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Abstract

This paper is concerned with high-dimensional asymptotic results for W - and Z- rules when

the sample size N and the dimension are large. First we give a unified location and scale mixture

expression of the standard normal distribution for W and Z statistics. Then, the EPMCs (Ex-

pected Probability of Misclassifications) of W - and Z- rules are obtained in expanded forms with

errors of O(N−2). It is pointed that Z-rule has smaller EER (Expected Error Rate) than W -rule

when the prior probabilities are the same, neglecting the terms of O(N−2). Further, asymptotic

unbiased estimators are proposed for the EPMCs and the EERs of W - and Z- rules. Variable

selection criteria are also proposed, based on asymptotic unbiased estimators of the EERs of W -

and Z- rules. It is pointed that the no additional information model based on the coefficients of

the linear discriminant function is closely related to the subset of variables with the minimized

EER in a high dimensional situation. Accuracies of our asymptotic results are checked numerically

by conducting a Mote Carlo simulation.
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1 Introduction

This paper is concerned with the problem of classifying an observation vector x as coming from one of

two populations Π1 and Π2. Let Πi have p-dimensional normal populations with mean vectors µi and

the p × p common positive definite covariance matrix Σ, which are denoted as Np(µi,Σ). Consider

the case that all parameters are unknown. Suppose that training data x1i, . . . ,xNi,i are independently

and identically distributed (i.i.d.) as Np(µi,Σ), i = 1, 2. Let W be the linear discriminant function

W (x) = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
,

where x̄1, x̄2 and S are the sample mean vectors and the pooled sample covariance matrix defined by

x̄i =
1

Ni

Ni∑
j=1

xij , i = 1, 2, S =
1

n

2∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
′,

n = N − 2 = N1 +N2 − 2.

Then, the linear discriminant rule with a cutoff point c, which is also called W -rule, classifies x as Π1

if W (x) > c for a constant c, and as Π2 if W (x) < c. Furthermore, Anderson [1](see also Anderson

[3]; Chapter 6) introduced the other discriminant rule which is based on the likelihood ratio criterion

for testing the composite null hypothesis that x,x11, . . . ,x1N1
∈ Π1 against the composite alternative

hypothesis that x,x21, . . . ,x2N2
∈ Π2, which is called maximum likelihood rule or Z-rule. Let

Z(x) =
1

2
{(1 +N−1

2 )−1(x− x̄2)
′S−1(x− x̄2)− (1 +N−1

1 )−1(x− x̄1)
′S−1(x− x̄1)}.

Then the Z-rule with a cutoff point c classifies x as Π1 if Z(x) > c and Π2 if Z(x) < c.

There are two types of probability of misclassification. One is the probability of allocating x into

Π2 even though it is actually belonging to Π1. The other is the probability that x is classified as Π1

although it is actually belonging to Π2. These two types of expected probabilities of misclassifications

(EPMCs) for W- and Z- rules are expressed as

ew(2|1) = P (W (x) < c|x ∈ Π1) and ew(1|2) = P (W (x) > c|x ∈ Π2),

ez(2|1) = P (Z(x) < c|x ∈ Π1) and ez(1|2) = P (Z(x) > c|x ∈ Π2).

We also express ew(2|1) and ez(2|1) as

gw(c;N1, N2,∆
2) = ew(2|1), gz(c;N1, N2,∆

2) = ez(2|1).

As is well known, the distribution of W when x ∈ Π1 is the same as that of −W when x ∈ Π2 by

interchanging N1 and N2. Similarly, the distribution of Z when x ∈ Π1 is the same as that of −Z

when x ∈ Π2 by interchanging N1 and N2. These indicate that ew(1|2) (or ez(1|2)) is obtained from

ew(2|1) (or ez(2|1)) by replacing (c,N1, N2) with (−c,N2, N1), and hence

ew(1|2) = gw(−c;N2, N1,∆
2), ez(1|2) = gz(−c;N2, N1,∆

2).
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Thus, in this paper, we only deal with ew(2|1) and ez(2|1). Related to a unified expression for W -

rule and Z- rule, we consider Z-rule such that classifies x as Π1 if Z(x) > c∗ and as Π2 if W (x) < c∗,

where

c∗ =

√
1 +N−1

(1 +N−1
1 )(1 +N−1

2 )
c.

That is, we consider Z- rule with cutoff point c∗.

Note that the EPMCs of W - and Z- rules are obtained from the distribution functions of W and Z.

In general, it is hard to evaluate these expected probabilities of misclassification (EPMC) explicitly,

but some asymptotic results including asymptotic expansions have been obtained. It is well known

that the discriminant functions W (x) and Z(x) converges in distribution to the normal distributions,

i.e.,

W (x) and Z(x)
D→ N((−1)i∆2/2,∆2), (1)

if x ∈ Πi under the asymptotic framework A0:

A0 : N1 → ∞, N2 → ∞, N1/N2 → γ ∈ (0,∞), p is fixed.

Here, ∆2 = (µ1−µ2)
′Σ−1(µ1−µ2). Okamoto [19] derived an asymptotic expansion of the distribution

of W (x) up to terms of order n−1, and Siotani and Wang [21], [22] extended it up to terms of order n−3.

Furthermore, Memon and Okamoto [15] expanded the distribution of Z(x) up to terms of order n−2 and

Siotani and Wang [21], [22] extended it up to terms of order n−3. Anderson [2] derived an asymptotic

expansion of Studentized W (x), and an asymptotic expansion of Studentized Z(x) was derived by

Fujikoshi and Kanazawa [8]. These and some other asymptotic results were reviewed by Siotani [20]

and by McLachlan [18]. Generally, the precision of asymptotic approximations under A0 gets worth as

the dimension p becomes large. As an alternative approach to overcome this shortcoming, it has been

considered to derive asymptotic distributions of discriminant functions in a high-dimensional situation

where n and p tend to infinity together. Fujikoshi and Seo [9] derived the limiting distribution of a

general discriminant function for a class of discriminant rules which includes both the W - rule and Z-

rule under asymptotic framework A1:

A1 : p → ∞, N1 → ∞, N2 → ∞, p/n → γ0 ∈ [0, 1),

and N1/N2 → γ ∈ (0,∞).

Note that m = n − p → ∞ under A1. Matsumoto [14] generalized Fujikoshi and Seo [9]’s limiting

result to an asymptotic expansion up to terms of order O3/2, where Oj/2 is a term of j-th order with

respect to {p−1/2, N
−1/2
1 , N

−1/2
2 ,m−1/2}. Fujikoshi [6] gave a general approximation of a location and

scale mixture of the standard normal distribution, and gave its explicit error bound. He applied his

result to Lachenbruch [13]’s approximation of ew(2|1), and gave the error bound which is O1 under A1.

These and some other asymptotic results are also reviewed in Fujikoshi et al. [10]. High-dimensional

asymptotic expansions for W have been also given by Hyodo and Kubokawa [11].
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In this paper, we give asymptotic expansions of the EPMCs for W - and Z- rules with the errors

of order O2 under the asymptotic framework A1. Our derivation is based on a unified location and

scale mixture expression of the standard normal distribution for W and Z. It is well known (see,

e.g., Fujikoshi [6]) that W can be expressed as a location and scale mixtures of the standard normal

distribution. We note that Z can be also expressed as a location and scale mixtures of the standard

normal distribution. Based on our asymptotic expansion formulas for the EPMCs, it is shown that

Z-rule has smaller EEP (Expected Error Rate) than W -rule when the prior probabilities are the same,

neglecting the terms of O(N−2). Further, asymptotic unbiased estimators are proposed for EPMCs of

W - and Z- rules. Similarly, we propose asymptotic unbiased estimator for EEPs. It is pointed that the

no additional information model based on the coefficients of the linear discriminat function is closely

related to the subset of variables with the minimized EER in a high dimensional situation. We propose

variable selection criteria based on unbiased estimator for EEPs. Our results are checked numerically

by conducting a Mote Carlo simulation.

The present paper is organized as follows. In section 2, we give a unified location and scale mixture

expression for the distributions of W and Z. Further, the expressions are expressed in terms of

three standard normal variables and four chi-square variables which are independent. Applying the

expression to the method of differential operator, we obtain asymptotic expansions for the EPMCs of

W - and Z- rules with the errors of O(n−2). In Section 4, it is shown that the EER of Z- rule is smaller

than the one of Z- rule when the prior probabilities are the same, neglecting the terms of O(n−2). The

result is proved Appendix A. In Sections 5 and 6, asymptotic unbiased estimators for the EPMCs and

the EERs of W - and Z- rules are derived. In Section 7, simulation results are results to see accuracies

of our asymptotic results. In Section 8, we propose variable selection criteria based on asymptotic

unbiased estimators of the EERs of W - and Z- rules. Concluding remarks are given in Section 9.

Hereafter, the symbol “
D
=” denotes the equality in distribution. Throughout this paper, we assume

that ∆2 converges a positive constant as p → ∞.

2 A unified expression of W and Z as location and scale mix-
tures of N(0, 1)

Following Lachenbruch [13], for x ∈ Π1, it can be expressed that

W = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
= V 1/2

w Zw − Uw, (2)

where

Vw = (x̄1 − x̄2)
′S−1ΣS−1(x̄1 − x̄2),

Zw = V −1/2
w (x̄1 − x̄2)

′S−1(x− µ1),

Uw = (x̄1 − x̄2)
′S−1(x̄1 − µ1)−

1

2
D2,
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and D2 is the squared sample Mahalanobis distance defined by D2 = (x̄1− x̄2)
′S−1(x̄1− x̄2). Then, it

is checked that Vw is a positive random variable and (Uw, Vw) are jointly independent of Zw. Further,

Zw is distributed as N(0, 1). This normality follows by considering the conditional distribution of Zw

when x̄1, x̄2, and S are given. In this case, W is called a location and scale mixture of the standard

normal distribution. Now we consider to express Uw and Vw in terms of simple variables. Let

uw =

(
1

N1
+

1

N2

)−1/2

Σ−1/2(x̄1 − x̄2),

vw =
1√
N

Σ−1/2(N1x̄1 +N2x̄2 −N1µ1 −N2µ2),

B = Σ−1/2SΣ−1/2.

Then uw, vw and B are independent. In addition, uw ∼ Np((1/N1 + 1/N2)
−1/2δ, Ip) and vw ∼

Np(0, Ip), where δ = Σ−1/2(µ1 − µ2). It also holds that nB is distributed as a Wishart distribution

with n degrees of freedom and covariance matrix Ip, which is denoted as Wp(n, Ip). Substituting

them, we have

Uw = −1

2

(
n

N2
− n

N1

)
u′
wB

−1uw

n
+

n√
N1N2

u′
wB

−1vw

n
−
√

nN2

NN1

δ′B−1uw√
n

,

Vw =
Nn

N1N2

u′
wB

−2uw

n
.

On the other hand, for x ∈ Π1, we can express Z(x) as

Z(x) =
1

2
(1 +N−1

2 )−1
{
a1/2(x− x̄1) + (x− x̄2)

}
S−1

{
−a1/2(x− x̄1) + (x− x̄2)

}
=

1

2
(1 +N−1

2 )−1ω1ω2u
′
zB

−1t,

where

uz = ω−1
1 Σ−1/2

{
−a1/2(x− x̄1) + (x− x̄2)

}
,

t = ω−1
2 Σ−1/2

{
a1/2(x− x̄1) + (x− x̄2)

}
,

ω2
1 = 2

{
(1 +N−1

2 )− a1/2
}
,

ω2
2 = 2

{
(1 +N−1

2 ) + a1/2
}
,

a =
1 +N−1

2

1 +N−1
1

.

Note that ω2
1 = O(p−1) and ω2

2 → 4 under A1. The independency of uz and t and these distributional

results can be derived by using the following general result (Lemma 1) for linear combinations of i.i.d.

random vectors (see, e.g., Anderson [3]; Theorem 3.3.1).

