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Abstract

This paper presents the robust Bayesian inference based on the γ-divergence which

is the same divergence as “type 0 divergence” in Jones et al. (2001) on the basis of

Windham (1995). It is known that the minimum γ-divergence estimator works well to

estimate the probability density for heavily contaminated data, and to estimate the vari-

ance parameters. In this paper, we propose a robust posterior distribution against outliers

based on the γ-divergence and show the asymptotic properties of the proposed estimator.

We also discuss some robustness properties of the proposed estimator and illustrate its

performances in some simulation studies.
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1 Introduction

It is well-known that the maximum likelihood estimator (MLE) has a large bias in the presence

of outliers. The robustness against outliers has been investigated in many aspects such as

influence function and breakdown point (for the details, see Hampel et al. (1986) and Huber

(1981)). As another approach, the robust estimators based on the divergences have been

developed to reduce the effect of outliers. A pioneering work of the robust estimation based

on the divergence was given by Basu et al. (1998). They proposed the minimum density

power divergence estimator and showed its asymptotic properties and robustness. On the

other hand, Jones et al. (2001) proposed another class of estimators in a similar spirit where

the identity function was replaced by the logarithmic function (see also Windham (1995)).

They referred to the new class of divergences as the class of “type 0” divergences as opposed

to the density power divergence being the class of “type 1” divergences, and also compared

the properties of the corresponding estimators with those of the minimum density power

divergence estimators. Fujisawa and Eguchi (2008) dealt with the same divergence as “type

0” divergence (they call it γ-divergence) and showed that the corresponding estimator has a

small latent bias for heavily contaminated data under some conditions.
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In the Bayesian context, it is also well-known that the ordinary Bayes estimator under the

quadratic loss function (i.e., the posterior mean) is not robust against outliers. The theory

of the Bayesian robustness against outliers has been developed in terms of the heaviness

of the tails of distributions (see e.g., Dawid (1973), Andrade and O’Hagan (2006), Desgagné

(2015)). However, this approach may lead to a loss of precision when the contamination is not

present. Recently, Ghosh and Basu (2016) proposed the robust Bayes estimation based on

the density power divergence. They discussed in details the mean parameter estimation when

the variance parameter was known. They also showed the asymptotic property of the Bayes

estimators, and characterized the robustness in terms of the influence function. However, it

is known that the estimators based on the density power divergence does not work well the

estimation for the variance parameter, and are unstable when the ratio of contamination is not

small. These facts were discussed by Fujisawa and Eguchi (2008) in a frequentist viewpoint.

The robust estimations based on the γ-divergence have been developed in various models (see

e.g., Hirose et al. (2017) and Kawashima and Fujisawa (2017)).

In this paper, we propose a robust posterior distribution based on the γ-divergence, and

derive a different property on the estimation of the variance parameter and conclude that the

robust Bayesian estimation via the γ-divergence is superior to that via the density power di-

vergence in the sense of the estimation of the variance parameter. Furthermore, in simulation

studies, we show that the proposed method is also robust under heavy contamination. This

paper is organized as follows: In Section 2, we propose a new robust posterior distribution via

the γ-divergence which is called the “γ-posterior” in this paper. The γ-posterior is derived

by replacing the likelihood function with the γ-divergence in a similar way to the Ghosh and

Basu (2016). In Section 3, it is shown that the γ-posterior and its posterior mean have the

asymptotic normalities under some regularity conditions. In Section 4, the influence function

for the posterior mean based on the γ-posterior is obtained, and we compare our influence

function with that of Ghosh and Basu (2016) in the normal model. The robustness of the

prior perturbation in the term of the local sensitivity measure which is proposed by Gustafon

and Wasserman (1996) is also discussed. In Section 5, we show that the posterior means based

on the γ-posterior numerically outperform those of based on the density power and ordinary

posteriors in terms of empirical biases of estimators. Further, by making a comparison of the

posterior distributions with or without outliers based on the posterior samples generated by

Markov chain Monte Carlo (MCMC) algorithm, our proposal posterior is better than the

competitors in terms of the rejection of outliers.

2 Construction of robust posterior distribution

First, we give the fundamental setting for the parameter estimation and introduce the γ-

divergence and γ-cross entropy. Then we propose a robust posterior distribution based on

the γ-divergence.

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random variables ac-

cording to the probability density function g(x). Let f(x) be underlying probability density

function and δ(x) be the contamination probability density function. Suppose that g(x) is

the contaminated probability density function given by g(x) = (1− ε)f(x)+ εδ(x), where ε is

the ratio of contamination. We often use a point mass at x as δ(x). In this paper, we consider
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only the case which the contamination density δ(x) mostly lies on the tail of the underlying

density f(x). In other words, for an outlier xo, it holds that f(xo) ≈ 0. It is known that some

divergences might have some problems of instability for sampled values very close to zero

(for example, the case of exponential distribution with mean 1 in the example of Jones et al.

(2001)), and corresponding minimum divergence estimators are statistically useless. However,

we suppose that we do not consider such cases in this paper. We now consider the parametric

model fθ(x) = f(x; θ) (θ ∈ Θ) as a candidate model, where Θ ⊂ Rp is a parameter space

of θ = (θ1, . . . , θp)
⊤. We assume that the target density is included in the candidate model

{fθ| θ ∈ Θ}, that is, f(x) is expressed by f(x) = fθ0(x) using a parameter θ0 ∈ Θ. Hereafter,

we will often omit arguments of functions for simplicity. Jones et al. (2001) proposed the

divergence between the probability densities fθ and g as follows:

Dγ(g, fθ) =
1

γ(γ + 1)
log

∫
g1+γdx− 1

γ
log

∫
gfγ

θ dx+
1

γ + 1
log

∫
f1+γ
θ dx

= −dγ(g, g) + dγ(g, fθ) (say),

where γ > 0 is a tuning parameter on robustness and dγ(g, fθ) is called the γ-cross entropy.

