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1 INTRODUCTION

Recently, in real data analysis, we consider the data with correlation for many fields, for example medical sci-
ence, economics and many other fields. Especially, the data what is measured repeatedly over times from same
subjects, named longitudinal data, is widely used in those fields. In general, the data from same subject have
correlation, on the other hand, the data from different subjects are independent.. Liang and Zeger (1986) intro-
duce an extension of generalized linear model (Nelder and Wedderburn, 1972), named generalized estimating
equation (GEE). GEE method is one of the methods to analyze the data with correlation. Defining features
of the GEE method are that we can use working correlation matrix one can choose freely. We can get good
estimation of parameters if working correlation matrix is correct or not. It is important that we don’t need a
full specification of a joint distribution. In those reason, GEE method is widely used in many fields.

”Model selection” is also important problem, so we apply model selection to the GEE. In general, in
model selection, we measure the goodness of fit by risk function, and choose the model with smallest risk
function. Then, by using the asymptotically unbiased estimator of risk function, we consider the model
selection criterion. For example, expected Kullback-Leibler information (Kullback and Leibler, 1951), and
most famous Akaike’s information criterion (AIC) (Akaike, 1973, 1974) are used. The AIC is calculated by
AIC = −2× (maximumloglikelihood)+2× (thenumberofparameters). Furthermore, the GIC what is expansion
of the AIC proposed by Nishii (1984) and Rao (1988) is also applied for many fields.

However, we can’t use the model selection criterion based likelihood as AIC or GIC because of we don’t
specify joint distribution. Some model selection criteria like AIC and GIC in the GEE method have been already
proposed. For example, Pan (2001) proposed the QIC based on the quasi-likelihood (defined by Wedderburn,
1974). Furthermore, the GCp proposed by Cantoni et al. (2005) is the generally extension of Mallow’s Cp

(Mallows, 1973). The CIC proposed by Hin and Wang (2009) and Gosho et al. (2011) is criterion what
select the correlation structure. Unfortunately, the above criteria are derived without consider the correlation
structure so we regard to these criteria don’t reflect the correlation.

From this background, in Inatsu and Imori (2013) proposed a new model selection criterion PMSEG (the
prediction mean squared error in the GEE) using the risk function based on the prediction mean squared error
(PMSE) normalized by the covariance matrix. Inatsu and Imori (2013) proposed this criterion when both
correlation and scale parameters are known, but correlation and scale parameters are generally unknown so we
consider this criterion when both correlation and scale parameters are unknown.

In this paper, the main topic is to propose the model selection criterion considered correlation structure when
both correlation and scale parameters are unknown. In order to propose the new model selection criterion, we
evaluate the asymptotic bias of the estimator of risk function and consider the influence of estimation correlation
parameter and scale parameter. We focus on the ”variable selection” which selecting the optimum combination
of variables.

The present paper organized as follows: In section 2, we introduce the GEE framework and propose the
estimation method for parameters. After that, we perform the stochastic expansion of the GEE estimator. In
section 3, we define the estimation of risk function, and evaluate the asymptotic bias by calculate the bias, and
propose the new model selection criterion. In section 4, we perform numerical study. In section 5, we conclude
our discussion. In appendix, we provide the calculation process for the bias.
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2 STOCHASTIC EXPANSION OF THE GEE ESTIMATOR

2.1 GEE estimator

Let yij be a scalar response variable, and xf,ij be a l-dimensional nonstochastic vector consists of possible
explanatory variables from the ith subject at the jth occasion, where i = 1, . . . , n and j = 1, . . . ,m. Assume
that the response variables from defferent subjects are independent and response variables from same subject
are correlated. For each i = 1, . . . , n, let response variable vector from ith subject be yi = (yi1, . . . , yim)

′
and

explanatory variable matrix from ith subject be Xf,i = (xf,i1, . . . ,xf,im)
′
, Xi = (xi1, . . . ,xim)

′
be a m × p

submatrix of the matrix X∗,i. Liang and Zeger (1986) used the generalized linear model (GLM) to the model
of the marginal density of yij ,

f(yij ,xij ,β, ϕ) = exp [{yijθij − a(θij)}/ϕ+ b(yij , ϕ)]. (2.1)

where, a(·), b(·) are known functions, θij is an unknown location parameter and ϕ is a scale parameter. In the

GLM framework, the location parameter θij = u(ηij) = θij(β), where u(·) is known function, and ηij = x
′

ijβ,
where β is p-dementional unkown parameter. In the present paper, we assume that scale parameter ϕ is
unkown parameter, and we also assume that Θ is the natural parameter space (see, Xie and Yang, 2003) of the
exponential family of distributions presented in (2.1), and the interior of Θ is denoted as Θ0. Θ is convex and
in Θ0, all derivatives of a(·) and all moments of yij exist. Under these conditions, mean and variance of yij are
given by

µij(β) = E[yij ] = ȧ(θij), σ
2
ij(β) = Cov[yij ] = (̈θij)ϕ ≡ ν(µij(β)).

In the GLM framework, the expectation of yij modeled by link function as g(µij) = ηij = x
′

ijβ. Then link

function g(t) = (ȧ ◦ u)−1(t) and linear predictor ηij = x
′

ijβ.If u(s) = s, we say that g(t) = ȧ−1(t) is natural
link function. We call that the model with xf,ij or xij as full model or candidate model, respectively. The true
density function of yij can be written as (2.1), i.e. true model is one of candidate models.

