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Abstract

In this paper, first we consider high-dimensional consistency prop-
erties of information criteria IC, 4 and their efficient criteria EC, 4 for
selection of variables in multivariate regression model with covariance
structures. The covariance structures considered are (1) independent
covariance structure, (2) uniform covariance structure and (3) au-
toregressive covariance structure. Sufficient conditions for IC, 4 and
EC, 4 to be consistent are derived under a high-dimensional asymp-
totic framework such that the sample size n and the number p of
response variables are large as in the way p/n — ¢ € (0,00). Our re-
sults are checked numerically by conducting a Mote Carlo simulation.
Next we discuss with high-dimensional properties of AIC and BIC for
selecting (4) independence covariance structure with different vari-
ances, and (5) no covariance structure, in addition to the covariance
structures (1) ~ (3). Some tendancy is pointed through a numerical

experiment.
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1. Introduction

We consider a multivariate linear regression of p response variables
Yi,...,Yp on a subset of k explanatory variables xy,...,x;. Suppose that
there are n observations on y = (y1,...,y,) and & = (z1,...,2)’, and let
Y :nxpand X : n Xk be the observation matrices of y and @ with the sam-
ple size n, respectively. The multivariate linear regression model including

all the explanatory variables is written as
Y ~ N, ,(X0,X®1,), (1.1)

where © is a k& x p unknown matrix of regression coefficients and X is a
p X p unknown covariance matrix. The notation N, ,(-, -) means the matrix
normal distribution such that the mean of Y is X® and the covariance matrix
of vec (Y) is X ®1I,,, or equivalently, the rows of Y are independently normal
with the same covariance matrix X. Here, vec(Y) be the np x 1 column
vector obtained by stacking the columns of Y on top of one another. We
assume that rank(X) = k.

We consider the problem of selecting the best model from a collection
of candidate models specified by a linear regression of y on subvectors of
x. Our interest is to examine consistency properties of information criteria
and their efficient criteria when p/n — ¢ € (0,00). When X is unknown
positive definite, it has been pointed (see, e.g., Yanagihara et al. (2015),
Fujikoshi et al. (2014), etc.) that AIC and C, have consistency properties
when p/n — ¢ € (0,1), under some conditions, but BIC is not necessarily
consistent.

Related to high-dimensional data, it is important to consider selection of
regression variables in the case that p is larger than n, and £ is also large.
When p is large, it will be natural to consider a covariance structure, since
a covariance matrix with no covariance structure involves many unknown

parameters. One way is to consider a sparse method or a joint regularization
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of the regression parameters and the inverse covariance matrix, see, e.g.,
Rothman et al. (2010). As another approach, it may consider to select the
regression variables, assuming a simple covariance structure. Related to the
later approach, it might occur to select an appropriate simple covariance
structure from a set of some simple covariance structures.

In this paper, first we consider the variables selection problems under
some simple covariance structures such as (1) independent covariance struc-
ture, (2) uniform covariance structure and (3) autoregressive covariance struc-
ture, based on model selection approach. We study consistency properties of
information criteria including AIC and BIC. These information criteria have
a computational problem when k becomes large. In order to avoid such prob-
lem, we consider their efficient criteria based on Zho et al. (1986) and Nishii
et al. (1988). It is shown that the efficient criteria also consistent in a high
dimensional situation. Our results are checked numerically by conducting a
Mote Carlo simulation.

Next we discuss with AIC and BIC for selecting (4) independence covari-
ance structure with different variances, and (5) no covariance structure, in
addition to covariance structures (1) ~ (3). In a high-dimensional situation,
it is noted that the covariance structures except for (2) are identified by AIC
and BIC, through a simulation experiment.

The present paper is organized as follows. In section 2, we present no-
tations and preliminaries. In Sections 3, 4 and 5 we show high-dimensional
consistencies of information criteria under the covariance structures (1), (2)
and (3), respectively. These are also numerically studied. In Section 6, their
efficient criteria are shown to be consistent under the same condition as in
the case of information criteria. In Section 7, we discuss with selections of
covariance structures by AIC and BIC. In Section 8, our conclusions are

discussed. The proofs of our results are given in Appendix.



2. Notations and Preliminaries

This paper is concerned with selection of explanatory variables in mul-
tivariate regression model (1.1). Suppose that j denotes a subset of w =
{1,...,k} containing k; elements, and X; denotes the n x k; matrix consist-
ing the columns of X indexed by the elements of j. Then, X, = X. Further,
we assume that the covariance matrix 3 have a covariance structure 3.

Then a generic candidate model can be expressed as

9.3 °

where ©; is a k; x p unknown matrix of regression coefficients. We assume
that rank(X) = k(< n).

As a model selection method, we use a generalized criterion of AIC
(Akaike (1973)). When X ; is a p X p unknown covariance matrix, the
AIC (see, e.g., Bedrick and Tsai (1994), Fujikoshi and Satoh (1997)) for M, ;

is given by

A 1
AIC, ; = nlog|X, ;| + np(log2m + 1) + 2 {k:jp + ép(p + 1)} , (2.2)

where n3, ; = Y/(I,—P;)Y and P; = X;(XX;) "X}, The part of "nlog 13,5+
np(log 2r+1)" is " —2log maxyy, ; f(Y;©;, 3, ;)”, where f(Y; 0, X, ;) is the
density function of Y under M, ;. The AIC was introduced as an asymp-
totic unbiased estimator for the risk function defined as the expected log-
predictive-likelihood or equivalently the Kullback-Leibler information, for a
candidate model M, ;, see, e.g., Fujikoshi and Satoh (1997). When j = w,
the model M, is called the full model. Note that f]g,w and P, are defined
from 2971’ and P; as j = w, k, = k and X, = X.

In this paper, first we consider the case that the covariance matrix X

belongs to each of the following three classes;

(1) Independent covariance structure (IND); X, = 021,
(2) Uniform covariance structure (UNIF); 3, = 02(p ™% ) 1< j<p,

(3) Autoregressive covariance structure (AUTO); B, = o2(pl =)<, <.



