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Abstract

This paper is concerned with the problem of discriminating between two populations with
heteroscedastic multivariate normal distributions based on an observation vector x. We give the
limiting distribution of the unbiased estimator for the log odds ratio of the posterior probabilities
as the sample sizes Ni (i = 1, 2) and the dimension p go to infinity together with the ratio p/(Ni−1)
converging a finite non-zero constant ci ∈ (0, 1) for the case in which the prior probabilities are
equal. Approximated interval estimation for the log odds ratio is derived. Simulation results
indicate that our estimation has good accuracy compared with the classical results.

1 Introduction

This paper is concerned with the problem of discriminating between two populations (Π1,Π2) based
on an informative p variate observation vector x. For this problem, Bayes’s rule gives a role to
the odds ratio to obtain a criteria for discrimination. The logarithm of this odds ratio is expressed
as π + ξ(x), where π = log(π1/π2), with πi being the prior probability of x from Πi, and where
ξ(x) = log{f(x|1)/f(x|2)}, with f(x|i) being the conditional probability density function under the
condition that x is belonging to Πi.

Assume that the prior probabilities are equal. We assume further that the underlying probability
distribution for x ∈ Πi is p variate normal Np(µi,Σi) with mean µi and covariance matrix Σi. In order
to estimate the parameter of interest ξ(x), we use training data of random samples {x1,1, . . . ,x1,N1

}
and {x2,1, . . . ,x2,N2

}.
For the case in which Σ1 = Σ2 = Σ, confidence interval of ξE(x) = ξ(x) = ξ(x; ΘE) has been pro-

posed by Critchley and Ford [1], Rigby [8], Davis [4], and Critchley et al. [3], where ΘE = {µ1,µ2,Σ}.
Consider the case in which Σ1 ̸= Σ2. It can be expressed that

ξU(x) = ξ(x) = ξ(x; ΘU) = −1

2
{δ1U(x)− δ2U(x)}

with
δiU(x) = δi(x) + log |Σi| (i = 1, 2),

where ΘU = {µ1,µ2,Σ1,Σ2},

δi(x) = δ(x;µi,Σi) = (x− µi)
′Σ−1

i (x− µi).

The uniform minimum variance unbiased estimator of ξU(x) is given by

ξ̂U(x) = ξ(x; Θ̂U) = −1

2
{δ̂1U(x)− δ̂2U(x)}

with

δ̂iU(x) =
δ(x; x̄i,Si)

c1(ni)
− p

Ni
+ log |Si|+ p log ni − c2(ni) (i = 1, 2),

where Θ̂U = {x̄1, x̄2,S1,S2}, c1(ni) = ni/(ni − p − 1), c2(ni) = p log 2 +
∑p

j=1 ψ((ni − p + j)/2),
ψ = (d/dy) log Γ(y),

x̄i =
1

Ni

Ni∑
j=1

xij , Si =
1

ni

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
′, ni = Ni − 1.
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Critchley et al. [2] proposed asymptotic approximation of the confidence interval for ξU(x), which
the one with the confidence level 1− α is given as follows:

CICFR : ξ̂U(x)−
√
νU{δ̂1(x), δ̂2(x)}z1−α/2 ≦ ξU(x) ≦ ξ̂U(x) +

√
νU{δ̂1(x), δ̂2(x)}z1−α/2,

where zα satisfies Φ(zα) = α, with Φ(.) being the cumulative distribution function of the standard

normal distribution N(0, 1); δ̂i(x) = δ(x; x̄i,Si) for i = 1, 2;

νU{δ1(x), δ2(x)} =

2∑
i=1

[
{δi(x)}2

2(mi − 4)
+

{
1

ni
− ni − 2

(mi − 1)(mi − 4)

}
δi(x)

+
p(ni − 2)

2(mi − 1)(mi − 4)

]
,

where mi = ni − p.
In the age of Big Data, we always encounter the case that both the dimension and the sample size

are very large. For example, financial data, consumer data, network data and medical data have this
feature. Generally, classical statistical methods established on the case that the dimension is smaller
than sample size become poor performance when the dimension becomes large. So it is meaningful to
find new method to resolve the problem of multivariate analysis for large dimensional case.