GEE proposed by Liang and Zeger (1986) is as follows:

qn(β) =
n∑

i=1

D
′

i(β)V
−1
i (β)(yi − µi(β)) = 0p. (2.2)

where µi(β) = (µi1(β), . . . , µim(β))
′
, Di(β) = ∂µi/∂β = Ai(β)∆i(β)Xi, Ai(β) = diag(σ2

i1(β), . . . , σ
2
im(β)),

∆i(β) = diag(∂θi1/∂ηi1, . . . , ∂θim/∂ηim) and Vi(β,α) = A
1/2
i (β)R(α)A

1/2
i (β)ϕ. R(α) is working correlation

matrix one can chose freely. DenoteΣi(β) = A
1/2
i (β)R0A

1/2
i (β)ϕ, whereR0 is true correlation matrix. Assume

that for i = 1, . . . , n, true correlation matrix is common R0. Working correlation R(α) include nuisance
parameter α. Nuisance parameter space is as follows:

A = {α = (α1, . . . , αs)
′
∈ Rs|R(α) is positive definite}

We can use different working correlation depending on the situation. For example:
[1]independence: (R)jk = 0, (j ̸= k).
[2]exchangeable: (R)jk = α, (j ̸= k).
[3]autoregressive: (R)jk = (R)kj = αj−k, (j > k).
[4]1-dependence: (R)jk = (R)kj = α, (j = k + 1).
[5]unstructured: (R)jk = (R)kj = αjk, (j > k).

Denote Vi(β,α) = A
1/2
i (β)R(α)A

1/2
i (β)ϕ(β). IfR(α) = R0, Vi(β0,α) = Σi(β0) = A

1/2
i (β0)R0A

1/2
i (β0)ϕ0 =

Cov[yi]. Note that β0 is true parameter of β. Dimension of α depends on choose of working correlation. In many
case, correlation parameter α is unknown. Although α is nuisance parameter, we must estimate α so as to esti-
mate β. In practice, we estimate α by real data. When both correlation and scale parameter are unknown, we
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estimate α̂ by β and ϕ̂. Denote α̂(β, ϕ̂) = (α̂1(β, ϕ̂), . . . , α̂s(β, ϕ̂))
′
, and assume that α̂(β0, ϕ0)

a.s.−−→ α0 ∈ A◦,
where A◦ is interior of A. In present paper, we estimate scale parameter ϕ is as follows:

ϕ̂ =
1

nm

n∑
i=1

m∑
j=1

(yij − µ̂ij)
2

ä(θ̂ij)

and assume that ϕ̂
p−→ ϕ0.

In this paper, we assume that α and ϕ are unknown, so we consider the following equation:

sn(β) =
n∑

i=1

D
′

i(β)Γ
−1
i (β)(yi − µi(β)) = 0p. (2.3)

where Γ(β) = Vi(β, α̂(β, ϕ̂)). The solution of equation (2.2) denoted β̂ is the estimator of β0. We call β̂ the
GEE estimator.

2.2 Estimation method

The true parameters α0,β0 and ϕ0 are unknown so we estimate parameters by following iterative method:

Algorithm (Estimation method for parameters)

Step 1 Set the initial value of α denoted α̂<0>

Step 2 Solving the GEE substituted α̂<k>, and the solution of GEE is denoted β̂<k> = β̂(α̂<k>).

Step 3 Estimate ϕ̂<k+1> by yi − µi(β̂
<k>).

Step 4 Estimate α̂<k+1> = α̂(β̂<k>, ϕ̂<k+1>). We propose the estimation of α̂<k+1> later.

Step 5 Iterate processes 2 to 4 until converge the value of parameters.

When one use the moment estimator for α, the fact that the condition C9 to C13 are fulfilled (Inatsu, 2013).
In addition, the estimator α̂ differ depending on the working correlation structure, and we give examples.

Exchangeable :α̂ =
1

nm(m− 1)

n∑
i=1

∑
j>k

r̂ij r̂ik/ϕ̂.

Autoregressive :α̂ =
1

n(m− 1)

n∑
i=1

m−1∑
j=1

r̂ij r̂i,j+1/ϕ̂.

1− dependence :α̂ =
1

n− 1

n−1∑
i=1

α̂i, α̂i =
1

n

n∑
i=1

r̂ij r̂i,j+1/ϕ̂.

Unstructured :α̂jk =
1

n

n∑
i=1

r̂ij r̂ik/ϕ̂.

2.3 STOCHASTIC EXPANSION OF GEE ESTIMATOR

In this section, in order to propose the new variable selection criterion, we perform the stochastic expansion
of β̂. For simplicity, we omit (β) from functions of β, for example µij(β)=µij . In addition, In order to

distinguish the function of β substituted β0 and β̂, we write them for example µij(β0) = µij,0 and µij(β̂) = µ̂ij ,
respectively. Furthermore, in order to evaluate the asymptotic properties of GEE estimator, we assume that
following conditions (Xie and Yang, 2003):

C1. X is compact set. For all sequence {xij}, it established that u(x
′

ijβ) ∈ Θ◦, xij ∈ X .
C2. β0 is in interior of admissible set B, and B is an open set of Rp,

i.e. β0 ∈ B◦, B = {β|u−1(x
′

ijβ) ∈ Θ,xij ∈ X}.
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C3. For any β ∈ B, it is established x
′

ijβ ∈ g(M), and M is image of ȧ(Θ◦).
C4. u(ηij) is four times continuously differentiable and u̇(ηij) > 0 in g(M◦).
C5. Hn,0 and Mn,0 are both positive definite when n is large, and Hn and Mn are defined as follows:

Hn =
n∑

i=1

D
′

iV
−1
i Di,Mn =

n∑
i=1

D
′

iV
−1
i ΣiV

−1
i Di.

