, φ) (r, s = 0, 1, 2, . . . ),
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π̄rs :=π̄rs(θ, φ) =
∂r+s

∂θr∂φs
π̄(θ, φ) (r, s = 0, 1, 2, . . . ),

Ars :=Ars(θ, φ) =
1

(r + s)!
E

[
∂rs

∂θr∂φs
log f(X1; θ, φ)

]
(r, s = 0, 1, 2, . . . ).

Step 3. The final step of this argument involves integrating λ(θ) with respect to p̄(θ) and then

making p̄(θ) degenerate at θ. We have∫
λ(θ)p̄(θ)dθ

=

∫∫
{nc(θ, φ)}−α

1− α

[
1 +

1

n(1− α)

{
α2R1 − αR̄1 + S(θ, φ)

}
+O(n−2)

]
π(φ|θ)p̄(θ)dφdθ.

We note that the following identities hold

π̄10
π̄00

=
(∂/∂θ)(p̄(θ)π(φ|θ))

p̄(θ)π(φ|θ)
=

(∂/∂θ)p̄(θ)

p̄(θ)
+

(∂/∂θ)π(φ|θ)
π(φ|θ)

,

π̄01
π̄00

=
(∂/∂φ)(p̄(θ)π(φ|θ))

p̄(θ)π(φ|θ)
=

(∂/∂φ)π(φ|θ)
π(φ|θ)

.

So, we have ∫∫
1

c1+α(θ, φ)

π̄10
π̄00

π(φ|θ)dφp̄(θ)dθ

=

∫∫
1

c1+α(θ, φ)

(
(∂/∂θ)p̄(θ)

p̄(θ)
+

(∂/∂θ)π(φ|θ)
π(φ|θ)

)
π(φ|θ)dφp̄(θ)dθ

=

∫∫
1

c1+α(θ, φ)
π(φ|θ)dφ ∂

∂θ
p̄(θ)dθ +

∫∫
(∂/∂θ)π(φ|θ)
c1+α(θ, φ)

dφp̄(θ)dθ,∫∫
A11(θ, φ)

c1+α(θ, φ)λ2(θ, φ)

π̄01
π̄00

π(φ|θ)dφp̄(θ)dθ

=

∫∫
A11(θ, φ)

c1+α(θ, φ)λ2(θ, φ)

(∂/∂φ)π(φ|θ)
π(φ|θ)

π(φ|θ)dφp̄(θ)dθ.

Hence, we have∫∫
1

c1+α(θ, φ)

π̄10
π̄00

π(φ|θ)dφp̄(θ)dθ → − ∂

∂θ

(∫
1

c1+α(θ, φ)
π(φ|θ)dφ

)
+

∫
(∂/∂θ)π(φ|θ)
c1+α(θ, φ)

dφ,∫∫
A11(θ, φ)

c1+α(θ, φ)λ2(θ, φ)

π̄01
π̄00

π(φ|θ)dφp̄(θ)dθ →
∫

A11(θ, φ)

c1+α(θ, φ)λ2(θ, φ)

(∂/∂φ)π(φ|θ)
π(φ|θ)

π(φ|θ)dφ.

Bu using the shrinkage argument, the second order asymptotic approximation of Eθ[π
−α(θ|X)] is

given by

Eθ

[
π−α(θ|X)

]
=n−α

∫
c(θ, φ)−α

1− α

[
1 +

1

n

{
α2

1− α

(∂/∂θ)π(θ, φ)

π(θ, φ)

1

c(θ, φ)
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+
2α2

1− α

A11(θ, φ)

c(θ, φ)λ2(θ, φ)

(∂/∂φ)π(θ, φ)

π(θ, φ)
+ S(θ, φ)

}
+O(n−2)

]
π(φ|θ)dφ,

where S(θ, φ) is a continuous function not involving π. This completes the proof.

Proof of Theorem 1. From Lemma 1, the first order asymptotic approximation of (8) is given by

Rα(π) ≈ 1

α(1− α)

{
1− n−α

1− α

∫ (
ξ(θ)

π(θ)

)−α

π(θ)dθ

}
, (21)

where ξ(θ) = {
∫
c−α(θ, φ)π(φ|θ)dφ}−1/α. We consider the following five cases separately: (i)

0 < α < 1, (ii) −1 < α < 0, (iii) α = 0, (iv) α < −1 and (v) α = −1.