This divergence is also called “γ-divergence” in Fujisawa and Eguchi (2008). In order to derive

the minimum γ-divergence estimator for θ, we may consider the minimization problem

min
θ∈Θ

dγ(g, fθ) = min
θ∈Θ

{
−1

γ
log

∫
gfγ

θ dx+
1

γ + 1
log

∫
f1+γ
θ dx

}
with respect to θ. Though the true density g(x) is unknown, we note that the γ-cross entropy

is empirically estimable by dγ(ḡ, fθ), where ḡ is the empirical probability density of Xn =

(X1, . . . , Xn). Then the robust estimator of θ is given by argminθ∈Θ dγ(ḡ, fθ) (see Jones et

al. (2001) and Fujisawa and Eguchi (2008)).

Now, we consider the following monotone transformation of the γ-cross entropy

d̃γ(g, fθ) = −1

γ
{exp (−γdγ(g, fθ))− 1} = −

1
γ

∫
gfγ

θ dx

{
∫
f1+γ
θ dx}γ/(1+γ)

+
1

γ
. (1)

Remark 2.1. We note that the second term of the right-hand side of the (1), i.e., “+1/γ”

is necessary to prove (iii) in Proposition 2.1. However, this term is canceled out in the

denominator and numerator when we calculate the posterior distribution.

This transformation is essential in this paper (for the details, we will discuss later). Then

we give some properties of the transformed γ-cross entropy d̃γ(g, fθ).

Proposition 2.1. Let g and f be the probability density functions and let κ1, κ2 and κ be

the positive constants. Then d̃γ(g, f) have the following properties

(i) d̃γ(κ1g, κ2f) = κ1d̃γ(g, f) + (1− κ1)/γ.

(ii) d̃γ(g, f) = d̃γ(g, g) holds if and only if f = κg. In particular, g = f if g and f are the

density functions.

(iii) limγ→0 d̃γ(g, f) = −
∫
g log fdx = dKL(g, f), where dKL(g, f) is the Kullback-Leibler

cross entropy between g and f .
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Proof. The proof of (i) and (ii) are omitted because they are proved straightforward from the

definition of the γ-cross entropy. We only prove (iii). The proof of (iii) be proved by using

the Taylor expansion fγ = 1 + γ log f +O(γ2) (γ → 0). Then

1

γ

∫
gfγdx− 1 =

1

γ

∫
g(fγ − 1)dx =

∫
g log fdx+O(γ) (γ → 0),(∫

f1+γdx

)γ/(1+γ)

= 1 +O(γ2) (γ → 0).

Therefore, we have

d̃γ(g, f) = −1

γ

[ ∫
gfγdx{∫

f1+γdx
}γ/(1+γ)

− 1

]

= −1

γ

[ ∫
gfγdx− 1{∫

f1+γdx
}γ/(1+γ)

+
1{∫

f1+γdx
}γ/(1+γ)

− 1

]

→ −
∫

g log fdx (γ → 0)

This completes the proof.

Replacing the true density g with the empirical density ḡ of Xn, we have

−nd̃γ(ḡ, fθ) =
n∑

i=1

1
γ fθ(Xi)

γ

{
∫
fθ(x)1+γdx}γ/(1+γ)

− n

γ

=
n∑

i=1

q
(γ)
θ (Xi)−

n

γ
= Q(γ)

n (θ) (say), (2)

where

q
(γ)
θ (x) = q(γ)(θ;x) =

1

γ
fθ(x)

γ

{∫
fθ(x)

1+γdx

}−γ/(1+γ)

.

We refer to Q
(γ)
n (θ) as the γ-likelihood which is a kind of quasi-likelihoods (or weighted likeli-

hoods). From (iii) in Proposition 2.1, we have

lim
γ→0

Q(γ)
n (θ) =

n∑
i=1

log fθ(Xi).

Hence, the γ-likelihood is the generalization of the log-likelihood. Here, we show a simple

example of the parameter estimation based on the γ-likelihood.

Example 2.1 (Normal distribution). Let X1, . . . , Xn be i.i.d. random variables from the

normal distribution with mean µ and variance σ2, that is, θ = (µ, σ2)⊤. In this case, we

have fθ(xi)
γ = (1/

√
2πσ2)γ exp{−γ(xi − µ)2/2σ2} and {

∫
f1+γ
θ dx}−γ/(1+γ) = {(2πσ2)γ/2(1 +
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γ)1/2}γ/(1+γ). Then the γ-likelihood Q
(γ)
n is given by

Q(γ)
n (θ) =

1

γ

{
(2πσ2)γ/2(1 + γ)1/2

}γ/(1+γ)
n∑

i=1

(
1√
2πσ2

)γ

exp

(
−γ(xi − µ)2

2σ2

)
− n

γ

for γ > 0. To obtain the minimum γ-divergence estimator, we may solve the maximization

problem maxθ∈ΘQ
(γ)
n (θ) with respect to θ. Fujisawa and Eguchi (2008) provided an iterative

algorithm to solve this problem. As we can see, the γ-likelihood Q
(γ)
n (θ) is slightly different

from the log-likelihood function given by ℓn(θ) = −(n log(2πσ2)/2)−
∑n

i=1(xi − µ)2/2σ2.

