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Abstract

A scale mixture variable is defined by X = SZ or X = S−1Z ,
where the scale factor S is a positive random variable, andX and S are
independent. When Z is normal or chi-square distribution, asymptotic
expansions of X and their error bounds have been extensively studied.
Some of the results are found in Fujikoshi et al. (2010). In this paper
we give some basic results on asymptotic expansions and their error
bounds when Z is F -distribution. This paper is based on Fujikoshi
and Shimizu (2009).
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1. Introduction

In this paper we consider a scale mixture of F -distribution which is

defined by

Xq,n = Sδ
nZq,n, (1.1)

where Zq,n/q is a random variable with an F-distribution with (q, n) degrees

of freedom, Sn is a positive random variable, and Sn and Zq,n are independent.

Here δ = ±1 is a constant used to distinguish two types of scale mixtures:

Xq,n = SnZq,n and Xq,n = S−1
n Zq,n. When Zq,n is distributed to the standard

normal N(0, 1) or a chi-square distribution χ2
q with q degrees of freedom,

asymptotic expansions of Xq,n and their error bounds have been extensively

studied. For the results, see, e.g., Fujikoshi et al. (2010).

A scale mixture of F -distribution appears, for example, in profile analysis

(see, Fujikoshi et al. (2010), Srivastava (2012)). In fact, consider profile

analysis of k p-variate normal populations based on N samples. Then, it is

known that a simultaneous confidence interval for differences in the levels of

k profiles is based on a statistic T whose distribution is expressed as

T =

(
1 +

χ2
p−1

χ2
n+1

)
χ2
q

χ2
n/n

, (1.2)

where q = k − 1 and n = N − k − p + 1. Here χ2
q, χ

2
n, χ

2
p−1 and χ2

n+1 are

independent. Then, we can express T as a sale mixture of F -distribution in

two ways with

δ = 1, Sn = 1 +
χ2
p−1

χ2
n+1

, Zq,n =
χ2
q

χ2
n/n

, (1.3)

and

δ = −1, Sn =
χ2
n+1

χ2
n+1 + χ2

p−1

, Zq,n =
χ2
q

χ2
n/n

, (1.4)

If we use (1.3) with δ = 1, Sn > 1, and if we us (1.4) with δ = −1, Sn < 1.

In this paper we gives asymptotic expansions of Xq,n in (1.1) and their

error bounds. The results are applied to the distribution of T in (1.2).
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2. Preliminaries

With δ = ±1, consider a scale mixture defined by X = SδZ. Let G

be the distribution function of Z. Depending on whether Z is symmetric

or not, there are two types of asymptotic approximations and their error

bounds. Here, since we are interesting in scale mixtures of F distribution,

we summarize the main results on the case when Z is not symmetric.

Suppose that Z has a cumulative distribution function (cdf) G(x). Then,

the cdf of the scale mixture X = SδZ is given by

F (x) ≡ P (X ≤ x) = P (Z ≤ xS−δ) = ES{G(xS−δ)}. (2.1)

Assuming that the scale factor S is close to 1 in some sense, we consider

approximating the cdf F (x). Our interest also lies in evaluating possible

errors of approximations. We assume without further notice that G(x) is

k+1 times continuously differentiable on its support D = {x ∈ R : g(x) > 0}
and that the scale factor S and its reciprocal S−1 have moments of required

order.

Let g(x) be the probability density function (pdf) of Z. For any y > 0,

the conditional distribution of X = SδZ given S = y has a cdf that is ex-

pressible as G(xy−δ), and mathematical induction shows that its derivatives

with respect to y can be put in the form

∂jG(xy−δ)

∂yj
= y−jcδ,j(xy

−δ)g(xy−δ), j = 1, 2, . . . , k, (2.2)

where the cδ,j are real functions obtained by

cδ,j(x)g(x) =
∂jG(xy−δ)

∂yj

∣∣∣∣∣
y=1

. (2.3)

We can use

Gδ,k(x, y) = G(x) +
k−1∑
j=1

1

j!
cδ,j(x)g(x)(y − 1)j (2.4)
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as an approximation to G(xy−δ), which would in turn induce an approxima-

tion to F (x) by means of

Gδ,k(x)≡E{Gδ,k(x, S)}=G(x) +
k−1∑
j=1

1

j!
cδ,j(x)g(x)E{(S − 1)j}. (2.5)

For x ∈ D and y > 0, write

∆δ,k(x, y) ≡ G(xy−δ)−Gδ,k(x, y) (2.6)

and

Jδ,k(x, y) ≡


|∆δ,k(x, y)|
|y − 1|k

, for y ̸= 1,

1

k!
|cδ,k(x)| g(x), for y = 1.

(2.7)

By applying Taylor’s theorem to G(xy−δ) as a function of y and using (2.4),

the remainder term ∆δ,k(x, y) can be put in the form

∆δ,k(x, y) =
1

k!
cδ,k(u)g(u)y

−k
0 (y − 1)k, (2.8)

where u = xy
−δ/ρ
0 , and y0 is a positive number lying between 1 and y.