(i) First, we consider the case 0 < α < 1. Since α(1− α) > 0, it suffuses to minimize the following∫ (
ξ(θ)

π(θ)

)−α

π(θ)dθ =

∫
g

(
ξ(θ)

π(θ)

)
π(θ)dθ,

where g(t) = t−α (t > 0). Noting that g(t) is a convex function of t for 0 < α < 1, by Jensen’s

inequality, we have∫
g

(
ξ(θ)

π(θ)

)
π(θ)dθ ≥ g

(∫
ξ(θ)

π(θ)
π(θ)dθ

)
=

{∫
ξ(θ)dθ

}−α

.

The equality holds if and only if π(θ) ∝ ξ(θ) which is the marginal reference prior with maximum

α-divergence for 0 < α < 1.

(ii) Next, we consider the case −1 < α < 0. Since α(1−α) < 0, it suffuses to maximize the following∫ (
ξ(θ)

π(θ)

)−α

π(θ)dθ =

∫
g

(
ξ(θ)

π(θ)

)
π(θ)dθ.

Noting that g(t) = t−α (t > 0) is a concave function of t for −1 < α < 0, by Jensen’s inequality, we

have ∫
g

(
ξ(θ)

π(θ)

)
π(θ)dθ ≤ g

(∫
ξ(θ)

π(θ)
π(θ)dθ

)
=

{∫
ξ(θ)dθ

}−α

.

The equality holds if and only if π(θ) ∝ ξ(θ) which is the marginal reference prior with maximum

α-divergence for −1 < α < 0.

(iii) For α = 0, we need to interpret (8) as its limiting value (when it exists). In this case, the α-

divergence corresponds to the KL divergence. By using the L’Hôpital’s rule, it suffices to maximize

the following

R0(π) = log n− 1 +

∫∫
log

(
c(θ, φ)

π(θ)

)
π(φ|θ)π(θ)dφdθ.
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Putting log ζ(θ) =
∫
(log c(θ, φ))π(φ|θ)dφ, we may maximize the following∫

log

(
ζ(θ)

π(θ)

)
π(θ)dθ. (22)

From the property of the KL divergence, (22) is maximized by π(θ) ∝ ζ(θ). Note that as α → 0 in

(10), we can get ζ(θ).

(iv) Consider the case α < −1. Putting α = −β (β > 1), we can rewrite (21)

Rα(π) ≈ 1

β(β + 1)

{
nβ

β + 1

∫ (
ξ(θ)

π(θ)

)β

π(θ)dθ − 1

}

for β > 1. Hence it suffices to maximize the following∫ (
ξ(θ)

π(θ)

)β

π(θ)dθ.

By using the Lyapounov inequality (e.g. DasGupta (2008)), we have for β > 1∫ (
ξ(θ)

π(θ)

)β

π(θ)dθ ≥
{∫

ξ(θ)dθ

}β

=

{∫
ξ(θ)dθ

}−α

. (23)

The equality holds if and only if π(θ) ∝ ξ(θ). However, this prior is the minimizer rather than the

maximizer of (22) from (23). We can show that there is no maximizing prior in this case. It suffuses

to show that

sup
π

∫
ξβ(θ)π1−β(θ)dθ = +∞. (24)

In order to prove (24), we consider a compact set A ⊂ R. Then there exists c > 0 such that ξ(θ) ≥ c

for all θ ∈ A. For any M > 0, we can make a prior π(θ) = {M/(µ(AM )c)}1/(1−β) (θ ∈ AM ), where

AM ⊆ A satisfying
∫
AM

π(θ)dθ < 1 and µ(·) is the Lebesgue measure on R. If θ is not in AM , we

can assign some suitable value to π(θ) to make π(θ) a probability density. Then, we have∫
ξβ(θ)π1−β(θ)µ(dθ) ≥

∫
A
ξβ(θ)π1−β(θ)µ(dθ) ≥

∫
AM

c
M

µ(AM )c
µ(dθ) = M.

Hence, for any M > 0, we can find π(θ) such that
∫
ξβ(θ)π1−β(θ)µ(dθ) ≥ M . Therefore, it holds

supπ
∫
ξβ(θ)π1−β(θ)dθ = +∞.