In the Bayesian context, the parameter estimation is based on the posterior distribution

of parameter θ given by the data Xn. The ordinary posterior density is given by

π(θ|Xn) =
Ln(θ)π(θ)∫
Ln(θ)π(θ)dθ

∝ exp {−ndKL(ḡ, fθ)}π(θ), (3)

where Ln(θ) =
∏n

i=1 f(xi; θ) is the likelihood function and π(θ) is the prior density of θ. Then

we propose the γ-posterior which is the posterior density based on the γ-likelihood.

Definition 2.1 (γ-posterior). Let Q
(γ)
n (θ) be the γ-likelihood given by (2). We define the

γ-posterior by

π(γ)(θ|Xn) =
exp{−nd̃γ(ḡ, fθ)}π(θ)∫
exp{−nd̃γ(ḡ, fθ)}π(θ)dθ

=
exp{Q(γ)

n (θ)}π(θ)∫
exp{Q(γ)

n (θ)}π(θ)dθ
=

∏n
i=1 exp(q

(γ)
θ (Xi))π(θ)∫ ∏n

i=1 exp(q
(γ)
θ (Xi))π(θ)dθ

,

(4)

where π(θ) is the prior density of θ and γ > 0 is a tuning parameter on robustness.

The γ-posterior is a kind of quasi-posterior distributions. The applications of quasi-

posterior distributions have been developed in recent years (see also Hooker and Vidyashankar

(2014) and Ghosh and Basu (2016)). We note that π(γ)(θ|Xn) is close to the ordinary pos-

terior density (3) as γ → 0. Since the monotone transformed γ-cross entropy d̃γ(ḡ, fθ) is

additive in ḡ for i.i.d. random variables, we can update the posterior density for new data

Xnew = (Xn+1, . . . , Xm). In fact, we have

π(γ)(θ|Xall) ∝

{
m∏

i=n+1

exp(q
(γ)
θ (Xi))

}
π(γ)(θ|Xold)

∝

{
m∏

i=n+1

exp(q
(γ)
θ (Xi))

}{
n∏

i=1

exp(q
(γ)
θ (Xi))

}
π(θ)

=

{
m∏
i=1

exp(q
(γ)
θ (Xi))

}
π(θ),

where Xold = (X1, . . . , Xn) and Xall = (Xold,Xnew).
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Remark 2.2. If we do not use the monotone transformed γ-cross entropy, then we have

π(γ)(θ|Xall) ̸=

{
m∏
i=1

exp(q
(γ)
θ (Xi))

}
π(θ).

In other words, we can not carry out the usual Bayesian update.

If we assume the uniform prior distribution for π(θ), the maximum a posteriori (MAP)

estimator θ̂MAP is given by

θ̂
(γ)
MAP = argmax

θ∈Θ

[{
n∏

i=1

exp(q
(γ)
θ (Xi))

}
π(θ)

]
.

Since the posterior density under the uniform prior is proportional to the likelihood function,

the MAP estimator θ̂
(γ)
MAP is the same as the minimum type 0 or γ-divergence estimator given

by Jones et al. (2001) and Fujisawa and Eguchi (2008).

Let L(θ, d) be the loss function for the decision d ∈ D, where D is the decision space.

Then the Bayes estimator based on the γ-posterior under the loss function L(θ, d) is defined

by

θ̂(γ)Ln = argmin
δ

∫
L(θ, δ)π(γ)(θ|Xn)dθ.

In particular, if we consider the quadratic loss function L(θ, d) = ∥θ − d∥2 with Euclidean

norm ∥ · ∥, then the Bayes estimator corresponds to the posterior mean based on γ-posterior

given by

θ̂(γ)n = Eπ(γ)
(θ|Xn) =

∫
θπ(γ)(θ|Xn)dθ.

Note that when γ → 0 the Bayes estimator based on γ-posterior corresponds to the usual

Bayes estimator under the quadratic loss function.

3 Asymptotic properties of estimators

In this section, we show some asymptotic properties of the estimation based on the γ-posterior.

We define θg by θg = argminθ∈Θ dγ(g, fθ). We assume the following regularity conditions on

the density fθ(x) = f(x; θ) (θ ∈ Θ ⊂ Rp).

(A1) The support of the density does not depend on unknown parameter θ and fθ is thrice

differentiable with respect to θ in neighborhood U of θg.

(A2) Interchange of the order of integration with respect to x and differentiation as θg is

justified. The expectations Eg[∂iq
(γ)(θg;X1)] and Eg[∂i∂jq

(γ)(θg;X1)] are all finite and

there exists Mijk(x) such that

sup
θ∈U

∣∣∣∂i∂j∂kq(γ)(θ;X1)
∣∣∣ ≤ Mijk(x) and Eg [Mijk(X1)] < ∞
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for all i, j, k = 1, . . . , p, where ∂i = ∂/∂θi and ∂ = ∂/∂θ.

(A3) For any δ > 0, with probability one

sup
∥θ−θg∥>δ

n−1
{
Q(γ)

n (θ)−Q(γ)
n (θg)

}
< −ε

for some ε > 0 and for all sufficiently large n.

