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sic statistics. Accuracies of the asymptotic distributions are examined
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1. Introduction

The growth curve model introduced by Potthoff and Roy (1964) is written

as

Y = AΘX+ E, (1.1)

where Y;n × p is an observation matrix, A;n × q is a design matrix across

individuals, X; k × p is a design matrix within individuals, Θ; q × k is an

unknown matrix, and each row of E;n×p is independent and identically dis-

tributed as a p-dimensional normal distribution with mean 0 and an unknown

covariance matrix Σ. We assume that n− p− k − 1 > 0 and rank(X) = k.

In this paper we assume that the covariance matrix has an autoregressive

structure given by

Σ = σ2(ρ|i−j|)1≤i,j≤p. (1.2)

The purpose of this paper is to derive asymptotic distributions of the sim-

plified MLEs when the sample size n and the number p of repeated measure-

ments are large, satisfying p/n → c ∈ [0, 1). High-dimensional asymptotic

distributions are given for some basic statistics. Accuracies of our asymptotic

distributions are examined through simulation experiments.

The present paper is organized as follows. In section 2, we present sim-

plified MLEs. In Section 3, High-dimensional asymptotic distributions are

derived. In Section 4 numerical accuracies are dstudied. The proofs of our

asymptotic results is given in Appendix.

2. Simplified MLEs

It is known (see, e.g., Fujikoshi et al. (1990)) that the MLEs Θ̃, σ̃2

and ρ̃ of Θ, σ2 and ρ are given as the solutions of the following simultaneos
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equations:

(1) Θ = (A′A)−1A′YG−1X′(XG−1X′)−1,

(2) σ2 =
n

N

1

p(1− ρ2)
(ã1ρ

2 − 2ã2ρ+ ã0),

(3) (p− 1)ã1ρ
3 − (p− 2)ã2ρ

2 − (pã1 + ã0)ρ+ pã2 = 0.

Here, G = (ρ|i−j|)1≤i,j≤p : p× p, ãi = trCiR, i = 0, 1, 2,

R =
1

n
(Y −AΘX)(Y −AΘX), n = N − q.

C0 = Ip C1 =


0 0 0 0
0 1 0 0

. . .

0 0 1 0
0 0 0 0

 , C2 =
1

2


0 1 0 0
1 0 0 0

. . .

0 0 0 1
0 0 1 0

 .

In this paper we consider a simplified MLE ρ̂ of ρ obtained by replacing ãi

in (3) with ai,

ai = trCiS, i = 0, 1, 2, S =
1

n
Y′(In −A(A′A)−1A′)Y,

and n = N − k. That is, the simplified MLE ρ̂ of ρ is defined by the solution

of

(p− 1)a1ρ̂
3 − (p− 2)a2ρ̂

2 − (pa1 + a0)ρ̂+ pa2 = 0. (2.1)

Using the simplified MLE ρ̂, the simpified MLEs Θ̂ and σ̂2 of Θ and σ2 are

defined by

Θ̂ = (A′A)−1A′YĜ
−1
X′(XĜ

−1
X′)−1, (2.2)

σ̂2 =
n

N

1

p(1− ρ̂2)
(a1ρ̂

2 − 2a2ρ̂+ a0), (2.3)

where Ĝ = (ρ̂|i−j|)1≤i,j≤p : p× p.

Note that when X = Ip, the simplified MLEs are coincident with the

MLEs. Further, the simplified MLEs were used as an initial value for solving

the simultaneous equations (1), (2) and (3), i.e., for obtaining the MLE under

(1.1).
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3. High-Dimensional Asymptotic Distributions

Our simplified MLEs ρ̂, σ̂2 and Θ̂ of concern are defined through (2.1),

(2.2) and (2.3), in terms of a0, a1 and a2. Our main purpose is to derive

asymptotic distributions of ρ̂, σ̂2 and Θ̂ under

A1; p/n → c ∈ (0, 1). (3.1)