(v) Finally we consider the case α = −1. For α = −1, the first order term in (8) is a constant

because of πα+1(φ) = 1. We need to consider the second order term. From Lemma 1 we have

Eθ [π(θ|X)] =n

∫
c(θ, φ)

2

[
1 +

1

n

{
α2

2

(∂/∂θ)π(θ, φ)

π(θ, φ)

1

c(θ, φ)

+ α2 A11(θ, φ)

c(θ, φ)λ2(θ, φ)

(∂/∂φ)π(θ, φ)

π(θ, φ)
+ S(θ, φ)

}
+O(n−2)

]
π(φ|θ)dφ.
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For α = −1, the expected α-divergence is expressed by

R−1(π) ≈
∫
Eθ[π(θ|X)]dθ − 1

2
.

Hence, we consider the maximization problem:

max
π(θ)

∫ {∫ (
1

2

(∂/∂θ)π(θ, φ)

π(θ, φ)
+

A11(θ, φ)

λ2(θ, φ)

(∂/∂φ)π(θ, φ)

π(θ, φ)

)
π(φ|θ)dφ

}
dθ

= max
π(θ)

∫
(∂/∂θ)π(θ)

π(θ)
dθ.

However, we can not find such π(θ) in general. For example, putting π(θ) = sin θ(0 ≤ θ ≤ π/2), we

have
∫
π′(θ)/π(θ)dθ =

∫ π/2
0 (tan θ)−1dθ = ∞.

Proof of Lemma 2. From (3) the asymptotic marginal posterior density of v is given by

π(v|X) =
1√
2π

e−
v2

2

[
1 +

1√
n
(Ŝ1v + Ŝ2v

3)

+
1

n

{
Ŝ3(v

2 − 1) + Ŝ4(v
4 − 3) + Ŝ5(v

6 − 15)

}
+O

(
n−3/2

)]
,

(25)

where

Ŝ1 =
π̂01
π̂00b

− 2a11
σb

, Ŝ2 =
a03
b3

, Ŝ3 =
π̂02

2π̂00b2
− 2(π̂01/π̂00)a11 + 3a12

σb2
+

4a211
σ2b2

,

Ŝ4 =
π̂01a03
π̂00b4

− 2a11a03
σb4

, Ŝ5 =
a203
b6

.

Putting v =
√
nb(φ− φ̂) in (25), we have

π(φ|X)

=

√
nb√
2π

exp

{
−1

2
nb2(φ− φ̂)2

}
·

[
1 +

1√
n

{
Ŝ1

√
nb(φ− φ̂) + Ŝ2n

√
nb3(φ− φ̂)3

}
+

1

n

{
Ŝ3(nb

2(φ− φ̂)2 − 1) + Ŝ4(n
2b4(φ− φ̂)4 − 3) + Ŝ5(n

3b6(φ− φ̂)6 − 15)
}
+O

(
n−3/2

)]
.

We now put

An = Ŝ1

√
nb(φ− φ̂) + Ŝ2n

√
nb3(φ− φ̂)3,

Bn = Ŝ3(nb
2(φ− φ̂)2 − 1) + Ŝ4(n

2b4(φ− φ̂)4 − 3) + Ŝ5(n
3b6(φ− φ̂)6 − 15).
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Step one. We consider a proper prior density p̄(φ) such that the support of p̄(φ) is compact in the

parameter space and p̄(φ) vanishes outside of the support while remaining positive in the interior.

Let π̄(·|X) be the posterior density under the prior π̄(θ, φ) = p̄(φ)π(θ|φ). First we compute the

product

π−α(φ|X)π̄(φ|X)

=(
√
nb)1−α(2π)−(1−α)/2 exp

{
−1

2
(1− α)nb2(φ− φ̂)2

}
·
{
1 +

An√
n
+

Bn

n
+O

(
n−3/2

)}−α{
1 +

Ān√
n
+

B̄n

n
+O

(
n−3/2

)}
=(

√
nb)1−α(2π)−(1−α)/2 exp

{
−1

2
(1− α)nb2(φ− φ̂)2

}
·

{
1− α

(
An√
n
+

Bn

n

)
+

α(α+ 1)

2

(
An√
n
+

Bn

n

)2

+O
(
n−5/2

)}{
1 +

Ān√
n
+

B̄n

n
+O

(
n−3/2

)}
=(

√
nb)1−α(2π)−(1−α)/2 exp

{
−1

2
(1− α)nb2(φ− φ̂)2

}
·
{
1 +

1√
n

(
−αAn + Ān

)
+

1

n

(
−αBn + B̄n − αAnĀn +

α(α+ 1)