Moreover, the maximum γ-likelihood estimator θ̃
(γ)
n and the posterior mean under the γ-

posterior θ̂
(γ)
n are defined by

θ̃(γ)n = argmax
θ∈Θ

Q(γ)
n (θ), θ̂(γ)n =

∫
Θ
θπ(γ)(θ|Xn)dθ,

respectively. The matrices I(γ)(θ) and J (γ)(θ) are defined by

I(γ)(θ) = Eθg

[
∂q(γ)(θ;X1)∂

⊤q(γ)(θ;X1)
]
, J (γ)(θ) = −Eθg

[
∂∂⊤q(γ)(θ;X1)

]
,

respectively. We assume that both I(γ)(θ) and J (γ)(θ) are positive definite matrices. Then

we have the following theorem concerning the asymptotic normality of the γ-posterior.

Theorem 3.1. Under the conditions (A1)-(A3), we assume that θ̃
(γ)
n is a consistent solution

of the γ-likelihood equation, that is ∂Q
(γ)
n (θ̃

(γ)
n ) = 0 and θ̃

(γ)
n

p−→ θg as n → ∞. Then for any

prior density π(θ) which is continuous and positive at θg, it holds∫ ∣∣∣∣π∗(γ)(t|Xn)− (2π)−p/2
∣∣∣J (γ)(θg)

∣∣∣1/2 exp(−1

2
t⊤J (γ)(θg)t

)∣∣∣∣ dt p−→ 0 (5)

as n → ∞, where π∗(γ)(t|Xn) is the γ-posterior density of t =
√
n(θ − θ̃

(γ)
n ) given Xn.

The proof of this theorem is similar to that of Theorem 4.2 in Ghosh et al. (2006).

Proof. Putting t =
√
n(θ − θ̃

(γ)
n ) in (4), we have

π∗(γ)(t|Xn) =
exp{Q(γ)

n (θ̃
(γ)
n + n−1/2t)}π(θ̃(γ)n + n−1/2t)∫

exp{Q(γ)
n (θ̃

(γ)
n + n−1/2t)}π(θ̃(γ)n + n−1/2t)dt

= C−1
n π(θ̃(γ)n + n−1/2t) exp

{
Q(γ)

n (θ̃(γ)n + n−1/2t)−Q(γ)
n (θ̃(γ)n )

}
,

where

Cn =

∫
π(θ̃(γ)n + n−1/2t) exp

{
Q(γ)

n (θ̃(γ)n + n−1/2t)−Q(γ)
n (θ̃(γ)n )

}
dt.

We put

gn(t) =π(θ̃(γ)n + n−1/2t) exp
{
Q(γ)

n (θ̃(γ)n + n−1/2t)−Q(γ)
n (θ̃(γ)n )

}
− π(θ0) exp

{
−1

2
t⊤J (γ)(θg)t

}
.
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Then, it suffices to show ∫
|gn(t)|dt

p−→ 0 (6)

as n → ∞. If (6) holds, Cn
p−→ π(θg)(2π)

p/2|J (γ)(θg)|−1/2 and therefore, the integral in (5),

which is dominated by

C−1
n

∫
|gn(t)|dt

+

∫ ∣∣∣∣C−1
n π(θg) exp

{
−1

2
t⊤J (γ)(θg)t

}
− (2π)−p/2|J (γ)(θg)|1/2 exp

{
−1

2
t⊤J (γ)(θg)t

}∣∣∣∣ dt
also convergence in probability to zero. In order to show (6), we consider the two regions

R1 = {t| ∥t∥ > δ0
√
n} and R2 = {t| ∥t∥ ≤ δ0

√
n}, for a small positive constant δ0. We will

separately show
∫
Ri

|g(t)|dt p−→ 0 for i = 1, 2. For i = 1, we note that it holds∫
R1

|gn(t)|dt ≤
∫
R1

π(θ̃(γ)n + n−1/2t) exp
{
Q(γ)

n (θ̃(γ)n + n−1/2t)−Q(γ)
n (θ̃(γ)n )

}
dt

+

∫
R1

π(θ0) exp

{
−1

2
t⊤J (γ)(θg)t

}
dt.

It is easy to see that the second integral goes to zero by the usual tail estimates for a normal

distribution. For the first integral, from (A3), we note that it holds

n−1
{
Q(γ)

n (θ)−Q(γ)
n (θg)

}
< −ε

for all t ∈ R1 and sufficiently large n. Therefore, the first integral is expressed by∫
R1

π(θ̃(γ)n + n−1/2t) exp
{
Q(γ)

n (θ̃(γ)n + n−1/2t)−Q(γ)
n (θ̃(γ)n )

}
dt

≤ e−nε

∫
R1

π(θ̃(γ)n + n−1/2t)dt.

Since the prior density π is integrable, we have∫
R1

|gn(t)|dt
p−→ 0

as n → ∞. Next, we consider the case of i = 2. By the Taylor expansion of Q
(γ)
n (θ) at

θ = θ̃
(γ)
n , we have

Q(γ)
n (θ̃(γ)n + n−1/2t)−Q(γ)

n (θ̃(γ)n ) = −1

2
t⊤

[
Ĵ (γ)(θ̃(γ)n )

]
t+Rn(t),

where Ĵ (γ)(θ) = −n−1
∑n

i=1 ∂∂
⊤qθ(Xi) and the remainder term Rn(t) is

Rn(t) =
1

6n
√
n

∑
i,j,k

∂i∂j∂kQ
(γ)
n (θ′n)titjtk,
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where θ′n = θ̃γn + hn−1/2t for some h such that 0 < h < 1. By assumption (A2), it holds

Rn(t)
p−→ 0 and Ĵ (γ)(θ̃

(γ)
n )

p−→ J (γ)(θg) as n → ∞. Therefore, we have gn(t)
p−→ 0 as n → ∞.

