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Abstract

In this paper, first we consider high-dimensional consistency prop-

erties of information criteria ICg,d and their efficient criteria ECg,d for

selection of variables in multivariate regression model with covariance

structures. The covariance structures considered are (1) independent

covariance structure, (2) uniform covariance structure and (3) au-

toregressive covariance structure. Sufficient conditions for ICg,d and

ECg,d to be consistent are derived under a high-dimensional asymp-

totic framework such that the sample size n and the number p of

response variables are large as in the way p/n → c ∈ (0,∞). Our re-

sults are checked numerically by conducting a Mote Carlo simulation.

Next we discuss with high-dimensional properties of AIC and BIC for

selecting (4) independence covariance structure with different vari-

ances, and (5) no covariance structure, in addition to the covariance

structures (1) ∼ (3). Some tendancy is pointed through a numerical

experiment.
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1. Introduction

We consider a multivariate linear regression of p response variables

y1, . . . , yp on a subset of k explanatory variables x1, . . . , xk. Suppose that

there are n observations on y = (y1, . . . , yp)
′ and x = (x1, . . . , xk)

′, and let

Y : n×p and X : n×k be the observation matrices of y and x with the sam-

ple size n, respectively. The multivariate linear regression model including

all the explanatory variables is written as

Y ∼ Nn×p(XΘ,Σ⊗ In), (1.1)

where Θ is a k × p unknown matrix of regression coefficients and Σ is a

p× p unknown covariance matrix. The notation Nn×p(·, ·) means the matrix

normal distribution such that the mean of Y isXΘ and the covariance matrix

of vec (Y) is Σ⊗ In, or equivalently, the rows of Y are independently normal

with the same covariance matrix Σ. Here, vec(Y) be the np × 1 column

vector obtained by stacking the columns of Y on top of one another. We

assume that rank(X) = k.

We consider the problem of selecting the best model from a collection

of candidate models specified by a linear regression of y on subvectors of

x. Our interest is to examine consistency properties of information criteria

and their efficient criteria when p/n → c ∈ (0,∞). When Σ is unknown

positive definite, it has been pointed (see, e.g., Yanagihara et al. (2015),

Fujikoshi et al. (2014), etc.) that AIC and Cp have consistency properties

when p/n → c ∈ (0, 1), under some conditions, but BIC is not necessarily

consistent.

Related to high-dimensional data, it is important to consider selection of

regression variables in the case that p is larger than n, and k is also large.

When p is large, it will be natural to consider a covariance structure, since

a covariance matrix with no covariance structure involves many unknown

parameters. One way is to consider a sparse method or a joint regularization
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of the regression parameters and the inverse covariance matrix, see, e.g.,

Rothman et al. (2010). As another approach, it may consider to select the

regression variables, assuming a simple covariance structure. Related to the

later approach, it might occur to select an appropriate simple covariance

structure from a set of some simple covariance structures.

In this paper, first we consider the variables selection problems under

some simple covariance structures such as (1) independent covariance struc-

ture, (2) uniform covariance structure and (3) autoregressive covariance struc-

ture, based on model selection approach. We study consistency properties of

information criteria including AIC and BIC. These information criteria have

a computational problem when k becomes large. In order to avoid such prob-

lem, we consider their efficient criteria based on Zho et al. (1986) and Nishii

et al. (1988). It is shown that the efficient criteria also consistent in a high

dimensional situation. Our results are checked numerically by conducting a

Mote Carlo simulation.

Next we discuss with AIC and BIC for selecting (4) independence covari-

ance structure with different variances, and (5) no covariance structure, in

addition to covariance structures (1) ∼ (3). In a high-dimensional situation,

it is noted that the covariance structures except for (2) are identified by AIC

and BIC, through a simulation experiment.

The present paper is organized as follows. In section 2, we present no-

tations and preliminaries. In Sections 3, 4 and 5 we show high-dimensional

consistencies of information criteria under the covariance structures (1), (2)

and (3), respectively. These are also numerically studied. In Section 6, their

efficient criteria are shown to be consistent under the same condition as in

the case of information criteria. In Section 7, we discuss with selections of

covariance structures by AIC and BIC. In Section 8, our conclusions are

discussed. The proofs of our results are given in Appendix.
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2. Notations and Preliminaries

This paper is concerned with selection of explanatory variables in mul-

tivariate regression model (1.1). Suppose that j denotes a subset of ω =

{1, . . . , k} containing kj elements, and Xj denotes the n× kj matrix consist-

ing the columns of X indexed by the elements of j. Then, Xω = X. Further,

we assume that the covariance matrix Σ have a covariance structure Σg.

Then a generic candidate model can be expressed as

Mg,j : Y ∼ Nn×p(XjΘj,Σg,j ⊗ In), (2.1)

where Θj is a kj × p unknown matrix of regression coefficients. We assume

that rank(X) = k(< n).

As a model selection method, we use a generalized criterion of AIC

(Akaike (1973)). When Σg,j is a p × p unknown covariance matrix, the

AIC (see, e.g., Bedrick and Tsai (1994), Fujikoshi and Satoh (1997)) for Mg,j

is given by

AICg,j = n log |Σ̂g,j|+ np(log 2π + 1) + 2

{
kjp+

1

2
p(p+ 1)

}
, (2.2)

where nΣ̂g,j = Y′(In−Pj)Y andPj = Xj(X
′
jXj)

−1X′
j. The part of ”n log |Σ̂g,j|+

np(log 2π+1)” is ”−2 logmaxMg,j
f(Y;Θj,Σg,j)”, where f(Y;Θj,Σg,j) is the

density function of Y under Mg,j. The AIC was introduced as an asymp-

totic unbiased estimator for the risk function defined as the expected log-

predictive-likelihood or equivalently the Kullback-Leibler information, for a

candidate model Mg,j, see, e.g., Fujikoshi and Satoh (1997). When j = ω,

the model Mg,ω is called the full model. Note that Σ̂g,ω and Pω are defined

from Σ̂g,j and Pj as j = ω, kω = k and Xω = X.

In this paper, first we consider the case that the covariance matrix Σ

belongs to each of the following three classes;

(1) Independent covariance structure (IND);Σv = σ2
vIp,

(2) Uniform covariance structure (UNIF);Σu = σ2
u(ρ

1−δij
u )1≤i,j≤p,

(3) Autoregressive covariance structure (AUTO);Σa = σ2
a(ρ

|i−j|
a )1≤i,j≤p.

4



Our candidate model can be expressed as (2.1) with Σv,j, Σu,j or Σa,j for

Σg,j. For deriving the maximum likelihood under Mg,j, we shall use the fact

that for any positive definite Σg,j,

max
Θj

f(Y;Θj,Σg,j) = np log |Σg,j|+ np(log 2π + 1)

+ min
Θj

trΣ−1
g,j(Y − XjΘj)

′(Y − XjΘj) (2.3)

= np log |Σg,j|+ np log 2π + trΣ−1
g,jY(In −Pj)Y.

Let Σ̂g,j be the quantity minimizing the right side of (2.3). Then, in our

problem, it satisfies

trΣ̂
−1

g,jY(In −Pj)Y = np.