2
A2

n

)
+O

(
n−3/2

)}
,

where Ān and B̄n are the same forms as An and Bn under the prior π̄, respectively. The expectation

of π−α(φ|X) under the density π̄(·|X) is

Eπ̄
[
π−α(φ|X)

]
=

∫ ∞

−∞
(
√
nb)1−α

{
1 +

1√
n

(
−αAn + Ān

)
+

1

n

(
−αBn + B̄n − αAnĀn +

α(α+ 1)

2
A2

n

)
+O

(
n−3/2

)}
· (2π)−(1−α)/2 exp

{
−1

2
(1− α)nb2(φ− φ̂)2

}
dφ

=

∫ ∞

−∞

(
2π

nb2

)α/2
[
1 +

1√
n

{
−α(Ŝ1t+ Ŝ2t

3) + ( ˆ̄S1t+
ˆ̄S2t

3)
}

+
1

n

{
− α(Ŝ3(t

2 − 1) + Ŝ4(t
4 − 3) + Ŝ5(t

6 − 15)) + ( ˆ̄S3(t
2 − 1) + ˆ̄S4(t

4 − 3) + ˆ̄S5(t
6 − 15))

+
α(α+ 1)

2
(Ŝ1t+ Ŝ2t

3)2 − α(Ŝ1t+ Ŝ2t
3)( ˆ̄S1t+

ˆ̄S2t
3)

}
+O

(
n−3/2

)]

·
√

1− α

2π
exp

{
−(1− α)t2

2

}
dt

=

(
2π

nb2

)α/2 1√
1− α

[
1 +

1

n

{
− α

(
α

1− α
Ŝ3 +

3α(2− α)

(1− α)2
Ŝ4

)
+

(
α

1− α
ˆ̄S3 +

3α(2− α)

(1− α)2
ˆ̄S4

)
+

α(α+ 1)

2

(
1

1− α
Ŝ2
1 +

6

(1− α)2
Ŝ1Ŝ2

)
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− α

(
1

1− α
Ŝ1

ˆ̄S1 +
3

(1− α)2
Ŝ1

ˆ̄S2 +
3

(1− α)2
Ŝ2

ˆ̄S1

)
+ K̂1

}
+O

(
n−2

) ]
= Q(X) (say),

where ˆ̄Si (i = 1, . . . , 5) are the same forms as Ŝi (i = 1, . . . , 5) under the prior π̄, and K̂1 := K(θ̂, φ̂)

is a random variable not involving the prior π.

Step 2. For φ in the interior point of the support of p̄(φ), we calculate the following expectation

λ(φ) : =

∫
Q(x)fn(x;φ)dx =

∫
Q(x)

{∫ n∏
i=1

f(xi; θ, φ)π(θ|φ)dθ

}
dx =

∫
λ0(θ, φ)π(θ|φ)dx

where λ0(θ, φ) =
∫
Q(x)

∏n
i=1 f(xi; θ, φ)dx. Note that

b2 = λ2(θ, φ) + o(1), σ = c(θ, φ) + o(1), K̂1 = K1 + o(1),

where K1 = K1(θ, φ) and

ars = Ars(θ, φ) + o(1) (r, s = 0, 1, . . . )

By using Taylor’s expansion, we have

λ0(θ, φ) =
1√

1− α

(
2π

nλ2(θ, φ)

)α/2
[
1 +

1

n

{
− α

(
α

1− α
S3 +

3α(2− α)

(1− α)2
S4

)
+

(
α

1− α
S̄3 +

3α(2− α)

(1− α)2
S̄4

)
+

α(α+ 1)

2

(
1

1− α
S2
1 +

6

(1− α)2
S1S2

)
− α

(
1

1− α
S1S̄1 +

3

(1− α)2
S1S̄2 +

3

(1− α)2
S̄1S2

)
+K2(θ, φ)

}
+O

(
n−2

) ]
,

where K2(θ, φ) is a continuous function not involving π and

S1 =
π01
π00λ

− 2A11

cλ
, S2 =

A03

λ3
,

S3 =
π02

2π00λ2
− 2(π01/π00)A11 + 3A12

cλ2
+

4A2
11

c2λ2
, S4 =

π01A03

π00λ4
− 2A11A03

cλ4
,

and S̄i (i = 1, . . . , 4) are the same forms as Si (i = 1, . . . , 4) under the prior density π̄(φ, θ) =

p̄(φ)π(θ|φ).