Based on asymptotic behaiviors of ai’s in Appendix, ρ̂ may be regardes as

the solution of

a1ρ
3 − a2ρ

2 − a1ρ+ a2 +O(p−1) = 0,

⇔ (a1ρ− a2)(ρ
2 − 1) + O(p−1) = 0,

and hence

ρ̂ =
a2
a1

+O(p−1). (3.2)

Under (3.1) we may obtain an asymptotic distribution of ρ̂ by considering

the one of a2/a1. Further, we can derive asymptotic distributions of σ̂2 and

Θ̂ by applying delta method to (2.3) and (2.2), respectively. The results are

given in the following theorem whose derivation is given in Appendix.

Theorem 3.1. Let ρ̂ and σ̂2 be the simplefied MLEs defined by (2.1) and

(2.3), respectively.Then, under a high-dimensional asymptotic framework (3.1)

it holds that

(1) n

(
ρ̂− p− 1

p− 2
ρ

)
d→ N

(
0,

1

c
(1− ρ2)

)
,

(2) n

(
σ̂2 −

{
p− 2

p
+

2

p

(p− 2)2

(p− 2)2 − (p− 1)2ρ2

}
σ2

)
d→ N

(
0, 2σ4 (1 + ρ2)

c(1− ρ2)

)
,

where
d→ denotes the convergence in distribution.

From Theorem 3.1 (1) and (2) we have

ρ̂ = ρ+O(n−1), σ̂2 = σ2 +O(n−1),
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and hence ρ̂ and σ̂2 are consistent. Such properties in a high-dimensional

framework have been also studied in Sakurai and Fujikoshi (2017).

Next we consider the distribution of a standardized estimator of Θ̂ defined

by

Θ̃ = (A′A)1/2(Θ̂−Θ)(XΣ−1X′)1/2. (3.3)

From (2.2) the standardized estimator is expressed as

Θ̃ = (A′A)1/2
{
(A′A)−1A′(Y −AΘX)Σ̂

−1
X′(XΣ̂

−1
X′)−1

}
× (XΣ−1X′)1/2

= Z+UV,

where Σ̂ = σ̂2(ρ̂|i−j|)1≤i,j≤1,

Z = UΣ−1/2X′(XΣ−1X′)−1/2,

U = (A′A)−1/2A′(Y −AΘX)Σ−1/2,

V = Σ1/2Σ̂
−1
X′(XΣ̂

−1
X′)−1(XΣ−1X′)1/2 −Σ−1/2X′(XΣ−1X′)1/2.

The elements of U; q × p are independently distributed as N(0, 1). Noting

that {
Σ−1/2X′(XΣ−1X′)1/2

}′
Σ−1/2X′(XΣ−1X′)1/2 = Iq,

we have that the elements of Z; q×k are independently distributed as N(0, 1).

Theorem 3.2. Let Θ̂ be the simplefied MLE defined by (2.2). Then, under

a high-dimensional asymptotic framework (3.1) it holds that the elements of

Θ̃ = (A′A)1/2(Θ̂−Θ)(XΣ−1X′)1/2

are asymptotically idependent and distributed as N(0, 1).
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4. Numerical Accuracies

In this section, we numerically examine accuracies of the asymtptic dis-

tributions of ρ̂ and σ̂2 given in Theorem 3.1. Our numerical experiments

were done in the case of q = 2, k = 3, n1 = n2 = n0, σ
2 = 4, and

ρ = 0.2, 0.8, (N, p) = (2n0, p) = (100, 50), (200, 100), (400, 200),

for Monte Carlo simulations with 104 replications. Asymptotic means and

variances were compared with their simulation results in Table 4.1. It is seen

that our asymptotic means and variances are very accurate.