Yamada et al. [10] showed the asymptotic normality of the uniform minimum variance unbiased
estimator for ξE(x) as the dimension and sample sizes approach infinity, and proposed confidence
interval based on the asymptotic distribution. They investigated the actual confidence of the confidence
interval by simulation, and presented the usefulness compared with the classical confidence intervals
(Critchley and Ford [1], Rigby [8], Davis [4], and Critchley et al. [3]) for the case in which the dimension
is relatively large but is less than the total sample sizes.

The usefulness for asymptotic distribution as the dimension and sample size approach infinity is
written in literature, cf. Srivastava [9] and Fujikoshi et al. [5].

In this article, we will show the asymptotic normality for ξ̂U(x) for the case in which Σ1 ̸= Σ2

under the high-dimensional asymptotic framework A:

A : ni → ∞, p→ ∞, p/ni → ci ∈ (0, 1) (i = 1, 2).

Hall et al. [6] showed that
√
z′z =

√
p + Op(1) as p → ∞ for z ∼ Np(0, Ip). From this property,

δi(x)/p→ 1 as p→ ∞ if x ∼ Np(µi,Σi). Indeed, we suppose the case that Σ1 is little different from
Σ2. Motivating them, we assume

C :
δi(x)

p
→ ci ∈ (0,∞) as p→ ∞.

At first, we mention two-fundamental results, which are as follows.

Theorem 1. Assume that the condition C holds. For fixed x, under the high-dimensional asymptotic
framework A, √

2m

δ∗(x; ΘU)

{
ξ̂U(x)− ξU(x)

}
D→ N(0, 1),

where “
D→” denotes convergence in distribution, m = m1 +m2, and

δ∗(x; ΘU) =

2∑
i=1

m

mi
{δi(x)}2 .

Theorem 2. Assume that the condition C holds. For fixed x, under the high-dimensional asymptotic
framework A,

̂δ∗(x; ΘU)

δ∗(x; ΘU)

p→ 1,
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where “
p→” denotes convergence in probability, where

̂δ∗(x; ΘU) =

2∑
i=1

m

mi

{
1

c1(ni)
δ̂i(x)−

p

Ni

}2

.

From the above theorems and Slutsky’s theorem, we find that√
2m

̂δ∗(x; ΘU)

{
ξ̂U(x)− ξU(x)

}
D→ N(0, 1).

Based on this asymptotic normality, we provide an approximation of the confidence interval for ξU(x),
which the one with the confidence level 1− α is given as follows.

CIP : ξ̂U(x)−

√
̂δ∗(x; ΘU)

2m
z1−α/2 ≦ ξU(x) ≦ ξ̂U(x) +

√
̂δ∗(x; ΘU)

2m
z1−α/2.

The rest of this paper is organized as follows. In Section 2, we compare the actual confidence of our
proposed confidence interval with the classical ones mentioned above through simulation. The proof
of Theorem 1 and Theorem 2 are given in Section 3.

2 Simulation

In order to see the performance of the proposed confidence intervals, we conduct some simulations
for the actual confidence level based on 10,000 repetitions. We then compare the confidence intervals
proposed here with the ones treated in Hirst et al. [7].

Method U1. The confidence interval CICFR is used.

Method U2. The confidence interval given by Critchley et al. [3] under heteroscedasticity is used.

Method U3. The method of Rigby [8] is used.

Method U4. The confidence interval CIp is used.

We use the same notation as Critchley and Ford [1]. Let P be a matrix such that Σ−1
1 = P ′P .

Let Q′ be an orthogonal matrix whose first column is proportional to P (µ2 − µ1).

Transforming t → t∗ = At−c, whereA = QP , c = Aµ1+(∆1/2)e1, ∆1 =
√
(µ1 − µ2)

′Σ−1
1 (µ1 − µ2),

e1 = (1, 0, . . . , 0)′, we have

x̄1 → x̄∗
1 ∼ Np(−(∆1/2)e1, N

−1
1 Ip), x̄2 → x̄∗

2 ∼ Np((∆1/2)e1, N
−1
2 Σ∗

2),

S1 → S∗
1 ∼Wp(n1, Ip),

S2 → S∗
2 ∼Wp(n2,Σ

∗
2),

x → x∗,

where Σ∗
2 = QPΣ2P

′Q′. So, we generate random samples from Π1 : Np(−(∆1/2)e1, Ip) and Π2 :
Np((∆1/2)e1,Σ

∗
2). As the covariance matrix Σ∗

2, we set the following three cases.

M1. Σ∗
2 = 1.2Ip.