Lemma 1. Suppose that x1, . . . ,xN are independent, and xi is distributed as Np(µi,Σ). Let H =

(hij) be an N × N orthogonal matrix. Then yi =
∑N

j=1 hijxi is distributed as Np(νi,Σ), where

νi =
∑N

j=1 hijµj, i = 1, . . . , N , and y1, . . . ,yN are independent.

5



From Lemma 1, we have that uz and t are independent, and

uz ∼ Np(ω
−1
1 δ, Ip), t ∼ Np(ω

−1
2 δ, Ip),

where δ = Σ−1/2(µ1 − µ2). Let

vz = t− ω−1
2 δ,

which is distributed as Np(0, Ip). Now we shall see that Z(x) can be expressed as a location of scale

mixture of the standard normal distribution. Note that

u′
zB

−1t = u′
zB

−1vz + u′
zB

−1ω−1
2 δ

=

√
u′
zB

−2uzZ0 + ω−1
2 δ′B−1u′

z,

where

Z0 =
1√

u′
zB

−2uz

(u′
zB

−1)vz.

The conditional distribution of Z0 when uz and S are given is the standard normal distribution.

Since it does not depend on uz and S, Z0 is distributed as the standard normal distribution, and is

independent of uz and S. Therefore, Z(x) is a location and scale mixture of the standard normal

distribution. Modifying the sale and the location, we use the following location and scale mixture

expression for Z(x):

Z(x) =
1

2
(1 +N−1

2 )−1

(
Nn

N1N2

)−1/2

(
√
nω1)ω2(V

1/2
z Zz − Uz),

where

Uz = −
(

Nn

N1N2

)1/2

ω−1
2

δ′B−1uz√
n

,

Vz =
Nn

N1N2

u′
zB

−2uz

n
,

Zz = V −1/2
z

(
Nn

N1N2

)1/2
u′
zB

−1vz√
n

.

Note that

1

2
(1 +N−1

2 )−1ω1ω2 =

√
1− 1

(1 +N−1
1 )(1 +N−1

2 )
=

√
N−1

1 +N−1
2 +N−1

1 N−1
2

(1 +N−1
1 )(1 +N−1

2 )
.

So,

Z(x) =

√
1 +N−1

(1 +N−1
1 )(1 +N−1

2 )
(V 1/2

z Zz − Uz) = c∗(V 1/2
z Zz − Uz).

Here, the variable V
1/2
z Zz − Uz is a location and scale mixture of the standard normal distribution.

Further,

Z(x) > c∗ ⇔ V 1/2
z Zz − Uz > c.
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We have seen that the discriminant function W (x) based on a cutoff point c and the discriminant

function Z(x) based on a cutoff point c∗ can be expressed as a location (U) and scale (V 1/2) mixture

of the standard normal distribution, and so these misclassification probabilities when x ∈ Π1 can be

expressed as

E[Φ
{
V −1/2(U + c)

}
], (3)

where Φ is the distribution function of the standard normal distribution. In order to treat for W and

Z in a unified way, we define two random variables U and V as follows: for x ∈ Π1,

U = ρ1
u′B−1u

n
+ ρ2

v′B−1u

n
− ρ3

δ′B−1u√
n

, V = τ2
u′B−2u

n
, (4)

where u ∼ Np(
√
nωδ, Ip), v ∼ Np(0, Ip), nB ∼ Wp(n, Ip), δ = Σ−1/2(µ1 − µ2), and u, v and B

are independent. Here, ρi = ρi(N1, N2), i = 1, 2, 3, τ = τ(N1, N2) ̸= 0, and ω = ω(N1, N2) ̸= 0 are

constants which are O(1) under A1. In addition, ω−2 = Nn/(N1N2) +O(n−1). The above results are

summarized as in the following Lemma.

Lemma 2. Assume that x ∈ Π1. Let (U, V ) be the random variables as in (4), and let Z be the

standard normal random variable which is independent of (U, V ). Then

W (x)
D
= V 1/2Z − U,

where (U, V ) in (4) is defined with the following ρ1, ρ2, ρ3, τ and ω:

ρ1 =
1

2

(
n

N1
− n

N2

)
, ρ2 =

n√
N1N2

, ρ3 =

√
nN2

NN1
,

τ =

√
Nn

N1N2
, ω =

(
n

N1
+

n

N2

)−1/2

=

√
N1N2

Nn
. (5)

Similarly,

(1/c∗)Z(x)
D
= V 1/2Z − U,

where c∗ =
[
(1 +N−1)/{(1 +N−1

1 )(1 +N−1
2 )}

]1/2
, (U, V ) in (4) is defined with the following ρ1, ρ2, ρ3,

τ and ω:

ρ1 = 0, ρ2 = 0, ρ3 =

√
Nn

N1N2
ω−1
2 , τ =

√
Nn

N1N2
, ω = (nω2

1)
−1/2,

ω2
1 = 2

{
(1 +N−1

2 )− a1/2
}
, ω2

2 = 2
{
(1 +N−1

2 ) + a1/2
}
, a =

1 +N−1
2

1 +N−1
1

. (6)

In order to evaluate the expectation as in (3), it is important to express u′B−1u, v′B−1u, δ′B−1u,

and u′B−2u in terms of simple variables whose moments are computable. We use the following lemma

given by Yamada et al. [23] which expresses them as functions of the independent standard normal

and chi-squared variables.
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Lemma 3. Let v1 ∼ Np(δ, Ip), v2 ∼ Np(0, Ip), A ∼ Wp(n, Ip), and v1, v2 and A are independent.

Then


δ′A−1v1

v′
2A

−1v1

v′
1A

−1v1

v′
1A

−2v1

 D
=



∆

Y1

(
Z1 +∆−

√
Y2

Y3
Z2

)
√

1

Y 2
1

(
1 +

Y2

Y3

)
{(Z1 +∆)2 + Z2

2 + Y4}Z3

1

Y1
{(Z1 +∆)2 + Z2

2 + Y4}
1

Y 2
1

(
1 +

Y2

Y3

)
{(Z1 +∆)2 + Z2

2 + Y4}


,

where ∆ =
√
δ′δ; Zi ∼ N(0, 1), i = 1, 2, 3; Yi ∼ χ2

fi
, i = 1, 2, 3, 4; all the seven variables Z1, Z2, Z3,

Y1, Y2, Y3, Y4 are independent;

f1 = n− p+ 1, f2 = p− 1, f3 = n− p+ 2, f4 = p− 2.

Results which are similar to Lemma 3 have benn given in the following papers. Fujikoshi and

Seo [9]; Lemma 2.2 gave stochastic expression for triplet of v′
1A

−1v1, v
′
1A

−1v2 and v′
2A

−1v2, and

Fujikoshi [7]; Lemma 4.1 gave for triplet of v′
1A

−1v1, v
′
1A

−2v1 and δ′A−1v1. Hyodo and Kubokawa

[11] has also given a different expression for the four statistics in Lemma 3. However, their expression

does not hold simultaneously. In fact, they have used the same expression as Lemma 4.1 in Fujikoshi

[7] for the triplet of v′
1A

−1v1, v
′
1A

−2v1 and δ′A−1v1, and added an expression for v′
2A

−1v1, which

was derived separately from the triplet.

From Lemma 3, we can write the U and V as in (4) as follows:(
U
V

)
D
=

(
u(Y1/f1, Y2/f2, Y3/f3, Y4/f4, Z1/

√
n,Z2/

√
n,Z3/

√
n)

v(Y1/f1, Y2/f2, Y3/f3, Y4/f4, Z1/
√
n,Z2/

√
n,Z3/

√
n)

)
,

where

u(y1, y2, y3, y4, z1, z2, z3) = u1(y1, y4, z1, z2) + u2(y1, y2, y3, y4, z1, z2, z3)

− u3(y1, y2, y3, y4, z1, z2), (7)

u1(y1, y4, z1, z2) =
a1
y1

{(z1 + ω∆)2 + z22 + a4y4},

u2(y1, y2, y3, y4, z1, z2, z3) =
a2
y1

√(
1 + a25

y2
y3

)
{(z1 + ω∆)2 + z22 + a4y4}z3,

u3(y1, y2, y3, y4, z1, z2) = a3
∆

y1

(
z1 + ω∆− a5

√
y2
y3

z2

)
,

v(y1, y2, y3, y4, z1, z2, z3) =
a26
y21

(
1 + a25

y2
y3

)
{(z1 + ω∆)2 + z22 + a4y4}. (8)

Here,

ai =
n

f1
ρi (i = 1, 2, 3), a4 =

f4
n
, a5 =

√
f2
f3

, a6 =
n

f1
τ.

Note that ai = O(1) under A1.
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3 Asymptotic expansions for the EPMCs of W (x) and Z(x)
under A1

In order to obtain asymptotic expansions for the EPMCs of W (x) and Z(x), we may derive an

asymptotic expansion of P (
√
V Z−U < c) under A1. Further, instead of the distribution of

√
V Z−U ,

we consider its standardized version defined by

T =

√
V

v0
Z −

(
U − u0√

v0

)
,

where

u0 = u(E(Y1/f1), E(Y2/f2), E(Y3/f3), E(Y4/f4), E(Z1/
√
n), E(z2/

√
n), E(Z3/

√
n))

= u(1, 1, 1, 1, 0, 0, 0),

v0 = v(E(Y1/f1), E(Y2/f2), E(Y3/f3), E(Y4/f4), E(Z1/
√
n), E(z2/

√
n), E(Z3/

√
n))

= v(1, 1, 1, 1, 0, 0, 0).

Then, it holds that

P (
√
V Z − U ≤ x) = P (T ≤ v

−1/2
0 (x+ u0)).

Now we consider an asymptotic expansion of the distribution of T by expanding its characteristic

function

C(t) = E {exp(itT )} .

Based on the fact that T is conditionally normal when (U, V ) is given, the conditional characteristic

function can be expressed as

Ψ(y1, y2, y3, y4, z1, z2, z3) = exp(itµ− t2σ2/2),

where

µ = µ(y1, y2, y3, y4, z1, z2, z3) = −u(y1, y2, y3, y4, z1, z2, z3)− u0√
v0

,

σ2 = σ2(y1, y2, y3, y4, z1, z2, z3) =
v(y1, y2, y3, y4, z1, z2, z3)

v0
.

Therefor we have

C(t) = E

[
Ψ

(
Y1

f1
,
Y2

f2
,
Y3

f3
,
Y4

f4
,
Z1√
n
,
Z2√
n
,
Z3√
n

)]
.

To get an asymptotic expansion of C(t), we use a powerful method known as the method by the

differential operator which was used by James [12], Okamoto [19], etc. Since the function Ψ(·) is

analytic about the point (Y1/f1, Y2/f2, Y3/f3, Y4/f4, Z1/
√
n,Z2/

√
n,Z3/

√
n) = (1, 1, 1, 1, 0, 0, 0), we

can expand it a Taylor series as follows.

Ψ

(
Y1

f1
,
Y2

f2
,
Y3

f3
,
Y4

f4
,
Z1√
n
,
Z2√
n
,
Z3√
n

)
= exp(A)Ψ(y1, y2, y3, y4, z1, z2, z3) |0, (9)

9



where

A =
4∑

i=1

(
Yi

fi
− 1

)
∂

∂yi
+

3∑
i=1

Zi√
n

∂

∂zi
,

and the notation |0 stands for the value at the point that (y1, y2, y3, y4, z1, z2, z3) = (1, 1, 1, 1, 0, 0, 0).

Then,

C(t) = ΘΨ(y1, y2, y3, y4, z1, z2, z3) |0, (10)

where

Θ = E[exp(A)].