We consider a general information criterion defined by

ICg,d,j = −2 log f(Y; Θ̂j, Σ̂g,j) + dmg,j

= np log |Σg,j|+ np(log 2π + 1) + dmg,j, (2.4)

where mg,j is the number of independent unknown parameters under Mg,j,

and d is a positive constant which may depend on n. When d = 2 and

d = log n,

ICg,2,j = AICg,j, ICg,logn,j = BICg,j.

Such general information criterion was considered in a univariate regression

model by Nishii (1984).

For each of the three covariance structures, consider to select the best

model from all the models or a subset of all the models. Let F be the set of

all the candidate models, which is denoted by

{{1}, . . . , {k}, {1, 2}, . . . , {1, . . . , k}},

or its subfamily. Then, our model selction criterion is to select the model Mj

or the subset j minimizing ICg,d,j, which is written as

ĵICg,d = argmin
j∈F

ICg,d,j. (2.5)
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For studying consistency properties of ĵICg,d, it is assumed that the true

model Mg,∗ is included in the full model, i.e.,

Mg,∗ : Y ∼ Nn×p(X∗Θ∗,Σg,∗ ⊗ In). (2.6)

Let us denote the minimum model including the true model by Mg,j∗ . The

true mean of Y is expresed as

X∗Θ∗ = Xj∗Θj∗

for some kj∗ ×p matrix Θj∗ . So, the notation Xj∗Θj∗ is also used for the true

mean of Y. Let F separate into two sets, one is a set of overspecified models,

i.e., F+ = {j ∈ F | j∗ ⊆ j} and the other is a set of underspecified models,

i.e., F− = Fc
+ ∩ F.

Here we list some of our main assumptions:

A1 (The true model): Mg,∗ ∈ F.

A2 (The asymptotic framework): p → ∞, n → ∞, p/n → c ∈ (0,∞).

It is said that a general model selection criterion ĵICg,d is consistent if

lim
p/n→c∈(0,∞)

Pr(ĵICg,d = j∗) = 1.

In order to obtain ĵICg,d, we must calcurate ICg,d for all the subsets of

jω = {1, 2, . . . , k}, i.e., 2k − 1 ICg,d. This will become extensive computation

as k becomes large. As a method of overcoming this weak point, we consider

EC criterion based on Zho et al. (1986) and Nishii et al. (1988). Let j(i) be

the subset of jω omitting the i (1 ≤ i ≤ k). Then ECg,d is defined to select

ĵECg,d
= {i ∈ jω | ECg,d,j(i) > ECg,d,jω , i = 1, . . . , k}. (2.7)

In Section 6 we shall show that ĵECg,d
has an consistency property.
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3. IC under Independent Covariance Struc-

ture

In this section we consider the problem of selecting the regression vari-

ables in the multivariate regression model under the assumption that the

covariance matrix has an independent covariance structure. A generic can-

didate model can be expressed as

Mv,j : Y ∼ Nn×p(XjΘj,Σv,j ⊗ In), (3.1)

where Σv,j = σ2
v,jIp and σv,j > 0. Then, we have

−2 log f(Y;Θj, σ
2
v,j) = np log(2π) + np log σ2

v,j

+
1

σ2
v,j

tr(Y −XjΘj)
′(Y −XjΘj).

Therefore, it is easily seen that the maximum estimators of Θj and σ2
v,j under

Mv,j are given as

Θ̂j = (X′
jXj)

−1X′
jY, σ̂2

v,j =
1

np
trY′(In −Pj)Y. (3.2)

The information criterion (2.4) is given by

ICv,d,j = np log σ̂2
v,j + np(log 2π + 1) + d×mv,j, (3.3)

where d is a positive constant and mv,j = kjp + 1. Assume that the true

model is expressed as

Mv,∗ : Y ∼ Nn×p(X∗Θ∗, σ
2
v,∗Ip ⊗ In), (3.4)

and denote the minimum model including the true model Mv,∗ by Mv,j∗ . In

general, Y′(In−Pj)Y is distributed as a nocentral Wishart distribution, more

precisely

Y′(In −Pj)Y ∼ Wp(n− kj,Σv,∗; (Xj∗Θj∗)
′(In −Pj)Xj∗Θj∗),

which implies the following Lemma.
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Lemma 3.1. Under (3.4), npσ̂2
v,j/σ

2
v,∗ is distributed as a noncentral chi-

square distribution χ2
(n−kj)p

(δ2v,j), where

δ2v,j =
1

σ2
v,∗

tr(Xj∗Θj∗)
′(In −Pj)Xj∗Θj∗

=
1

σ2
v,∗

tr(Xj∗Θj∗)
′(Pω −Pj)Xj∗Θj∗ . (3.5)

When j ∈ F+, then, δ
2
v,j = 0.

For a sufficient condition for consistency of ICv,g, we assume

A3v : For any j ∈ F−, δ2v,j = O(np), and lim
p/n→c

1

np
δ2v,j = η2v,j > 0. (3.6)

Theorem 3.1. Suppose that the assumptions A1, A2 and A3v are satisfied.

Then, the information criteria ICv,d defined by (3.3) is consistent if d > 1

and d/n → 0.

AIC and BIC satisfy the conditions d > 1 and d/n → 0, and we have the

following result.

Corollary 3.1. Under the assumptions A1, A2 and A3v AIC and BIC are

consistent.

In the following we numerically examine the validity of our claims. The

true model was assumed as

Mv,∗ : Y ∼ Nn×p(X∗Θ∗, σ
2
v,∗Ip ⊗ In).

Here Θ∗ : 3 × p was determined by random numbers from the uniform dis-

tribution on (1, 2), i.e., i.i.d. from U(1, 2). The first column of Xω : n × 10

is 1n, and the other elements are i.i.d. from U(−1, 1). The true variance

was set as σ2
v,∗ = 2. The five candidate models Mjα , α = 1, 2, . . . , 5 were

considered, where jα = {1, . . . , α}, We studied selection percentages of the

true model for 104 replications under AIC and BIC for

(n, p) = (50, 15), (100, 30), (200, 60), (50, 100), (100, 200), (200, 400)
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The results are given in Tables 4.1 and 4.2. It is seen that the true model

has been selected for all the cases except the case (n, p) = (50, 15) of AICv.

In the case (n, p) = (50, 15) of AICv, the selection percentage is not 100, but

it is very high.

Table 3.1. Selection percentages of AICv and BICv for p/n = 0.3
AICv BICv

j (50,15) (100,30) (200,60) (50,15) (100,30) (200,60)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 97.3 99.9 100.0 100.0 100.0 100.0
4 2.4 0.1 0.0 0.0 0.0 0.0
5 0.3 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.2. Selection percentages of AICv and BICv for p/n = 2
AICv BICv

j (50,100) (100,200) (200,400) (50,100) (100,200) (200,400)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 100.0 100.0 100.0 100.0 100.0 100.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

4. IC under Uniform Covariance Structure

In this section we consider model selection criterion when the covariance

matrix has a uniform covariance structure

Σu = σ2
u(ρ

1−δij
u ) = σ2

u{(1− ρu)Ip + ρu1p1
′
p}. (4.1)

The covariance structure is expressed as

Σu = τ1

(
Ip −

1

p
Gp

)
+ τ2

1

p
Gp,
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where

τ1 = σ2
u(1− ρu), τ2 = σ2

u{1 + (p− 1)ρu}, Gp = 1p1
′
p,

and 1p = (1, . . . , 1)′. Noting that the matrices Ip− 1
p
Gp and

1
p
Gp are orthog-

onal idempotent matrices, we have

|Σu| = τ2τ
p−1
1 , Σ−1

u =
1

τ1

(
Ip −

1

p
Gp

)
+

1

τ2

1

p
Gp.