M2. Σ∗
2 = D = diag(d1, . . . , dp), where di = 5 + (−1)i−1{1− (i− 1)/p}.

M3. Σ∗
2 = D1/2(0.1|i−j|)D1/2.
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In our simulations, we considered the case in which N1 = N2 = 100, p = 10, 30, 50, 70, ∆1 = 1.6832,
α = 0.05, and

x∗ =

(
x∗1
y∗1h

)
, h =

1√
z′z

z, z ∼ Np−1(0, Ip−1).

For the setting of (x∗1, y
∗
1), Hirst et al. [7] treated the following 6 cases:

A = (2.4866, 0), B = (0.8416, 0), C = (0.8416, 1.645),

D = (0.4208, 0.5265), E = (0, 0), F = (0, 1.4134).

In order to satisfy the condition C, we multiplied these cases by
√
p, i.e., we studied the following

cases.

Ah = (2.4866
√
p, 0), Bh = (0.8416

√
p, 0), Ch = (0.8416

√
p, 1.645

√
p),

Dh = (0.4208
√
p, 0.5265

√
p), Fh = (0, 1.4134

√
p).

We omitted the case Eh = (0, 0) because the condition C is not satisfied. We will show that the model
M3 satisfies the condition C. The matrix (ρ|i−j|) with 0 < ρ < 1 is a Hermite Toeplitz matrix. There
exist real-valued eigenvalues λ1 ≧ · · · ≧ λp of (ρ|i−j|) such that

µmin = min
θ∈[−π,π]

f(θ) ≦ λp ≦ · · · ≦ λ1 ≦ µmax = max
θ∈[−π,π]

f(θ),

where

f(θ) =

∞∑
k=−∞

ρ|k|eikθ = 1 +
ρeiθ

1− ρeiθ
+

ρe−iθ

1− ρe−iθ
.

It is observed that

µmin = −1 +
2

1 + ρ2
.

So, for the model M3, we find that

δ2(x
∗)

p
≦ 1

pµmin
(x∗ − (∆1/2)e1)

′D−1(x∗ − (∆1/2)e1),

and so the condition C holds.
We can see from Table 1 that the actual confidence levels for U4 vary between 0.94 to 0.97. So, it

can be observed that our proposed confidence interval always keep around the given confidence levels.
By comparing the results of M1-M3, we can see the tendency that the actual confidence level decrease
as the model for Σ∗

2 becomes complicated. Our extra simulation results which does not written in
this paper reveals that the actual confidence level gets away from the given confidence level as the
dimension becomes close to sample size. It is also observed that many of the actual confidence levels
for U2 and U3 are not in line with the predefined level (= 1 − α = 0.95). We can also check that
the confidence interval based on U1 is conservative, in which case the interval contains too many true
values, and so it is likely that the width is too large.

To sum up, our simulation demonstrate that the proposed confidence interval outperforms the
classical methods for the case that each sample size and the dimension are large, but the dimension is
less than and equal to a half of the smallest sample sizes.

3 Proof of theorem

In this section, we provide the proofs of Theorem 1 and Theorem 2.
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Table 1: Actual confidence level based on 10,000 repetitions when N1 = N2 = 100 and α = 0.05