Table 4.1. Aymptotic means and variances of ρ̂ and σ̂2

ρ̂ σ̂2

mean variance mean variance
ρ N p sim asy sim asy sim asy sim asy

100 50 0.20 0.20 1.99 1.88 3.93 4.01 65.61 67.95
0.2 200 100 0.20 0.20 1.97 1.90 3.96 4.04 66.90 68.64

400 200 0.20 0.20 1.98 1.91 3.98 4.06 68.44 68.99
100 50 0.82 0.82 0.70 0.71 4.23 4.32 358.96 285.72

0.8 200 100 0.81 0.81 0.71 0.71 4.11 4.19 321.91 288.64
400 200 0.80 0.80 0.71 0.72 4.05 4.14 303.56 290.10

Next accuracies of the asymptotic distributions themselves of ρ̂ and σ̂2

were examined. Histgrams denote the simulation results.
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Appendix: The Proof of Theorem 3.1 (1) and

(2)

A1. Asymptotic Distributions of trAW and trAS

In this subsection we give asymptotic results on the distributions of trAW

and trAS, where

A′ = A, W = nS ∼ Wp(n,Σ),

under

A1; n, p → ∞, p/n → c ∈ [0, 1). (A1)

It is known (see, e.g., Fujikoshi et al. (2010)) that

E(trAW) = ntrAΣ, Var(trAW) = 2ntr(AΣ)2, (A2)

E(trAS) = trAΣ, Var(trAS) = 2n−1tr(AΣ)2. (A3)

The following lemma is frequently used.

Lemma A.1. Let W = nS be a p× p random matrix which is distributed as

a Wishart distribution Wp(n,Σ), and let A be a fixed p × p matrix. Under

an asymptotic framework A1, it holds that

trAW − E(trAW)√
Var(trAW)

=
trAS− trAΣ√

Var(trAS)

=
trAS− trAΣ√
2n−1tr(AΣ)2

d→ N(0, 1). (A4)

Further, when lim
√

n−1tr(AΣ)2 = γ,

trAS− trAΣ

lim
{√

Var(trAS)
} =

trAS− trAΣ√
2γ

d→ N(0, 1). (A5)

Proof. We may write

trAW = trΣ1/2AΣ1/2Σ−1/2WΣ−1/2,

= trÃXX′,
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where

Ã = Σ1/2AΣ1/2, X ∼ Np×n(0, Ip ⊗ In)

Let X = (x1,x2, . . . ,xn), then x1,x2, . . . ,xn are independently and identi-

cally distributed as Np(0, Ip) and

trAW = trÃXX′ =
n∑

i=1

x′
iÃxi.

It is easely seen that

E[x′
iÃxi] = trÃ = trAΣ, Var(x′

iÃxi) = 2(trÃ
2
) = 2tr(AΣ)2,

E[trAW] = ntrAΣ, Var(trAW) = 2ntr(AΣ)2.

Let

Zi =
x′
iÃxi − E[x′

iÃxi]√
Var(x′

iÃxi)
, i = 1, 2, . . . , n.

Noting that E(Zi) = 0, Var(Zi) = 1 and Z1, Z2, . . . , Zn are independent, we

have
√
nZ̄ = (Z1 + · · ·+ Zn)/

√
n

d→ N(0, 1).

We have

√
nZ̄ =

1√
n

n∑
i=1

x′
iÃxi − trÃ√
2(trÃ

2
)

=
1√

2ntr(AΣ)2
(trAW − ntrAΣ) =

trAW − E[trAW]

Var(trAW)
.

The result (A5) is obtained from (A4). This completes the proof.

A2. The Limiting Distributions of (n/p)a0, (n/p)a1 and
(n/p)a2

Consider the quantities

n

p
ai =

n

p
trCiS, i = 0, 1, 2. (A6)
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where nS ∼ Wp(n,Σ). Under an asymptotic framework A1 and Σ =

σ2(ρ|i−j|), from Lemma A.1 it follows that n
p
ai, i = 0, 1, 2 have asymptoti-

cally normal. In the following we give their means and variances.