Now we consider the model Mu,j given by

Mu,j : Y ∼ Nn×p(XjΘj,Σu,j ⊗ In), (4.2)

where Σu,j = τ1j (Ip − p−1Gp)+τ2jp
−1Gp. Let H = (h1,H2) be an orthognal

matrix where h1 = p−1/21p, and let

Uj = H′WjH, Wj = Y′(In −Pj)Y.

Let the density function of Y under Mu,j denote by f(Y;Θj, τ1j, τ2j). From

(2.3) we have

g(τ1j, τ2j) = −2 logmax
Θj

f(Y;Θj, τ1j, τ2j)

= np log(2π) + n log τ2j + n(p− 1) log τ1j + trΨ−1
j Uj,

where Ψj = diag(τ2j, τ1j, . . . , τ1j). Then, it can be shown that the maximum

likelihood estimators of τ1j and τ2j under Mu,j are given by

τ̂1j =
1

n(p− 1)
tr D1Uj =

1

n(p− 1)
trH′

2Y
′(In −Pj)YH2,

τ̂2j =
1

n
tr D2Uj =

1

n
h′

1Y
′(In −Pj)Yh1,

where D1 = diag(0, 1, . . . , 1) and D2 = diag(1, 0, . . . , 0). The number of

independent parameters under Mu,j is mj = kjp + 2. Noting that Ψj is

diagonal, we can get the information criterion (2.4) given as

ICu,d,j = n(p− 1) log τ̂1j + n log τ̂2j + np(log 2π + 1) + d(kjp+ 2). (4.3)
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Assume that the true model is expressed as

Mu,∗ : Y ∼ Nn×p(X∗Θ∗,Σu,∗ ⊗ In), (4.4)

where Σu,∗ = τ1∗ (Ip − p−1Gp) + τ2∗p
−1Gp, and denote the minimum model

including the true model Mu,∗ by Mu,j∗ . In general, it holds that Uj ∼
Wp(n− kj,Ψ∗;∆j), where

∆j = (Xj∗Θj∗H)′(In −Pj)Xj∗Θj∗H,

and Ψ∗ = diag(τ2∗, τ1∗, . . . , τ1∗). Therefore, we have the following Lemma

(see, e.g., Fujikoshi et al. (2010)).

Lemma 4.1. Under the true model (3.4), it holds that

(1) n(p−1)τ−1
1∗ τ̂1j is distributed as a noncentral distribution χ2

(p−1)(n−kj)
(δ21j),

where

δ21j =
1

τ1∗
trH′

2(Xj∗Θj∗)
′(In −Pj)(Xj∗Θj∗)H2.

(2) nτ−1
2∗ τ̂2j is distributed as a noncentral distribution χ2

n−kj
(δ22j), where

δ22j =
1

τ2∗
trh′

1(Xj∗Θj∗)
′(In −Pj)(Xj∗Θj∗)h1.

(3) If j ∈ F+, then δ1j = 0 and δ2j = 0.

For a sufficient condition for consistency of ICu,d, we assume

A3u: For any j ∈ F−, δ
2
1j = O(np), δ22j = O(n) and

lim
p/n→c

1

np
δ21j = η21j > 0, lim

p/n→c

1

n
δ22j = η22j > 0, (4.5)

Theorem 4.1. Suppose that the assumptions A1, A2 and A3u are satisfied.

Then, the information criteria ICu,d defined by (4.3) is consistent if d > 1

and d/n → 0.
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Corollary 4.1. Under the assumptions A1, A2 and A3u AIC and BIC are

consistent.

We tried a numerical experiment under the same setting as in the in-

dependence covariance structure except for covariance structure. The true

uniform covariance structure was set as the one with σ2
u,∗ = 2, ρu,∗ = 0.2.

The results are given Tables 4.1 and 4.2. In general, it seems that AIC selects

the true model even a finite setting with a high probability. However, BIC

does not always select the true model when (n, p) is small, though it has a

consistency property.

Table 4.1. Selection percentages of AIC and BIC for p/n = 0.3
AIC BIC

j (50,15) (100,30) (200,60) (50,15) (100,30) (200,60)
1 0.2 0.0 0.0 72.8 1.3 0.0
2 0.6 0.0 0.0 7.6 3.0 0.0
3 96.5 99.9 100.0 19.6 95.7 100.0
4 2.4 0.1 0.0 0.0 0.0 0.0
5 0.3 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.2. Selection percentages of AIC and BIC for p/n = 2
AIC BIC

j (50,100) (100,200) (200,400) (50,100) (100,200) (200,400)
1 0.1 0.0 0.0 100.0 99.6 0.0
2 3.1 0.0 0.0 0.0 0.4 0.0
3 96.9 100.0 100.0 0.0 0.0 100.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0
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5. IC under Autoregressive Covariance Struc-

ture

In this section we consider model selection criterion when the covariance

matrix Σ has an autoregressive covariance structure

Σa = σ2
a(ρ

|i−j|
a )1≤i,j≤p. (5.1)

Then, it is well known (see, e.g., Fujikoshi et al. (1990))

|Σa| = (σ2
a)

p(1− ρ2a)
p−1, Σ−1

a =
1

σ2
a(1− ρ2a)

(ρ2aC1 − 2ρaC2 +C0),

where C0 = Ip,

C1 =


0 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 0

 , C2 =
1

2


0 1 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 1 0

 .

Now we consider the model Ma,j given by

Ma,j : Y ∼ Nn×p( XjΘj,Σa,j ⊗ In), (5.2)

where Σa,j = σ2
a,j(ρ

|i−j|
a,j ). Then, from (2.3) the maximum likelihood estimate

of Θj is given by

Θ̂j = (X′X)−1X′Y,

and the maximum likelihood estimators of ρa,j and σ2
a,j can be obtained as

the minimization of

− 2 log f(Y; Θ̂a,j, σ
2
a,j, ρj) = np log(2π) + np log σ2

a,j + n(p− 1) log(1− ρ2a,j)

+
1

σ2
a,j(1− ρ2j)

+ tr(ρ2a,jC1 − 2ρa,jC2 +C0)Y
′(In −Pj)Y

with respect to σa,j and ρa,j. Therefore, the maximum likelihood estimators

of σ2
a,j and ρa,j are given (see Fujikoshi et al. (1990)) through the following
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two equations:

(1) σ̂2
a,j =

n− kj
n

1

p(1− ρ̂2a,j)
(a1j ρ̂

2
a,j − 2a2j ρ̂a,j + a0j), (5.3)