Feature vector
p Method Σ∗

2 Ah Bh Ch Dh Fh

10

U1
M1 0.98 0.96 0.98 0.98 0.98
M2 0.97 0.97 0.97 0.97 0.97
M3 0.97 0.97 0.97 0.97 0.97

U2
M1 0.94 0.93 0.94 0.94 0.94
M2 0.93 0.92 0.93 0.92 0.93
M3 0.93 0.92 0.93 0.92 0.94

U3
M1 0.93 0.91 0.93 0.92 0.94
M2 0.89 0.88 0.89 0.89 0.90
M3 0.89 0.89 0.90 0.90 0.91

U4
M1 0.95 0.94 0.96 0.96 0.96
M2 0.95 0.95 0.95 0.95 0.95
M3 0.95 0.95 0.94 0.96 0.95

30

U1
M1 0.99 1.00 1.00 1.00 1.00
M2 0.99 0.99 0.99 0.99 0.99
M3 0.99 0.99 0.99 0.99 0.99

U2
M1 0.88 0.78 0.89 0.83 0.89
M2 0.55 0.52 0.60 0.58 0.63
M3 0.55 0.53 0.61 0.58 0.65

U3
M1 0.86 0.73 0.87 0.79 0.88
M2 0.47 0.43 0.52 0.50 0.56
M3 0.47 0.44 0.53 0.50 0.57

U4
M1 0.96 0.95 0.96 0.96 0.96
M2 0.95 0.95 0.95 0.96 0.95
M3 0.94 0.95 0.95 0.96 0.95

50

U1
M1 1.00 1.00 1.00 1.00 1.00
M2 1.00 1.00 1.00 1.00 1.00
M3 1.00 1.00 1.00 1.00 1.00

U2
M1 0.77 0.59 0.79 0.68 0.82
M2 0.12 0.10 0.16 0.13 0.22
M3 0.13 0.09 0.18 0.13 0.22

U3
M1 0.75 0.55 0.77 0.64 0.80
M2 0.09 0.07 0.13 0.10 0.17
M3 0.09 0.06 0.14 0.10 0.18

U4
M1 0.96 0.96 0.97 0.97 0.96
M2 0.94 0.94 0.94 0.96 0.94
M3 0.94 0.95 0.95 0.96 0.94

70

U1
M1 1.00 1.00 1.00 1.00 1.00
M2 1.00 1.00 1.00 1.00 1.00
M3 1.00 1.00 1.00 1.00 1.00

U2
M1 0.63 0.45 0.67 0.53 0.70
M2 0.01 0.01 0.03 0.02 0.06
M3 0.00 0.00 0.03 0.02 0.05

U3
M1 0.62 0.43 0.65 0.51 0.69
M2 0.01 0.00 0.03 0.01 0.05
M3 0.00 0.00 0.03 0.01 0.04

U4
M1 0.97 0.96 0.97 0.98 0.98
M2 0.94 0.95 0.94 0.97 0.94
M3 0.94 0.95 0.94 0.97 0.94
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3.1 Proof of Theorem 1

In order to prove Theorem 1, we will use the following lemmas.

Lemma 1. Let y ∼ χ2(m + 1), z ∼ Np(0, Ip), and y is independent to z, where m = n − p, with
n = N − 1. Assume that b′b converges a positive constant as p→ ∞. Then,

1√
2b′b

√
m

p


(

1√
N
z −√

pb
)′ (

1√
N
z −√

pb
)

y/(m− 1)
− p

N
− pb′b

 D→ N(0, 1)

as N, p→ ∞ under the condition that p/n→ c ∈ (0, 1).

Lemma 2. Let W ∼Wp(n, Ip). Then

p−1/2(log |W | − E[log |W |]) p→ 0

as n, p→ ∞ under the condition that p/n→ c ∈ (0, 1). Here, E[log |W |] = c2(n).

Proofs of Lemma 1 and Lemma 2 are given in Appendix.

Proof of Theorem 1. It holds that

δ̂i(x)

c1(ni)

D
= (mi − 1)

(
√
pbi −

1√
Ni

zi

)′

W−1
i

(
√
pbi −

1√
Ni

zi

)
,

where zi ∼ Np(0, Ip), W i ∼ Wp(ni, Ip), bi = p−1/2Σ
−1/2
i (x − µi). Let Γ be an orthogonal matrix

whose first column is proportional to
√
pbi − (1/

√
Ni)zi. From the invariance property of Wishart

distribution Wp(ni, Ip) for the transformation: W i → Γ′W iΓ, under the condition that zi is given,(
√
pbi −

1√
Ni

zi

)′

W−1
i

(
√
pbi −

1√
Ni

zi

)
D
=

1

wi,11·2

(
√
pbi −

1√
Ni

zi

)′ (√
pbi −

1√
Ni

zi

)
, (1)

where wi,11·2 = wi,11 −w′
i,21W i,22wi,21 for the partition

W i =

(
wi,11 w′

i,21

wi,21 W i,22

)
.

From Lemma 1,

1√
2b′ibi

√
mi

p

[
δ̂i(x)

c1(ni)
− p

Ni
− pb′ibi

]
D→ N(0, 1).

under A and C. On the other hand, from Lemma 2,

√
mi

p
(log |Si| − log |Σi|+ p log ni − c2(ni))

p→ 0

under A. Using Slutsky’s theorem, we find that√
mi

2δi(x)

{
δ̂iU(x)− δiU(x)

}
D→ N(0, 1)

under A and C, which implies the conclusion of Theorem 1.
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3.2 Proof of Theorem 2

We give a proof of Theorem 2.