Note that Y1, Y2, Y3, Y4, Z1, Z2, and Z3 are independent, and Yi ∼ χ2
fi
, i = 1, 2, 3, 4, Zi ∼ N(0, 1),

i = 1, 2, 3. Considering the expectation with respect to Yi’s and Zi’s, we have

Θ = exp

{
−

4∑
i=1

∂

∂yi
− 1

2

4∑
i=1

fi log

(
1− 2

fi

∂

∂yi

)
+

1

2n

3∑
i=1

∂2

∂z2i

}

= exp

(
4∑

i=1

1

fi

∂2

∂y2i
+

1

2n

3∑
i=1

∂2

∂z2i
+R1

)

= 1 +

4∑
i=1

1

fi

∂2

∂y2i
+

1

2n

3∑
i=1

∂2

∂z2i
+R2, (11)

where R1 and R2 are remainder terms which are O(n−2) under A1. Substituting (11) into (10), we

have

C(t) = e−t2/2

(
1 +

1

n

4∑
k=1

bk(it)
k +R3

)
,

where R3 is a remainder term which has the same property as R1. Inverting the above expansion of

the characteristic function, we can obtain an asymptotic expansion of the distribution of T up to the

order O(n−1) under A1 which is given as the following theorem.

Theorem 1. Assume that x ∈ Π1. Let (U, V ) be the random variables defined as (4), and let Z be a

standard normal random variable which is independent of (U, V ). Let y = v
−1/2
0 (x+ u0), where

u0 =
n

m+ 1

{
(ρ1ω

2 − ρ3ω)∆
2 +

p− 2

n
ρ1

}
,

v0 =
n2(n+ 1)

(m+ 1)2(m+ 2)

Nn

N1N2

(
ω2∆2 +

p− 2

n

)
.

Then it holds that

P (V −1/2Z − U ≤ x) = Φ(y)− 1

n

4∑
k=1

bkHk−1(y)ϕ(y) +O(n−2)

under A1, where Φ(·) denotes the cumulative distribution function of the standard normal distribution,

ϕ(·) is the derivative of Φ(·), and Hk(x) denotes the Hermite polynomial of degree k, especially, H0(x) =

10



1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3. Here,

b1 = − 2n

m+ 1

1
√
v0

(u0 + ρ1),

b2 =
3n

m+ 1
+

n(p− 1)

(n+ 1)(m+ 2)
+

1
p−2
n + ω2∆2

+
ρ22
2τ2

+
1

2v0

{
2n

m+ 1
u2
0

+
2n(p− 2)

(m+ 1)2
ρ21 +

n2

(m+ 1)2
(2ρ1ω − ρ3)

2∆2 +
n2(p− 1)

(m+ 1)2(m+ 2)
ρ23∆

2

}
,

b3 = − 1
√
v0

{
2n

m+ 1
u0 +

u0 +
n

m+1ρ1ω
2∆2

p−2
n + ω2∆2

}
,

b4 =
n

m+ 1
+

n(p− 1)

4(m+ 2)(n+ 1)
+

1

4

1
p−2
n + ω2∆2

(
1 +

ω2∆2

p−2
n + ω2∆2

)
.

Corollary 2. Let gw(c;N1, N2,∆
2) be the expected probability of misclassification of W - rule with

cutoff point c when x ∈ Π1. Let yw = v
−1/2
w (c+ uw), where

uw = uw(N1, N2,∆
2) = −1

2

n

m+ 1

{
∆2 −

(
p− 2

N1
− p− 2

N2

)}
,

vw = vw(N1, N2,∆
2) =

n2(n+ 1)

(m+ 1)2(m+ 2)

(
∆2 +

N(p− 2)

N1N2

)
.

Then, it holds that under A1,

gw(c;N1, N2,∆
2) = Φ(yw)−

1

n

4∑
k=1

ℓkHk−1(yw)ϕ(yw) +O(n−2),

where ℓk = ℓk(N1, N2,∆
2) for k = 1, 2, 3, 4 are given as follows.

ℓ1 = − 2
√
vw

n

m+ 1

{
uw +

1

2

(
n

N1
− n

N2

)}
,

ℓ2 =
3n

m+ 1
+

n(p− 1)

(n+ 1)(m+ 2)
+

Nn
N1N2

∆2 + N(p−2)
N1N2

+
n

2N
+

1

2vw

[
2n

m+ 1
u2
w

+
n(p− 2)

2(m+ 1)2

(
n

N1
− n

N2

)2

+
n2

(m+ 1)2
N1n

NN2
∆2

+
n2(p− 1)

(m+ 1)2(m+ 2)

N2n

NN1
∆2

]
,

ℓ3 = − 1
√
vw

{
2n

m+ 1
uw +

Nn

N1N2

uw + 1
2

n
m+1

N2−N1

N ∆2

∆2 + N(p−2)
N1N2

}
,

ℓ4 =
n

m+ 1
+

n(p− 1)

4(m+ 2)(n+ 1)
+

1

4

Nn
N1N2

∆2 + N(p−2)
N1N2

(
1 +

∆2

∆2 + N(p−2)
N1N2

)
.

Corollary 3. Let gz(c
∗;N1, N2,∆

2) be the expected probability of misclassification of Z- rule with a

cutoff point c∗ when x ∈ Π1, where c
∗ =

√
(1 +N−1)/{(1 +N−1

1 )(1 +N−1
2 )}c. Let yz = v

−1/2
z (c+uz),

where

uz = uz(N1, N2,∆
2) = − n

m+ 1

√
N

N1N2
ω−1
1 ω−1

2 ∆2,

vz = vz(N1, N2,∆
2) =

n2(n+ 1)

(m+ 1)2(m+ 2)

N

N1N2
ω−2
1

{
∆2 + (p− 2)ω2

1

}
,

11



and

ω1 = ω1(N1, N2) =

√
2{(1 +N−1

2 )− a1/2},

ω2 = ω2(N1, N2) =

√
2{(1 +N−1

2 ) + a1/2},

a = a(N1, N2) =
1 +N−1

2

1 +N−1
1

.

Then, it holds that under A1,

gz(c
∗;N1, N2,∆

2) = Φ(yz)−
1

n

4∑
k=1

ζkHk−1(yz)ϕ(yz) +O(n−2),

where ζk = ζk(N1, N2,∆
2) for k = 1, 2, 3, 4 are given as follows.

ζ1 = − 2n

m+ 1

uz√
vz

,

ζ2 =
3n

m+ 1
+

n(p− 1)

(n+ 1)(m+ 2)
+

nω2
1

∆2 + (p− 2)ω2
1

+
1

2vz

{
2n

m+ 1
u2
z +

n2

(m+ 1)2
Nn

N1N2
ω−2
2 ∆2 +

n2(p− 1)

(m+ 1)2(m+ 2)

Nn

N1N2
ω−2
2 ∆2

}
,

ζ3 = − 1
√
vz

{
2n

m+ 1
uz +

nω2
1uz

∆2 + (p− 2)ω2
1

}
,

ζ4 =
n

m+ 1
+

n(p− 1)

4(m+ 2)(n+ 1)
+

1

4

nω2
1

∆2 + (p− 2)ω2
1

{
1 +

∆2

∆2 + (p− 2)ω2
1

}
.

There are some results on asymptotic results on the EPMC of W - and Z- rules under A1, see,

e.g., Seo and Fujikoshi [9], Fujikoshi [6], Matsumoto [14], Hyodo and Kubokawa [11], etc. It may be

noted that our results have been given a unified way for W - and Z- rules, and so that their comparison

becomes more easy. In fact, in the next section, using Corollaries 2 and 3 we show that Z-rule has an

optimality in the comparison with W -rule.

4 Comparison of EERs

Let πi be the prior probabilities of x drown from Πi for i = 1, 2. Then, the expected error rate (EER)

for W -rule with a cutoff point cw is expressed as

EERw(cw) = π1P (W (x) < cw|x ∈ Π1) + π2P (W (x) > cw|x ∈ Π2).

From Corollary 2, the limit under A1 is given as

lim
A1

EERw(cw)

= π1Φ

(
−1

2

−c̃w +∆2
0 + (γ − γ−1)γ0√

∆2
0 + (γ + γ−1 + 2)γ0

√
1− γ0

)
+ π2Φ

(
−1

2

c̃w +∆2
0 + (γ−1 − γ)γ0√

∆2
0 + (γ−1 + γ + 2)γ0

√
1− γ0

)
,

where c̃w = 2(1 − γ0)cw, ∆
2
0 = limp→∞ ∆2, limN1/N2 = γ and lim p/n = γ0. The minimum value

with respect to c̃w or equivalently cw is attained at

cw = cw,0 =
1

2(1− γ0)

[
(γ − γ−1)γ0 +

2

1− γ0

{
1 +

(γ + γ−1 + 2)γ0
∆2

0

}
log

π2

π1

]
.
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This result was pointed by Hyodo and Kubokawa [11], and they studied asymptotic unbiased estimator

for EERw(cw,0).

From the above result we can see that the limiting EERw(cw) takes the minimum value at

cw,m = cw,m =
1

2

N

N − p

[
p

N2
− p

N1
+ 2

N

N − p

(
1 +

Np

N1N2

1

∆2

)
log

π2

π1

]
. (12)

For the case when the prior probabilities are equal,

cw,m =
1

2

N

N − p

(
p

N2
− p

N1

)
,

and then,

lim
A1

[
1

2
P (W (x) < cw,m|x ∈ Π1) +

1

2
P (W (x) > cw,m|x ∈ Π2)

]
= Φ

(
−1

2

∆2
0√

∆2
0 + (γ + γ−1 + 2)γ0

√
1− γ0

)
. (13)

On the other hand, the EER for Z-rule with a cutoff point cz is expressed as

EERz(cz) = π1P (Z(x) < cz|x ∈ Π1) + π2P (Z(x) > cz|x ∈ Π2).

Let

c∗z =

√
1 +N−1

(1 +N−1
1 )(1 +N−1

2 )
cz.

Using Corollary 3,

lim
A1

EERz(c
∗
z)

= π1Φ

(
−1

2

−c∗z +∆2
0√

∆2
0 + (γ + γ−1 + 2)γ0

√
1− γ0

)
+ π2Φ

(
−1

2

c∗z +∆2
0√

∆2
0 + (γ−1 + γ + 2)γ0

√
1− γ0

)
,

where c∗z = 2(1− γ0) limA1 c
∗
z = 2(1− γ0)cz. The minimum value with respect to c∗z is attained at

c∗z = c∗z,0 =
2

1− γ0

{
1 +

(γ + γ−1 + 2)γ0
∆2

0

}
log

π2

π1
.

This implies that the limiting EER for Z-rule, i.e., limA1 EERz(c
∗
z) takes the minimum value at

cz = cz,m =

{
1 +N−1

(1 +N−1
1 )(1 +N−1

2 )

}−1/2(
N

N − p

)2(
1 +

Np

N1N2

1

∆2

)
log

π2

π1
. (14)

When the prior probabilities are equal, cz,m = 0, and then, the limiting error rate under A1 is the

same as (13). These imply that when π1 = π2,

lim
A1

EERw(cw,m) = lim
A1

EERz(0),

which is equal to the right-hand side of the equality in (13). In order to see the difference when π1 = π2,

we need to compare the next terms of these asymptotic expansions. The final result is given in the

next theorem.
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Theorem 4. Let EERw(cw) and EERz(cz) be the expected error rates of W - rule with a cutoff point

cw and Z- rule with a cutoff point cz, respectively.

(1) The minimums of EERw(cw) and EERz(cz) are attained at cw = cw,m and cw = cz,m given in

(12) and (14), respectively.

(2) When π1 = π2, it holds that

EERw(cw,m)− EERz(cz,m) = − 1

4vw

(n− 1)(p− 2)

(m+ 1)3

(
n

N1
− n

N2

)2

H1(yc)ϕ(yc) +O(n−2),

where

yc =
−(1/2)∆2√{

∆2 + N(p−2)
N1N2

}
n+1
m+2

.