(2) (p− 1)a1j ρ̂
3
a,j − (p− 2)a2j ρ̂

2
a,j − (pa1j + a0j)ρ̂a,j + pa2j = 0, (5.4)

where aij = trCiSj, i = 0, 1, 2, and Sj = (n− kj)
−1Y′(In −Pj)Y. Then, the

information criterion ICa,d,j can be written as

ICa,d,j =np log σ̂2
a,j + n(p− 1) log(1− ρ̂2a,j) + np(log 2π + 1)

+ d(kjp+ 2). (5.5)

Note that the maximum likelihood estimators ρ̂ and σ2 are expressed in terms

of a0j, a1j and a2j or

b0j = trC0Wj, b1j = trC1Wj, b2j = trC2Wj, (5.6)

where

Wj = (n− kj)Sj = Y′(In −Pj)Y. (5.7)

Assume that the true model is expressed as

Ma,∗ : Y ∼ Nn×p(X∗Θ∗,Σa,∗ ⊗ In), (5.8)

where Σa,∗ = σ2
a,∗(ρ

|i−j|
a,∗ ), and denote the minimum model including the true

model M∗ by Mj∗ . Then,

Wj = Y′(In −Pj)Y ∼ Wp(n− kj,Σa,∗;Ωj),

where

Ωj = (Xj∗Θj∗)
′(In −Pj)Xj∗Θj∗ .

For relating to the noncentrality matrix Ωj, we use the following three quan-

tities:

δij = trCiΩj, i = 0, 1, 2. (5.9)

As a sufficient condition for consistency, we assume

A3a: For any j ∈ F−, the order of each element ofΩj is O(n), δ2ij = O(np),

and

lim
p/n→c

1

np
δ2ij = η2ij > 0, i = 0, 1, 2. (5.10)
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Theorem 5.1. Suppose that the assumptions A1, A2 and A3a are satisfied.

Then, the information criteria ICa,d defined by (5.5) is consistent if d > 1

and d/n → 0.

Corollary 5.1. Under the the assumptions A1, A2 and A3a AIC and BIC

are consistent.

We tried a numerical experiment under the same setting as in the inde-

pendence covariance structure and in the uniform covariance structure except

for covariance structure. Here the true covariance structure was set as the au-

toregressive covariance structure Σa,∗ = σ2
a,∗(ρ

|i−j|
a,∗ ) with σ2

a,∗ = 2, ρa,∗ = 0.2.

The results are given Tables 5.1 and 5.2. It is seen that AIC and BIC are

selecting the true model in all the cases.

Table 5.1. Selection percentages of AIC and BIC for p/n = 0.3
AIC BIC

j (50,15) (100,30) (200,60) (50,15) (100,30) (200,60)
1 0.0 0.0 0.0 0.5 0.0 0.0
2 0.0 0.0 0.0 0.1 0.0 0.0
3 97.2 99.9 100.0 99.4 100.0 100.0
4 2.4 0.1 0.0 0.0 0.0 0.0
5 0.3 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.2. Selection percentages of AIC and BIC for p/n = 2
AIC BIC

j (50,100) (100,200) (200,400) (50,100) (100,200) (200,400)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 100.0 100.0 100.0 100.0 100.0 100.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0
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6. Consitency Properties of EC

In this section we are interested in consistency properties of three efficient

criteria ECv,d, ECu,d and ECa,d defined from ICv,d, ICu,d and ICa,d through

(2.7). Note that consistency properties of ICv,d, ICu,d and ICa,d are given in

Theorems 3.1, 4.1 and 5.1. Using these consitency properties it is expected

that ECv,d, ECu,d and ECa,d have similar consistency properties. In fact, the

following result holds.

Theorem 6.1. Suppose that the assumptions A1 and A2 are satisfied. Then,

it holds that

(1) the efficient criterion ECv,d is consistent under the assumption A3v

if d > 1 and d/n → 0.

(2) the efficient criterion ECu,d is consistent under the assumption A3u

if d > 1 and d/n → 0.

(3) the efficient criterion ECa,d is consistent under the assumption A3a

if d > 1 and d/n → 0.

In order to examine the validity of the results and the speed of con-

vergences we tried a numerical experiment. The simulation settings are

similar to the cases of ICv,d, ICu,d and ICa,d except for that the follow-

ing points: The total number of explanatory variables to be selected was

changed to 5 from 10. The true covariance structures were set as follows for

IND(independent covariance structure), UNIF(uniform covariance structure)

and AUTO(autoregressive covariance structure):

IND：Σ = σ2
v,∗Ip, σ2

v,∗ = 2.

UNIF：Σ = σ2
u,∗(ρ

1−δij
u,∗ ), σ2

u,∗ = 2, ρu,∗ = 0.9.

AUTO：Σ = σ2
a,∗(ρ

|i−j|
a,∗ ), σ2

a,∗ = 2, ρa,∗ = 0.9.

Let ECA and ECB be the efficient criterion based on AIC and BIC, re-

spectively. Selection rates of these criteria are given in Tables 6.1 ∼ 6.4

for each of three covariance structures. In the tables the column of xi de-

notes the selection rate for the i-th explanatory variable xi. The ”Under”,
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”True” and ”Over” denote the underspecified models, the true model and

the overspecified models, respectively.

Table 6.1. Selection percentages of ECA and ECB for (n, p) = (20, 10)
n = 20, p = 10 Under True Over x1 x2 x3 x4 x5

ECA IND 0.03 0.74 0.23 1.00 1.00 0.97 0.13 0.12
UNIF 0.36 0.47 0.17 1.00 0.83 0.73 0.14 0.12
AUTO 0.40 0.44 0.17 1.00 0.84 0.68 0.14 0.13

ECB IND 0.21 0.77 0.02 1.00 1.00 0.79 0.01 0.01
UNIF 0.78 0.22 0.01 1.00 0.50 0.37 0.01 0.01
AUTO 0.81 0.18 0.01 1.00 0.49 0.30 0.01 0.01

Table 6.2. Selection percentages of ECA and ECB for (n, p) = (200, 100)
n = 200, p = 100 Under True Over x1 x2 x3 x4 x5

ECA IND 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
UNIF 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

ECB IND 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
UNIF 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

Table 6.3. Selection percentages of ECA and ECB for (n, p) = (10, 20)
n = 10, p = 20 Under True Over j = 1 j = 2 j = 3 j = 4 j = 5
ECA IND 0.07 0.41 0.53 1.00 1.00 0.94 0.37 0.34

UNIF 0.47 0.15 0.38 0.97 0.85 0.62 0.39 0.35
AUTO 0.47 0.15 0.38 0.95 0.81 0.65 0.37 0.35

ECB IND 0.15 0.54 0.31 1.00 0.99 0.86 0.20 0.19
UNIF 0.68 0.15 0.17 0.93 0.70 0.43 0.20 0.20
AUTO 0.71 0.13 0.15 0.87 0.63 0.46 0.20 0.20
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Table 6.4. Selection percentages of ECA and ECB for (n, p) = (100, 200)
n = 100, p = 200 Under True Over j = 1 j = 2 j = 3 j = 4 j = 5
ECA IND 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

UNIF 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

ECB IND 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
UNIF 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