Proof of Theorem 2. From the expression (1),

E

{ δ̂i(x)

c1(ni)δi(x)
− 1− p

Niδi(x)

}2


= E

[(
mi − 1

wi,11.2
− 1

)2

+
4p

Ni

(mi − 1)2(b′izi)
2

{δi(x)}2w2
i,11.2

+
1

N2
i

(mi − 1)2(z′
izi)

2

{δi(x)}2w2
i,11.2

− 2p

Niδi(x)

{
mi − 1

wi,11.2δi(x)

(
√
pbi −

1√
Ni

zi

)′ (√
pbi −

1√
Ni

zi

)
− 1

}
+

p2

N2
i {δi(x)}2

]

=
2

mi − 3
+
mi − 1

mi − 3

[
1

4Niδi(x)
+

p(p+ 2)

N2
i {δi(x)}2

]
− p2

N2
i {δi(x)}2

→ 0

under A and C. It follows from Chebyshev inequality that

δ̂i(x)

c1(ni)δi(x)
− p

Niδi(x)

p→ 1.

The conclusion of Theorem 2 follows from this and continuous mapping theorem.

A Proof of Lemma

Firstly, we prove Lemma 1.

Proof of Lemma 1. It holds that

m− 1

y
= 1−

(
y

m+ 1
− 1

)
+

(
y

m+ 1
+
m− 1

y
− 2

)
.

Consider the probability convergence of(
1√
N

z −√
pb

)′ (
1√
N

z −√
pb

)
·
(

y

m+ 1
− 1

)
=

(
1

N
z′z − 2

√
p

N
b′z + pb′b

)
·
(

y

m+ 1
− 1

)
.

It can be expressed that

E

[
1

N
z′z

(
y

m+ 1
− 1

)]
= 0, Var

[
1

N
z′z

(
y

m+ 1
− 1

)]
=
p(p+ 2)

N2

2

m+ 1
,

E

[
b′z

(
y

m+ 1
− 1

)]
= 0, Var

[
b′z

(
y

m+ 1
− 1

)]
=

2

m+ 1
b′b.

Hence, from Chebyshev inequality,

1

N
z′z

(
y

m+ 1
− 1

)
p→ 0,

b′z

(
y

m+ 1
− 1

)
p→ 0

as N, p → ∞ under the condition that p/n → c ∈ (0, 1). By virtue of these probability convergences,
we find that (

1

N
z′z − 2

√
p

N
b′z + pb′b

)
·
(

y

m+ 1
− 1

)
− pb′b

(
y

m+ 1
− 1

)
p→ 0. (2)

7



Next, we focus on the probability convergence of(
1√
N

z −√
pb

)′ (
1√
N

z −√
pb

)
·
(

y

m+ 1
+
m− 1

y
− 2

)
=

(
1

N
z′z − 2

√
p

N
b′z + pb′b

)
·
(

y

m+ 1
+
m− 1

y
− 2

)
.

It holds that

E

[
1

N
z′z

(
y

m+ 1
+
m− 1

y
− 2

)]
= 0,Var

[
1

N
z′z

(
y

m+ 1
+
m− 1

y
− 2

)]
=

8p(p+ 2)

N2(m+ 1)(m− 3)
,

E

[
b′z

(
y

m+ 1
+
m− 1

y
− 2

)]
= 0,Var

[
b′z

(
y

m+ 1
+
m− 1

y
− 2

)]
=

8

(m+ 1)(m− 3)
b′b.

Hence, from Chebyshev inequality,

1

N
z′z

(
y

m+ 1
+
m− 1

y
− 2

)
p→ 0,

b′z

(
y

m+ 1
+
m− 1

y
− 2

)
p→ 0

as N, p→ ∞ under the condition that p/n→ c ∈ (0, 1). From these probability convergences, we find
that (

1

N
z′z − 2

√
p

N
b′z + pb′b

)
·
(

y

m+ 1
+
m− 1

y
− 2

)
− pb′b

(
y

m+ 1
+
m− 1

y
− 2

)
p→ 0. (3)

Combining probability convergences given in (2) and (3), and taking consideration of the equality:

−
(

y

m+ 1
− 1

)
+

(
y

m+ 1
+
m− 1

y
− 2

)
=
m− 1

y
− 1,

we have that(
1√
N
z −√

pb
)′ (

1√
N
z −√

pb
)

y/(m− 1)
−
(

1√
N

z −√
pb

)′ (
1√
N

z −√
pb

)
−

(
m− 1

y
− 1

)
· pb′b p→ 0.