For suitably chosen δ0 and any t ∈ R2 we have

|Rn(t)| <
1

4
t⊤Ĵ (γ)(θ̃(γ)n )t

for sufficiently large n so that it holds

exp
{
Q(γ)

n (θ̃(γ)n + n−1/2t)−Q(γ)
n (θ̃(γ)n )

}
< exp

{
−1

4
t⊤Ĵ (γ)(θ̃(γ)n )t

}
< exp

{
−1

8
t⊤J (γ)(θg)t

}
.

Then, for suitably chosen small δ0 > 0, |gn(t)| is dominated by an integrable function on the

region R2. Thus, we have ∫
R2

|gn(t)|dt
p−→ 0

as n → ∞. This completes the proof.

Remark 3.1. By the definition of Cn and Cn
p−→ π(θg)(2π)

p/2|J (γ)(θg)|−1/2 as n → ∞, the

log-marginal likelihood is expressed by

log

∫ n∏
i=1

exp(q(γ)(Xi))π(θ)dθ =Q(γ)
n (θ̃(γ)n )− p

2
log n+

p

2
log 2π − 1

2
log |J (γ)(θg)|

+ log π(θg) + op(1) (7)

as n → ∞. By ignoring the terms which stay bounded as the n → ∞ in (7), the Bayesian

information criterion based on the γ-likelihood (BICγ) can be defined as

BICγ = Q(γ)
n (θ̃(γ)n )− p

2
log n,

where p is a dimension of θ. We note that the original Bayesian information criterion (BIC)

which is based on the log-likelihood is proposed by Schwarz (1978). However, we do not

discuss the details in this paper.

Theorem 3.2. In addition to assumptions of Theorem 3.1, assume that the prior density

π(θ) has a finite expectation. Then it holds
√
n(θ̂

(γ)
n − θ̃

(γ)
n )

p−→ 0 as n → ∞.

Proof. Proceeding as in the proof of Theorem 3.1 and using the assumption of finite expec-

tation for π, (5) can be strengthened to∫
∥t∥

∣∣∣∣π∗(γ)(t|Xn)− (2π)−p/2
∣∣∣J (γ)(θg)

∣∣∣1/2 exp(−1

2
t⊤J (γ)(θg)t

)∣∣∣∣ dt p−→ 0 (8)
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as n → ∞. From this, we have∫
tπ∗(γ)(t|Xn)dt

p→
∫

t(2π)−p/2
∣∣∣J (γ)(θg)

∣∣∣1/2 exp(−1

2
t⊤J (γ)(θg)t

)
dt = 0.

Therefore,
√
n(θ̂

(γ)
n − θ̃

(γ)
n ) =

∫
tπ∗(γ)(t|Xn)dt

p→ 0 as n → ∞. This completes the proof.

From Theorem 3.2, the posterior mean based on the γ-posterior θ̂
(γ)
n and the maximum

γ-likelihood estimator θ̃
(γ)
n are asymptotically equivalent up to the first order.

Corollary 3.1. Suppose the conditions of Theorem 3.2 hold. If it holds
√
n(θ̃

(γ)
n − θg)

d−→
Np(0, V

(γ)(θg)) as n → ∞ for some positive definite V (γ)(θg) = J (γ)(θg)
−1I(γ)(θg)J

(γ)(θg)
−1,

then we have
√
n(θ̂

(γ)
n − θg)

d−→ Np(0, V
(γ)(θg)) as n → ∞.

Proof. From Theorem 3.2, the proof is straightforward to apply the Slutzky’s theorem.

We note that the asymptotic normality of the minimum γ-divergence estimator θ̃
(γ)
n has

also proved by Jones et al. (2001) and Fujisawa and Eguchi (2008).

4 Bayesian robustness of estimators

4.1 Influence function

In a similar way to Ghosh and Basu (2016), we consider the robustness of the posterior mean

based on the γ-posterior in terms of the influence function. Let X1, . . . , Xn be generated from

the true distribution G with the density g, and we consider the parametric family {Fθ : θ ∈ Θ}
with the density fθ. Let π(θ) be the prior density for θ. The γ-posterior density as a function

of G and θ is defined by

π(γ)(θ;G) =
exp(nQ(γ)(θ;G,Fθ))π(θ)∫
exp(nQ(γ)(θ;G,Fθ))π(θ)dθ

,

where

Q(γ)(θ;G,Fθ) =
1

γ

[∫
fθ(x)

γdG(x)

](∫
fθ(x)

1+γdx

)−γ/(1+γ)

.

For a fixed sample size n, the γ-Bayes functional under the general loss function L(·, ·) is

defined by

T (γ)L
n (G) = argmin

t

∫
L(θ, t) exp(nQ(γ)(θ;G,Fθ))π(θ)dθ∫

exp(nQ(γ)(θ;G,Fθ))π(θ)dθ
.