Further, since H1(yc) = yc < 0, we have that EERz(0) is less than or equal to EERw(cw,m), neglecting

the term of O(n−2). When N1 = N2, the difference becomes O(n−2).

The proof of Theorem 4 (2) is given in Appendix A.

We will show an asymptotic expansion for each of EERw(0) and EERz(0) up to the terms of O(n−1)

under A0. Asymptotic expansion of EERw(0) is obtained by using Corollary 2 in Okamoto [19] (which

is cited in Fujikoshi et al. [10], Corollary 9.3.1), which is as follows.

EERw(0) = Φ

(
−1

2
∆

)
+ ϕ

(
−1

2
∆

)[
1

16

{
4(p− 1)

∆
+∆

}(
1

N1
+

1

N2

)
+

(p− 1)∆

4n

]
+O(n−2).

Since cwm = O(n−1) under A0, we can show that asymptotic expansion of EERw(cwm) up to the term

of O(n−1) is the same as the one of EERw(0).

By virtue of COROLLARY in Memon and Okamoto [15] (which is cited in Fujikoshi et al. [10],

Corollary 9.3.2), we have

EERz(0) = Φ

(
−1

2
∆

)
+ ϕ

(
−1

2
∆

)[
1

16

{
4(p− 1)

∆
+∆

}(
1

N1
+

1

N2

)
+

(p− 1)∆

4n

]
+O(n−2).

These results imply that EERw(0) and EERz(0) are the same up to the terms of O(n−1) under A0.

Hyodo and Kubokawa [11] proposed a variable selection procedure for W -rule in two-group discrim-

inant analysis for high-dimensional data. Their criteria is based on an estimator of EERw(cw,m) which

is unbiased up to the term of order Op(n
−1) under A1. From the above result, we think that Hyodo

and Kubokawa [11]’s criteria with being reconsidered for Z-rule outperforms their criteria in terms of

selecting the true set of variables. In Section 6 we give an asymptotic estimator of EERw(cw,m) with

errors of O(N−2).

5 Estimation for EPMCs

In this section, we consider to estimate the expected probabilities of misclassification; ew(2|1), ew(1|2),

ez(2|1) and ez(1|2). These depend on unknown parameter ∆2. It is important to estimate ∆2. A well
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known unbiased estimator is given by

∆̂2 =
n− p− 1

n
D2 − pN

N1N2
.

Here, we denote ∆̂2 by ∆̂2. Such conventional notation is used, hereafter. Firstly, we give a stochastic

expression of D2, which is essentially stated in Lemma 3.

Lemma 4. The following equality holds in distribution:

D2 D
=

n

y1

(
∆2 +

N

N1N2
z21 − 2

√
N

N1N2
∆z1 +

N

N1N2
y2

)
,

where y1 ∼ χ2(n− p+ 1), y2 ∼ χ2(p− 1), z1 ∼ N(0, 1), and y1, y2, z1 are independent.

From Lemma 4 it can be seen that ∆̂2 has consistency under A1. Therefore, from Corollary 2, a

consistent estimator of gw(c;N1, N2,∆
2) under A1 is obtained as

Φ

c+ uw(N1, N2, ∆̂
2)√

vw(N1, N2, ∆̂2)

 .

Similarly, a consistent estimator of gz(c
∗;N1, N2,∆

2) is obtained as

Φ

c+ uz(N1, N2, ∆̂
2)√

vz(N1, N2, ∆̂2)

 . (15)

However, vz(N1, N2, ∆̂
2) does not always take non-negative values, and so it is important to modify

the estimator such that it takes always non-negative values. For the purpose, instead of using ∆̂2, we

use

∆̂2
A =

n− p+ 1

n
D2 − p− 2

n
ω−2.

Then, it can be seen that

vw(N1, N2,∆
2
A) =

n(n+ 1)

(m+ 1)(m+ 2)
D2,

vz(N1, N2,∆
2
A) =

n(n+ 1)

(m+ 1)(m+ 2)
D2,

which take non-negative values. So, we propose a consistent estimator of misclassification probability

given as in the following theorem.

Theorem 5. Assume that limp→∞ ∆2 > 0. Then, under A1,

P (W (x) < c|x ∈ Π1)− Φ

c+ uw(N1, N2, ∆̂
2
A)√

vw(N1, N2, ∆̂2
A)

 p→ 0,

P (Z(x) < c∗|x ∈ Π1)− Φ

c+ uz(N1, N2, ∆̂
2
A)√

vz(N1, N2, ∆̂2
A)

 p→ 0.
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We extend the result given in Theorem 5 to the one based on asymptotic expansions. From Theorem

1, we can see that y, u0, v0, b1, . . . , b4 are functions of ∆2. Define ŷ, û0, v̂0, b̂1, . . . , b̂4 be the ones

obtained from y, u0, v0, b1, . . . , b4 by replacing ∆2 with ∆̂2
A.

Theorem 6. Assume that x ∈ Π1, and let U , V and Z be the same ones as in Theorem 1. Then,

under A1,

P (V −1/2Z − U ≤ x) = E

[
Φ(ŷ) +

1

n

4∑
k=1

(ε̂k − b̂k)Hk−1(ŷ)ϕ(ŷ)

]
+O(n−2),

where ε̂k = εk(∆̂
2
A) with

ε1(∆
2) = − 1

√
v0

n

m+ 1
(ρ1ω

2 − ρ3ω)(d2(∆
2) + nr1),

ε2(∆
2) =

λ

2
(d2(∆

2) + nr1) +
1

2

1

v0

(
n

m+ 1

)2

(ρ1ω
2 − ρ3ω)

2d1(∆
2),

ε3(∆
2) = −λ

2

1
√
v0

n

m+ 1
(ρ1ω

2 − ρ3ω)d1(∆
2),

ε4(∆
2) =

λ2

8
d1(∆

2).

Here,

d1(∆
2) =

2n

f1

{
∆2 +

N(p− 1)

N1N2

}2

+
4Nn

N1N2
∆2 +

2n

f2

{
N(p− 1)

N1N2

}2

,

d2(∆
2) =

2n

f1

{
∆2 +

N(p− 1)

N1N2

}
+

Nn

N1N2
,

λ =
1

v0

n2(n+ 1)

(m+ 1)2(m+ 2)

Nn

N1N2
ω2,

r1 =
N(p− 1)

N1N2
− p− 2

n
ω−2.

The proof of Theorem 6 is given in Appendix B. From Theorem 6, we can obtain estimators of the

misclassification probabilities for W -rule and Z-rule, which are unbiased up to the term with the order

O(n−1) under A1. These results are summarized as the following corollaries.

Corollary 7. Let ŷw = v̂
−1/2
w (c+ ûw), where ûw = uw(N1, N2, ∆̂

2
w) and v̂w = vw(N1, N2, ∆̂

2
w) with

∆̂2
w = ∆̂2

A =
n− p+ 1

n
D2 − N(p− 2)

N1N2
.

Then,

gw(c;N1, N2,∆
2) = E

[
Φ(ŷw) +

1

n

4∑
k=1

(ε̂w,k − ℓ̂k)Hk−1(ŷw)ϕ(ŷw)

]
+O(n−2),

where ℓ̂k = ℓk(N1, N2, ∆̂
2
w) and ε̂w,k = εw,k(∆̂

2
w). Here, εw,k(∆

2) is the same as εk(∆
2) given in
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Theorem 6, i.e.,

εw,1(∆
2) =

1

2
√
vw

n

m+ 1
(d2(∆

2) + nrw,1),

εw,2(∆
2) =

λw

2
(d2(∆

2) + nrw,1) +
1

8

1

vw

(
n

m+ 1

)2

d1(∆
2),

εw,3(∆
2) =

λw

4

1
√
vw

n

m+ 1
d1(∆

2),

εw,4(∆
2) =

λ2
w

8
d1(∆

2),

with

λw =
1

vw

n2(n+ 1)

(m+ 1)2(m+ 2)
, and rw,1 =

N

N1N2
.

Corollary 8. Let ŷz = v̂
−1/2
z (c+ ûz), where ûz = uz(N1, N2, ∆̂

2
z) and v̂z = vz(N1, N2, ∆̂

2
z) with

∆̂2
z = ∆̂2

A =
n− p+ 1

n
D2 − (p− 2)ω2

1 .

Then,

gz(c
∗;N1, N2,∆

2) = E

[
Φ(ŷz) +

1

n

4∑
k=1

(ĝz,k − ζ̂k)Hk−1(ŷz)ϕ(ŷz)

]
+O(n−2),

where ζ̂k = ζk(N1, N2, ∆̂
2
z) and ε̂z,k = εz,k(∆̂

2
z). Here, εz,k(∆

2) is the same as εk(∆
2) given in Theorem

6, i.e.,

εz,1(∆
2) =

1
√
vz

n

m+ 1

√
N

N1N2
ω−1
1 ω−1

2 (d2(∆
2) + nrz,1),

εz,2(∆
2) =

λz

2
(d2(∆

2) + nr1) +
1

2

1

vz

(
n

m+ 1

)2
N

N1N2
ω−2
1 ω−2

2 d1(∆
2),

εz,3(∆
2) =

λz

2

1
√
vz

n

m+ 1

√
N

N1N2
ω−1
1 ω−1

2 d1(∆
2),

εz,4(∆
2) =

λ2
z

8
d1(∆

2),

with

λz =
1

vz

n2(n+ 1)

(m+ 1)2(m+ 2)

N

N1N2
ω−2
1 , and rz,1 =

N(p− 1)

N1N2
− (p− 2)ω2

1 .

6 Asymptotic unbiased estimator of EER

In this section, we propose asymptotically unbiased estimators of EERs for W -rule and Z-rule under

A1. Our estimators are constructed using the following result.

Lemma 5. Let

ŷc =
−(1/2)∆̂2

w√{
∆̂2

w + N(p−2)
N1N2

}
n+1
m+2

.
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Then, the following equalities hold under A1:

E

[
Φ(ŷc) +

1

n

4∑
k=1

εw,k

(
∆̂2

w

)
Hk−1 (ŷc)ϕ (ŷc)

]
= Φ(yc) +O(n2),

E
[
ℓ̄k

(
∆̂2

w

)]
= ℓ̄k

(
∆2
)
+O(n−1) (k = 1, . . . , 4).

Since Lemma 5 can be similarly proved with Theorem 6, we omit the proof. From (25) and Lemma

5, we can give an asymptotically unbiased estimator of EERw(cwm) under A1 as in the following

theorem.

Theorem 9. An estimator of EERw(cwm) whose bias is of O(n−2) under A1 is given by

ÊERw(cwm) = Φ (ŷc)−
1

n

4∑
k=1

η̂w,kHk−1 (ŷc)ϕ (ŷc) , (16)

where η̂w,k = ηw,k

(
∆̂2

w

)
and

ηw,k(∆
2) = εw,k(∆

2)− ℓ̄k(∆
2).

To construct asymptotically unbiased estimator for EERz(0), we use the following result.

Lemma 6. For ŷc defined in Lemma 6,

E

[
1

v̂w
H1 (ŷc)ϕ (ŷc)

]
=

1

vw
H1(yc)ϕ(yc) +O(n−1)

under A1.

Lemma 6 can be similarly proved with Theorem 6, and so we omit the proof. From 37, Theorem 9

and Lemma 6, we can get an asymptotically unbiased estimator of EERz(0) under A1 which is given

in the following theorem.

Theorem 10. An estimator of EERz(0) whose bias is of O(n−2) under A1 is given by

ÊERz(0) = ÊERw(cwm) +
1

4v̂w

(n− 1)(p− 2)

(m+ 1)3

(
n

N1
− n

N2

)2

H1 (ŷc)ϕ (ŷc) . (17)

We note that ÊERz(0) is the same as ÊERw(cw,m) for the case in which N1 = N2.