Furthermore, it holds that E[|z′z/(
√
pN)] =

√
p/N , which converges to 0 as N, p → ∞ under the

condition that p/n→ c ∈ (0, 1). From Markov inequality, {1/(√pN)}z′z
p→ 0. In addition, since it is

expressed that E[p−1/2b′z] = 0 and Var(p−1/2b′z) = p−1b′b, we find from Chebyshev inequality that

(1/
√
p)b′z

p→ 0 as p→ ∞. Hence,

1
√
p

[(
1√
N

z −√
pb

)′ (
1√
N

z −√
pb

)
− p

N
− pb′b

]
p→ 0.

On the other hand, since it holds that E[|
√
m/y|] =

√
m/(m − 1) → 0 as N, p → ∞ under the

condition that p/n → c ∈ (0, 1), we find from Markov inequality that
√
m/y

p→ 0. In addition,
√
m+ 1{y/(m+ 1)− 1} D→ N(0, 2). From delta method and Slutsly theorem,

√
m{(m− 1)/y − 1} D→

N(0, 2). Combining these results,

1√
2b′b

√
m

p


(

1√
N
z −√

pb
)′ (

1√
N
z −√

pb
)

y/(m− 1)
− p

N
− pb′b

 D→ N(0, 1).
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Before proving Lemma 2, we give a result concerning the boundaries of series.

Lemma 3. Let f(x) be a non-negative decreasing function. Then, for positive constant a > 1,

lim
n→∞

∫ n+1

1

f(x+ a)dx <

∞∑
k=1

f(k + a) < lim
n→∞

∫ n+1

1

f(x+ a− 1)dx

Proof. Since f(x) is a decreasing function, for positive integer ℓ, it holds that∫ ℓ+1

ℓ

f(x)dx > {(ℓ+ 1)− ℓ} · f(ℓ+ 1) = f(ℓ+ 1),∫ ℓ+1

ℓ

f(x)dx < {(ℓ+ 1)− ℓ} · f(ℓ) = f(ℓ),

and so
n∑

k=1

f(k + a) <

∫ n+1

1

f(x+ a− 1)dx <

n∑
k=1

f(k + a− 1).

Proof of Lemma 2. Characteristic function of V = log |W | is given as

C(t) =
Γp(

n
2 + it)

Γp(
n1

2 )
,

where Γp(a/2) = πp(p−1)/4
∏p

i=1 Γ((a − i + 1)/2). The cumulant generating function K(t) = logC(t)
can be expressed as

K(t) =

p∑
j=1

{
log Γ

(
n− p+ j

2
+ it

)
− log Γ

(
n− p+ j

2

)}
.

Using Taylor expansion of log Γ((n− p+ j)/2 + x) at x = 0, we obtain an expansion of the cumulant
generating function, formally, which is as follows.

K(t) =

∞∑
s=1

κ(s)

s!

with s-th cumulant κ(s), which is given as follows.

κ(s) =

p∑
j=1

ψ(s−1)

(
n− p+ j

2

)
,

where

ψ(s)(a) =


−C +

∞∑
k=0

(
1

1 + k
− 1

k + a

)
(s = 0),

∞∑
k=0

(−1)s+1s!

(k + a)s+1
(s ≥ 1).

Here, C denotes Euler’s constant. For Var(V ) = κ(2), it is found from Lemma 3 that

p∑
j=1

lim
k→∞

∫ k+1

1

1

(x+ aj − 1)2
dx < Var(V ) <

p∑
j=1

lim
k→∞

∫ k+1

1

1

(x+ aj − 2)2
dx,
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where aj = (n− p+ j)/2, and so

p∑
j=1

2

n− p+ j
< Var(V ) <

p∑
j=1

2

n− p+ j − 2
. (4)

For the left-hand side of the inequality, using Lemma 3 again,

p∑
j=1

2

n− p+ j
> 2

∫ p+1

1

1

n− p+ x
dx = 2 log

(
1 +

p

n− p+ 1

)
.

On the other hand, the right-hand side of the inequality (4) is bounded by

p∑
j=1

2

n− p+ 1− 2
=

2p

n− p− 1
.

Thus Var(V ) converges a positive constant as n, p → ∞, p/n → c ∈ (0, 1). The conclusion of Lemma
2 follows from Chebyshev inequality.
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