The mean and variance of (n/p)a0

E

[
n

p
a0

]
= E

[
1

p
tr(nS)

]
=

1

p
ntrΣ =

n

p
pσ2 = nσ2,

Var

(
n

p
a0

)
=

1

p2
Var (trnS) =

1

p2
2ntrΣ2

=
σ4

p2
2n

{
p+ 2

p−1∑
i=1

(p− i)ρ2i

}

=
σ4

p2
2n

{
p+

2ρ2

(1− ρ2)2
{
p(1− ρ2)− 1 + ρ2p

}}
→ 2

c

{
1 +

2ρ2

(1− ρ2)

}
σ4 =

2(1 + ρ2)

c(1− ρ2)
σ4.

The mean and variance of (n/p)a1

E

[
n

p
a1

]
= E

[
1

p
trnC1S

]
=

1

p
ntrC1Σ =

n

p
(p− 2)σ2,

Var

(
n

p
a1

)
=

1

p2
Var (trnC1S) =

1

p2
2ntr(C1Σ)2

=
σ4

p2
2n

{
p− 2 + 2

p−3∑
i=1

(p− 2− i)ρ2i

}

=
σ4

p2
2n

{
p− 2 +

2ρ2

(1− ρ2)2
{
(p− 2)(1− ρ2)− 1 + ρ2(p−2)

}}
→ 2

c

{
1 +

2ρ2

(1− ρ2)

}
σ4 =

2(1 + ρ2)

c(1− ρ2)
σ4.
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The mean and variance of (n/p)a2

E

[
n

p
a2

]
= E

[
1

p
trnC2S

]
=

1

p
ntrC2Σ =

n

p
(p− 1)σ2ρ,

Var

(
n

p
a2

)
=

1

p2
Var (trnC2S) =

1

p2
2ntr(C2Σ)2

=
σ4

p2
n

{
p− 1 + (5p− 9)ρ2 + 4

p−3∑
i=1

(p− 2− i)ρ2(i+1)

}

=
σ4

p2
n

{
p− 1 + (5p− 9)ρ2 +

4ρ4

(1− ρ2)2
{
(p− 2)(1− ρ2)− 1 + ρ2p

}}
→ σ4

c

{
1 + 5ρ2 +

4ρ4

(1− ρ2)

}
=

1 + 4ρ2 − ρ4

c(1− ρ2)
σ4.

A3. The proof of Theorem 3.1(1)

For deriving asymptotic distributions of ρ̂ and σ̂2, we use the following delta

method. Consider a k-variate function g(x) = (g1(x), . . . , gk(x)), where x =

(x1, . . . , xm)
′. Suppose that an m−variate random variate X is distributed

as
√
n(X − θ)

d→ Nm(0,Γ).

Then, it is known (see, e.g., Anderson (2003, p.132)) that
√
n(g(X)− g(θ))

d→ Nk(0,HΓH′),

where

H =

(
∂gi(x)

∂xj

∣∣∣∣
x=θ

)
.

Let X = (X1, X2)
′, where X1 = p−1a1, X2 = p−1a2. Then,

n(X − θ)
d→ N2(0,Γ),

where

θ =

(
θ1
θ2

)
, θ1 =

p− 2

p
σ2, θ2 =

p− 1

p
σ2ρ,

Γ =
σ4

c(1− ρ2)

(
2(1 + ρ2) 4ρ

4ρ 1 + 4ρ2 − ρ4

)
.
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Noting that ρ̂ = a2
a1

= p−1a2
p−1a1

, we define

g(x1, x2) =
x2

x1

.

Then

g(θ) = g

(
p− 2

p
σ2,

p− 1

p
σ2ρ

)
=

p− 1

p− 2
ρ.

We have

h′ = (gx1 , gx2)|x=θ =

(
−x2

x2
1

,
1

x1

) ∣∣∣∣
x=θ

=

(
−

p−1
p
σ2ρ

(p−2)2

p2
σ4

,
p

(p− 2)σ2

)
→
(
− ρ

σ2
,
1

σ2

)
h′Γh =

σ4

c(1− ρ2)

(
− ρ

σ2
,
1

σ2

)(
2(1 + ρ2) 4ρ

4ρ 1 + 4ρ2 − ρ4

)(
− ρ

σ2
,
1

σ2

)′

=
1

c
(1− ρ2).