7. Selection of Covariance Structures

In this section we consider high-dimensional properties of AIC and BIC

for selection of covariance structures. The covariance structures considered

are (1) IND(independent covariance structure), (2) UNIF(uniform covariance

structure), (3) AUTO(autoregressive covariance structure), (4) NOST(no co-

variance structure). For the first three covariance structures, we use the same

notation as in Sections 3, 4 and 5. The covariance matrix under NOST is

denoted by Σm,j. When E(Y) = XjΘj, AIC criteria for these four models

are expressed as

Av,j = np log σ̂2
vj + np(log 2π + 1) + 2(jp+ 1),

Au,j = n log τ̂2j + n(p− 1) log τ̂1j + np(log 2π + 1) + 2(jp+ 2),

Aa,j = np log σ̂2
aj + n(p− 1) log(1− ρ̂2aj) + np(log 2π + 1) + 2(jp+ 2),

Am,j = n log |Σ̂j|+ np(log 2π + 1) + 2

{
jp+

1

2
p(p+ 1)

}
,

The expressions for σ̂2
vj, τ̂1j, τ̂2j, σ̂

2
aj and ρ̂2aj are given in Sections 3, 4 and 5.

The BIC are defined from AIC by replacing ”2” in the ”2× the number of

independent parameters” to ”log n”.

In order to see high-dimensional behaviors of AIC and BIC, simulation

experiments were done. For multivariate regression models, we selected

k∗ = 3, kω = 5.
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The multivariate regression model was set by the same way as in Sections 3,

4 and 5. For the first covariance structure, σ2 = 2. For the second and third

covariance structures,

σ2 = 2, ρ = 0.9.

For no-strctured case, the true covariance matrix Σ∗ = (σij) was set as

follows:

σii = σ2

(
1 + 3

i− 1

p− 1

)
, i = 1, . . . , p,

The other elements of Σ∗ = (σij) are i.i.d. from U(0.3, 0.9).

The simulation results are given in Table 7.1.

Table 7.1. Selection rates of AIC for the four covariance structures
n = 20, p = 10 n = 200, p = 100

TRUE IND UNIF AUTO NOST IND UNIF AUTO NOST
IND 0.45 0.13 0.14 0.29 0.71 0.14 0.14 0.00
UNIF 0.00 0.69 0.00 0.31 0.00 1.00 0.00 0.00
AUTO 0.00 0.00 0.69 0.31 0.00 0.00 1.00 0.00
NOST 0.03 0.21 0.04 0.72 0.00 0.00 0.00 1.00

It is seen that though it is difficult to select IND covariance structure

correctively, but the other three model will be correctly selected. IND co-

variance structure can be seen as a limit of UNIF and AUTO covariance

matrices. So, it seems that it is difficult to select IND covariance structure

correctively. On the other hand, we consider another independent covariance

structure with different variances given by

Σ = diag(σ2
1, . . . , σ

2
p)

whose structure is expressed as DIAG. The AIC is given by

AIC5j = n

p∑
i=1

log σ̂2
ii + np(log 2π + 1) + 2(jp+ p),

where σ̂2
ii = 1

n
e′
iWjei, Wj = Y′(In − Pj)Y, and ei is the p component

vector with i-th component 1 and other components zero. In our simulation
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experiment, the variances were defined by

σ2
i = σ2

(
1 + 3

i− 1

p− 1

)
, i = 1, . . . , p,

where σ2 = 2. The simulation result is given in Table 7.2.

Table 7.2. Selection rates of AIC for the five covariance structures
n = 20, p = 10

TRUE IND UNIF AUTO NOST DIAG
IND 0.40 0.12 0.11 0.28 0.09
UNIF 0.00 0.68 0.00 0.32 0.00
AUTO 0.00 0.00 0.68 0.32 0.00
NOST 0.01 0.15 0.01 0.59 0.23
DIAG 0.06 0.02 0.03 0.39 0.50

n = 200, p = 100
TRUE IND UNIF AUTO NOST DIAG
IND 0.71 0.14 0.14 0.00 0.00
UNIF 0.00 1.00 0.00 0.00 0.00
AUTO 0.00 0.00 1.00 0.00 0.00
NOST 0.00 0.00 0.00 1.00 0.00
DIAG 0.00 0.00 0.00 0.00 1.00

It is seen that AIC is consistent for selection of the five covariance structures

in high-dimensional situation.

Similar experiments were done for BIC. The result for selection of the five

covariance structures is given in Table 7.3. It seems that BIC coverges more

firstly to the true model than AIC, except for NOST. BIC chooses UNIF

when the true is NOST. This will come from that our setting for NOST will

be near UNIF.
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Table 7.3 Selection rates of BIC for the four covariance strucures
n = 20, p = 10

TRUE IND UNIF AUTO NOST DIAG
IND 0.75 0.12 0.11 0.00 0.02
UNIF 0.00 1.00 0.00 0.00 0.00
AUTO 0.00 0.00 1.00 0.00 0.00
NOST 0.08 0.52 0.06 0.03 0.32
DIAG 0.34 0.07 0.07 0.01 0.51

n = 200, p = 100
TRUE IND UNIF AUTO NOST DIAG
IND 0.96 0.02 0.02 0.00 0.00
UNIF 0.00 1.00 0.00 0.00 0.00
AUTO 0.00 0.00 1.00 0.00 0.00
NOST 0.00 1.00 0.00 0.00 0.00
DIAG 0.00 0.00 0.00 0.00 1.00

8. Concluding Remarks

In this paper, firstly we consider to select regression variables in p variate

regression model with one of three covariance structures; (1) IND(independent

covariance structure), (2) UNIF(uniform covariance structure), (3) AUTO

(autoregressive covariance structure). As a selection method, a general infor-

mation ICg,d was considered for each of three covariance structures, where d

is a positive constant and may depend on the sample size n. When d = 2 and

log n, ICg,d becomes to AIC and BIC, respectively. Under a high-dimensional

asymptotic framework p/n → c ∈ (0,∞), it was shown that ICg,d with

g = v, u or a is consistent under the assumption of A3g if d/n → 0 and

d > 1. Further, in order to avoid a computational problem of ICg,d, we study

ECg,d. It was pointed that ECg,d has a consistency property similar to ICg,d.

The result was obtained by assuming normality. It is left to extend the result

to the case of non-normality.
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Next, under multivariate regression model, we examined to select covari-

ance structures. The covariance structures picked up are (4) NOST(no covari-

ance structure) and (5) IND (independent covariance structure), in addition

to the three covariance structures (1), (2) and (3). Two criteria AIC and

BIC were examined through a simulation experiment in a high-dimensional

setting, It was seen that (i) the four covariance structures except IND can be

selected correctly by using AIC, (ii) BIC converges to the true model more

firstly than AIC, except for IND. The proofs of theoretical results on these

properties will be given in a future work.