Our candidate model can be expressed as (2.1) with %, ;, ¥, ; or 3, ; for
¥,;. For deriving the maximum likelihood under M, ;, we shall use the fact

that for any positive definite X ;,

max f(Y;0;,%, ;) =nplog|X, ;| + np(log2r + 1)

= nplog |S,;] + nplog 2m + trE, Y (L, — P))Y.

Let flg’j be the quantity minimizing the right side of (2.3). Then, in our
problem, it satisfies
~—1
tr3, S Y(L, — P;)Y = np.

We consider a general information criterion defined by

ICy.a; = —2log (Y; 0, 8y;) + dmy,
= nplog |X, ;| + np(log 2w + 1) + dm,, ;, (2.4)

where my ; is the number of independent unknown parameters under M, ;,
and d is a positive constant which may depend on n. When d = 2 and
d =logn,

1Cy2,; = AlIC,;, 1Cgi0en; = BIC, ;.

Such general information criterion was considered in a univariate regression
model by Nishii (1984).

For each of the three covariance structures, consider to select the best
model from all the models or a subset of all the models. Let F be the set of
all the candidate models, which is denoted by

{{1}, .. {k} {12}, .. {1,...  k}},

or its subfamily. Then, our model selction criterion is to select the model M;

or the subset j minimizing IC, 4 ;, which is written as
Jicga = argminIC, 4 ;. (2.5)
JjETF
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For studying consistency properties of 5ICg,d7 it is assumed that the true

model M, , is included in the full model, i.e.,
My.:Y ~N,,(X,0,,2,,®L,). (2.6)

Let us denote the minimum model including the true model by M, ; . The

true mean of Y is expresed as
X*@* - Xj* Gj*

for some k;, X p matrix ©;,. So, the notation X; ©;, is also used for the true
mean of Y. Let J separate into two sets, one is a set of overspecified models,
ie, F. ={j € TF|j. Cj} and the other is a set of underspecified models,
ie,J_=3{NJ.

Here we list some of our main assumptions:
Al (The true model): M, , € J.
A2 (The asymptotic framework): p — 0o, n — 0o, p/n — ¢ € (0, 00).

It is said that a general model selection criterion jICg,d is consistent if

i Prlices =j.) = 1.

In order to obtain 51Cg,d7 we must calcurate IC, 4 for all the subsets of
Jo=1{1,2,...,k}, ie, 2 =1 1C, 4. This will become extensive computation
as k becomes large. As a method of overcoming this weak point, we consider
EC criterion based on Zho et al. (1986) and Nishii et al. (1988). Let j;;) be
the subset of j,, omitting the ¢ (1 <i < k). Then EC, 4 is defined to select

Jec,a = {i € ju | ECyayo > ECqag, i =1,...,k}. (2.7)

In Section 6 we shall show that j’Ec% , has an consistency property.



3. IC under Independent Covariance Struc-
ture

In this section we consider the problem of selecting the regression vari-
ables in the multivariate regression model under the assumption that the
covariance matrix has an independent covariance structure. A generic can-

didate model can be expressed as
nyj Y ~ Nnxp(Xj@j7 Ev,j & In)7 (31)
where X, ; = 07 ;I, and 0, ; > 0. Then, we have

—2log f(Y;0©;,07 ;) = nplog(2m) 4+ nplog o7 ;

1
+ O_TtI'(Y — Xj@j),(Y — XJQJ)

v,J
Therefore, it is easily seen that the maximum estimators of ©; and o2 ; under

M, ; are given as

. 1
0, = (X/X,)"'X)Y, &%, = —trY'(I, - P)yY. (3.2)

v,j np
The information criterion (2.4) is given by
IC, 4 = nplog 63J +np(log 2w + 1) + d x m, ;, (3.3)

where d is a positive constant and m, ; = k;p + 1. Assume that the true

model is expressed as

My, Y ~ Ny (X0, 02 1,0 1,), (3.4)

*y Pux

and denote the minimum model including the true model M, , by M, ;.. In
general, Y'(I,—P;)Y is distributed as a nocentral Wishart distribution, more

precisely
YL, = Pj)Y ~ Wy(n -k, 5,.; (X;.0,.) (1, - P;)X;.0;,),

which implies the following Lemma.



Lemma 3.1. Under (3.4), npo; /o, is distributed as a noncentral chi-

square distribution X (n—k;) ((52 ), where
53,;‘ = (X @ )(I P])X]*GJ*
——t1(X;.0,,) (P, — P;)X;,0;,. (3.5)

When j € Fy, then, 0, ; =

For a sufficient condition for consistency of IC, ,, we assume

1
A3v:Forany j € F_, 0., =O(np),and lim —67 =n;,>0. (3.6)

p/n—c NP

Theorem 3.1. Suppose that the assumptions Al, A2 and A3v are satisfied.
Then, the information criteria 1C, 4 defined by (3.3) is consistent if d > 1
and d/n — 0.

AIC and BIC satisfy the conditions d > 1 and d/n — 0, and we have the

following result.

Corollary 3.1. Under the assumptions Al, A2 and A3v AIC and BIC are

consistent.

In the following we numerically examine the validity of our claims. The

true model was assumed as

M. Y ~ N,y (X,0,,02 1,0 L,).

*9 Mok

Here ©, : 3 X p was determined by random numbers from the uniform dis-
tribution on (1,2), i.e., i.i.d. from U(1,2). The first column of X,, : n x 10
is 1,, and the other elements are i.i.d. from U(—1,1). The true variance
was set as 037* = 2. The five candidate models M, , a = 1,2,...,5 were
considered, where j, = {1,...,a}, We studied selection percentages of the
true model for 10* replications under AIC and BIC for

(n,p) = (50,15), (100, 30), (200, 60), (50, 100), (100, 200), (200, 400)
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The results are given in Tables 4.1 and 4.2. It is seen that the true model
has been selected for all the cases except the case (n,p) = (50,15) of AIC,.