Under the quadratic loss function, the γ-Bayes functional T
(γ)L
n (G) is the γ-posterior mean

functional

T (γ)e
n (G) =

∫
θ exp(nQ(γ)(θ;G,Fθ))π(θ)dθ∫
exp(nQ(γ)(θ;G,Fθ))π(θ)dθ

.
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Hereafter, we consider the case of the quadratic loss function. We now consider the con-

taminated model Fε = (1 − ε)G + ε∆y, where ε is the contamination ratio and ∆y is the

contaminating distribution degenerated at y. Then the influence function of the γ-posterior

mean functional for a fixed n at G is defined by

IFn(y, T
(γ)e
n , G) =

∂

∂ε
T (γ)e
n (Fε)

∣∣∣∣
ε=0

= nCovπ(γ)(θ;G)(θ, kγ(θ; y, g)), (9)

where Covπ(γ)(θ;G) is the covariance under the γ-posterior π(γ)(θ;G) and

kγ(θ; y, g) =
∂

∂ε
Q(γ)(θ;Fε, Fθ) =

1

γ

[
fθ(y)

γ −
∫

fθ(x)
γg(x)dx

](∫
fθ(x)

1+γdx

)−γ/(1+γ)

(10)

for γ > 0. For γ = 0, we have k0(θ; y, g) = log fθ(y) −
∫
g(x) log fθ(x)dx which is the

influence function of the usual posterior mean for a fixed n. Ghosh and Basu (2016) proposed

the posterior distribution based on the density power divergence (we call it the “density power

posterior” in this paper). From the result of Ghosh and Basu (2016), the influence function

of the posterior mean under the density power posterior is given by

IFn(y, T
(α)e
n , G) =

∂

∂ε
T (α)e
n (Fε)

∣∣∣∣
ε=0

= nCovπ(α)(θ;G)(θ, kα(θ; y, g)), (11)

where Covπ(α)(θ;G) is the covariance under the the density power posterior π(α)(θ;G) and

kα(θ; y, g) =
∂

∂ε
Q(α)(θ;Fε, Fθ) =

1

α

[
fθ(y)

α −
∫

fθ(x)
αg(x)dx

]
(12)

for α > 0, where

Q(α)(θ;G,Fθ) =
1

α

[∫
fθ(x)

αdG(x)− 1

1 + α

∫
fθ(x)

1+αdx

]
.

From (10) and (12), we can find that the former is the form of the ratio, while the later is

the subtraction. We show the influence curves for different values of γ and α. Consider two

cases.

(a) The posterior mean for the mean parameter µ in N(µ, 1) under the prior π(µ) ∝ 1

(Figure 1).

(b) The posterior mean for the variance parameter σ2 in N(0, σ2) under the prior π(σ2) ∝
σ−2 (Figure 2).

We assume that the true densities are the standard normal distribution N(0, 1) in both

cases. In this setting, we can obtain kγ(θ; y, g) and kα(θ; y, g) as closed forms. We note that

11
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Figure 1: Influence functions for the posterior means of the mean parameter. The black curves
are the influence functions based on the density power posterior, and the red curves are the
influence functions based on the γ-posterior.

kα(µ; θ, g) has already derived by pp. 428 in Ghosh and Basu (2016). Then we have

kγ(µ; y, g) =
1

γ(
√
2π)γ

((
1√
2π

)γ 1√
1 + γ

)−γ/(1+γ){
e−γ(y−µ)2/2 − 1√

1 + γ
e−γµ2/(2(1+γ))

}
,

kγ(σ
2; y, g) =

1

γ(
√
2π)γ

((
1√
2πσ2

)γ 1√
1 + γ

)−γ/(1+γ)
{
e−γy2/(2σ2) −

√
σ2

γ + σ2

}
,

kα(µ; y, g) =
1

α(
√
2π)α

{
e−α(y−µ)2/2 − 1√

1 + α
e−αµ2/(2(1+α))

}
,

kα(σ
2; y, g) =

1

α(
√
2πσ2)α

{
e−αy2/(2σ2) −

√
σ2

α+ σ2

}
.

However, it is not easy to calculate the covariances in (9) and (11) as closed forms. We

give the influence curves by using MCMC samples with 10,000 iterations from π(γ)(θ;G) and

π(α)(θ;G).

From Figure 1, we can find that the influence functions for the posterior means of the

normal mean parameter are bounded for both cases. From Figure 2, it is also shown that the

influence functions for the posterior means of the normal variance parameter are bounded for

both cases. In Figure 2, we note that the influence functions of the posterior means for the

variance parameter based on the γ-divergence seem to have the redescending properties as

y → ∞.
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Figure 2: Influence functions for the posterior means of the variance parameter. The black
curves are the influence functions based on the density power posterior, and the red curves
are the influence functions based on the γ-posterior.

4.2 Prior robustness in the view of local sensitivity

In the previous section, we considered the robustness for outliers. However, the robustness

of the selection of the prior distribution is also an important problem in Bayesian inference.

There are several criteria to measure the robustness of the prior distribution, for example,

minimax method, local sensitivity, global sensitivity and so on (see Ghosh et al. (2006)). In

this section, we consider the local measure of sensitivities with small perturbations on the

prior distribution.

First, we consider the set P of all probability densities over the parameter space Θ and a

distance d : P ×P → R to quantify the changes between original and contaminated densities.

Let νε be a data generated density which includes the true prior π and contaminated prior ν.