Appendix: The Proofs of Theorems 3.1, 4.1

and 5.1

A1. Outline of Our Proofs and Preliminary Lemma

First we explain an outline of our proof. In general, let F be a finite set of

candidate models j(or Mj). Assume that j∗ is the minimum model including

the true model and j∗ ∈ F. Let Tj(n) be a general criterion for model j,

which depends on parameters p and n. The best model chosen by minimizing

Tj(p, n) is written as ĵT(p, n) = argminj∈F Tj(p, n). Suppose that we are

interested in asymptotic behavior of ĵT(p, n) when p/n tends to c > 0. In

order to show a consistency of Tj(p, n), we may check a sufficient condition

such that for any j ̸= j∗ ∈ F, there exists a sequence {ap,n} with ap,n > 0,

ap,n {Tj(p, n)− Tj∗(p, n)}
p→ bj > 0.

In fact, the condition implies that for any j ̸= j∗ ∈ F,

P (ĵT(p, n) = j) ≤ P (Tj(p, n) < Tj∗(p, n)) → 0,

and

P (ĵT(p, n) = j∗) = 1−
∑

j ̸=j∗∈F

P (ĵT(p, n) = j) → 1.

For the proofs of Theorems 3.1, 4.1 and 5.1, we use the following Lemma

frequently.
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Lemma A1. Suppose that a p×p symmetric random matrix W is distributed

as a noncentaral Wishart distribution Wp(n−k,Σ;Ω). Let A be a given p×p

symmetric matrix. We consider asymptotic behavior of trAW when p and n

are large as in the way such that p/n → c ∈ (0,∞), where k is fixed. Suppose

that

lim
1

p
trAΣ = a2 > 0, lim

1

np
trAΩ = η2 > 0. (A.1)

Then, it holds that

Tp,n =
1

np
trAW

p→ a2 + η2. (A.2)

Proof. Let m = n− k. We may write W as

W = Σ1/2(z1z
′
1 + · · ·+ zmz

′
m)Σ

1/2,

where zi ∼ Np(ζi, Ip), i = 1, . . . ,m and zi’s are independent. Here, Ω =

µ1µ
′
1 + · · · + µmµ

′
m and ζi = Σ−1/2µi, i = 1, . . . ,m. Note that trAW is

expressed as a quadratic form of z = (z
′
1, . . . , z

′
m)

′ as follows:

trAW = z′Bz,

where B = Im ⊗ Σ1/2AΣ1/2. Note that z ∼ Nmp(ζ, Imp), where ζ =

(ζ1, . . . , ζ
′
m)

′. Then, it is known (see, e.g., Gupta ) that for any symmet-

ric matrix B,

E[z′Bz] = trB+ ζ ′Bζ,

Var(z′Bz) = 2trB2 + 4ζ ′B2ζ.

Especially, when B = Im ⊗Σ1/2AΣ1/2, we have

E[z′Bz] = mtrAΣ+ trAΩ,

Var(z′Bz) = 2mtr (AΣ)2 + 4trAΣAΩ.

Under the assumption (A.1), we have

E(Tp,n) =
m

np
trAΣ+

1

np
trAΩ

→ a2 + η2.
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Further,

Var(Tp,n) =
2m

(np)2
tr(AΣ)2 +

4

(np)2
trAΣAΩ

≤ 2m

(np)2
(trAΣ)2 +

4

(np)2
trAΣtrAΩ

→ 0.

These imply our conclution.

In a special case A = Ip and Σ = σ2Ip, the assumptions in (A.1) become

to

lim
1

p
trAΣ = lim

1

p
pσ2 = σ2,

lim
1

np
trAΩ = lim

1

np
trΩ

p→ η2.

The conclusion is that

Tp,n =
1

np
trW

p→ σ2(1 + δ2), (A.3)

where δ2 = (1/σ2)η2. Note that (1/σ2)trW ∼ χ2
(n−k)p(δ

2). This implies that

1

σ2
trW ∼ χ2

(n−k)p(δ
2).

Therefore, under a high-dimensional asymptotic framework p/n → c ∈
(0,∞),

1

np
χ2
(n−k)p(δ

2)
p→ 1 + η2, (A.4)

if (np)−1δ2 → η2. More generally, we use the following result.

1

np
χ2
(n−k)(p−h)(δ

2)
p→ 1 + η2, (A.5)

if (np)−1δ2 → η2, where k and h are constants or more generally, they may

be the constants satisfying k/n → 0 and h/n → 0. Further, we use the

following property for noncentral χ2-square distribution.

1

n
χ2
n−k(δ

2)
p→ 1 + η2, (A.6)

if n−1δ2 → η2.
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A2. The Proof of Theorem 3.1

Using (3.3) we can write

ICv,d,j − ICv,d,j∗ = np log σ̂2
v,j − np log σ̂2

v,j∗ + d(kj − kj∗)p.

Lemma 3.1 shows that

np

σ2
σ̂2
j ∼ χ2

(n−kj)p
(δ2j ), δ2j =

1

σ2
tr(Xj∗Θj∗)

′(In −Pj)(Xj∗Θj∗).

In particular,
np

σ2
σ̂2
j∗ ∼ χ2

(n−kj∗ )p
.

First, consider the case j ⊃ j∗. Under the assumption A3v,

1

np

np

σ2
σ̂2
j =

(n− kj)p

np

1

(n− kj)p

1

σ2
σ̂2
j

p→ 1 + η2j ,

1

np

np

σ2
σ̂2
j∗ =

(n− kj∗)p

np

1

(n− kj∗)p

1

σ2
σ̂2
j∗

p→ 1.

Therefor

1

np
(ICv,g,j − ICv,g,j∗) = log σ̂2

j − log σ̂2
j∗ +

d

n
(kj − kj∗)

= log

(
1

np

np

σ2
σ̂2
j

)
− log

(
1

np

np

σ2
σ̂2
j∗

)
+

d

n
(kj − kj∗)

p→ log(1 + η2j ) + log 1 + 0 = log(1 + η2j ) > 0,

when g/n → 0.

Next, consider the case j ⊃ j∗. Then

ICv,g,j − ICv,g,j∗ = np log
σ̂2
v,j

σ̂2
v,j∗

+ d(kj − kj∗)p.

Further,

log
σ̂2
j

σ̂2
j∗

= log
trY′(In −Pj)Y

trY′(In −Pj∗)Y

= − log

(
1 +

trY′(Pj −Pj∗)Y

trY′(In −Pj)Y

)
= − log

(
1 +

χ2
(kj−kj∗ )p

χ2
(n−kj)p

)
.
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Using the fact that χ2
m/m → 1 as m → ∞, we have

n log
σ̂2
j

σ̂2
j∗

= −n log

{
1 +

(kj − kj∗)

(n− kj)

χ2
(kj−kj∗ )p

/((kj − kj∗)p)

χ2
(n−kj)p

/((n− kj)p)

}
→ −1,

and hence

1

p
{ICv,d,j − ICv,d,j∗} = n log

σ̂2
j

σ̂j∗

+ 2(kj − kj∗)

p→ −(kj − kj∗) + d(kj − kj∗) = (d− 1)(kj − kj∗) > 0,

if d > 1.

A3. The Proof of Theorem 4.1

Using (4.3) we can write

ICu,d,j − ICu,d,j∗ = n(p− 1)(log τ̂ 21j − log τ̂ 21j∗)

+ n(log τ̂ 22j − log τ̂ 22j∗) + d(kj − kj∗)p.