C6. lim infn→∞ λmin(Hn,0/n) > 0, where λmin(A) is minimum eigenvalue of A.
C7. In a neighborhood of β0, say N0, there exists that consistent c0 > 0 and n0, for all p-dimensional vector

λ, where |λ| = 1, when n ≥ n0, it is established follows:

P

(
−λ

′ ∂sn
∂β′ λ ≥ nc0

)
= P

(
−λ

′
Υnλ ≥ nc0

)
= 1, (β ∈ N0).

C8. GEE has unique solution when n is large.
C1, C2 and C3 are necessary to consider GLM framework. C4 and C5 are necessary to calculate the asymptotic
bias of estimator of risk. In addition, C1, C6, C7 and C8 (modified Xie and Yang, 2003) are necessary to have
the strong consistency and asymptotic normality, uniqueness of GEE estimator.

Furthermore, we assume following conditions by additions.
C9. There exists a compact neighborhood of α0, say Uα0 , and vec{R−1(α)} is three times continuously

differentiable in Uα0
.

C10. There exists a compact neighborhood of β0, say Uβ0 , and α̂(β) is three times continuously differentiable
in Uβ0

.
C11. For all β ∈ Uβ0 , it is established α̂(1)(β), α̂(2)(β), µ̂(3)(β) = Op(1), where

α̂(1)(β) =
∂α̂

∂β′ , α̂
(2)(β) =

∂

∂β′ ⊗ α̂(1)(β), α̂(3)(β) =
∂

∂β′ ⊗ α̂(2)(β).

C12.
√
n(α̂0 − α0) = Op(1). And there exists that bounded s × p nonstochastic matrix H such that

(α̂(1)(β0)−H) = Op(n
−1/2).

C13.

E

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0hi,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0ji,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 Di,0hi,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)Di,0hi,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 Di,0ji,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)Di,0ji,0

]
= O(n−1).

We write about h1,0, j1,0,A
∗
f,i,0, bf,0 later.

C9, C10, C11, C12 and C13 are necessary that in order to ignore the influence of estimating nuisance
parameter α. Furthermore, by condition C5, it is established Hn,0 = O(n).

4



Based on the above conditions, to perform the stochastic expansion of β̂, we focus on the fact that ŝn = 0p.

By applying the Taylor expansion around β̂ = β0 to this equation, the GEE is expanded as follows:

0p =sn,0 +
∂sn
∂β

∣∣∣
β=β0

(β̂ − β0) +
1

2
{(β̂ − β0)

′
⊗ Ip}

(
∂

∂β
⊗ ∂sn

∂β′

) ∣∣∣
β=β∗

(β̂ − β0)

=sn,0 −Dn,0(Ip +D1,0 +D2,0)(β̂ − β0) +
1

2
{(β̂ − β0)

′
⊗ Ip}L1(β

∗)(β̂ − β0).

where β∗ lies between β0 and β̂, and Ip is p-dimension identity matrix, and L1(β
∗), Dn,0, D1,0, D2,0 are

follows:

L1(β
∗) =

(
∂

∂β
⊗ ∂sn

∂β′

) ∣∣∣
β=β∗

,Dn,0 =
n∑

i=1

D
′

i,0Γ
−1
i,0Di,0,

D1,0 = −D−1
n,0

n∑
i=1

D
′

i,0

(
∂

∂β′ ⊗ Γ−1
i

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

D2,0 = −D−1
n,0

n∑
i=1

(
∂

∂β′ ⊗D−1
i

∣∣∣
β=β0

)
[Ip ⊗ {Γ−1

i,0 (yi − µi,0)}.

Note that for a matrix W = (wij), the derivative of W by β = (β1, . . . , βp)
′
and by βk are defined as follows:

∂

∂β′ ⊗W =

(
∂W

∂β1
, . . . ,

∂W

∂βp

)
,
∂W

∂βk
=

(
∂wij

∂βk

)
By Lindberg central limit theorem, L1(β

∗) = Op(n), β̂−β0,D1,0,D2,0 = Op(n
−1/2). AndR−1(α̂0) is expanded

as follows:

R−1(α̂0) = R−1(α0) +R−1(α0){R(α0)−R(α̂0)}R−1(α0) +Op(n
−1).

By Taylor theorem, since α̂0 −α0 = Op(n
−1/2),

|R(α0)−R(α̂0)| ≤
∣∣∣∣ ∂

∂α
⊗R(α)

∣∣∣
α=α∗

∣∣∣∣ |α̂0 −α0| = Op(n
−1/2),

i.e. R(α0)−R(α̂0) = Op(n
−1/2). Hence, it follows that

Dn,0 =
n∑

i=1

D
′

i,0Γ
−1
i,0Di,0

=
n∑

i=1

D
′

i,0A
−1/2
i (β0)R

−1(α̂0)A
−1/2
i (β0)Di,0

=Hn,0 +Op(n
1/2),

By this conclusion and the fact sn,0 = qn,0 +Op(1), β̂ is expanded as follows:

β̂ − β0 = H−1
n,0qn,0 +Op(n

−1) = b1,0 +Op(n
−1).

Also, since (
∂

∂β′ ⊗R−1(α̂)
∣∣∣
β=β0

)
− E

[
∂

∂β′ ⊗R−1(α̂)
∣∣∣
β=β0

]
= Op(n

−1/2),

and above these conclusions, the GEE is expanded as follows:

sn,0 =Hn,0(Ip +G1,0 +G2,0 +G3,0 + h1,0)(β̂ − β0)

− 1

2
{(β̂ − β0)

′
⊗ Ip}{S1,0 + (L1(β0)− S1,0)}(β̂ − β0) (2.4)

− 1

6
{(β̂ − β0)

′
⊗ Ip}

{
∂

∂β′ ⊗
(

∂

∂β
⊗ ∂sn

∂β′

)} ∣∣∣
β=β∗∗

{(β̂ − β0)⊗ (β̂ − β0)}.
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where β∗∗ lies between β0 and β̂. Denote S1,0 = E[L1(β0)]. Note that S1,0 = Op(n), L1(β0)−S1,0 = Op(n
1/2).