Step 3. The final step of this argument involves integrating λ(φ) with respect to p̄(φ) and then
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making p̄(φ) degenerate at φ. We consider the integral∫
λ(φ)p̄(φ)dφ =n−α/2

∫∫
Bα(θ, φ)

[
1 +

1

n

{
− α

(
α

1− α
S3 +

3α(2− α)

(1− α)2
S4

)
+

(
α

1− α
S̄3 +

3α(2− α)

(1− α)2
S̄4

)
+

α(α+ 1)

2

(
1

1− α
S2
1 +

6

(1− α)2
S1S2

)
− α

(
1

1− α
S1S̄1 +

3

(1− α)2
S1S̄2 +

3

(1− α)2
S̄1S2

)
+K2(θ, φ)

}
+O

(
n−2

) ]
π(θ|φ)p̄(φ)dθdφ,

(26)

where Bα(θ, φ) =
(2π)α/2λ−α(θ,φ)√

1−α
. From π̄ = π̄(θ, φ) = p̄(φ)π(θ|φ) we note that

π̄01
π̄00

=
(∂/∂φ){p̄(φ)π(θ|φ)}

p̄(φ)π(θ|φ)
=

(∂/∂φ)p̄(φ)

p̄(φ)
+

(∂/∂φ)π(θ|φ)
π(θ|φ)

,

π̄02
π̄00

=
(∂2/∂φ2)p̄(φ)

p̄(φ)
+ 2

(∂/∂φ)p̄(φ)(∂/∂φ)π(θ|φ)
p̄(φ)π(θ|φ)

+
(∂2/∂φ2)π(θ|φ)

π(θ|φ)
.

(27)

Similarly, since π = π(θ, φ) = π(φ)π(θ|φ), we have the same formulae as (27) for π01/π00 and

π02/π00, respectively. Because we are only interested in the terms depending π(φ) and its derivatives,

we divide terms in (26) which involve π and its derivatives into two parts. For example,∫
Bα(θ, φ)S̄4π(θ|φ)dθ

=

∫
Bα(θ, φ)

(
π̄01A03

π̄00λ4
− 2A11A03

cλ4

)
π(θ|φ)dθ

=

∫
π̄01
π̄00

A03(θ, φ)Bα(θ, φ)

λ4(θ, φ)
π(θ|φ)dθ + (terms not involving p̄(φ))

=

∫
(∂/∂φ)p̄(φ)

p̄(φ)

A03(θ, φ)Bα(θ, φ)

λ4(θ, φ)
π(θ|φ)dθ

+

∫
(∂/∂φ)π(θ|φ)

π(θ|φ)
A03(θ, φ)Bα(θ, φ)

λ4(θ, φ)
π(θ|φ)dθ + (terms not involving p̄(φ))

=

∫
(∂/∂φ)p̄(φ)

p̄(φ)

A03(θ, φ)Bα(θ, φ)

λ4(θ, φ)
π(θ|φ)dθ + (terms not involving p̄(φ)).

Here, we are not interested in the terms not involving p̄(φ). Later, in our final asymptotic expansion,

we put all of these terms into one term K3(φ). We can rewrite (26) as∫
λ(φ)p̄(φ)dφ =n−α/2

∫ [∫
Bα(θ, φ)π(θ|φ)dθ

+
1

n

{
− α2

1− α

(
πφφ(φ)

π(φ)
H

(α)
1 (φ) +

πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)
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− 3α2(2− α)

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
+

α

1− α

(
p̄φφ(φ)

p̄(φ)
H

(α)
1 (φ) +

p̄φ(φ)

p̄(φ)
H

(α)
2 (φ)− p̄φ(φ)

p̄(φ)
H

(α)
3 (φ)

)
+

3α(2− α)

(1− α)2

(
p̄φ(φ)

p̄(φ)
H

(α)
4 (φ)

)
+

α(α+ 1)

(1− α)

((
πφ(φ)

π(φ)

)2

H
(α)
1 (φ) +

πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)

+
3α(α+ 1)

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
− α

1− α

(
πφ(φ)