In the case (n,p) = (50, 15) of AIC,, the selection percentage is not 100, but
it is very high.

Table 3.1. Selection percentages of AIC, and BIC, for p/n = 0.3

AIC, BIC,

j | (50,15) (100,30) (200,60) | (50,15) (100,30) (200,60)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 97.3 99.9  100.0 | 100.0  100.0  100.0
4 2.4 0.1 0.0 0.0 0.0 0.0
5 0.3 0.0 0.0 0.0 0.0 0.0
> 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.2. Selection percentages of AIC, and BIC, for p/n = 2

AIC, BIC,

5 | (50,100) (100,200) (200,400) | (50,100) (100,200) (200,400)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 100.0 100.0 100.0 | 100.0 100.0 100.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
> 6 0.0 0.0 0.0 0.0 0.0 0.0

4. 1C under Uniform Covariance Structure

In this section we consider model selection criterion when the covariance

matrix has a uniform covariance structure

Sy =0u(py ") = oo{(1 = pu)L, + pul,1)}. (4.1)

The covariance structure is expressed as
=T (I G ) + -G
u 1 S 5 — ,
P P p P p
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where
T = 05(1 - pu)a Ty = 05{1 + (p - 1)pu}a Gp = ]—p]-;)a

and 1, = (1,...,1)". Noting that the matrices I, — %Gp and iGp are orthog-
onal idempotent matrices, we have
1 1 11
3| =, zj:—(I——G>+—_G.
| | 271 - 14 D P Top P

Now we consider the model M, ; given by
Mu,j . Y ~ Nnxp(Xj@j7 Eu,j & In)7 (42)

where 3, ; = 71, (I, — p7'G,) +72;p 'G,. Let H = (h;, Hy) be an orthognal

matrix where h; = p~1/21,,, and let

Let the density function of Y under M, ; denote by f(Y;®;, 11, 72;). From
(2.3) we have

g(leaTQj) = —210gH§le(Y; @j771j77'2j)

= nplog(2m) + nlog m; + n(p — 1) log 7y; + tr¥; 'U;,

where W; = diag(72j, 71 ,...,71;). Then, it can be shown that the maximum

likelihood estimators of 71; and 7o; under M, ; are given by

7A'1j = tr D1Uj = tI‘HéY/(In — Pj)YHQ,

1
n(p—1) n(p—1)
Toj = %tr D,U; = %h’lY'(In —P,)Yhy,
where Dy = diag(0,1,...,1) and Dy = diag(1,0,...,0). The number of
independent parameters under M, ; is m; = k;p + 2. Noting that ¥, is

diagonal, we can get the information criterion (2.4) given as
ICya; =n(p — 1)log 71 + nlog 7o; + np(log 2m + 1) + d(k;jp+2). (4.3)
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Assume that the true model is expressed as
My.:Y ~N,,(X,0,,3,.81,), (4.4)

where ¥, = 71, (I, — p7'G,) + 72.p"'G,, and denote the minimum model
including the true model M, , by M, ;.. In general, it holds that U; ~
W,(n —kj, ¥,; Aj), where

A; = (X;,0,H)(I, - P;)X; ©, H,

and W, = diag(To«, T14, ..., T1+). Therefore, we have the following Lemma
(see, e.g., Fujikoshi et al. (2010)).

Lemma 4.1. Under the true model (3.4), it holds that
(1) n(p— 1)7-1;1%1]- is distributed as a noncentral distribution X%p—l)(n—lcj)<6%j)7
where .
0r; = T_U"HQ(XJ* 0,,)'(I, — P;)(X,;,0;,)H,.
1%

(2) n1y,' 7oy is distributed as a noncentral distribution Xi_kj(dgj), where

1 ! !
05, = —trh{(X;,0;,) (1, — P;)(X,.0;,)h.

Tox

(3) [fj S SZH then (51]' =0 and 52j =0.
For a sufficient condition for consistency of I1C, 4, we assume
A3u: For any j € F_, 67, = O(np), 03; = O(n) and

1 1
lim —6%; =ni; >0, lim =65, =n3, >0 4.5
p/ggc np 1j 771] ) p/ggc n 27 772] ) ( )

Theorem 4.1. Suppose that the assumptions Al, A2 and A3u are satisfied.
Then, the information criteria 1C, 4 defined by (4.3) is consistent if d > 1
and d/n — 0.
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Corollary 4.1. Under the assumptions Al, A2 and A3u AIC and BIC are
consistent.

We tried a numerical experiment under the same setting as in the in-
dependence covariance structure except for covariance structure. The true
uniform covariance structure was set as the one with 057* =2, pur = 0.2.
The results are given Tables 4.1 and 4.2. In general, it seems that AIC selects
the true model even a finite setting with a high probability. However, BIC
does not always select the true model when (n,p) is small, though it has a

consistency property.

Table 4.1. Selection percentages of AIC and BIC for p/n = 0.3

AIC BIC
7 | (50,15) (100,30) (200,60) | (50,15) (100,30) (200,60)
1 0.2 0.0 00] 728 1.3 0.0
2 0.6 0.0 0.0 7.6 3.0 0.0
3 96.5 99.9 1000 | 19.6 957  100.0
4 2.4 0.1 0.0 0.0 0.0 0.0
5 0.3 0.0 0.0 0.0 0.0 0.0
> 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.2. Selection percentages of AIC and BIC for p/n = 2

AIC BIC

5 | (50,100) (100,200) (200,400) | (50,100) (100,200) (200,400)
1 0.1 0.0 0.0 100.0 9.6 0.0
2 3.1 0.0 0.0 0.0 0.4 0.0
3 96.9 100.0 100.0 0.0 0.0 100.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
> 6 0.0 0.0 0.0 0.0 0.0 0.0
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5. IC under Autoregressive Covariance Struc-
ture

In this section we consider model selection criterion when the covariance

matrix 3 has an autoregressive covariance structure
20 Ji—j
S0 = 0o (P Ni<ij<p (5.1)

Then, it is well known (see, e.g., Fujikoshi et al. (1990))