The last term of (2.4) is Op(n
−1/2). We define C1i, C2i, C3i, G1,0, G2,0, G3,0, h1,0 and j1,0 as follows:

C1i = D
′

iA
−1/2
i R−1(α0),C2i = D

′

iA
−1/2
i ,C3i = R−1(α0)A

−1/2
i ,

G1,0 = −H−1
n,0

n∑
i=1

C1i,0
(

∂

∂β′ ⊗A
−1/2
i

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

G2,0 = −H−1
n,0

n∑
i=1

(
∂

∂β′ ⊗ C2i

∣∣∣
β=β0

)
[Ip ⊗ {C3i,0(yi − µi,0)}], (2.5)

G3,0 = −H−1
n,0

n∑
i=1

C2i,0E

[
∂

∂β′ ⊗R−1(α̂)
∣∣∣
β=β0

]
[Ip ⊗ {A−1/2

i,0 (yi − µi,0)}],

h1,0 = −H−1
n,0

n∑
i=1

C1i,0{R(α0)−R(α̂0)}C
′

1i,0b1,0,

j1,0 = H−1
n,0

n∑
i=1

C1i.,0{R(α0)−R(α̂0)}C3i,0(yi,0 − µi,0).

Note that G1,0, G2,0, G3,0 = Op(n
−1/2), h1,0, j1,0 = Op(n

−1). By (2.5), β̂ is expanded as follows:

β̂ − β0 = b1,0 + b2,0 +Op(n
−3/2). (2.6)

where b2,0 = H−1
n,0(b

′

1,0⊗Ip)S1,0b1,0/2−G1,0b1,0−G2,0b1,0−G3,0b1,0+h1,0+j1,0 and b1,0 = Op(n
−1/2), b2,0 =

Op(n
−1).

3 MAIN RESULT

In this section, we propose new variable selection criterion. We measured the goodness of fit of the model by
the risk function based on the PMSE normalized by the covariance matrix. The risk function is as follows:

RiskP = PMSE−mn = Ey

[
Ez

[
n∑

i=1

(zi − µ̂i)
′
Σ−1

i,0 (zi − µ̂i)

]]
−mn.

where zi = (zi1, . . . , zim)
′
is m-dimensional random vector that is independent of yi and has same distribution

of yi. If β̂ = β0, RiskP has the minimum value of zero, i.e. , PMSE has the minimum value of mn. We consider
the model which has minimum PMSE is optimum model, and select this model. Since the PMSE is typically
unknown, we must estimate it.

We define R0, L(β1,β2) and L∗(β) as follows:

R0(β) =
1

n

n∑
i=1

A
−1/2
i (yi − µi)(yi − µi)

′
A

−1/2
i /ϕ̂,

L(β1,β2) =

n∑
i=1

(yi − µi(β1))
′
A

−1/2
i (β2)R

−1
0 (β2)A

−1/2
i (β2)(yi − µi(β1))ϕ̂

−1(β2),

L∗(β) =

n∑
i=1

(yi − µi)
′
Σ−1

i,0 (yi − µi).

Then, we estimate the PMSE by L(β̂, β̂f ) where β̂f is the GEE estimator from full model namely we obtain

β̂f as the solution to the following equation:

sf,n(βf ) =
n∑

i=1

D
′

i(βf )V
−1
i (βf ,αf )(yi − µi(βf )) = 0l,
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where Di(βf ) = Ai(βf )∆(βf )Xf,i,Vi(βf ,αf ) = A
1/2
i (βf )R̄i(αf )A

1/2
i (βf ) and R̄i(αf ) is positive definite

working correlation one can choose freely. Also R̄i(αf ) is the same for all candidate models. For simplicity, we
denote L(β0,β2) = L(β2) and L∗(β0) = L∗.

We need to evaluate the asymptotic bias of L(β̂, β̂f ) from PMSE in order to propose the new variable

selection criterion because L(β̂, β̂f ) is not the asymptotic unbiased estimator of PMSE. The bias we estimate

the PMSE by L(β̂, β̂f ) is given as

Bias =PMSE− Ey[L(β̂, β̂f )]

={RiskP − Ey[L∗(β̂)]}+ {Ey[L∗(β̂)]− Ey[L∗]}

+ {Ey[L∗]− Ey[L(β̂f )]}+ {Ey[L∗(β̂f )]− Ey[L(β̂, β̂f )]}
=Bias1 + Bias2 + Bias3 + Bias4.

We evaluate Bias1, Bias2, Bias3 and Bias4 separately.
At first, Bias3 is as follows

Bias3 =Ey

[
n∑

i=1

(yi − µi,0)
′
{Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂(β̂f )}(yi − µi,0)

]

=mn− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂(β̂f )(yi − µi,0)

]
.