In Section 4, we mentioned that EERw(0) and EERz(0) are the same up to the term of order

O(n−1) under A0. McLachlan [16] gave an asymptotically unbiased estimator of EERw(0) under A0,

which is also an asymptotically unbiased estimator of EERz(0), which are stated as follows.

Theorem 11. An estimator of EERw(0) whose bias is of O(n−2) under A0 is given by

ÊERw(0) = Φ

(
−1

2
D

)
+ ϕ

(
−1

2
D

)[
1

2

(
1

N1
+

1

N2

)
p− 1

D
+

D

32n
{4(4p− 1)−D2}

]
. (18)

This is also an estimator of EERz(0) whose bias is of O(n−2).

Since an asymptotic expansion of EERw(cw,m) up to the term of O(n−1) is the same as the one

of EERw(0) under A0, the right-hand side of the equality in (18) is also an estimator of EERw(cw,m)

whose bias is of O(n−2) under A0.
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7 Numerical comparisons for asymptotic approximations

To compare the accuracies of the derived asymptotic expansion approximations for the misclassification

probabilities with the ones of Fujikoshi and Seo [9]’s limiting approximation, we calculated these values

when p = 8, 32, (N1, N2) = (30, 10), (25, 15), (20, 20), (15, 25), (10, 30), ∆ = 1.05, 1.68, 2.56, 3.29, where

the setting of ∆ is followed to Wyman et al. [24]. The setting for N and p were treated as the case

in which p : N = 1 : 5 when p = 8, and the case in which p : N = 1 : 5 when p = 32. We considered

for the case in which the cut-off point c is zero. Table 1 gives the values of eW (2|1) and eZ(2|1) when

p = 8, and Table 2 gives the values of eW (2|1) and eZ(2|1) when p = 32. In these tables, we described

the value of Fujikoshi and Seo [9]’s limiting approximation at column “FS’s Aprox”, and the value of

asymptotic expansion based on Corollary 2 for W -rule and Corollary 3 for Z-rule at column “YSF’s

AE”. To compare the accuracy, it is needed the values of misclassification probabilities calculated by

simulation. When we treat the distributions of W - rule and Z- rule, without loss of generality from

invariant property of the distribution for the orthogonal transformation of observation vector, we may

assume that two given normal populations with the same covariance matrix are

Π1 : Np(−(δ/2)e1, Ip), Π2 : Np((δ/2)e1, Ip),

where e1 = (1, 0, . . . , 0)′. To compute misclassification probability, generate 104 training samples.

For each training samples, we generate 104 test samples in which observation vectors are i.i.d. as

Np(−(δ/2)e1, Ip). The value of the conditional misclassification probability is calculated by

number of misclassification

104
(19)

in each training samples. We took the average of these 104 values of conditional misclassification

probability, and wrote it as the value of misclassification probability in column “Sim” in Tables 1 and

2.

From Tables 1 and 2, we can see that our proposed asymptotic expansion approximations have good

accuracy compared to Fujikoshi and Seo [9]’s limiting approximation when N1 ̸= N2. In addition, for

the case in which N1 = N2, our proposed asymptotic expansion has almost the same precision of

approximation with Fujikoshi and Seo [9]’s limiting approximation.

In Table 3, we give the values of EERw(0), EERw(cw,m) and EERz(0) obtained by simulation

for the case π1 = π2 obtained by simulation. Simulating setting and computation method are the

same as ones in Table 1. We can see a tendency from Table 3 that the magnitude of these error rate

has the order “EERz(0) < EERw(cw,m) < EERw(0)” for almost all simulation settings. There are

little difference between the magnitudes of EERz(0) and EERw(cw,m) when N1 = N2 (The difference

appears in less than 4th place of decimal point.).

We also checked the precision of the proposed asymptotically unbiased estimators of eW (2|1) and

eZ(2|1) by simulation. Simulating setting and procedure of calculation are the same as ones in Table 1.
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Table 1: Comparison of approximations of ew(2|1) and ez(2|1) for cut-off point 0 when p = 8

(N1, N2) ∆
ew(2|1) ez(2|1)

FS’s Aprox YSF’s AE Sim FS’s Aprox YSF’s AE Sim

(30, 10)

1.05 0.310 0.313 0.312 0.369 0.372 0.371
1.69 0.223 0.226 0.225 0.261 0.265 0.264
2.56 0.125 0.127 0.128 0.144 0.149 0.149
3.29 0.070 0.072 0.072 0.080 0.085 0.084

(25, 15)

1.05 0.337 0.338 0.338 0.362 0.363 0.363
1.69 0.239 0.240 0.240 0.255 0.256 0.256
2.56 0.133 0.134 0.133 0.141 0.142 0.142
3.29 0.074 0.075 0.075 0.078 0.080 0.080

(20, 20)

1.05 0.360 0.360 0.359 0.360 0.360 0.359
1.69 0.254 0.253 0.251 0.254 0.252 0.251
2.56 0.140 0.140 0.140 0.140 0.140 0.140
3.29 0.078 0.078 0.078 0.078 0.078 0.078

(15, 25)

1.05 0.388 0.386 0.384 0.362 0.360 0.358
1.69 0.271 0.269 0.268 0.255 0.252 0.252
2.56 0.149 0.148 0.148 0.141 0.139 0.139
3.29 0.082 0.083 0.083 0.078 0.078 0.077

(10, 30)

1.05 0.431 0.428 0.427 0.369 0.366 0.365
1.69 0.302 0.298 0.297 0.261 0.256 0.255
2.56 0.165 0.164 0.164 0.144 0.140 0.140
3.29 0.091 0.091 0.092 0.080 0.078 0.078

Table 2: Comparison of approximations of ew(2|1) and ez(2|1) for cut-off point 0 when p = 32

(N1, N2) ∆
ew(2|1) ez(2|1)

FS’s Aprox YSF’s AE Sim FS’s Aprox YSF’s AE Sim

(30, 10)

1.05 0.377 0.382 0.383 0.458 0.460 0.461
1.69 0.339 0.344 0.344 0.406 0.412 0.411
2.56 0.277 0.285 0.285 0.328 0.337 0.338
3.29 0.228 0.238 0.238 0.267 0.280 0.279

(25, 15)

1.05 0.418 0.421 0.421 0.454 0.456 0.455
1.69 0.371 0.375 0.375 0.400 0.404 0.404
2.56 0.300 0.307 0.304 0.321 0.329 0.326
3.29 0.244 0.254 0.253 0.261 0.271 0.270

(20, 20)

1.05 0.453 0.454 0.453 0.453 0.454 0.453
1.69 0.399 0.402 0.401 0.399 0.402 0.401
2.56 0.319 0.325 0.326 0.319 0.325 0.326
3.29 0.259 0.268 0.268 0.259 0.268 0.268

(15, 25)

1.05 0.490 0.490 0.490 0.454 0.455 0.455
1.69 0.430 0.432 0.432 0.400 0.402 0.403
2.56 0.343 0.349 0.348 0.321 0.326 0.326
3.29 0.277 0.286 0.284 0.261 0.168 0.266

(10, 30)

1.05 0.540 0.538 0.538 0.458 0.458 0.458
1.69 0.477 0.477 0.478 0.406 0.407 0.408
2.56 0.382 0.386 0.387 0.328 0.331 0.331
3.29 0.308 0.317 0.317 0.267 0.272 0.272
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Table 3: Comparison of EER

(N1, N2) ∆
p = 8 p = 32

EERw(0) EERw(cwm) EERz(0) EERw(0) EERw(cwm) EERz(0)

(30, 10)

1.05 0.371 0.370 0.369 0.460 0.460 0.459
1.69 0.262 0.262 0.261 0.410 0.410 0.409
2.56 0.145 0.145 0.144 0.335 0.334 0.334
3.29 0.082 0.081 0.081 0.276 0.276 0.275

(25, 15)

1.05 0.362 0.362 0.362 0.455 0.455 0.455
1.69 0.255 0.255 0.254 0.403 0.403 0.403
2.56 0.141 0.141 0.141 0.326 0.326 0.326
3.29 0.079 0.079 0.079 0.269 0.269 0.269

(20, 20)

1.05 0.359 0.359 0.359 0.454 0.454 0.454
1.69 0.252 0.252 0.252 0.401 0.401 0.401
2.56 0.140 0.140 0.140 0.326 0.326 0.326
3.29 0.078 0.078 0.078 0.268 0.268 0.268

(15, 25)

1.05 0.361 0.361 0.361 0.455 0.455 0.455
1.69 0.254 0.254 0.254 0.404 0.404 0.404
2.56 0.141 0.141 0.141 0.327 0.327 0.327
3.29 0.079 0.079 0.079 0.269 0.268 0.268

(10, 30)

1.05 0.370 0.369 0.369 0.459 0.459 0.458
1.69 0.261 0.261 0.260 0.411 0.410 0.410
2.56 0.145 0.145 0.145 0.336 0.335 0.334
3.29 0.082 0.081 0.081 0.277 0.276 0.276

As a competitor, we used the estimator obtained as Fujikoshi and Seo [9]’s limiting approximation by

replacing ∆2 with ∆̂2
p = max{∆̂2, 0}, and wrote the value in column “FS’s Est” in Table 4 for p = 8,

and in Table 5 for p = 43. The value in parenthesis in column “FS’s Est” is obtained by computing

the mean squared error

MSE =
1

104

104∑
i=1

(FS’s Est(i) − Sim)2, (20)

where “FS’s Est(i)” stands for the value calculated by i-th training sample, and “Sim” stands for

misclassification probability computed by simulation. From Tables 4 and 5 we can see that the proposed

estimators have good accuracy compared to method being used Fujikoshi and Seo [9]’s approximation.

The MSE for proposed estimator is small than for the method being used Fujikoshi and Seo [9]’s

approximation for the case in which ∆ = 2.56, 3.29.

We tried to compare the precision of asymptotically unbiased estimator of expected error rate by

simulation for p = 1, 2, 5, 8, 16, 32, N1 = N2 = 20. The setting of ∆ is the same as Table 5. We

computed values of 2-types of conditional misclassification probabilities by (19), and take average of

these 2 values. This calculation is repeated 103 times. We wrote the average of these 103 values in

column “Sim” in Table 6. The column “A0” in Table 6 gives the averages of 103 replicated values of

(18), and the column “A1” gives the averages of 103 replicated values of (16). We computed the mean

squared error by using similar calculation to (20), and wrote it in parenthesis in each case. Table 6

shows that the precision of approximation (18) becomes worsen as the dimensionality gets large. We

can check that the precision of approximation (16) is good in each case of p.
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Table 4: Estimated values of ew(2|1) and ez(2|1) for cut-off point 0 when p = 8

(N1, N2) ∆
ew(2|1) ez(2|1)

FS’s Est YSF’s Est
sim

FS’s Est YSF’s Est
sim

(MSE) (MSE) (MSE) (MSE)

(30, 10)

1.05 0.330(0.004) 0.312(0.005) 0.312 0.396(0.007) 0.370(0.008) 0.371
1.68 0.248(0.005) 0.225(0.004) 0.225 0.292(0.007) 0.264(0.006) 0.264
2.56 0.147(0.003) 0.127(0.002) 0.128 0.170(0.004) 0.149(0.003) 0.149
3.29 0.089(0.002) 0.072(0.001) 0.072 0.102(0.002) 0.085(0.002) 0.084

(25, 15)

1.05 0.361(0.005) 0.337(0.005) 0.338 0.389(0.006) 0.362(0.006) 0.363
1.68 0.263(0.005) 0.239(0.004) 0.240 0.281(0.006) 0.255(0.005) 0.256
2.56 0.154(0.003) 0.133(0.002) 0.133 0.164(0.003) 0.142(0.003) 0.142
3.29 0.093(0.002) 0.075(0.001) 0.075 0.098(0.002) 0.080(0.001) 0.080