We define the positive constants αδ,k and βδ,k by

α−1,0 = max
{
1−G(0), G(0)

}
,

αδ,k =
1

k!
sup
x

∣∣cδ,k(x)g(x)∣∣, (2.9)

βδ,k = sup
x∈D,y≤1

Jδ,k(x, y).

It follows from (2.8) that we have the inequalities αδ,k ≤ βδ,k and

sup
x

∣∣∆δ,k(x, y)
∣∣ ≤ {

αδ,k

(
y ∨ y−1 − 1

)k
,

βδ,k

∣∣y − 1
∣∣k, (2.10)

where y ∨ y−1 = max{y, y−1}. From (2.8) we obtain the following upper

bound for the approximation error:∣∣F (x)−Gδ,k(x)
∣∣ ≤ αδ,kE{(S ∨ S−1 − 1)k},

≤ αδ,k

[
E
{
|S − 1|k

}
+ E

{
|S−1 − 1|k

}]
. (2.11)
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If S > 1, we obtain ∣∣F (x)−Gδ,k(x)
∣∣ ≤ αδ,kE

{
|S − 1|k

}
. (2.12)

Further, it holds that∣∣F (x)−Gδ,k(x)
∣∣ ≤ βδ,kE

{
|S − 1|k

}
. (2.13)

Note that for use of (2.11), it is required that both of E{(S − 1)k} and

E{(S−1 − 1)k} exist. For use of (2.12) and (2.13), it is required that E{(S −
1)k} only exists .

3. Main Results

In this section we consider a scale mixture of F -distribution given by

(1.1). Let Fq(x;n) and fq(x;n) be the cdf and the pdf of Zq,n. Then, since

Zq,n/q is an F-distribution with (q, n) degrees of freedom, with δ = ±1, the

density is given by

fq(x; n) = B0(q, n)
1

n

(x
n

)q/2−1(
1 +

x

n

)−(q+n)/2

,

where

B0(q, n) ≡
Γ((q + n)/2)

Γ(q/2) Γ(n/2)
.

This means that Zq,n/q follows an F -distribution F (q, n) with (q, n) degrees

of freedom. For an example of a sale mixture of F -distribution, see Section 2.

Using (2.5), we have an approximation to the cdf Gq(x; n) of the distribution

of Xq,n for large n. To this end, write Y = Sn and consider

Fq(xy
−δ;n) ≡

∫ xy−δ

0

fq(x; n)dx,

which is the conditional cdf given the condition Y = y. Note that the cdf of

Xq,n is expressed as

Gq(x;n) ≡ P (Xq,n ≤ x) = E{Fq(xS
−δ
n ;n)}. (3.1)
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The function Fq(xy
−δ;n) is formally approximated by

Gδ,k;q(x, y;n) = Fq(x;n)− δ
k−1∑
j=1

1

j!
cδ,j,q(x;n)(y − 1)jfq(x;n),

where cδ,j,q(x;n)’s are defined by

cδ,j,q(x;n)fq(x;n) = −∂jFq(xy
−δ;n)

∂yj

∣∣∣∣
y=1

. (3.2)

Here, note that the definition of cδ,j,q(x;n) is different from the one of cδ,j(x)

(see (2.3)) in their signs. The approximation Gδ,k;q(x; y, n) induces an ap-

proximation to Fq(x;n) by means of

Gδ,k;q(x;n) = Fq(x;n)− δ
k−1∑
j=1

1

j!
cδ,j(x)fq(x; x)E{(S − 1)j}. (3.3)

Naturally, the functions cδ,j,q(x;n)’s and the approximating functionGδ,k;q(x;n)

depend on the choice of δ = 1 and δ = −1. We use the notation a(ℓ) for a

nonzero a and an integer ℓ to mean

a(ℓ) = a · (a− 1) · · · · (a− ℓ− 1), if ℓ > 0, and a(0) = 1.

Assume first that δ = 1. Then, the defining equation (3.2) of c1,j,q(x;n) is

equivalent to

c1,j,q(x;n) = x
(
1 +

x

n

)(q+n)/2 ∂j−1

∂yj−1
yn/2−1

(
y +

x

n

)−(q+n)/2
∣∣∣∣
y=1

= x

j−1∑
i=0

(
j − 1

i

)(n− 2

2

)(j−i−1)(−(q + n)

2

)(i)(
1 +

x

n

)i

, (3.4)
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which gives, for example,

c1,1,q(x;n) = x,

c1,2,q(x;n) =
x

2(x+ n)
[(n− 2)x− n(q + 2)],

c1,3,q(x;n) =
x

4(x+ n)2
[
(n− 2)(n− 4)x2 − 2(n− 2)n(q + 4)x

+n2(q + 2)(q + 4))
]
. (3.5)

c1,4,q(x;n) =
x

8(x+ n)3
[
(n− 2)(n− 4)(n− 6)x3

−3n(n− 2)(n− 4)(6 + q)x2

+3(−2 + n)n2(q + 4)(q + 6)x− n3(q + 2)(q + 4)(q + 6))
]
.