π(φ)

2p̄φ(φ)

p̄(φ)
H

(α)
2 (φ) +

πφ(φ)

π(φ)
H

(α)
2 (φ) +

p̄φ(φ)

p̄(φ)
H

(α)
2 (φ)

− πφ(φ)

π(φ)
H

(α)
3 (φ)− p̄φ(φ)

p̄(φ)
H

(α)
3 (φ)

)

− 3α

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
− 3α

(1− α)2

(
p̄φ(φ)

p̄(φ)
H

(α)
4 (φ)

)
+K3(φ)

}
+O(n−2)

]
p̄(φ)dφ,

where

H
(α)
1 (φ) :=

∫
Bα(θ, φ)

2λ2(θ, φ)
π(θ|φ)dθ

H
(α)
2 (φ) :=

∫
Bα(θ, φ)

λ2(θ, φ)

πφ(θ|φ)
π(θ|φ)

π(θ|φ)dθ,

H
(α)
3 (φ) :=

∫
2A11(θ, φ)Bα(θ, φ)

c(θ, φ)λ2(θ, φ)
π(θ|φ)dθ,

H
(α)
4 (φ) :=

∫
A03(θ, φ)Bα(θ, φ)

λ4(θ, φ)
π(θ|φ)dθ

andK3(φ) is a continuous function, not involving π(φ) and p̄(φ). Also, with the choice of p̄(φ) which

values on the boundary of parameter space is zero, one can prove that for any twice differentiable

function of φ, say H(φ), ∫
H(φ)

∂

∂φ
p̄(φ)dφ = −

∫
∂H(φ)

∂φ
p̄(φ)dφ∫

H(φ)
∂2

∂φ2
p̄(φ)dφ =

∫
∂2H(φ)

∂φ2
p̄(φ)dφ

(28)

by using the integration by parts. Now suppose that the support of p̄(φ) contains the true φ as an

interior point. Then arrowing p̄(φ) weakly converge to the degenerate density of true φ, we obtain

the second order asymptotic approximation of Eφ[π
−α(φ|X)]. By using the equations in (28), we
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have

Eφ

[
π−α(φ|X)

]
=n−α/2

[∫
Bα(θ, φ)π(θ|φ)dθ

+
1

n

{
− α2

1− α

(
πφφ(φ)

π(φ)
H

(α)
1 (φ) +

πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)
− 3α2(2− α)

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
+

α(α+ 1)

(1− α)

((
πφ(φ)

π(φ)

)2

H
(α)
1 (φ) +

πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)

+
3α(α+ 1)

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
− α

1− α

(
− 2

πφφ(φ)

π(φ)
H

(α)
2 (φ)− 2

πφ(φ)

π(φ)
H

(α)
2,φ (φ) + 2

(
πφ(φ)

π(φ)

)2

H
(α)
2 (φ)

+
πφ(φ)

π(φ)
H

(α)
2 (φ)− πφ(φ)

π(φ)
H

(α)
3 (φ)

)

− 3α

(1− α)2

(
πφ(φ)

π(φ)
H

(α)
4 (φ)

)
+ S(φ)

}
+O(n−2)

]
,

where S(φ) is a continuous function, not involving π(φ) and H
(α)
2,φ (φ) = (∂/∂φ)H

(α)
2 (φ). This

completes the proof.

In the proof of Lemma 2, we note that∫
πφ(φ)

π(φ)

2p̄φ(φ)

p̄(φ)
H

(α)
2 (φ)p̄(φ)dφ = 2

∫
πφ(φ)

π(φ)
H

(α)
2 (φ)p̄φ(φ)dφ

= −2

∫
∂

∂φ

(
πφ(φ)

π(φ)
H

(α)
2 (φ)

)
p̄(φ)dφ

→ −2
∂

∂φ

(
πφ(φ)

π(φ)
H

(α)
2 (φ)

)
,

and

∂

∂φ

(
πφ(φ)

π(φ)
H

(α)
2 (φ)

)
=

πφφ(φ)

π(φ)
H

(α)
2 (φ) +

πφ(φ)

π(φ)
H

(α)
2,φ (φ)−

(
πφ(φ)

π(φ)

)2

H
(α)
2 (φ),

where H
(α)
2,φ (φ) = (∂/∂φ)H

(α)
2 (φ).