1
Sl = (@2)P(1—-p2)pt, Bl = —————(p2C, —2p,Cy + C
| | (Ua) ( pa) ) a 0_2(1 — pg) (pa 1 PaC2 + 0)7
where Co =1,
00 00 01 00
01 0 0 1 10 0 0
Ci=|:: - ], C= 3 : :
00 --- 10 00 01
00 --- 00 00 10
Now we consider the model M, ; given by
Mo Y o Niep( X505, 305 @ 1), (5.2)
where X,; = 07, (p‘;;j |). Then, from (2.3) the maximum likelihood estimate

of ®; is given by
0, = (X'X)"IX'Y,

and the maximum likelihood estimators of p,; and afw- can be obtained as

the minimization of

—2log f(Y;©u,, 02, p;) = nplog(2m) + nplog oy ; + n(p — 1) log(1 — p2 )

_l_ e
Ug,j(l - p?)

with respect to o, ; and p, ;. Therefore, the maximum likelihood estimators

+ tr(pijcl — 2pa,jc2 + Co)Y/(In — P])Y

of 02, and p,; are given (see Fujikoshi et al. (1990)) through the following

a?-j
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two equations:
n—k; 1
1) 62, = ! ——(a1;02 ; — 2a2jpaj + ao;), 5.3)
( ) 2 n p<1_pg’j)( 15Fa,j 2jFa,j 0]) (
(2) (p—Dapy,; — (p—2)azp, ; — (parj + aoj)paj +pag; =0,  (5.4)
where a;; = trC;S;, i =0,1,2, and S; = (n — k;)'Y'(I, — P;)Y. Then, the

information criterion IC, 4; can be written as

ICq,q,; =nplog (ATEJ +n(p—1)log(l — [’5(217]-) + np(log 2w + 1)
+d(kjp +2). (5.5)
Note that the maximum likelihood estimators p and o2 are expressed in terms
of apj, a1; and ag; or
bOj = tI‘C()Wj, blj = tI‘Cle, bgj = tI‘CQWj, (56)
where
Wj = (n - k‘j)Sj = Y/(In - PJ)Y (57)
Assume that the true model is expressed as
My, Y ~ Ny, (Xi0,, 2, . ®1,), (5.8)
2*(p‘;§j |), and denote the minimum model including the true
model M, by Mj, . Then,

where 3, =0

W; = Y'(I, = P;)Y ~ Wy(n — kj, 5q..; ),

where
Q; = (X,.9,,) (I, - P)X,.0,..
For relating to the noncentrality matrix €2;, we use the following three quan-
tities:
(51']‘ = tI‘CZ'Qj, 1= 0, 1, 2. (59)
As a sufficient condition for consistency, we assume
A3a: For any j € J_, the order of each element of 2; is O(n), 5%- = O(np),
and .
lim —¢& =n;; >0, i=0,1,2. 5.10
p/}zn—lm np Y 77” ! T ( )

14



Theorem 5.1. Suppose that the assumptions Al, A2 and A3a are satisfied.

Then, the information criteria 1C, 4 defined by (5.5) is consistent if d > 1
and d/n — 0.

Corollary 5.1. Under the the assumptions Al, A2 and A3a AIC and BIC

are consistent.

We tried a numerical experiment under the same setting as in the inde-
pendence covariance structure and in the uniform covariance structure except
for covariance structure. Here the true covariance structure was set as the au-
toregressive covariance structure X, , = 02,*(plf;j‘) with 07, = 2, pa. = 0.2.

The results are given Tables 5.1 and 5.2. It is seen that AIC and BIC are

selecting the true model in all the cases.

Table 5.1. Selection percentages of AIC and BIC for p/n = 0.3

AIC BIC
7 | (50,15) (100,30) (200,60) | (50,15) (100,30) (200,60)
1 0.0 0.0 0.0 0.5 0.0 0.0
2 0.0 0.0 0.0 0.1 0.0 0.0
3 97.2 99.9 1000 | 994  100.0  100.0
4 2.4 0.1 0.0 0.0 0.0 0.0
5 0.3 0.0 0.0 0.0 0.0 0.0
>6 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.2. Selection percentages of AIC and BIC for p/n = 2

AIC BIC

5 | (50,100) (100,200) (200,400) | (50,100) (100,200) (200,400)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 100.0 100.0 100.0 | 100.0 100.0 100.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
>6 0.0 0.0 0.0 0.0 0.0 0.0
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6. Consitency Properties of EC

In this section we are interested in consistency properties of three efficient
criteria EC, 4, EC, ¢4 and EC, 4 defined from I1C, 4, IC, 4 and IC, 4 through
(2.7). Note that consistency properties of 1C, 4, IC, 4 and IC, 4 are given in
Theorems 3.1, 4.1 and 5.1. Using these consitency properties it is expected
that EC, 4, EC, 4 and EC, 4 have similar consistency properties. In fact, the

following result holds.

Theorem 6.1. Suppose that the assumptions Al and A2 are satisfied. Then,
it holds that

(1) the efficient criterion EC, 4 is consistent under the assumption A3v
if d>1 and d/n — 0.

(2) the efficient criterion EC, 4 is consistent under the assumption A3u
ifd>1 and d/n — 0.

(3) the efficient criterion EC, 4 is consistent under the assumption A3a
ifd>1 and d/n — 0.

In order to examine the validity of the results and the speed of con-
vergences we tried a numerical experiment. The simulation settings are
similar to the cases of 1C, 4, IC, 4 and 1C, 4 except for that the follow-
ing points: The total number of explanatory variables to be selected was
changed to 5 from 10. The true covariance structures were set as follows for
IND(independent covariance structure), UNIF (uniform covariance structure)

and AUTO(autoregressive covariance structure):

IND :X =01, o.,=2
UNIF :S =02 (pi7), 02, =2, pu.=009.
AUTO - =02 (pl 7)), 02, =2, pa.=009.