This term is not depending on the candidate model so we can ignore calculation of Bias3 for variable selection.
Second, Bias1 is expanded as follows:

Bias1 =Ey

[
Ez

[
n∑

i=1

(zi − µ̂i)
′
Σ−1

i,0 (zi − µ̂i)

]
−

n∑
i=0

(yi − µ̂i)
′
Σ−1

i,0 (yi − µ̂i)

]

=Ey

[
Ez

[
n∑

i=1

(zi − µi,0 + µi,0 − µ̂i)
′
Σ−1

i,0 (zi − µi,0 + µi,0 − µ̂i)

]

−
n∑

i=1

(yi − µi,0 + µi,0 − µ̂i)
′
Σ−1

i,0 (yi − µi,0 + µi,0 − m̂ui)
]

=Ez

[
n∑

i=1

(zi − µi,0)
′
Σ−1

i,0 (zi − µi,0)

]
+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

− Ey

[
n∑

i=1

(yi − µ
′

i,0Σ
−1
i,0 (yi − µi,0)

]
− 2Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µi,0 − m̂ui)

]

− Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

=2Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µ̂i − µi,0)

]
. (3.1)

For expanding Bias1, we must expand µ̂i−µi,0. Since µ̂i is the function of β̂, by applying the Taylor expansion

around β̂ = β0, µ̂i is expanded as follows:

µ̂i =µi,0 +
∂µi

∂β′

∣∣∣
β=β0

(β̂ − β0) +
1

2
{(β̂ − β0)

′
⊗ Im}

(
∂

∂β
⊗ ∂µi

∂β′

) ∣∣∣
β=β0

(β̂ − β0)

+
1

6
{(β̂ − β0)

′
⊗ Im}

{
∂

∂β′ ⊗
(

∂

∂β
⊗ ∂µi

∂β′

)} ∣∣∣
β=β∗∗∗

{(β̂ − β0)⊗ (β̂ − β0)}

=µi,0 +Di,0(β̂ − β0) +
1

2
{(β̂ − β0)

′
⊗ Im}D(1)

i,0 (β̂ − β0) +Op(n
−3/2),

D
(1)
i,0 =

(
∂

∂β
⊗Di

) ∣∣∣
β=β0

.
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where β∗∗∗ lies between β0 and β̂. Substitute (2.6) for expansion of µ̂i, we can expand µ̂i as follows:

µ̂i − µi,0 = Di,0b1,0 +

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}
+Op(n

−3/2). (3.2)

By (3.1) and (3.2), we get the under conclusion

1

2
Bias1 =Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µ̂i − µi,0)

]

=Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0bi,0

]
(3.3)

+ Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}]
+ Ey[Op(n

−1/2)].

Since the data from different two subjects are independent,
E[(yi − µi,0)

′
(yj − µj,0)] = 0, (i ̸= j). The first term of (3.3) is calculated as follows

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0bi,0

]

=Ey

 n∑
i=1

n∑
j=1

(yi − µi,0)
′
Σ−1

i,0Di,0H
−1
n,0D

′

j,0V
−1
j,0 (yj − µj,0)


=Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0H
−1
n,0D

′

i,0V
−1
i,0 (yi − µi,0)

]

=Ey

[
tr

{
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0H
−1
n,0D

′

i,0V
−1
i,0 (yi − µi,0)

}]

=Ey

[
tr

{
H−1

n,0

n∑
i=1

D
′

i,0V
−1
i,0 (yi − µi,0)(yi − µi,0)

′
Σ−1

i,0Di,0

}]

=tr

{
H−1

n,0

n∑
i=1

D
′

i,0V
−1
i,0 E

[
(yi − µi,0)(yi − µi,0)

′
]
Σ−1

i,0Di,0

}

=tr

{
H−1

n,0

n∑
i=1

D
′

i,0V
−1
i,0 Di,0

}
=tr {Ip}
=p, (3.4)

Also, for all i, j, k(not i = j = k), since E
[
(yi − µi,0)⊗ (yj − µj,0)

′
(yk − µk,0)

]
= 0m, the second term of

(3.3) is calculated as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}]

=Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2i,0 +

1

2
(b

′

1i,0 ⊗ Im)D
(1)
i,0 b1i,0

}]

=Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0(b2i,0 − h1,0 − j1,0) +

1

2
(b

′

1i,0 ⊗ Im)D
(1)
i,0 b1i,0

}]

+ Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 {Di,0(h1,0 + j1,0)}

]
.
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where b1i,0 = H−1
n,0D

′

i,0V
−1
i,0 (yi−µi,0), b2i,0 = H−1

n,0(b
′

1i,0⊗Ip)S1,0b1i,0/2−G1i,0b1i,0−G2i,0b1i,0−G3i,0b1i,0+
h1,0 + j1,0 and

G1i,0 = −H−1
n,0C1i,0

(
∂

∂β′ ⊗A
−1/2
i

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

G2,0 = −H−1
n,0

(
∂

∂β′ ⊗ C2i

∣∣∣
β=β0

)
[Ip ⊗ {C3i,0(yi − µi,0)}],

G3,0 = −H−1
n,0C2i,0E

[
∂

∂β′ ⊗R−1(α̂)
∣∣∣
β=β0

]
[Ip ⊗ {A−1/2

i,0 (yi − µi,0)}].

Under the condition C13,

Di,0(b2i,0 − h1,0 − j1,0) + (b
′

1i,0 ⊗ Im)D
(1)
i,0 b1i,0/2 = Op(n

−2),

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 {Di,0(h1,0 + j1,0)}

]
= O(n−1),

so the second term of (3.3) is calculated as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}]
= O(n−1), (3.5)

Under the regularity condition, the limit of expectation is equal to the expectation of limit. Furthermore, in
many cases, a moment of statistic can be expanded as power series in n−1 (Hall, 1992). Therefore, by substitute
(3.4) and (3.5) for (3.3), we obtain

Bias1 = 2p+O(n−1).

Similarly, we obtain

Bias2 + Bias4 = O(n−1), (3.6)

The derivation of (3.6) is shown in Appendix.
From the above, the bias is expanded as follows:

Bias = 2p+Bias3 +O(n−1).