(20, 20)

1.05 0.387(0.006) 0.359(0.006) 0.359 0.387(0.006) 0.359(0.006) 0.359
1.68 0.279(0.005) 0.252(0.004) 0.251 0.279(0.005) 0.252(0.004) 0.251
2.56 0.161(0.003) 0.138(0.002) 0.140 0.161(0.003) 0.138(0.002) 0.140
3.29 0.097(0.002) 0.078(0.001) 0.078 0.097(0.002) 0.079(0.001) 0.078

(15, 25)

1.05 0.419(0.008) 0.386(0.008) 0.384 0.390(0.007) 0.360(0.007) 0.358
1.68 0.302(0.007) 0.269(0.005) 0.268 0.283(0.006) 0.252(0.005) 0.252
2.56 0.174(0.004) 0.148(0.003) 0.148 0.164(0.004) 0.139(0.003) 0.139
3.29 0.103(0.002) 0.083(0.002) 0.083 0.098(0.002) 0.078(0.002) 0.077

(10, 30)

1.05 0.465(0.011) 0.426(0.012) 0.427 0.397(0.007) 0.364(0.008) 0.365
1.68 0.340(0.011) 0.298(0.008) 0.297 0.293(0.008) 0.256(0.006) 0.255
2.56 0.195(0.006) 0.163(0.004) 0.164 0.170(0.005) 0.140(0.003) 0.140
3.29 0.116(0.003) 0.092(0.002) 0.092 0.102(0.003) 0.078(0.002) 0.078

Table 5: Estimated values of ew(2|1) and ez(2|1) for cut-off point 0 when p = 32

(N1, N2) ∆
ew(2|1) ez(2|1)

FS’s Est YSF’s Est
sim

FS’s Est YSF’s Est
sim

(MSE) (MSE) (MSE) (MSE)

(30, 10)

1.05 0.397(0.001) 0.381(0.007) 0.383 0.485(0.002) 0.460(0.012) 0.461
1.68 0.386(0.004) 0.343(0.007) 0.344 0.470(0.007) 0.410(0.012) 0.411
2.56 0.360(0.010) 0.286(0.007) 0.285 0.436(0.016) 0.339(0.011) 0.338
3.29 0.324(0.013) 0.235(0.007) 0.238 0.389(0.021) 0.277(0.010) 0.279

(25, 15)

1.05 0.445(0.002) 0.421(0.008) 0.421 0.484(0.003) 0.455(0.010) 0.455
1.68 0.431(0.006) 0.375(0.008) 0.375 0.468(0.008) 0.404(0.010) 0.404
2.56 0.391(0.013) 0.305(0.008) 0.304 0.424(0.017) 0.327(0.010) 0.326
3.29 0.350(0.016) 0.253(0.008) 0.253 0.377(0.020) 0.270(0.009) 0.270

(20, 20)

1.05 0.485(0.003) 0.455(0.009) 0.453 0.485(0.003) 0.455(0.009) 0.453
1.68 0.468(0.008) 0.402(0.009) 0.401 0.468(0.008) 0.402(0.009) 0.401
2.56 0.423(0.016) 0.325(0.009) 0.326 0.423(0.016) 0.325(0.009) 0.326
3.29 0.373(0.020) 0.267(0.009) 0.268 0.373(0.020) 0.267(0.009) 0.268

(15, 25)

1.05 0.524(0.003) 0.490(0.012) 0.490 0.484(0.003) 0.455(0.010) 0.455
1.68 0.505(0.009) 0.430(0.012) 0.432 0.468(0.008) 0.400(0.010) 0.403
2.56 0.459(0.020) 0.349(0.011) 0.348 0.426(0.017) 0.326(0.009) 0.326
3.29 0.406(0.025) 0.286(0.010) 0.284 0.378(0.021) 0.268(0.009) 0.266

(10, 30)

1.05 0.573(0.004) 0.538(0.018) 0.538 0.485(0.003) 0.457(0.013) 0.458
1.68 0.557(0.011) 0.479(0.017) 0.478 0.472(0.007) 0.408(0.012) 0.408
2.56 0.512(0.026) 0.387(0.016) 0.387 0.435(0.018) 0.331(0.011) 0.331
3.29 0.457(0.033) 0.314(0.014) 0.317 0.389(0.023) 0.270(0.010) 0.272
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Table 6: Comparison of asymptotic unbiased estimate of EER for W -rule when N1 = N2 = 20

∆
p = 1 p = 2

A0 A1 Sim A0 A1 Sim
1.05 0.301(0.004) 0.305(0.007) 0.302 0.313(0.004) 0.312(0.004) 0.314
1.68 0.203(0.003) 0.203(0.003) 0.203 0.214(0.003) 0.214(0.003) 0.210
2.56 0.103(0.001) 0.103(0.001) 0.103 0.105(0.002) 0.105(0.002) 0.108
3.29 0.053(0.001) 0.053(0.001) 0.052 0.055(0.001) 0.055(0.001) 0.055

∆
p = 5 p = 8

A0 A1 Sim A0 A1 Sim
1.05 0.340(0.006) 0.339(0.006) 0.340 0.357(0.006) 0.358(0.006) 0.359
1.68 0.232(0.004) 0.233(0.004) 0.233 0.253(0.004) 0.254(0.004) 0.253
2.56 0.119(0.002) 0.120(0.002) 0.123 0.135(0.002) 0.138(0.002) 0.140
3.29 0.065(0.001) 0.066(0.001) 0.066 0.077(0.001) 0.079(0.001) 0.078

∆
p = 16 p = 32

A0 A1 Sim A0 A1 Sim
1.05 0.397(0.008) 0.400(0.007) 0.400 0.401(0.020) 0.457(0.009) 0.454
1.68 0.301(0.006) 0.306(0.006) 0.303 0.325(0.025) 0.403(0.009) 0.403
2.56 0.178(0.004) 0.187(0.004) 0.188 0.205(0.032) 0.321(0.009) 0.327
3.29 0.111(0.003) 0.122(0.002) 0.119 0.133(0.029) 0.269(0.008) 0.264

8 Criteria for selection of variables

We consider the problem for selection of variables in two-group discriminant analysis. McLachlan [16]

and [17] proposed a criterion which is based on asymptotic unbiased estimator of the expected error

rate under A0. In this section, we will derive such a criterion under A1.

The problem of selection of variables is to identify a sub-vector x(j) = (xj1 , . . . , xjk)
′ of x which

is corresponded to a subset of subscripts {1, 2, . . . , p}, where k = k(j) is the cardinal number of j,

i.e. k(j) = #j. Let J be the family of all possible subsets of {1, . . . , p}. Then the problem may be

regarded as how to select the best subset of j from J . If we only use x(j) in discriminant analysis,

the corresponding W and Z discriminant functions become

W (x(j)) = (x̄1(j)− x̄2(j))
′S(j)−1

{
x(j)− 1

2
(x̄1(j) + x̄2(j))

}
,

Z(x(j)) =
1

2

{
(1 +N−1

2 )−1(x(j)− x̄2(j))
′S(j)−1(x(j)− x̄2(j))

−(1 +N−1
1 )−1(x(j)− x̄1(j))

′S(j)−1(x(j)− x̄1(j))
}
,

where x̄g(j) and S(j) denote x̄g and S corresponding to x(j), respectively. The expected error rate

for W -rule on the model j is expressed as

EERw(cw; j) = π1P (W (x(j)) < cw|x ∈ Π1) + π2P (W (x(j)) > cw|x ∈ Π2),

and the one for Z-rule is expressed as

EERz(cz; j) = π1P (Z(x(j)) < cz|x ∈ Π1) + π2P (Z(x(j)) > cz|x ∈ Π2).
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8.1 Criterion for selection of variables

For ease of explanation, we consider the case that π1 = π2. Set the cut-off point for W -rule corre-

sponding to x(j) as

cw,m(j) =
1

2

N

N − k(j)

(
k(j)

N2
− k(j)

N1

)
.

From the statement in Section 4, the limiting value for EERw(cw,m(j); j) takes the minimum value

under the high-dimensional asymptotic framework A1(j);

A1(j) : k(j) → ∞, N1 → ∞, N2 → ∞, k(j)/n → γ(j) ∈ [0, 1),

and N1/N2 → γ ∈ (0,∞).

We see that limA1(j) EERz(0; j) takes the minimum value, and see that

lim
A1(j)

EERz(0; j) = lim
A1(j)

EERw(cw,m(j); j). (21)

To obtain the criterion for variable selection, firstly, we derive asymptotically unbiased estimators of

EERw(cw,m(j); j) and EERz(0; j).

Since the framework A1(j) is an imitation which is obtained from A1 by replacing p in A1 with

k(j), it follows from the expansion (25) that

EERw(cw,m(j); j) = Φ(yc(j))−
1

n

4∑
i=1

ℓ̄i(j)Hi−1(yc(j))ϕ(yc(j)) +O(n−2), (22)

where

yc(j) =
−(1/2)∆(j)2√{

∆(j)2 + N(k(j)−2)
N1N2

}
n+1

m(j)+2

,

m(j) = n−k(j), ∆(j) and ℓ̄i(j) are denoted ∆ and ℓ̄i which is given in (26), respectively, corresponding

to x(j). By using the same reason, we find from Theorem 4 (2) that

EERz(0; j) = EERw(cw,m)

+
1

4vw(j)

(n− 1)(k(j)− 2)

(m(j) + 1)3

(
n

N1
− n

N2

)2

H1 (yc(j))ϕ (yc(j)) +O(n−2),

where vw(j) is the vw corresponding to x(j). The following theorem gives asymptotic unbiased esti-

mates of EERw(cw,m) and EERz(0; j).

Theorem 12. Let

ŷc(j) =
−(1/2)∆̂w(j)

2√{
∆̂w(j)2 +

N(k(j)−2)
N1N2

}
n+1

m(j)+2

,

where ∆̂w(j)
2 is the ∆̂2

w given in Corollary 7 corresponding to the model j. Let

Gw,h(j) = ŷc(j) +
1

n

4∑
i=1

η̂w,i(j)Hi−1 (ŷc(j)) ,

24



where η̂w,i(j) = ηw,i(∆̂w(j)
2; j), and

ηw,i(∆(j)2; j) = εw,i

(
∆(j)2

)
− ℓ̄i(j).

Then under the high-dimensional asymptotic framework A1(j),

EERw(cw,m(j); j) = E[Φ(Gw,h(j))] +O(n−2).

Let

Gz,h(j) = Gw,h(j) +
1

4v̂w(j)

(n− 1)(k(j)− 2)

(m(j) + 1)3

(
n

N1
− n

N2

)2

H1 (ŷc(j))ϕ (ŷc(j)) ,

where

v̂w(j) =
n2(n+ 1)

(m(j) + 1)2(m(j) + 2)

{
∆̂w(j)

2 +
N(k(j)− 2)

N1N2

}
.

Then under the high-dimensional asymptotic framework A1(j),

EERz(0; j) = E[Φ(Gz,h(j))] +O(n−2).

We propose the selection method for W -rule with the cut-off point cwm(j) base on

Mw,h(j) = Φ (Gw,h(j)) ,

and propose for Z-rule with the cut-off point 0 based on

Mz,h(j) = Φ (Gz,h(j)) .

The selected model ĵM,w,h is obtained by satisfying that Mw,h(ĵM,w,h) = minj∈J Mw,h(j), and ĵM,z,h

is obtained by satisfying that Mz,h(ĵM,z,h) = minj∈J Mz,h(j). Since Φ(·) is a monotone increasing

function, ĵM,w,h and ĵM,z,h minimize Gw,h(j) and Gz,h(j), respectively.