If δ = −1, then, the defining equation (3.2) of c−1,j,q(x;n) is equivalent to

equation (3.4), which leads to

c−1,j,q(x;n) = x
(
1 +

x

n

)(q+n)/2 ∂j−1

∂yj−1
yn/2−1

(
y +

x

n

)−(q+n)/2
∣∣∣∣
y=1

= x

j−1∑
i=0

(
j − 1

i

)(q − 2

2

)(j−i−1)(−(q + n)

2

)(i)(
1 +

n

x

)i

, (3.6)

which gives, for example,

c−1,1,q(x;n) = x,

c−1,2,q(x;n) =
x

2(x+ n)
[(q − 2)(x+ n)− (q + n)x],

c−1,3,q(x;n) =
x

4(x+ n)2
[
(q − 2)(q − 4)(x+ n)2 − 2 (q − 2)(q + n)x(x+ n)

+(q + n)(q + n+ 2)x2
]
, (3.7)

c−1,4,q(x;n) =
x

8(x+ n)3
[
(q − 2)(q − 4)(q − 6)(x+ n)3

−3(q − 2)(q − 4)(q + n)x(x+ n)2

+3(q − 2)(q + n)(q + n+ 2)x2(x+ n)

−(q + n)(q + n+ 2)(q + n+ 4)x3
]
.

Setting

αδ,k;q(n) = sup
x

∣∣∣ 1
k!
cδ,k, q(x;n)fq(x;n)

∣∣∣, (3.8)
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from (2.10) we obtain the following upper bound for the approximation error:∣∣Gq(x;n)−Gδ,k;q(x;n)
∣∣ ≤ αδ,k;q(n)E{(Sn ∨ S−1

n − 1)k},

≤ αδ,k;q(n)
[
E
{
|Sn − 1|k

}
+ E

{
|S−1

n − 1|k
}]

. (3.9)

If Sn > 1, we obtain∣∣Gq(x;n)−Gδ,k;q(x;n)
∣∣ ≤ βδ,k;q(n)E

{
|Sn − 1|k

}
. (3.10)

Further, it holds that∣∣Gq(x;n)−Gδ,k;q(x;n)
∣∣ ≤ αδ,k;q(n)E

{
|Sn − 1|k

}
, (3.11)

under the assumption that Sn has k-momnet. The positive constant βδ,k;q(n)

is defined by

βδ,k;q(n) = sup
0<x,0<y≤1

Jδ,k;n(x, y;n), (3.12)

where

Jδ,k;q(x, y;n) ≡


|∆δ,k;q(x, y;n)|

|y − 1|k
, for y ̸= 1,

1

k!
|cδ,k;q(x;n)| fq(x;n), for y = 1,

(3.13)

and

∆δ,k;q(x, y;n) ≡ Fq(xy
−δ;n)−Gδ,k;q(x, y;n) (3.14)

For an approximation to the cdf of T in (1.2), it is suggested to use the

sale mixture expressed as in (1.3), and to use (3.10). Then, we need moments

of

Ur,m = Sn − 1 =
χ2
r

χ2
m

,

where r = p− 1 and m = n+1. It is well krnown that for m− r+1− 2j > 0

E(U j
r,m) =

r(r + 2) · · · (r + 2(j − 1))

(m− r − 1)(m− r + 1) · · · (m− r + 1− 2j)
. (3.15)

For numerical values of αδ,k;q(n)’s, see Tables 1 and 2.
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Table 1: Numerical values of αδ,k;q(n) (δ = 1)

n 10 20 50 100 200 300

α1,2;2(n) 0.2067 0.2180 0.2254 0.2280 0.2293 0.2301

α1,2;4(n) 0.3154 0.3487 0.3731 0.3822 0.3870 0.3899

α1,2;6(n) 0.3942 0.4540 0.5019 0.5207 0.5308 0.5371

α1,4;2(n) 0.1175 0.1245 0.1291 0.1308 0.1316 0.1321

α1,4;4(n) 0.1980 0.2224 0.2407 0.2476 0.2512 0.2534

α1,4;6(n) 0.2674 0.3170 0.3630 0.4121 0.4401 0.4582

Table 2: Numerical values of αδ,k;q(n) (δ = −1)

n 10 20 50 100 200 300

α−1,2;2(n) 0.2278 0.2468 0.2604 0.2654 0.2680 0.2696

α−1,2;4(n) 0.3371 0.3881 0.4291 0.4452 0.4539 0.4593

α−1,2;6(n) 0.4102 0.4952 0.5703 0.6018 0.6190 0.6300

α−1,4;2(n) 0.1446 0.1648 0.1814 0.1880 0.1916 0.1939

α−1,4;4(n) 0.2317 0.2907 0.3471 0.3721 0.3862 0.3953

α−1,4;6(n) 0.2950 0.3987 0.5114 0.5657 0.5976 0.6185
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