Note that Bias3 is not depend on the candidate model so we propose the new variable selection criterion as

PMSEG = L(β̂, β̂f ) + 2p.

We call this criterion PMSEG (the prediction mean squared error in the GEE).

4 NUMERICAL STUDY

In this section, we perform the numerical study and discuss results. In this paper we perform numerical study
in situation which very restrictive.

Let the number of models be 8, and m = 3. The number of subjects n = 50, 100, 150, 200. We perform
Monte Carlo simulation with 10000 iterations.

First, explanatory matrix Xf,i is 8 × 3 matrix, let Xf,i = (xf,i1, . . . ,xf,i8)
′
and xf,i1 = (1, 1, 1)

′
,xf,i2 =

(0, 1, 2)
′
,xf,i3 = (0, 1, 1)

′
. Furthermore, xf,i4 = (1, 1, 1)

′
, xf,i5 = (0, 1, 2)

′
, xf,i6 = (0, 1, 1)

′
if male, and

xf,i4 = (0, 0, 0)
′
, xf,i5 = (0, 0, 0)

′
, xf,i6 = (0, 0, 0)

′
if female, and xf,i7 and xf,i8 have uniform distribution on

the interval [-1, 1].
Let

R0 =

 1 1√
6

0
1√
6

1 1√
6

0 1√
6

1

 ,β0 =

(
1

2
,
1

6
,−1

3
,−1

4
,− 1

12
,
1

6
, 0, 0

)′

,
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and rink function is inverse link.
We prepare exchangeable(Ex.), Autoregressive(AR) and Independence(Ind.) correlation structure as work-

ing correlation. In this simulation, we divided y = (y11, . . . , yn3)
′
into u = (y11, . . . , y(n/2),3)

′
and v =

(y(n/2)+1,1, . . . , yn3)
′
, where u ∼ Gamma(1, 1), v ∼ Gamma(2, 1). For full model we choose independence

correlation matrix for instance.
The figure 1 is the frequency of selection each models.

Table 1: Frequency of selection each models
n W-Cor. 1 2 3 4 5 6 7 8

Ex. 0.0000 0.0000 0.0000 0.0310 0.0003 0.2132 0.0123 0.0048
50 AR 0.0000 0.0000 0.0000 0.1456 0.0091 0.1310 0.0075 0.0026

Ind. 0.0000 0.0000 0.0000 0.3254 0.0225 0.0863 0.0055 0.0029
Ex. 0.0000 0.0000 0.0000 0.0038 0.0001 0.3219 0.0170 0.0048

100 AR 0.0000 0.0000 0.0000 0.0910 0.0044 0.2111 0.0071 0.0013
Ind. 0.0000 0.0000 0.0000 0.1722 0.0074 0.1478 0.0072 0.0029
Ex. 0.0000 0.0000 0.0000 0.0007 0.0000 0.3481 0.0221 0.0063

150 AR 0.0000 0.0000 0.0000 0.0543 0.0014 0.2735 0.0062 0.0019
Ind. 0.0000 0.0000 0.0000 0.0686 0.0030 0.2057 0.0062 0.0020
Ex. 0.0000 0.0000 0.0000 0.0000 0.0000 0.3889 0.0254 0.0052

200 AR 0.0000 0.0000 0.0000 0.0224 0.0009 0.2838 0.0106 0.0029
Ind. 0.0000 0.0000 0.0000 0.0264 0.0006 0.2187 0.0115 0.0027

We can see frequency of selection of true model is large as n is large. The frequency of the model which
don’t have true explanatory variables is decrease as n is large.

Table 2: Risk and prediction error
n W-Cor. 1 2 3 4 5 6 7 8 prediction error

Ex. 98.3093 100.0501 45.5836 7.9348 9.2082 6.0060 7.4445 8.8537
50 AR 87.8126 88.9928 45.5836 7.8969 9.0771 6.0060 7.2654 8.4875 5.6396

Ind. 98.3093 100.0501 45.5836 8.0313 9.2971 6.0060 7.6263 9.2654
Ex. 195.1645 196.9164 87.7755 11.8481 13.1198 5.9952 7.3366 8.6811

100 AR 174.0422 175.2199 87.7755 11.7757 12.9520 5.9952 7.1585 8.3373 5.9350
Ind. 195.1645 196.9164 87.7755 12.0015 13.2638 5.9952 7.5605 9.1274
Ex. 292.2903 293.9994 130.0335 15.8707 17.1275 5.9782 7.3698 8.7719

150 AR 260.4902 261.6392 130.0335 15.7543 16.9207 5.9782 7.1743 8.3696 5.9664
Ind. 292.2903 293.9994 130.0335 16.0921 17.3402 5.9782 7.6118 9.2310
Ex. 389.0366 390.7803 172.1719 19.8464 21.1396 6.0095 7.3519 8.7245

200 AR 346.7245 347.8972 172.1719 19.6973 20.8954 6.0095 7.1701 8.3608 6.0080
Ind. 389.0366 390.7803 172.1719 20.1195 21.4031 6.0095 7.5533 9.1635

We can see the risks of model 6, 7, and 8 make no difference.
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A Appendix

In this section, we calculate Bias2 + Bias4. Bias2 and Bias are calculate respectively as follows:

Bias2 =Ey[L∗(β̂)]− Ey[L∗(β0)]

=Ey

[
n∑

i=1

(yi − µ̂i)
′
Σ−1

i,0 (yi − µ̂i)−
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (yi − µi,0)

]

=Ey

[
2

n∑
i=1

(yi − µi,0)
′
Σ−1

i,0 (µi,0 − µ̂i)