8.2 Relationship between expected error rate and no additional informa-
tion model

Firstly, we consider no additional information model Ω(j) which leads x(j) to be the best subsets of

variables. Define Ω(j) as

Ω(j) : ak ̸= 0, for any k ∈ j, and ak = 0, for any k ∈ jc ∩ {1, 2, . . . , p}, (23)

where a = (a1, . . . , ap)
′ = Σ−1(µ1 − µ2).

Let j0 be a fixed subset in J . We may assume without loss of generality that j0 = {1, . . . , k0}. We

call Ω(j0) true model if {µ1,µ2,Σ} satisfies the condition in (23). Let

J1 = {j ∈ J : j ⊇ j0} and J2 = J c
1 ∩ J .

It is known (see, e.g., Fujikoshi [4]) that Ω(j0) is true if and only if

∆(j) = ∆ for any j ∈ J1 and ∆(j) < ∆ for any j ∈ J2. (24)
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Theorem 13. Assume that Ω(j0) is true and k0 is fixed. Then, it holds that

(i) limA1 {EERw(cwm(j); j)− EERw(cwm(j0); j0)} ≥ 0 for j ∈ J1 \ {j0},

(ii) limA1 {EERw(cwm(j); j)− EERw(cwm(j0); j0)} > 0 for j ∈ J2.

In addition, it holds that

(iii) limA1 {EERz(0; j)− EERz(0; j0)} ≥ 0 for j ∈ J1 \ {j0},

(iv) limA1 {EERz(0; j)− EERz(0; j0)} > 0 for j ∈ J2.

Proof. From (21), it is sufficient to prove (i) and (ii) only. It follows from (13) that

lim
A1(j)

EERw(cw,m(j); j) = Φ

(
−(1/2)∆0(j)

2√
{∆0(j)2 + (2 + γ + γ−1)γ(j)} 1− γ(j)

)
,

where ∆0(j) is a positive value which is defined as ∆0(j) = limk(j)→∞ ∆(j). From the assumption, we

have

lim
A1

EERw(cw,m(j0); j0) = lim
A0

EERw(cw,m(j0); j0) = Φ

(
−1

2
∆(j0)

)
.

Since 0 ≤ γ(j) < 1, it holds that

−(1/2)∆0(j)
2√

{∆0(j)2 + (2 + γ + γ−1)γ(j)} 1
1−γ(j)

≥ −(1/2)∆0(j)
2√

∆0(j)2
,

where the equality hold for the case in which γ(j) = 0. The condition (24) implies that

−(1/2)∆0(j)
2√

∆0(j)2
= −1

2
∆(j0) (j ∈ J1),

−(1/2)∆0(j)
2√

∆0(j)2
> −1

2
∆(j0) (j ∈ J2),

which prove (i) and (ii) for the case in which k(j) → ∞ as p → ∞. Assume that k(j) is fixed. Then,

lim
A1

EERw(cw,m(j); j) = lim
A0

EERw(cw,m(j); j) = Φ

(
−1

2
∆(j)

)
,

which leads to (i) and (ii).

From Theorem 13 , we can regard Ω(j) as a minimal realization of the parametric model such

that EERw(cw,m(j); j) and EERz(0; j) are minimum in the sense of (i)-(iv). Note that the minimiza-

tion for Ω(j) leads the model j in which selected variables are overspecified for the minimization of

EERw(cw,m(j); j) and EERz(0; j) in the sense of (i) and (iii).

26



8.3 Simulation

From Theorem 13, EERw(cwm(j0); j0) and EERz(0; j0) become minimum for any j ∈ J in the lim-

iting sense when the model Ω(j0) is true. So in this simulation, we set the parameters {µ1,µ2,Σ}

which satisfies (23). The covariance matrix Σ is assumed to be Ip. We set µ2 = −µ1 and µ1 =

−(α/2)(1, . . . , 1, 0, . . . , 0)′, where each of the first k elements of µ1 is −α/2 and the remaining is 0.

Simulation experiments were carried out for the case in which N1 = N2 = 80, k = p/10, p/5, p/2,

p = 30, 50, α = 1, 2, 4. When #j is small, the precision of the approximation of Mw,h(j) is not good.

So we use a switching procedure that the model is selected by M(j) for #j < 5 and is selected by

Mw,h(j) for # ≥ 5, where M(j) is the base of selection criterion given in Fujikoshi [5]. Since all candi-

date models are too much for large p (e.g., the number of candidate models is 1023 when p = 10), we

use the forward step wise selection method. The details of the selection method is given in Algorithm

1.

Algorithm 1 The algorithm for forward step wise selection method

1: jcan ⇐ {}
2: jtemp ⇐ arg min

#j=1
M(j)

3: t ⇐ min#j=1 M(j)
4: ℓ ⇐ 2
5: while ℓ < 5 do
6: if t > arg min

#j=ℓ
M(j) then

7: jtemp ⇐ jtemp ∪ arg min
#j=1

M(j)

8: t ⇐ min#j=1 M(j)
9: ℓ ⇐ ℓ+ 1

10: else
11: jcan ⇐ jtemp

12: end if
13: end while
14: while jcan = {} ∧ 5 ≤ ℓ ≤ p do
15: if t > arg min

#j=ℓ
Mw,h(j) then

16: jtemp ⇐ jtemp ∪ arg min
#j=1

Mw,h(j)

17: t ⇐ min#j=1 Mw,h(j)
18: ℓ ⇐ ℓ+ 1
19: else
20: jcan ⇐ jtemp

21: end if
22: end while
23: return jcan ∪ jtemp

Table 7 gives the frequencies of selected variables for 100 trials, where j0,k+ℓ = {j ∈ J1 : #j = k+ℓ}.

We can see from the table that there are few models to be selected in J2 when (p, k) = (30, 3),

(p, k) = (30, 6) and (p, k) = (50, 5). On the other hand, the proposed method rarely selects the model

in J2 when (p, k) = (50, 25). It is considered that these results are guaranteed by assertions (i) and (ii)

in Theorem 13. However, it seems that the proposed method rarely selects true model. It is expected
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to construct a variable selection criterion which is consistent.

Table 7: Frequencies of proposed variable selection for 100 trials

p k α j0 j0,k+1 j0,k+2

∪p−k
ℓ=3 j0,k+ℓ J2

30

3
1 1 5 12 82 0
2 0 9 13 78 0
4 0 6 10 84 0

6
1 0 4 9 83 4
2 3 7 15 75 0
4 3 8 11 78 0

15
1 4 6 11 9 70
2 6 9 13 12 60
4 6 7 12 15 60

50

5
1 0 0 0 96 2
2 0 0 0 100 0
4 0 1 0 99 0

10
1 0 0 1 65 34
2 0 1 2 89 8
4 0 0 4 93 2

25
1 0 0 0 0 100
2 0 0 1 1 98
4 0 0 0 0 100

9 Concluding remarks

In this paper, asymptotic expansions of expected probabilities of misclassification for W - and Z- rules

were derived up to the term of O(n−1) under the high-dimensional asymptotic framework A1. It may

be noted that the orders of their errors are O(n−2). We compared expected error rates for these

2-rules asymptotically for the case in which prior probabilities are equal. It is known that under the

large-sample asymptotic framework A0 expected error rates for these 2-rules are equal asymptotically.

However, from our high-dimensional asymptotic results we have shown that the expected error rate

for Z-rule is lower than or equal to the one for W -rule.

We proposed an asymptotic unbiased estimators of the expected probability of misclassification

for W - and Z- rules under the high-dimensional asymptotic framework A1. In addition, asymptotic

unbiased estimators of the expected error rate for these 2-rules were derived. Based on these unbiased

estimators, we proposed variable selection criteria. Our asymptotic approximations were numerically

examined.

A Proof of Theorem 4 (2)

In this section, we give a proof of Theorem 4 (2).

Proof of Theorem 4 (2). From Corollary 2,

gw(cwm;N1, N2,∆
2) = Φ(ywm)− 1

n

4∑
k=1

ℓkHk−1(ywm)ϕ(ywm) +O(n−2)
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under A1, where ywm = yc + (1/n)R4 with

yc =
−(1/2)∆2√{

∆2 + N(p−2)
N1N2

}
n+1
m+2

,

R4 = R4(N1, N2) =

(
n
N2

− n
N1

){
1 + p

n − p
2(m+2) −

p
n(m+2)

}
√{

∆2 + N(p−2)
N1N2

}
n+1
m+2

.

Then, we have

gw(cwm;N1, N2,∆
2) = Φ(yc) +

1

n

{
R4(N1, N2)−

4∑
k=1

ℓk(N1, N2)Hk−1(yc)

}
ϕ(yc) +O(n−2).

It follows from the duality that

gw(−cwm;N2, N1,∆
2) = Φ(yc) +

1

n

{
R4(N2, N1)−

4∑
k=1

ℓk(N2, N1)Hk−1(yc)

}
ϕ(yc) +O(n−2).

From these expansions, we obtain

EERw(cwm) = Φ(yc)−
1

n

4∑
k=1

ℓ̄kHk−1(yc)ϕ(yc) +O(n−2), (25)

where

ℓ̄k =
1

2
{ℓk(N1, N2) + ℓk(N2, N1)}

for k = 1, 2, 3, 4. Here,

ℓ̄1 = − 2n

m+ 1
yc,

ℓ̄2 =
3n

m+ 1
+

n(p− 1)

(n+ 1)(m+ 2)
+

Nn
N1N2

∆2 + N(p−2)
N1N2

+
n

2N
+

1

2vw

[
2n

m+ 1

{
y2cvw

+
1

4

(
n

m+ 1

)2(
p− 2

N1
− p− 2

N2

)2
}

+
n(p− 2)

2(m+ 1)2

(
n

N1
− n

N2

)2

+
n2(n+ 1)

2(m+ 1)2(m+ 2)

(
N1n

NN2
+

N2n

NN1

)
∆2

]
,

ℓ̄3 = −yc

(
2n

m+ 1
+

Nn

N1N2

1

∆2 + N(p−2)
N1N2

)
,

ℓ̄4 = ℓ4(N1, N2). (26)

On the other hand, it follows from Corollary 3 that

gz(0;N1, N2,∆
2) = Φ(yzm)− 1

n

4∑
k=1

ζkHk−1(yc)ϕ(yc) +O(n−2) (27)

where

yzm = yzm(N1, N2) =
−{ω2(N1, N2)}−1∆2√

[∆2 + (p− 2){ω1(N1, N2)}2] n+1
m+2

.
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Write

a(N1, N2) =
1 +N−1

2

1 +N−1
1

= 1 + (N−1
2 −N−1

1 )(1 +N−1
1 )−1 = 1 + x1.

From Maclaurin expansion for (1 + x1)
1/2, we have

a1/2 = 1 +
1

2
(N−1

2 −N−1
1 )(1 +N−1

1 )−1 − 1

8
(N−1

2 −N−1
1 )2(1 +N−1

1 )−2 +O(n−3). (28)

It also holds that
1

1 +N−1
1

= 1−N−1
1 +

N−2
1

1 +N−1
1

. (29)

Substituting (29) into (28), we obtain

a1/2 = 1 +
1

2
(N−1

2 −N−1
1 )(1−N−1

1 )− 1

8
(N−1

2 −N−1
1 )2 +O(n−3),

and so,

n{ω1(N1, N2)}2 =
Nn

N1N2
+

1

4n

(
Nn

N1N2

)2

− 1

n

(
n

N1

)2

+O(n−2), (30)

{ω2(N1, N2)}2 = 4

(
1 +

3

4

N

N1N2
− 1

N1

)
+O(n−2) = 4(1 + x2) +O(n−2). (31)

From Maclaurin expansion for (1− x2)
−1/2, we have

{ω2(N1, N2)}−1 =
1

2

(
1− 3

8

N

N1N2
+

1

2N1

)
+O(n−2). (32)

Substituting (30) and (32) into yzm(N1, N2), and expanding it asymptotically under A1, we have

yzm(N1, N2) = yc +
1

n

(
A(N1, N2) +

1

2vw
B(N1, N2)

)
H1(yc) +O(n−2), (33)

where

A(N1, N2) = −1

2

(
3

4

Nn

N1N2
− n

N1

)
,

B(N1, N2) = − n(n+ 1)(p− 2)

(m+ 1)2(m+ 2)

{
1

4

(
Nn

N1N2

)2

−
(

n

N1

)2
}
.