Proof of Theorem 3. Putting α = −1, the first order term in (12) is a constant because of πα+1(φ) =
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1. We need to consider the second order term in (13). From (17) we have

Eφ [π(φ|X)] =n1/2

[∫
B−1(θ, φ)π(θ|φ)dθ

+
1

n

{
πφφ(φ)

π(φ)
M1(φ) +

πφφ(φ)

π(φ)
M2(φ) +

(
πφ(φ)

π(φ)

)2

M3(φ) + S(φ)

}
+O(n−2)

]
,

where B−1(θ, φ), M1(φ), M2(φ) and M3(φ) are defined by Lemma 2 and equation (16).

It suffuces to maximize the following with respect to π(·)

R−1(π) ≈ 1

2

{∫
Eφ[π(φ|X)]dφ− 1

}
or equivalently ∫ {

M1(φ)
π′(φ)

π(φ)
+M2(φ)

(
π′(φ)

π(φ)

)2

+M3(φ)
π′′(φ)

π(φ)

}
dφ, (29)

where π′(φ) = πφ(φ) = (∂/∂φ)π(φ) and π′′(φ) = πφφ(φ) = (∂2/∂φ2)π(φ) Putting y(φ) =

π′(φ)/π(φ), the integral in (29) is rewritten as

J(y) : =

∫ {
M1(φ)y(φ) +M2(φ)y

2(φ) +M3(φ)(y
′(φ) + y2(φ))

}
dφ

=

∫ {
M1(φ)y(φ) + (M2(φ) +M3(φ))y

2(φ) +M3(φ)y
′(φ)

}
dφ

=

∫
F (φ, y(φ), y′(φ))dφ (say).

A candidate of local extremum is found by solving the Euler-Lagrange equation

∂F

∂y
− d

dφ

(
∂F

∂y′

)
= 0

(see e.g. Giaquinta (1983)) or equivalently

M1(φ) + 2(M2(φ) +M3(φ))y(φ)−
d

dφ
M3(φ) = 0.

By solving this equation, we have the following

y(φ) =
π′(φ)

π(φ)
=

(∂/∂φ)M3(φ)−M1(φ)

2(M2(φ) +M3(φ))
=: y∗(φ). (30)

Hence y∗ is a candidate which may be a local extremum. We need to consider the second variation

of a functional J . In fact, we have

d2

dε2
J(y + εη) =

∫ [
Fyy(φ, y(φ) + εη(φ), y′(φ) + εη′(φ)) · η2(φ)
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+ 2Fyy′(φ, y(φ) + εη(φ), y′(φ) + εη′(φ)) · η(φ)η′(φ)

+ Fy′y′(φ, y(φ) + εη(φ), y′(φ) + εη′(φ)) · (η′(φ))2
]
dφ

for any η(φ) and small number ε. As ε → 0, the second variation δ2J(y; η) is given by

δ2J(y; η) =

∫ {
2(M2(φ) +M3(φ))η

2(φ)
}
dφ < 0 (31)

for any η(φ) because of M2(φ) +M3(φ) < 0. Since it holds δ2J(y; η) < 0 for any η, the marginal

reference prior under the expected chi-square divergence is given by

π(φ) ∝ exp

(∫
(∂/∂φ)M3(φ)−M1(φ)

2(M2(φ) +M3(φ))
dφ

)
, (32)

where the integral in (32) is the indefinite integral. Therefore, we have the desired result.

5. Concluding remarks

Reference priors which maximize the expected α-divergence for multi-parameter non-regular

model in the presence of nuisance parameter were given. By using the second order asymptotic

approximation for the marginal posterior density of the parameter of interest, we considered the

maximization of the expected α-divergence for α < 1 with respect to the prior density function.

Some examples were also given, and we discuss the differences between the α-divergence (−1 < α < 0

and 0 < α < 1) and KL divergence (α = 0).

Further, considering the reference priors for multi-parameter non-regular model in other settings

is also interesting problem. For example, Kuboki (1998) discussed the reference priors for Bayesian

prediction for regular parametric family of distributions. Although we consider the i.i.d. setting in

this paper, Smith (1994) presents the non-regular regression which is the regression model under

the error distribution with positive support such as Weibull and exponential distributions. For

such non-regular regression model, it is important to derive objective prior for regression coefficient

vector. Ghosal (1997) and our results should be extended to such non i.i.d. setting.
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