)

Let EC5 and ECg be the efficient criterion based on AIC and BIC, re-
spectively. Selection rates of these criteria are given in Tables 6.1 ~ 6.4
for each of three covariance structures. In the tables the column of z; de-

notes the selection rate for the ¢-th explanatory variable x;. The "Under”,
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"True” and ”Over” denote the underspecified models, the true model and

the overspecified models, respectively.

Table 6.1. Selection percentages of ECy and ECg for (n,p) = (20, 10)

Under

True

Over

n=20,p=10 Ty Ty T3 T4 Ts
EC4 | IND 0.03 0.74 023|100 1.00 097 0.13 0.12
UNIF 036 047 0.17]1.00 083 0.73 0.14 0.12
AUTO 040 044 0.17]1.00 0.84 0.68 0.14 0.13
ECg | IND 0.21 077 0.02|1.00 1.00 0.79 0.01 0.01
UNIF 0.78 0.22 0.01|1.00 050 0.37 0.01 0.01
AUTO 0.81 0.18 0.01|1.00 049 0.30 0.01 o0.01

Table 6.2. Selection percentages of ECx

and ECg for (n,p) = (200, 100)

n = 200,p =100 | Under True Over 1 To T3 T4 T
ECA | IND 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00
UNIF 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00|1.00 1.00 1.00 0.00 0.00
ECg | IND 0.00 1.00 0.00|1.00 1.00 1.00 0.00 0.00
UNIF 0.00 1.00 0.00|1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00|1.00 1.00 1.00 0.00 0.00

Table 6.3. Selection percentages of EC, and ECg for (n,p) = (10, 20)

n=10,p =20 | Under True Over |j=1 j=2 j=3 j=4 j=5
EC, | IND 0.07 041 053] 1.00 1.00 094 037 0.34
UNIF 0.47 0.15 038 097 085 062 039 0.35
AUTO 0.47 0.15 038 | 095 081 065 037 0.35
ECg | IND 0.15 054 031 1.00 099 086 020 0.19
UNIF 0.68 0.15 0.17| 093 0.70 043 020 0.20
AUTO 0.71 0.13 0.15| 0.87 0.63 046 020 0.20
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Table 6.4. Selection percentages of ECy and ECg for (n,p) = (100, 200)

n =100,p =200 | Under True Over |j=1 j=2 j=3 j=4 j5j=5
EC, | IND 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00
UNIF 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00
ECg | IND 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00
UNIF 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00
AUTO 0.00 1.00 0.00| 1.00 1.00 1.00 0.00 0.00

7. Selection of Covariance Structures

In this section we consider high-dimensional properties of AIC and BIC
for selection of covariance structures. The covariance structures considered
are (1) IND(independent covariance structure), (2) UNIF (uniform covariance
structure), (3) AUTO(autoregressive covariance structure), (4) NOST(no co-
variance structure). For the first three covariance structures, we use the same
notation as in Sections 3, 4 and 5. The covariance matrix under NOST is
denoted by X,, ;. When E(Y) = X;0,, AIC criteria for these four models

are expressed as

A, =nplog ol + np(log 2m + 1) + 2(jp + 1),
A, ; =nlog 7y +n(p —1)log7i; + np(log2m + 1) + 2(jp + 2),
A, ; =nplog 62j +n(p—1)log(l — ﬁij) + np(log2m + 1) 4+ 2(jp + 2),

N ) 1
A, ; = nlog |3;| + np(log2m + 1) + 2 {Jp+ 519(19 + 1)} ,

The expressions for &%, T1j, T2j5 6Zj and p?lj are given in Sections 3, 4 and 5.
The BIC are defined from AIC by replacing ”2” in the ”2x the number of
independent parameters” to "logn”.

In order to see high-dimensional behaviors of AIC and BIC, simulation

experiments were done. For multivariate regression models, we selected



The multivariate regression model was set by the same way as in Sections 3,
4 and 5. For the first covariance structure, 02 = 2. For the second and third
covariance structures,

o?=2, p=009.

For no-strctured case, the true covariance matrix 3, = (0;;) was set as
follows:
1—1
0'1'7;:0'2(14—3 )7 izlu"'7p7
p—1

The other elements of 3, = (0;;) are i.i.d. from U(0.3, 0.9).

The simulation results are given in Table 7.1.

Table 7.1. Selection rates of AIC for the four covariance structures

n =20, p=10 n = 200, p = 100
TRUE | IND UNIF AUTO NOST |IND UNIF AUTO NOST
IND 0.45 0.13 0.14 0.29 | 0.71 0.14 0.14 0.00
UNIF | 0.00 0.69 0.00 0.31 | 0.00 1.00 0.00 0.00
AUTO | 0.00  0.00 0.69 0.31 | 0.00 0.00 1.00 0.00
NOST | 0.03 0.21 0.04 0.72 | 0.00  0.00 0.00 1.00

It is seen that though it is difficult to select IND covariance structure
correctively, but the other three model will be correctly selected. IND co-
variance structure can be seen as a limit of UNIF and AUTO covariance
matrices. So, it seems that it is difficult to select IND covariance structure
correctively. On the other hand, we consider another independent covariance
structure with different variances given by

Y = diag(o?,...,02)

’TPp

whose structure is expressed as DIAG. The AIC is given by

p
AICs; =n Y log 67 + np(log 2 + 1) + 2(jp + p),

=1

where 67 = 1e/W;e;, W; = Y'(I, — P;)Y, and e; is the p component

vector with ¢-th component 1 and other components zero. In our simulation
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experiment, the variances were defined by
i—1
01-2—02(1—1—3 ), 1=1,...,p,

where 02 = 2. The simulation result is given in Table 7.2.