This implies

n

(
ρ̂− p− 1

p− 2
ρ

)
d→ N

(
0,

1

c
(1− ρ2)

)
.

A4. The Limiting Distribution of (s11, spp, a1, a2)

The statistics s11 and spp are expressed as

s11 = trA11S, and s11 = trAppS,

respectively, where

A11 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , App =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Therefore, any linear combination of (s11, spp, a1, a2) can be written as

k1s11 + k2spp + k3a1 + k4a2 = trAS,
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where A = tr(A11 +App + C1 + C2). So, (s11, spp, a1, a2) is asymptotically

normal. The means, variance and covariances on s11 and spp are given as

follows.

E[ns11] = nσ2,

Var (ns11) = 2nσ4,

Cov

(
ns11,

n

p
a1

)
=

1

p
2nσ4

p−2∑
i=1

ρ2i = 2
n

p
σ4ρ

2 − ρ2(p−1)

1− ρ2
→ 2

c
σ4 ρ2

1− ρ2
,

Cov

(
ns11,

n

p
a2

)
=

1

p
2nσ4

p−2∑
i=1

ρ2i−1 = 2
n

p
σ4ρ− ρ2p−1

1− ρ2
→ 2

c
σ4 ρ

1− ρ2
,

E[nspp] = nσ2,

Var (nspp) = 2nσ4,

Cov

(
nspp,

n

p
a1

)
=

1

p
2nσ4

p−2∑
i=1

ρ2i = 2
n

p
σ4ρ

2 − ρ2(p−1)

1− ρ2
→ 2

c
σ4 ρ2

1− ρ2
,

Cov

(
nspp,

n

p
a2

)
=

1

p
2nσ4

p−2∑
i=1

ρ2i−1 = 2
n

p
σ4ρ− ρ2p−1

1− ρ2
→ 2

c
σ4 ρ

1− ρ2
,

Cov(s11, spp) = 2nσ4ρ2(p−1),

Cov

(
n

p
a1,

n

p
a2

)
=

1

p2
2ntrC1ΣC2Σ

=
1

p2
4nσ4 ρ

(1− ρ2)2
{
(p− 1)(1− ρ2)− 1 + ρ2(p−1)

}
→ 4

c

ρ

1− ρ2
σ4.

We have the following distributional result:

n


1√
p
s11 − 1√

p
σ2

1√
p
spp − 1√

p
σ2

1
p
a1 − p−2

p
σ2

1
p
a2 − p−1

p
σ2ρ

 d→ N4




0
0
0
0

 ,Γ

 ,

where the covariance matrix Γ is given by

σ4

c(1− ρ2)


2(1− ρ2) (1− ρ2)ρ2(p−1) 2ρ2 2ρ2

(1− ρ2)ρ2(p−1) 2(1− ρ2) 2ρ2 2ρ2

2ρ2 2ρ2 2(1 + ρ2) 4ρ
2ρ2 2ρ2 4ρ 1 + 4ρ2 − ρ4.
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A5. The Proof of Theorem 3.2(2)

Noting that a0 = a1 + s11 + spp, we can express σ̂2 as

σ̂2 =
n

N

1

p(1− ρ̂2)
(a1ρ̂

2 − 2a2ρ̂+ a0)

=
n

N

a21
p(a21 − a22)

(
a1

a22
a21

− 2a2
a2
a1

+ a0

)
=

n

N

1

p(a21 − a22)

(
−a1a

2
2 + a0a

2
1

)
=

n

N

1

p(a21 − a22)

{
−a1a

2
2 + (a1 + s11 + spp)a

2
1

}
=

n

N

{
1

p
a1 +

1

p
(s11 + spp)

a21
a21 − a22

}
=

n

n− q

{
1

p
a1 +

1
√
p

(
1
√
p
s11 +

1
√
p
spp

)
(a1/p)

2

(a1/p)2 − (a2/p)2

}
≈ 1

p
a1 +

1
√
p

(
1
√
p
s11 +

1
√
p
spp

)
(a1/p)

2

(a1/p)2 − (a2/p)2
.