]
+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]
,

Bias4 =Ey

[
L(β0, β̂f )

]
− Ey

[
L(β̂, β̂f )

]
=Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(yi − µi,0)ϕ̂

−1(β̂f )

]

− Ey

[
n∑

i=1

(yi − µ̂i)
′
A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(yi − µ̂i)ϕ̂

−1(β̂f )

]

=− Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(µi,0 − µ̂i)ϕ̂

−1(β̂f )

]

− Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(µi,0 − µ̂i)ϕ̂

−1(β̂f )

]
,

Then Bias2 + Bias4 is calculated as follows:

Bias2 + Bias4 =Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂

−1(β̂f )
}
(µi,0 − µ̂i)

]
(A.1)

+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂

−1(β̂f )
}
(µi,0 − µ̂i)

]
. (A.2)

In order to calculate this bias, we perform the stochastic expansion of A
−1/2
i ,R−1

0 (β̂f ),µi(β̂f ), β̂f and ϕ̂(β̂f ).

Then we denote Df,i = Ai(βf )∆i(βf )Xf,i, Df,i,0 = Ai,0∆i,0Xf,i. We expand β̂f as with the expansion of β̂
in section 2.

β̂f − βf,0 = H−1
f,n,0sf,n(βf,0) +Op(n

−1) = bf,0 +Op(n
−1).

where βf,0 is true value of βf , and define Hf,n,0 be as follows:

Hf,n,0 =
n∑

i=1

D
′

f,i,0A
−1/2
i,0 R̄−1

i (αf )A
−1/2
i,0 Df,i,0.

In addition, we expand µi(β̂f ) as with the expansion of µ̂i in section 3.

µi(β̂f )− µi,0 = Df,i,0bf,0 +Op(n
−1).

Furthermore, af,i(β̂f ) ism-dimensional vector consist of elements ofA
−1/2
i,0 (β̂f ), i.e. diag(af,i(β̂f )) = A

−1/2
i (β̂f ).

Then we perform Taylor expansion of af,i(β̂f ) around β̂f = βf,0 as follows:

af,i(β̂f ) = af,i(βf,0) +A∗
f,i,0bf,0 +Op(n

−1),A∗
f,i,0 =

∂

∂β
′
f

af,i(βf )
∣∣∣
βf=βf,0

.

Therefore, we can expand A
−1/2
i (β̂f ) as follows:

A
−1/2
i (β̂f ) = diag(af,i(β̂f )) = A

−1/2
i,0 + diag(A∗

f,i,0bf,0) +Op(n
−1).
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Note that bf,0,Df,i,0bf,0, diag(A
∗
f,i,0bf,0) = Op(n

−1/2). Moreover, we can expand ϕ̂(β̂f ) as follows:

ϕ̂(β̂f ) = ϕ0 +Op(n
−1/2).

Furthermore, R0(β̂f ) is expanded as follows:

R0(β̂f ) =
1

n

n∑
i=1

A
−1/2
i (β̂f )(yi − µi,0(β̂f ))(yi − µi,0(β̂f ))

′
A

−1/2
i (β̂f )ϕ̂

−1(β̂f )

=
1

n

n∑
i=1

{A−1/2
i + diag(A∗

f,i,0bf,0)}{yi − (µi,0 +Df,i,0bf,0)}

{yi − (µi,0 +Df,i,0bf,0)}
′
{A−1/2

i + diag(A∗
f,i,0bf,0)}ϕ0 +Op(n

−1)

=− 1

n

n∑
i=1

A
−1/2
i,0 {(Df,i,0bf,0)(yi − µi,0)

′
+ (yi − µi,0)(Df,i,0bf,0)

′
}A−1/2

i,0 ϕ0

+
1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ0

+
1

n

n∑
i=1

diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)
′
A

−1/2
i,0 ϕ0 (A.3)

+
1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ0 +Op(n
−1).

By Lindberg central limit theorem, the first term of (A.3) is Op(n
−1). Then, we get under conclusion:

R
−1/2
0 R0(β̂f )R

−1/2
0 =Im − Im +

1

n
R

−1/2
0

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 R

−1/2
0 ϕ0

+
1

n
R

−1/2
0

n∑
i=1

diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)
′
A

−1/2
i,0 R

−1/2
0 ϕ0

+
1

n
R

−1/2
0

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)R
−1/2
0 ϕ0 +Op(n

−1)

=Im −R
−1/2
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)
′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ0

}
R

−1/2
0 +Op(n

−1).

Therefore, by calculating the inverse matrix, we calculate as follows:

R
1/2
0 R−1

0 (β̂f )R
1/2
0 =Im +R

−1/2
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)
′
A

−1/2
i,0 ϕ0 (A.4)

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ0

}
R

−1/2
0 +Op(n

−1).
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Therefore. R−1
0 is expanded as follows:

R−1
0 (β̂f ) =R−1

0 +R−1
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)
′
A

−1/2
i,0 ϕ0 (A.5)

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ0

}
R−1

0 +Op(n
−1).

Note that the second term of (A.5) is Op(n
−1/2). Next, we calculate (A.1) and (A.2).

Σ−1
i,0 −A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂

−1(β̂f )

=Σ−1
i,0 − {A−1/2

i,0 + diag(A∗
f,i,0bf,0)}

[
R−1

0 +R−1
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)
′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ0

}
R−1

0

]
{A−1/2

i,0 + diag(A∗
f,i,0bf,0)}ϕ−1

o

+Op(n
−1)

=− diag(A∗
f,i,0bf,0)R

−1
0 A

−1/2
i,0 ϕ−1

0 −A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)ϕ

−1
0

−A
−1/2
i,0 R−1

0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)
′
A

−1/2
i,0 ϕ0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ0

}
R−1

0 A
−1/2
i,0 ϕ−1

0 +Op(n
−1).

where Σ−1
i,0 −A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂(β̂f ) = Op(n

−1/2), and µ̂i−µi,0 = Di,0b1,0 = Op(n
−1/2), so (A.2)

is calculated as follows:

Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂

−1(β̂f )
}
(µi,0 − µ̂i)

]
= O(n−1).