Substituting (33) into (27), and expanding it asymptotically under A1, we obtain

gz(0;N1, N2,∆
2) = Φ(yc) +

1

n

[{
A(N1, N2) +

1

2vw
B(N1, N2)

}
H1(yc)

−
4∑

k=1

ζk(N1, N2)Hk−1(yc)

}
ϕ(yc) +O(n−2). (34)

It follows from the duality that

gz(0;N2, N1,∆
2) = Φ(yc) +

1

n

[{
A(N2, N1) +

1

2vw
B(N2, N1)

}
H1(yc)

−
4∑

k=1

ζk(N2, N1)Hk−1(yc)

}
ϕ(yc) +O(n−2). (35)
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From (34) and (35), we can obtain an asymptotic expansion of EERz(0), which is as follows.

EERz(0) = Φ(yc) +
1

n

{(
Ā+

1

2vw
B̄

)
H1(yc)−

4∑
k=1

ζ̄kHk−1(yc)

}
ϕ(yc) +O(n−2), (36)

where

Ā =
1

2
{A(N1, N2) +A(N2, N1)} = −1

8

Nn

N1N2
,

B̄ =
1

2
{B(N1, N2) +B(N2, N1)} =

n(n+ 1)(p− 2)

4(m+ 1)2(m+ 2)

(
n

N1
− n

N2

)2

,

ζ̄k =
1

2
{ζk(N1, N2) + ζk(N2, N1)}

for k = 1, 2, 3, 4. Substituting (30) and (32) into ζ̄k, and expanding it asymptotically, we have

ζ̄1 = ℓ̄1 +O(n−1),

ζ̄2 =
3n

m+ 1
+

n(p− 1)

(n+ 1)(m+ 2)
+

Nn
N1N2

∆2 + N(p−2)
N1N2

+
1

2vw

{
2n

m+ 1
y2cvw +

n2(n+ 1)

4(m+ 1)2(m+ 2)

Nn

N1N2
∆2

}
+O(n−1),

ζ̄3 = ℓ̄3 +O(n−1),

ζ̄4 = ℓ̄4 +O(n−1).

From (25) and (36),

EERw(cwm)− EERz(0) = − 1

n

(
ℓ̄2 − ζ̄2 + Ā+

1

2vw
B̄

)
H1(yc)ϕ(yc) +O(n−2).

It can be computed that

ℓ̄2 − ζ̄2 =
n

2N
+

1

2vw

(
n

N1
− n

N2

)2{
n(n− 1)(p− 2)

2(m+ 1)3

+
n2(n+ 1)

4(m+ 1)2(m+ 2)

N1N2

Nn
∆2

}
+O(n−1).

Since it can be expressed that

−1

8

Nn

N1N2
+

n

2N
= −N1N2

8Nn

(
n

N1
− n

N2

)2

,

we find that

ℓ̄2 − ζ̄2 + Ā+
1

2vw
B̄ =

1

4vw

n(n− 1)(p− 2)

(m+ 1)3

(
n

N1
− n

N2

)2

+O(n−1).

This gives

EERw(cwm)− EERz(0) = − 1

4vw

(n− 1)(p− 2)

(m+ 1)3

(
n

N1
− n

N2

)2

H1(yc)ϕ(yc) +O(n−2). (37)
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B Proof of Theorem 6

In this section, we give a proof of Theorem 6.

Proof of Theorem 6. For dealing with the expectation of ∆̂2
A, it is no loss of generality from Lemma 4

that ∆̂2
A may be

∆̂2
A =

f1
y1

(
∆2 +

N

N1N2
z21 − 2

√
N

N1N2
∆z1 +

N

N1N2
y2

)
− p− 2

n
ω−2, (38)

where y1, y2 and z1 are defined in Lemma 4, f1 = m + 1 and f2 = p − 1. Let wi =
√

fi/2(yi/fi − 1)

for i = 1, 2. It can be expressed that

f1
y1

= 1 +

4∑
k=1

(
−
√

2

f1
w1

)k

+

(
−
√

2

f1
w1

)5
1

1 +
√

2/f1w1

.

Replacing f1/y1 in (38) with this expression, and expanding the resultant expression, we have

∆̂2
A = ∆2 + r1 +

1

n1/2
D1 +

1

n
D2 +R2, (39)

where

r1 =
N(p− 1)

N1N2
− p− 2

n
ω−2,

D1 = D1(w1, w2, z1)

= −
√

2n

f1

{
∆2 +

N(p− 1)

N1N2

}
w1 − 2

√
Nn

N1N2
∆z1 +

N(p− 1)

N1N2

√
2n

f2
w2,

D2 = D2(w1, w2, z1)

=
2n

f1

{
∆2 +

N(p− 1)

N1N2

}
w2

1 +

√
2n

f1
w1

{
2

√
Nn

N1N2
∆z1 −

√
2n

f2

N(p− 1)

N1N2
w2

}
+

Nn

N1N2
z21 ,

R2 is a remainder term consisting of n−3/2 times a homogeneous polynomial of degree 3 in w1, w2 and

z1 of which the coefficients are O(1) under A1, plus n−2 times a homogeneous polynomial of degree 4,

plus a remainder term that is O(n−5/2) under A1 for fixed w1, w2 and z1. From the assumption that

ω−2 = Nn/(N1N2) +O(n−1), we find that

r1 =
N

N1N2
+O(pn−2),

which yields that r1 = O(n−1) under A1. It follows from (39) that

û0 = u0 +
n

m+ 1
(ρ1ω

2 − ρ3ω)
(
r1 + n−1/2D1 + n−1D2 +R2

)
, (40)

v̂0 = v0 +
n2(n+ 1)

(m+ 1)2(m+ 2)

Nn

N1N2
ω2
(
r1 + n−1/2D1 + n−1D2 +R2

)
Taylor series expansion of v̂

−1/2
0 at v̂0 = v0 up to the term with the order O((v̂0 − v0)

5) gives that

v̂
−1/2
0 = v

−1/2
0

{
1− λ

2
r1 −

λ

2n1/2
D1 +

1

n

(
−λ

2
D2 +

3

8
λ2D2

1

)
+R3

}
, (41)
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where

λ =
1

v0

n2(n+ 1)

(m+ 1)2(m+ 2)

Nn

N1N2
ω2,

R3 is a remainder term consisting of n−3/2 times a homogeneous polynomial of degree 3 in w1, w2 and

z1 of which the coefficients are O(1) under A1, plus n−3/2 times a homogeneous polynomial of degree

1, plus n−2 times a homogeneous polynomial of degree 4, plus n−2 times a homogeneous polynomial

of degree 2, plus terms which is O(n−2) under A1, plus a remainder term that is O(n−5/2) under A1

for fixed w1, w2 and z1. From the expansions (40) and (41), we obtain

ŷ = v̂
−1/2
0 (x+ û0)

= y + q1r1 +
1

n1/2
q1D1 +

1

n
Q2 +R4,

where

q1 =
1

√
v0

{
n

m+ 1
(ρ1ω

2 − ρ3ω)−
λ

2
(x+ u0)

}
,

Q2 =
1

√
v0

{
n

m+ 1
(ρ1ω

2 − ρ3ω)

(
D2 −

λD2
1

2

)
−
(
λD2

2
− 3

8
λ2D2

1

)
(x+ u0)

}
,

and R4 is a remainder term which have the same property as R3. Taylor series expansion of Φ(ŷ) at

ŷ = y up to the term with order O((ŷ − y)5) gives

Φ(ŷ) = Φ(y) +
1

n1/2
q1D1ϕ(y) +

1

n

(
Q2 −

q21
2
D2

1y + nq1r1

)
ϕ(y) +R5,

where R5 is a remainder term which have the same property as R3. Then we have

E [Φ(ŷ)] = Φ(y)− 1

n

(y
2
q21E[D2

1]− q2 − nq1r1

)
ϕ(y) + E[R5], (42)

in which we use the fact that E[D1] = 0, and we denote q2 = E[Q2]. From the same derivation in

Anderson [2], it can be shown that E[R5] = O(n−2) under A1. Substituting y3 = H3(y) + 3H1(y),

y2 = H2(y) +H0(y), y = H1(y) and 1 = H0(y) for (yq
2
1/2)E[D2

1]− q2 − nq1r1, we have

y

2
q21E[D2

1]− q2 − nq1r1 =

4∑
k=1

εk(∆
2)Hk−1(y),

where

ε1(∆
2) = − 1

√
v0

n

m+ 1
(ρ1ω

2 − ρ3ω)(d2(∆
2) + nr1),

ε2(∆
2) =

λ

2
(d2(∆

2) + nr1) +
1

2

1

v0

(
n

m+ 1

)2

(ρ1ω
2 − ρ3ω)

2d1(∆
2),

ε3(∆
2) = −λ

2

1
√
v0

n

m+ 1
(ρ1ω

2 − ρ3ω)d1(∆
2),

ε4(∆
2) =

λ2

8
d1(∆

2).
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Here, d1(∆
2) = E[D2

1] and d2(∆
2) = E[D2]. The expectations of D

2
1 and D2 are given in the following

closed forms.

E[D2
1] =

2n

f1

{
∆2 +

N(p− 1)

N1N2

}2

+
4Nn

N1N2
∆2 +

2n

f2

{
N(p− 1)

N1N2

}2

,

E[D2] =
2n

f1

{
∆2 +

N(p− 1)

N1N2

}
+

Nn

N1N2
.

Let

ε̃k

(
∆̂2

A

)
= εk

(
∆̂2

A

)
Hk−1(ŷ)ϕ(ŷ).

Then the function g̃k

(
∆̂2

A

)
is smooth (for fixed x) on (−(p− 2)ω−2/n,∞). Taylor series expansion of

ε̃k

(
∆̂2

A

)
at ∆̂2

A = ∆2 up to the term with the order O((∆̂2
A −∆2)3) gives

ε̃k

(
∆̂2

A

)
= ε̃k(∆

2) +R6,

where R6 is a remainder term consisting of n−1/2 times a homogeneous polynomial of degree 1 in w1,

w2 and z1 of which the coefficients are O(1) (for fixed x) under A1, plus n−1 times a homogeneous

polynomial of degree 2, plus terms which is O(n−1), plus a remainder term that is O(n−3/2) under A1

for fixed w1, w2 and z1 and x. From the derivation in Anderson [2] again, we find that E[R6] = O(n−1)

under A1, and so

E
[
εk

(
∆̂2

A

)
Hk−1(ŷ)ϕ(ŷ)

]
= εk

(
∆̂2
)
Hk−1(y)ϕ(y) +O(n−1). (43)

Using the same derivation on the above, it can be shown that

E
[
b̂kHk−1(ŷ)ϕ(ŷ)

]
= bkHk−1(y)ϕ(y) +O(n−1). (44)

Hence, under A1,

E

[
Φ(ŷ) +

1

n

4∑
k=1

(ε̂k − b̂k)Hk−1(ŷ)ϕ(ŷ)

]
= Φ(y)− 1

n

4∑
k=1

bkHk−1(y)ϕ(y) +O(n−2),

where ε̂k = εk

(
∆̂2

A

)
.
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