Lemma 4.1 shows that for a general j ⊂ ω,

npτ−1
1∗ τ̂1j ∼ χ2

(p−1)(n−kj)
(δ21j), (A.7)

nτ−1
2∗ τ̂2j ∼ χ2

n−kj
(δ22j), (A.8)

where

δ21j =
1

τ1∗
trH′

2(Xj∗Θj∗)
′(In −Pj)(Xj∗Θj∗)H2,

δ22j =
1

τ2∗
trh′

1(Xj∗Θj∗)
′(In −Pj)(Xj∗Θj∗)h1.

Note thta if j ⊃ j∗, δ1j = 0 and δ2j = 0.

First consider the case j ⊂ j∗. Then, using (A.5) and (A.7), we have

τ̂1j
τ̂1j∗

=
χ2
(n−kj)p

(δ21j)

χ2
(n−kj∗ )p

p→ 1 + η2.
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Similarly, using (A.6) and (A.8), we have

τ̂2j
τ̂2j∗

=
χ2
(n−kj)p

(δ22j)

χ2
(n−kj∗ )p

p→ 1 + η2.

These results imply the following:

1

np
(ICu,d,j − ICu,d,j∗) =

n(p− 1)

np
log(τ̂1j/τ̂1j∗)

+
1

p
log(τ̂2j/τ̂2j∗) +

d

n
(kj − kj∗)

→ log(1 + η21j) > 0

if d/n → 0.

Next, consider the case j ⊃ j∗. Then

log
τ̂1j
τ̂1j∗

= log
trH′

2Y
′(In −Pj)YH2

trH′
2Y

′(In −Pj∗)YH′
2

= − log

(
1 +

trH′
2Y

′(Pj −Pj∗)YH2

trH′
2Y

′(In −Pj)YH2

)
= − log

(
1 +

χ2
(kj−kj∗ )(p−1)

χ2
(n−kj)(p−1)

)
∼ −kj − kj∗

n− kj
.

Similarly

log
τ̂2j
τ̂2j∗

= log
h′

1Y
′(In −Pj)Yh1

vh′
1Y

′(In −Pj∗)Yh′
1

= − log

(
1 +

h′
1Y

′(Pj −Pj∗)Yh1

h′
1Y

′(In −Pj)Yh1

)
= − log

(
1 +

χ2
kj−kj∗

χ2
n−kj

)
∼ −kj − kj∗

n− kj
.

These results imply the following:

1

p
(ICu,d,j − ICu,d,j∗)

p→ −(kj − kj∗) + d(kj − kj∗)

= (d− 1)(kj − kj∗) > 0,

if d > 1. Combining these to the result in the case j ⊂ j∗, we get Therem

4.1.
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A4. The Proof of Theorem 5.1

In this section, for notational simplification, we put Σa,∗, σ
2
a,∗ and ρa,∗ into

Σ, σ2 and ρ, respectively. Using (5.5) we can write

ICa,d,j − ICa,d,j∗ = np log(σ̂2
a,j/σ̂

2
a,j∗)

+ n(p− 1) log
{
(1− ρ̂2a,j)/(1− ρ̂2a,j∗)

}
+ d(kj − kj∗)p.

Further, using (5.3), the above expression can be expressed as

ICa,d,j−ICa,d,j∗ = np log {(n− kj)/(n− kj∗)} − n log
{
(1− ρ̂2j)/(1− ρ̂2j∗)

}
+ np log

{
(a1j ρ̂

2
j − 2a2j ρ̂j + a0j)/(a1j∗ ρ̂

2
j∗ − 2a2j∗ ρ̂j∗ + a0j∗)

}
+ d(kj − kj∗)p. (A.9)

Here, the maximum likelihood estimators σ̂2
j and ρ̂j are defined in terms of

aij = trCiSj, i = 0, 1, 2,

(n− kj)Sj = Wj = Y′(In −Pj)Y ∼ Wp(n− j,Σ;Ωj).

For the definition of Ci and Ωj, see Section 5. We also use the notation

bij = trCiWj, i = 0, 1, 2,

Wj = (n− kj)Sj = Y′(In −Pj)Y ∼ Wp(n− kj,Σ;Ωj).

First, consider the case j ⊂ j∗. Under the assumption A3a, it is possible

to get asymptotic behavior of aij and bij which is given in lator. It is shown

that

ρ̂j =
a2j
a1j

+Op(p
−1),

and more precisely

ρ̂j =
a2j
a1j

+
1

p

{
− a2(a0a1 − a22)

a1(a1 − a2)(a1 + a2)

}
+Op(p

−2).

These imply that

log(1− ρ̂2j) = log

(
1−

a22j
a21j

)
+Op(p

−1),

log(a1j ρ̂
2
j − 2a2j ρ̂j + a0j) = log

(
a0j −

a22j
a1j

)
+Op(p

−2).
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The above expansions hold also for j = j∗. Substituting these results to

(A.9) and noting bij = (n− kj)aij, we have

1

np
(ICa,d,j − ICa,d,j∗)

= −1

p

{
log

(
1−

b22j
b21j

)
− log

(
1−

b22j∗
b21j∗

)}
(A.10)

+

{
log

(
b0j −

b22j
b1j

)
− log

(
b0j∗ −

b22j∗
b1j∗

)}
+

d

n
(kj − kj∗) +Op(p

−2).

Using Lemma A1, under the assumption A3a we have

1

np
b0j =

n− kj
n

1

(n− kj)p
b0j

p→ σ2 + η20j,
1

p
trC0Σ =

p

p
σ2 → σ2,

1

np
b1j =

n− kj
n

1

(n− kj)p
b1j

p→ σ2 + η21j,
1

p
trC1Σ =

p− 2

p
σ2 → σ2,

1

np
b2j =

n− kj
n

1

(n− kj)p
b2j

p→ σ2ρ+ η22j,
1

p
trC2Σ =

p− 1

p
σ2ρ → σ2ρ.

Asymptotic behaviors for bij∗ are obtained from the ones by putting ηij∗ = 0.

These imply that

1

np
(ICa,d,j − ICa,d,j∗)

p→ log

(
σ2 + η20j −

(σ2ρ+ η22j)
2

σ2 + η21j

)
− log σ2(1− ρ2),

if d/n → 0. Now we show

log

(
σ2 + η20j −

(σ2ρ+ η22j)
2

σ2 + η21j

)
− log σ2(1− ρ2) > 0. (A.11)

Note that

1

np
(trC0Ωj − trC1Ωj)

=
1

np
tr(C0 −C1)Ωj

=
1

np
(the sum of (1, 1) and (p, p) elements of Ωj) → 0,
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which implies η20j = η21j. Using this equality, we can express

log

(
σ2 + η20j −

(σ2ρ+ η22j)
2

σ2 + η21j

)
− log σ2(1− ρ2)

= log

(
1 +

η20j
σ2

)
+ log

(
1 +

η20j − η22j
σ2(1− ρ)

)
+ log

(
1 +

η20j + η22j
σ2(1 + ρ)

)
.