For example, we often use the following two type perturbations

νε = (1− ε)π + εν (linear perturbation),

νε = c(ε)π1−ενε (geometric perturbation),

where 0 < ε < 1. We note that ε is the prior perturbation ratio, not the contamination

ratio of outlier. Gustafon and Wasserman (1996) defined the local sensitivity of P with the

contaminated prior ν as

s(π, ν;Xn) = lim
ε↓0

d(π(θ|Xn), νε(θ|Xn))

d(π(θ), νε(θ))
,

13



where π(θ|Xn) and νε(θ|Xn) are posterior densities under priors π and νε, respectively. As

distance function d, we often use the total variation or ϕ-divergence (Dey and Birmiwal

(1994)). We can extend this measure to the γ-posterior density straightforward. The local

sensitivity of P for the γ-posterior with the contaminated prior ν is defined by

sγ(π, ν;Xn) = lim
ε↓0

d(π(γ)(θ|Xn), ν
(γ)
ε (θ|Xn))

d(π(θ), νε(θ))
,

where π(γ)(θ|Xn) and ν
(γ)
ε (θ|Xn) are the γ-posterior densities with γ > 0 under priors π and

νε, respectively. Using this measure, we may be able to construct the posterior distribution

which is robust against both outliers and the selection of priors.

5 Simulation studies

In this section, We now show the performance of the γ-posterior and its posterior mean by

comparing with other types of posterior distributions. We suppose that the parametric model

is the normal distribution with mean µ and variance σ2, and we put θ = (µ, σ2)⊤. Let

θ0 = (0, 1)⊤ be the true value of θ. We assume that the contamination density is the normal

distribution with mean 6 and variance 1 and we set the ratio of contamination is 0.00, 0.05

or 0.20.

While Ghosh and Basu (2016) assume that the variance parameter σ2 is known, we assume

that σ2 is unknown and consider the joint estimation problem for θ = (µ, σ2)⊤ under the

uniform and non-informative priors. In order to compare the empirical biases of posterior

means, we use the posterior densities based on the three types of likelihood functions, that

is, the ordinary log-likelihood function which is based on the Kullback Leibler cross entropy,

the density power likelihood and γ-likelihood functions.

• ordinary log-likelihood:

ℓn(θ) = −n

2
(2πσ2)−

n∑
i=1

(x− µ)2

2σ2
.

• density power likelihood (Basu et al. (1998)):

Q(α)
n (θ) =

1

α

n∑
i=1

r
(α)
θ (xi)− n(2πσ2)(−α/2)(1 + α)−3/2

for α > 0, where

r
(α)
θ (xi) =

1

(2πσ2)α/2
exp

(
−α(xi − µ)2

2σ2

)
.

• γ-likelihood (Jones et al. (2001) and Fujisawa and Eguchi (2008)):

Q(γ)
n (θ) =

1

γ
{(2πσ2)−γ/2(1 + γ)−1/2}−γ/(1+γ)

n∑
i=1

r
(γ)
θ (xi)−

n

γ

14



for γ > 0, where

r
(γ)
θ (xi) =

1

(2πσ2)γ/2
exp

(
−γ(xi − µ)2

2σ2

)
.

Since exact calculations of the posterior means are not easy, we use the importance sampling

Monte Carlo algorithm using a proposal distribution N(0, 1) for µ and χ2
5 for σ2 (for the

details of importance sampling, see Robert and Casella (2004)). We carry out the importance

sampling with 10,000 steps and we compute the empirical bias of the posterior means (µ̂, σ̂2)

for (µ, σ2) by 10,000 iterations. The simulation results are shown in Tables 1 to 4.

Tables 1 and 2 are the results of the joint estimation for µ and σ2 under the uniform prior

π(µ, σ) ∝ 1. We compute the empirical biases of the posterior means based on the ordinary

posterior, density power posterior and γ-posterior. Similarly, Tables 3 and 4 are the results

of the joint estimation for µ and σ2 under the non-informative prior π(µ, σ) ∝ 1/σ2.

From Tables 1 and 3, the empirical biases of the posterior means for the mean parameter

µ based on the γ-posterior are similar behaviors to the case of the density power posterior.

On the other hand, it is seen that the empirical biases of the posterior means for the variance

parameter σ2 based on the γ-posterior is much smaller than these of based on the ordinary

and density power posteriors in Tables 2 and 4.

Table 1: The empirical biases of the posterior means for the mean parameter under the
uniform prior

ordinary density power posterior γ-posterior

α, γ α γ
ε n 0.00 0.30 0.50 0.70 1.00 0.30 0.50 0.70 1.00

0.00 20 0.001 0.001 0.004 0.005 0.005 0.001 0.002 0.003 0.004
0.00 50 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
0.00 100 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002
0.05 20 0.302 0.094 0.076 0.059 0.028 0.083 0.059 0.053 0.046
0.05 50 0.300 0.026 0.015 0.026 0.039 0.022 0.008 0.006 0.007
0.05 100 0.302 0.013 0.005 0.004 0.013 0.012 0.004 0.002 0.002
0.20 20 1.191 0.724 0.490 0.328 0.166 0.730 0.507 0.390 0.292
0.20 50 1.194 0.678 0.413 0.342 0.242 0.643 0.280 0.164 0.131
0.20 100 1.202 0.614 0.209 0.154 0.218 0.574 0.091 0.021 0.011