13



Finally, we calculate (A.1).

Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂

−1(β̂f )
}
(µi,0 − µ̂i)

]

=Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
diag(Af,i,0bf,0)R

−1
0 A

−1/2
i,0 ϕ−1

0 +A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)

}
Di,0b1,0

]

− Ey

 n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

 (A.6)

− Ey

 n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

diag(Af,j,0bf,0)(yj − µj,0)(yj − µj,0)
′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0


− Ey

 n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
diag(Af,j,0bf,0)R

−1
0 ϕ−2

0 A
−1/2
i,0 Di,0b1,0


+ Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]
+O(n−1).

For instance, we define under notation of summation.

∑
i,j

=

n∑
i=1

n∑
j=1

,

∑
i̸=j

=
n∑

i=1

n∑
j=1,i̸=j

.

Note that E[(yi, − µi,0) ⊗ (yj − µj,0)
′
(yk − µk,0)] = 0m, (not i = j = k), so we can expand the first term of

(A.6) as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
diag(Af,i,0bf,0)R

−1
0 A

−1/2
i,0 ϕ−1

0 +A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)

}
Di,0b1,0

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
diag(Af,i,0bf,i,0)R

−1
0 A

−1/2
i,0 ϕ−1

0 +A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,i,0)

}
Di,0b1,0

]
(A.7)

= O(n−1).

where bf,i,0 = H−1
f,n,0D

′

f,i,0A
−1
i,0 (yi − µi,0).

Similarly, because of Ey[(yi − µi,0)
′
(yj − µj,0)(yj − µj,0)

′
(yk − µk,0)] = 0, (unless i = k), the second term

of (A.6) is expanded as follows:

− Ey

 n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0


=− Ey

 n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1,i̸=j

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1i,0


+O(n−1)

=− Ey

[
2

n∑
i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b1i,0

]
+O(n−1)

=− 2p+O(n−1). (A.8)

14



The fact that Ey[(yi−µi,0)
′
(yj−µj,0⊗yk−µ

′

k,0)(yk−µk,0⊗yl−µl,0)] = 0 when unless the following condition.

i = j = l or i = j ̸= k = l or i = l ̸= k = j or j = l ̸= k = i

Thus, the third term of (A.6) is expanded as follows:

− Ey

 n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

diag(Af,j,0bf,0)(yj − µj,0)(yj − µj,0)
′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0


=− Ey

∑
i,j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(Af,j,0bf,0)(yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0


=− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(Af,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

− Ey

∑
i ̸=j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(Af,j,0bf,i,0)(yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1j,0


− Ey

∑
i ̸=j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(Af,j,0bf,j,0)(yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1i,0


+O(n−1)

=O(n−1). (A.9)

Similarly, the forth term of (A.6) is expanded as follows:

− Ey

 n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
diag(Af,j,0bf,0)R

−1
0 ϕ−2

0 A
−1/2
i,0 Di,0b1,0


= O(n−1). (A.10)

Furthermore, the fifth term of (A.6) is expanded as with (3.4).

Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]
= 2p. (A.11)

By (A.7), (A.8), (A.9), (A.10) and (A.11), (A.1) is calculated as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )ϕ̂

−1(β̂f )
}
(µi,0 − µ̂i)

]
= O(n−1).

Thus, Bias2 + Bias4 = O(n−1).
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Budapest.

[2] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control,
AC-19, 716-723.

[3] Inatsu, Y. (2014). Model selection criterion based on the prediction mean squared error in generalized
estimating equations. Master’s Thesis, Department of Mathematics, Graduate School of Science, Hiroshima
University, Hiroshima.

15



[4] Inatsu, Y. & Imori, S. (2013). Model selection criterion based on the prediction mean squared error in
generalized estimating equations. TR13-10, Statistical Research Group, Hiroshima University, Hiroshima.

[5] Gosho, M., Hamada, C. & Yoshimura, I. (2011). Modifications of QIC and CIC for selecting a Working
Correlation Structure in the Generalized Estimating Equation Method. Japanese Journal of Biometrics, 32,
1-12.

[6] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag, New York.

[7] Hin, L. Y. & Wang, Y. G. (2009). Working-correlation-structure identification in generalized estimating
equations. Statistics in Medicine, 28, 642-658.

[8] Kullback, S. & Libler, R. (1951). On information and sufficiency. Ann. Math. Statist., 22, 79-86.

[9] Liang, K. Y. & Zegerm S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika,
73, 13-22.

[10] Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661-675.

[11] Nelder, J. A. & Wedderburn, R. W. M. (1972). Generalized linear models. J. R. Statist. Soc. ser. A. 135,
370-384.

[12] Nishii, R. (1984). Asymptotic Properties of Criteria for Selecting of Variables in Multiple Regression. Ann.
Statist., 12, 758-765.

[13] Pan. W. (2001). Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics, 57,
120-125.

[14] Rao, C. R. & Wu, Y. (1989). A strongly Consistent Procedure for Model Selection in a Regression Problem.
Biometrika, 76, 369-374.

[15] Xie, M. & Yang, Y. (2003). Asymptotics for generalized estimating equations with large cluster sizes. Ann.
Statist., 31, 310-347.

16