Table 7.2. Selection rates of AIC for the five covariance structures
n=20,p=10

TRUE | IND UNIF AUTO NOST DIAG

IND 0.40 0.12 0.11 0.28 0.09

UNIF | 0.00 0.68 0.00 0.32 0.00

AUTO | 0.00 0.00 0.68 0.32 0.00

NOST | 0.01 0.15 0.01 0.59 0.23

DIAG | 0.06 0.02 0.03 0.39 0.50

n = 200, p = 100
TRUE | IND UNIF AUTO NOST DIAG
IND | 0.71 0.4 0.4 000  0.00
UNIF |0.00 100 000 000 0.0
AUTO | 0.00  0.00  1.00 0.00  0.00
NOST | 0.00 0.00 0.0 1.00 0.00
DIAG | 0.00 0.00 000 0.00 1.00

It is seen that AIC is consistent for selection of the five covariance structures
in high-dimensional situation.

Similar experiments were done for BIC. The result for selection of the five
covariance structures is given in Table 7.3. It seems that BIC coverges more
firstly to the true model than AIC, except for NOST. BIC chooses UNIF
when the true is NOST. This will come from that our setting for NOST will
be near UNIF.
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Table 7.3 Selection rates of BIC for the four covariance strucures
n =20, p=10

TRUE | IND UNIF AUTO NOST DIAG

IND 0.75 0.12 0.11 0.00 0.02

UNIF | 0.00 1.00 0.00 0.00 0.00

AUTO | 0.00 0.00 1.00 0.00 0.00

NOST | 0.08 0.52 0.06 0.03 0.32

DIAG | 0.34  0.07 0.07 0.01 0.51

n = 200, p = 100
TRUE | IND UNIF AUTO NOST DIAG
IND |096 002 002 000 0.0
UNIF |0.00 100  0.00 000 0.00
AUTO | 0.00  0.00  1.00 0.0  0.00
NOST | 0.00 1.00 0.0 0.0  0.00
DIAG | 0.00 0.00  0.00 0.00 1.00

8. Concluding Remarks

In this paper, firstly we consider to select regression variables in p variate
regression model with one of three covariance structures; (1) IND(independent
covariance structure), (2) UNIF(uniform covariance structure), (3) AUTO
(autoregressive covariance structure). As a selection method, a general infor-
mation IC, ; was considered for each of three covariance structures, where d
is a positive constant and may depend on the sample size n. When d = 2 and
logn, IC, 4 becomes to AIC and BIC, respectively. Under a high-dimensional
asymptotic framework p/n — ¢ € (0,00), it was shown that IC,,; with
g = v,u or a is consistent under the assumption of A3g if d/n — 0 and
d > 1. Further, in order to avoid a computational problem of IC, 4, we study
EC, 4. It was pointed that EC, 4 has a consistency property similar to IC, 4.
The result was obtained by assuming normality. It is left to extend the result

to the case of non-normality.
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Next, under multivariate regression model, we examined to select covari-
ance structures. The covariance structures picked up are (4) NOST (no covari-
ance structure) and (5) IND (independent covariance structure), in addition
to the three covariance structures (1), (2) and (3). Two criteria AIC and
BIC were examined through a simulation experiment in a high-dimensional
setting, It was seen that (i) the four covariance structures except IND can be
selected correctly by using AIC, (ii) BIC converges to the true model more
firstly than AIC, except for IND. The proofs of theoretical results on these

properties will be given in a future work.

Appendix: The Proofs of Theorems 3.1, 4.1
and 5.1

A1l. Outline of Our Proofs and Preliminary Lemma

First we explain an outline of our proof. In general, let I be a finite set of
candidate models j(or ;). Assume that j, is the minimum model including
the true model and j, € F. Let T;(n) be a general criterion for model j,
which depends on parameters p and n. The best model chosen by minimizing
T;(p,n) is written as j’T(p, n) = argmines T;(p,n). Suppose that we are
interested in asymptotic behavior of jr(p,n) when p/n tends to ¢ > 0. In
order to show a consistency of T;(p,n), we may check a sufficient condition

such that for any j # j. € F, there exists a sequence {a,,} with a,, > 0,
Up,n {Tj(p7 n) - Tj* (pv TL)} = bj > 0.
In fact, the condition implies that for any j # j, € &,

P(jr(p,n) = j) < P(Ty(p,n) < Tj,(p,n)) —= 0,
and

P(jr(p,n) =j.) =1—= > P(r(p,n) =j) = L.
JFIET
For the proofs of Theorems 3.1, 4.1 and 5.1, we use the following Lemma

frequently.
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Lemma A1l. Suppose that a pxp symmetric random matrix W is distributed
as a noncentaral Wishart distribution W,(n—Fk,3;€2). Let A be a given pxp
symmetric matrixz. We consider asymptotic behavior of tr AW when p and n
are large as in the way such that p/n — ¢ € (0,00), where k is fived. Suppose
that

1 1
lim —trAY = a®> > 0, lim —trAQ =n* > 0. (A.1)
p np

Then, it holds that
1
Ty = —trAW 2 a2 + 72, (A.2)
np

Proof. Let m =n — k. We may write W as
W =32 (22 4+ 2,20 ) B2

where z; ~ N,(¢;,1,), ¢ = 1,...,m and z;’s are independent. Here, Q =
popy + o+ e and ¢ = > Y24, i =1,...,m. Note that trAW is

expressed as a quadratic form of z = (2,,..., 2,,)" as follows:
trAW = 2'Bz,

where B = I, ® XY2AXY2. Note that z ~ N,p(¢, Lnp), where ¢ =
(¢y,---,¢,). Then, it is known (see, e.g., Gupta ) that for any symmet-

m

ric matrix B,

E[z'Bz] = trB + ¢'B¢,
Var(z'Bz) = 2trB? + 4¢'B*¢.

Especially, when B = I, ® ZY2A2Y2 we have

E[z'Bz] = mtrAY + trAQ,
Var(z'Bz) = 2mtr (AX)* 4 4trASAQ.

Under the assumption (A.1), we have

1
B(Tpn) = —trAS + —trAQ
np np

— a2+n2.

23



Further,

Var(T),) = éTm)Ztr(Az)Q +
2m
(np)?

— 0.

trAXAQ

(np)?

< (trAX)? + trAStrAQ

(np)?