Table 2: The empirical biases of the posterior means for the variance parameter under the
uniform prior

ordinary density power posterior γ-posterior

α, γ α γ
ε n 0.00 0.30 0.50 0.70 1.00 0.30 0.50 0.70 1.00

0.00 20 0.266 1.249 4.444 9.155 12.755 0.955 2.187 4.175 7.280
0.00 50 0.090 0.259 0.515 1.447 7.275 0.230 0.361 0.547 1.020
0.00 100 0.041 0.111 0.192 0.336 1.292 0.101 0.150 0.208 0.319
0.05 20 2.441 2.766 6.143 10.225 13.075 2.126 3.367 5.338 8.173
0.05 50 1.943 0.523 0.821 2.366 8.700 0.425 0.464 0.668 1.275
0.05 100 1.833 0.233 0.288 0.489 2.125 0.189 0.189 0.236 0.354
0.20 20 7.504 9.700 11.373 12.993 13.934 8.793 8.933 9.702 11.014
0.20 50 6.333 6.017 5.944 8.379 12.484 5.358 3.285 2.844 3.682
0.20 100 6.054 4.631 2.423 3.003 7.895 4.180 0.957 0.496 0.596
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Table 3: The empirical biases of the posterior means for the mean parameter under the
non-informative prior

ordinary density power posterior γ-posterior

α, γ α γ
ε n 0.00 0.30 0.50 0.70 1.00 0.30 0.50 0.70 1.00

0.00 20 -0.004 -0.004 -0.004 -0.005 -0.008 -0.004 -0.004 -0.004 -0.004
0.00 50 -0.001 -0.001 -0.001 -0.002 -0.002 -0.001 -0.001 -0.002 -0.002
0.00 100 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001
0.05 20 0.293 0.046 0.029 0.028 0.017 0.039 0.017 0.012 0.009
0.05 50 0.298 0.018 0.007 0.007 0.015 0.016 0.004 0.002 0.001
0.05 100 0.299 0.011 0.003 0.002 0.004 0.010 0.003 0.001 0.001
0.20 20 1.189 0.614 0.350 0.238 0.139 0.599 0.297 0.180 0.119
0.20 50 1.197 0.578 0.241 0.170 0.153 0.542 0.140 0.051 0.029
0.20 100 1.205 0.549 0.121 0.064 0.090 0.507 0.048 0.010 0.005

Table 4: The empirical biases of the posterior means for the variance parameter under the
non-informative prior

ordinary density power posterior γ-posterior

α, γ α γ
ε n 0.00 0.30 0.50 0.70 1.00 0.30 0.50 0.70 1.00

0.00 20 0.116 0.410 1.051 2.500 4.971 0.334 0.556 0.871 1.434
0.00 50 0.045 0.123 0.218 0.440 1.811 0.107 0.150 0.195 0.276
0.00 100 0.018 0.053 0.089 0.149 0.389 0.046 0.063 0.080 0.105
0.05 20 2.031 1.002 1.716 3.265 5.520 0.792 0.883 1.200 1.759
0.05 50 1.811 0.277 0.341 0.677 2.478 0.219 0.188 0.225 0.312
0.05 100 1.757 0.148 0.159 0.246 0.631 0.113 0.084 0.095 0.121
0.20 20 6.535 5.775 5.246 5.948 6.936 5.221 3.543 3.027 3.010
0.20 50 6.041 4.392 2.756 3.219 5.554 3.940 1.363 0.782 0.761
0.20 100 5.910 3.846 1.294 1.220 2.799 3.452 0.440 0.180 0.177

Finally, we compare the γ-posterior for the mean and variance parameters given data

with/without outliers with those of the other types of posteriors. The setting of statistical

model is the same as the above. We set n = 200, α, γ = 0.5 and ε = 0.20. We show the

histograms of the posterior samples given by a random walk Metropolis algorithm which is

a kind of MCMC methods with 10,000 iterations. From Figure 3, the ordinary posterior

distribution with outliers are so far from the case of without outliers. On the other hand, in

Figure 4, it seems that the density power posterior slightly improves the ordinary posterior.

However, the effect of the outliers in the case of estimation for σ2 is not completely removed.

Hence, we can find that the ordinary posterior is not robust against outliers and the density

power posterior is partially robust against outliers. On the other hand, it seems that the

γ-posterior almost removes the effect of the outliers for both µ and σ2.

6 Concluding remarks

In this paper, a robust posterior distribution based on the γ-divergence was proposed. Some

asymptotic properties for estimator were also shown. Further, we showed that the influence

functions for the posterior means based on the γ-posterior are bounded for some tuning

parameters in the cases of the estimation for both mean and variance parameters in the
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Figure 3: Histograms of the posterior samples based on the ordinary posterior for µ (left) and
σ2 (right) given by data with/without outliers.
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Figure 4: Histograms of the posterior samples based on the density power posterior for µ
(left) and σ2 (right) given by data with/without outliers.
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Figure 5: Histograms of the posterior samples based on the γ-posterior for µ (left) and σ2

(right) given by data with/without outliers.

normal model. In simulation studies, we showed that the empirical biases of the posterior

means based on the γ-posterior is smaller than other competitors for the joint estimation of

mean and variance parameters in the normal model.

As future works, it is necessary to consider the selection of the tuning parameter γ to

balance the efficiency and robustness of the estimator. Also, this paper may be extended to

the Bayesian linear regression and generalized linear regression models.

References

[1] Andrade, J. A. A. and O’Hagan, A. (2006). Bayesian robustness modelling using regularly

varying distributions. Bayesian Anal., 1: 169–188.

[2] Basu, A., Harris, I., Hjort, N. and Jones, M. C. (1998). Robust and efficient estimation

by minimising a density power divergence. Biometrika, 85: 549–559.

[3] Dawid, A. P. (1973). Posterior expectations for large observations. Biometrika, 60: 664–

667.
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