The first and the third terms are positive. The quantity η20j − η22j in the

second term can be expressed as the limit of

1

np
(trC0Ωj − trC2Ωj) =

1

np
tr(C0 −C2)Ωj.

Here, the matrix C0 −C2 is expressed as

C0 −C2 =


1 −1

2
0 0

−1
2

1 0 0
. . .

0 0 1 −1
2

0 0 −1
2

1

 ,

and

x′(C0 −C2)x

= x2
1 − x1x2 + x2

2 − x2x3 + x2
3 + · · ·+ x2

p−1 − xp−1xp + x2
p

=
1

2

{
x2
1 + (x1 − x2)

2 + · · ·+ (xp−1 − xp)
2 + x2

p

}
> 0,

except for the case x1 = · · · = xp. Therefore, the second term is nonnegative,

and (ICa,d,j − ICa,d,j∗)/(np) converges to a positive constant if d/n → 0.

Next, consider the case j ⊃ j∗. From (A.10) we have

1

p
(ICa,d,j − ICa,d,j∗)

= −n

p

{
log

(
1−

b22j
b21j

)
− log

(
1−

b22j∗
b21j∗

)}
+ n

{
log

(
b0j −

b22j
b1j

)
− log

(
b0j∗ −

b22j∗
b1j∗

)}
+ d(kj − kj∗) +Op(p

−1).
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Then, it is easely seen that

n

p

{
log

(
1−

b22j
b21j

)
− log

(
1−

b22j∗
b21j∗

)}
p→ 1

c

{
log(1− ρ2)− log(1− ρ2)

}
= 0.

Note that

n

{
log

(
b0j −

b22j
b1j

)
− log

(
b0j∗ −

b22j∗
b1j∗

)}
= n

{
−(log b1j − log b1j∗) + log(b0jb1j − b22j)− log(b0j∗b1j∗ − b22j∗)

}
.

Further, we use the following relation between bij and bij∗ :

bij = trCiY
′(In −Pj)Y

= trCiY
′(In −Pj∗)Y − trCiY

′(Pj −Pj∗)Y

= bij∗ − bij+ ,

where bij+ = trCiY
′(Pj −Pj∗)Y. Since Y′(Pj −Pj∗)Y ∼ Wp(kj − kj∗ ,Σ), it

holds that

1

(kj − kj∗)p
b0j+

p→ σ2,
1

(kj − kj∗)p
b1j+

p→ σ2,
1

(kj − kj∗)p
b2j+

p→ σ2ρ.

Therefore, noting that bij∗ = Op(np) and bij+ = Op(p). we have

n(log b1j − log b1j∗) = n log
(
1− b1j+b

−1
1j∗

)
∼ −nb1j+b

−1
1j∗ ,

and hence

n(log b1j − log b1j∗)
p→ −(kj − kj∗).

Consider

f = n{log(b0jb1j − b22j)− log(b0j∗b1j∗ − b22j∗)}.

Sustituting bij = bij∗ − bij+ to the above expression, we have

f = n log(1− h) ∼ −nh,
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where

h = −
(b0j∗ − b0j+)

(b1j∗ − b1j+)
(b0j∗b1j+ + b1j∗b0j+ − 2b2j∗b2j+ − b0j+b0j+ + b22j+)

Considering the limiting values of each terms in h, we have

f
p→ −(kj − kj∗)

(1− ρ2)
− (kj − kj∗)

(1− ρ2)
+ 2

(kj − kj∗)ρ
2

(1− ρ2)
+ 0 + 0

= −2(kj − kj∗).

Summerizing the above results, for j ⊃ j∗,

1

p
(ICa,d,j − ICa,d,j∗)

p→ (kj − kj∗)− 2(kj − kj∗) + d(kj − kj∗) = (d− 1)(kj − kj∗) > 0,

if d > 1. This completes the proof.

A5. The Proof of Theorem 6.1

For a notational simplicity, we denote ICg,d,j by IC(j). Note that jω =

{1, 2, . . . , k} and k is finite. Without loss of generality, we may assume that

the true model is j∗ = {1, . . . , b} and b = kj∗ . Under the assumption A1,

A2 and A3·1∼3, it was shown that our information criterion ĵIC has a high-

dimensiona consistency property. The consitency property was shown by

proving that

(1) for j ∈ F−,
1

m1

{IC(j)− IC(j∗)}
p→ γj > 0, (A.12)

and

(2) for j ∈ F+ and j ̸= j∗,

1

m2

{IC(j)− IC(j∗)}
p→ (d− 1)(kj − kj∗) > 0, (A.13)

where d > 1, m1 = np and m2 = p.
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From the definition of our efficient criterion ĵEC, we have

P (ĵED = j∗)

= P (IC(j(1))− IC(jω) > 0, . . . , IC(j(b))− IC(jω) > 0,

IC(j(b+1) − IC(jω) < 0, . . . , IC(j(k))− IC(jω) < 0)

= P

( b∩
i=1

(IC(j(i))− IC(jω)) > 0) ∩
k∩

i=b+1

(IC(j(i))− IC(jω)) < 0)

)
,

which can be expressed as

1− P

( b∪
i=1

(IC(j(i))− IC(jω) < 0) ∪
k∪

i=b+1

(IC(j(i))− IC(jω) > 0)

)

≥ 1−
b∑

i=1

P (IC(j(i))− IC(jω) < 0)−
k∑

j=b+1

P (IC(j(i))− IC(jω) > 0)

= 1−
b∑

i=1

{1− P (IC(j(i))− IC(jω) > 0)}

−
k∑

j=b+1

{1− P (IC(j(i))− IC(jω) < 0)}.

Therefore, we have

P (ĵED = j∗) ≥1−
∑
i∈j∗

{1− P (IC(j(i))− IC(jω) > 0)}

−
∑

i∈jω/j∗

{1− P (IC(j(i))− IC(jω) < 0)}. (A.14)

Now, consider to evaluate the following probabilities:

i ∈ j∗, P (IC(j(i))− IC(jω) > 0),

i ∈ jω/j∗, P (IC(j(i))− IC(jω) < 0).

When i ∈ j∗, j(i) ∈ F−, and hence, using (A.12), it holds that

1

m1

(IC(j(i))− IC(jω)) =
1

m1

(IC(j(i))− IC(j∗))−
1

m1

(IC(jω)− IC(j∗))

p→ γi + 0 = γi > 0.
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When i ∈ jω/j∗, j(i) ∈ F+ and hence, using (A.13), it holds that

1

m2

(IC(j(i))− IC(jω)) =
1

m2

(IC(j(i))− IC(j∗))−
1

m2

(IC(jω)− IC(j∗))

p→ (d− 1)(k − 1− b)− (d− 1)(k − b) = −(d− 1) < 0.

These results imply that

i ∈ j∗, limP (IC(j(i))− IC(jω) > 0) = 1,

i ∈ jω/j∗, limP (IC(j(i))− IC(jω) < 0) = 1.

Using the above results, we can see that the right-hand side of (A.14) tends

to

1−
[∑
j∈j∗

{1− 1}+
∑

j∈jk/j∗

{1− 1}
]
= 1,

and P (ĵED = j∗) → 1. This completes the proof of Theorem 6.1.
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