These imply our conclution. O

In a special case A = I, and ¥ = 021, the assumptions in (A.1) become

to

1 1
lim —trAY = lim —po? = o2,
p

D
1 1
lim —trAQ = lim —trQ 5 »?.
np np
The conclusion is that
1
Tpn = —trW 5 2(1 + 62), (A.3)
np
where 6% = (1/0%)n*. Note that (1/0®)trW ~ x7, ;) (6?). This implies that

1 2 2
;tI‘W ~ X(nik)p(5 )
Therefore, under a high-dimensional asymptotic framework p/n — ¢ €

(07 00)7

1, »
— §%) 5 1+n° A4
if (np)~16% — n%. More generally, we use the following result.
1
n_pX?n—k)(p—h)((SQ) L1407, (A.5)

if (np)~16% — 1% where k and h are constants or more generally, they may
be the constants satisfying k/n — 0 and h/n — 0. Further, we use the

following property for noncentral y?-square distribution.

1
L) B, (4.6)

if n716% — n?.
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A2. The Proof of Theorem 3.1
Using (3.3) we can write

ICya; —ICy a4 =nplogd,; —nplogas; + d(k; — kj, )p.

Lemma 3.1 shows that

np . 1
pf’? ~ Xinipp(07);, 0 = ptr(Xj* 0,.) (I, - P;)(X,.©;,).

In particular,
np o
o2 T X(n kj.)p*

First, consider the case j D j,. Under the assumption A3v,

1 np, 52 (n—kj)p 1 1,

— —6c 51
np o2 % np  (n—kj)po? UJ + 77]7
]'np 2 _(n_k]*)p 1 ]‘AQ &1
—2%. = o2 i
np o np  (n—kj)po
Therefor
1
n_p (IC%!]J - ICv,g,j*) = log 5? — log &32‘* + (kj k]*)
1 np_, 1 np , d
:10g (n_pﬁo-j) —log (n—pﬁaj* +ﬁ(kj_kj*>

2 log(1 +77j) +log1+0 =log(1 —I—?ﬁ) > 0,

when g/n — 0.
Next, consider the case 7 D j,.. Then

52
IC, 4 — IC, 4. = nplog - po 2L 4 d(k; — kj,)p.
0y Jx
Further,
3 ~ log trY'(I, — P,)Y
~9 7
I trY' (I, — P;,)Y

— _log (1 + t?g,(( *)> >

2
X ko
= —log (1 + Sk k“”’) :
X(n—k;)p
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Using the fact that x2 /m — 1 as m — oo, we have

52 R S ki —k;)p
nlog Aag = —nlog{ 1+ (ks = k) (k; kj*)p/(( i = kip) — —1,

and hence

1 &2

_{IC’Udj - ICvdj*} = nlog A] +2(kj - kj*)

p o o 03,

5 —(kj — ki) +d(k; — kj.) = (d = 1)(k; — k;,) > 0,

ifd > 1.

A3. The Proof of Theorem 4.1

Using (4.3) we can write

ICya; —1Cua;. = n(p — 1)(log 77; — log 77;.)
+ n(log %22]- —log %QQJ-*) + d(k; — k;,)p.

Lemma 4.1 shows that for a general j C w,

”pTﬂlﬁj ~ X%pfl)(nfkj)<5%j)7 (A7)
75, oj ~ Xk, (03)), (A.8)

where

1
&5, = T_l*trHIQ(Xj* ®,,) (I, — P;)(X,.©;,)Hy,

1
53]’ = trh,l(Xj* G)j*),(]:n - P])<XJ* @j*)hl.

Tox

Note thta if 7 D j,, d1; = 0 and d9; = 0.
First consider the case j C j.. Then, using (A.5) and (A.7), we have

. 2 2
T1j X(n—k;) (513')

=L = AR 5140
. X(n—kj,)p
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Similarly, using (A.6) and (A.8), we have

. 2 2
Toj  X(n—k;j) (63;)

- ] = — P N
T2j X(n—kj,)p

These results imply the following:

n—lp(ICu,d,j —ICya4.) = n(pn—pl) log(71;/715.)
+ 1105:’?(?23'/?23;) + g(kj —kj.)
p n
— log(1+n;,) >0

if d/n — 0.
Next, consider the case j D j,. Then
7A'1j 1 trHéY'(In — PJ)YHQ
=lo
fy. P wHLY'(L, — P, )YH,
trtHLY' (P, — P, )YH
- _ log 1 + r 2, /( J ]*) 2
trHyY'(I, — P;)YH,

2
X(n—kj)(p-1) =Ry

log

Similarly

Py oy 1Y/ (L= P))Yh,
7A'2j* 'UhllY/(In — PJ*>Yh/1
K.Y (P, — P, )Yh,
— _1 1 1 J Jx
o8 ( TRy T, - P, Y >

2
Xie;—k, ki — k;
= —log <1+%> ~ T N

n—=k; n-— k:j

log

These results imply the following:

1
Z_Q(Icu,d,j —1Cyay,) = —(k; — kj,) +d(k; — kj.)

= (d=1)(kj = k;,) >0,
if d > 1. Combining these to the result in the case j C j,, we get Therem
4.1.
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A4. The Proof of Theorem 5.1

2

In this section, for notational simplification, we put X, o7, and p, . into

3, 02 and p, respectively. Using (5.5) we can write
1Coa5 —1Caa, = np log(éi,j/&g,j*)
+n(p = Dlog {(1 = pz,;)/(1 = p5,,)} + d(k; — kj.)p.

Further, using (5.3), the above expression can be expressed as

ICa,4;~1Ca,a;5. = nplog {(n — k;)/(n — k;.)} —nlog {(1 - 47)/(1 - 4;,)}
+nplog { (a0 — 2a9;p; + ao;) /(a1 05, — 2as;.pj. + ao.)}
+ d(k; — k;.)p. (A.9)
Here, the maximum likelihood estimators 6]2- and p; are defined in terms of

Q5 = tI'CiSj, 1= O, 17 2,
(n—k;)S; =W; =Y'(I, = P;)Y ~ Wy(n — j, 5; Q).