Let

(X1, X2, X3, X4) = ((1/
√
p)s11, (1/

√
p)s22, (1/p)a1, (1/p)a2).

Further, define g(x1, x2, x3, x4) as

g(x1, x2, x3, x4) = x3 +
1
√
p
(x1 + x2)

x2
3

x2
3 − x2

4

.

g(θ) = g

(
1
√
p
σ2,

1
√
p
σ2,

p− 2

p
σ2,

p− 1

p
σ2

)
=

p− 2

p
σ2 +

1
√
p

(
1
√
p
σ2 +

1
√
p
σ2

)
(p−2

p
)2

(p−2
p
)2 − (p−1

p
ρ)2

=

{
p− 2

p
+

2

p

(p− 2)2

(p− 2)2 − (p− 1)2ρ2

}
σ2.

14



We have

gx1(θ) =

(
1
√
p

x2
3

x2
3 − x2

4

) ∣∣∣∣
x=θ

=
1
√
p

(p−2
p
)2

(p−2
p
)2 − (p−1

p
ρ)2

→ 0,

gx2(θ) =

(
1
√
p

x2
3

x2
3 − x2

4

) ∣∣∣∣
x=θ

=
1
√
p

(p−2
p
)2

(p−2
p
)2 − (p−1

p
ρ)2

→ 0,

gx3(θ) =

{
1 +

1
√
p
(x1 + x2)

(
−2

x3x
2
4

(x2
3 − x2

4)
2

)} ∣∣∣∣
x=θ

= 1− 2
1
√
p

(
1
√
p
σ2 +

1
√
p
σ2

)(
(p−2

p
σ2)(p−1

p
σ2ρ)2

{(p−2
p
σ2)2 − (p−1

p
σ2ρ)2}2

)
→ 1,

gx4(θ) =

{
1
√
p
(x1 + x2)

(
−2

x2
3x4

(x2
3 − x2

4)
2

)} ∣∣∣∣
x=θ

= −2
1
√
p

(
1
√
p
σ2 +

1
√
p
σ2

)(
(p−2

p
σ2)2(p−1

p
σ2ρ)

{(p−2
p
σ2)2 − (p−1

p
σ2ρ)2}2

)
→ 0.

The H in our delta method is given by h = (0, 0, 1, 0)′, and

h′Γh = 2σ4 (1 + ρ2)

c(1− ρ2)

Therefor we have

n

(
σ̂2 −

{
p− 2

p
+

2

p

(p− 2)2

(p− 2)2 − (p− 1)2ρ2

}
σ2

)
d→ N

(
0, 2σ4 (1 + ρ2)

c(1− ρ2)

)
.

Acknowledgements

The third author’s research is partially supported by the Ministry of Ed-

ucation, Science, Sports, and Culture, a Grant-in-Aid for Scientific Research

(C), 16K00047, 2016-2018.

References

[1] Anderson, T. W. (2003). Introduction to Multivariate Statistical Anal-

ysis, 3rd ed. Wiley, Hoboken, N. J.

15



[2] Fujikoshi, Y., Kanda, T. and Tanimura, N. (1990). The growth

curve model with an autoregressive covariance structure. Ann. Inst.

Statist. Math., 42, 533-542.

[3] Fujikoshi, Y., Ulyanov, V. V. and Shimizu, R. (2010). Multivariate

Statistics: High-Dimensional and Large-Sample Approximations. Wiley,

Hobeken, N.J.

[4] R. F. Potthoff and S. N. Roy, A generalized multivariate analysis of

variance model useful especially for growth curve problems, Biometrika

51 (1964), 313–326.

[5] Sakurai, T. and Fujikoshi, Y. (2017). High-dimensional properties

of information criteria for multivariate linear regression models with

covariance structures. Submitted for publication.

16