For the definition of C; and €2, see Section 5. We also use the notation

bz’j = tI'Cz'Wj, 1= 0, 1, 2,
Wj = (n — ]Cj)Sj = Y/(In — P])Y ~ Wp(n — ]{Zj, 2, Q])

First, consider the case j C j,. Under the assumption A3a, it is possible
to get asymptotic behavior of a;; and b;; which is given in lator. It is shown
that

~ Q2; _
pi=—+0,0p7),
alj

and more precisely

. as; 1 as(aga, — a? B
Pj:ﬁ‘i‘—{—al( 2(apa; — a3) }-I—Op(p 2).

ay; P ay — az)(ay + as)

These imply that
~2 agj —1
log(1—p5) =log |1 — =) +O0,(p ),
2

log(a1;p% — 2as;p; + ag;) = log (ao- — aﬁ) +O,(p7 ).
iPj W j j a; P
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The above expansions hold also for j = j,. Substituting these results to

(A.9) and noting b;; = (n — k;)a;;, we have
1
n—p(ICa,d,j —1Caa,.)
1 b3, b2,
= ——<log (1 - —J> — log ( — —j)} (A.10)
p { bt 0.

b2, b3, d
- frog (b= 2 ) —t0g (. = 32 ) b+ 00 = k) + 0,072

15 blj*

Using Lemma A1, under the assumption A3a we have

1 n—k; 1 1 P

b — J bo; 2 o2+ nt, ~trCyX = 0% = o2,

- 0 O g 0; 0" =+ 1oy pr 0 pa o

1 n—ki 1 1 p—2

—by; = : by 5ol 42, —t1CX ="—"02 = 07
np n (n—kj)p " oy pot p 7

1 — k. 1 1 —1

—by; = L boj = 0°p+ g5y, ~t1CyX = E—o?— 0.
np n  (n—kj)p P

Asymptotic behaviors for b;;, are obtained from the ones by putting 7;;, = 0.
These imply that

1
n_p(ICa,d,j —1Cua;.)

(0%p +m3;)°

—logo?(1 — p?),
02+n%j) go (1-p7)

% log (02 + ngj -

if d/n — 0. Now we show

Note that
nip(trCOQj — trC1 Q)
— niptr(co —C));
- nip(the sum of (1,1) and (p,p) elements of £2;) — 0,
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which implies 7g; = 77;. Using this equality, we can express

(Uzp 7]%')2
1 2 2 0 ) 2(1 — p?
og (a + 1, = 77%]- ogo (1 —p?)

2 2 2 2 2

Mo Noj — Tl2; Mo + 125
=1 14+ — 1 14+ — 1 14+ —=").
Og( +0—2)+ °g< +02<1—p>>+ Og( +a2<1+p>)

The first and the third terms are positive. The quantity 77(2)]- — 775]- in the

second term can be expressed as the limit of

1 1
n—p(trCOQj — tI'CQQj> = n—ptr(Co — Cg)ﬂj.

Here, the matrix Cy — C, is expressed as

I 0 0
1
-5 1 0
Cyo—GC, = ’
0 0 1 —%
0 0 -3 1
and
.’.UI(CO — CQ).’B
:If—$1$2+$§—$2I3+l‘§+~-+x12,,1 —:cp_la:erxf,
1
= 5 ZE%+($1—:L‘2)2+'~~+($p_1—xp)2+x§} > 0,
except for the case x; = - -+ = x,. Therefore, the second term is nonnegative,

and (IC, 4; — 1C, 4. )/(np) converges to a positive constant if d/n — 0.
Next, consider the case j D j,. From (A.10) we have

1
p (ICa4; — ICqa;.)

n b3 b2,
= ——<qlog (1——J) — log (1— I
p { bi; bi;.

b2, b3
+n {log (bOj — bﬁ) — log (b()j* - bjj*> } + d(k] - k]*) + Op(p_l)'
J*

1y




Then, it is easely seen that

i b B
— < log ( — —7) — log (1 e
p { b%j bi;.

5~ {log(1 = p?) — log(1 = p*) } = 0.

Note that

b3, b3;.
n log b()j — E — IOg bOj* — bl‘
J Jx*

= n {—(log by; — log by}, ) + log(bojbr; — b3;) — log(boj,br;, — b3,,)}

Further, we use the following relation between b;; and b;;,:

bij = tI‘CZY,<In — P])Y
= bij. = bij.,
where bij+ = tl"CiY/(Pj — Pj*)Y. Since Y,(Pj — Pj*)Y ~ Wp(l{?j - k}j*, 2), it
holds that
1 1 1
(kj = kj.)p (kj = kj.)p (kj = kj.)p

Therefore, noting that b;;, = O,(np) and b;;, = Op(p). we have

D, 2 D, 2 D, 2
bonr—)O', b1j+—>0', b2j+—>0'p.

n(log blj — log blj*) = nlog (1 - b1j+bl_j£) ~ _nblﬂbl_ji’

and hence

n(logby; —logby;,) = —(kj — kj.)-

Consider
f = n{log(bo;br; — b3;) — log(boj.brj. — b3;.)}-

Sustituting b;; = by;, — by, to the above expression, we have

f=mnlog(l —h) ~ —nh,
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where

5~ (Boj. — by, )
(brj. — brj,)

Considering the limiting values of each terms in h, we have

(bos.bj, + b1 boj, — 202;,bs5, — bos, boj, + b3;,)

25+

oo (ki —k) (R —ky) (k=K )p
= =) -, T a-p T
= —2(k; — k).

Summerizing the above results, for j D 7,

(ICq4,a; —ICqa,.)

= (k= kj) = 2(k; = ky,) + d(ky — k) = (d = 1)(k; — kz,) >0,

=l

if d > 1. This completes the proof.

A5. The Proof of Theorem 6.1

For a notational simplicity, we denote IC,4; by IC(j). Note that j, =
{1,2,...,k} and k is finite. Without loss of generality, we may assume that
the true model is j, = {1,...,b} and b = k;,. Under the assumption Al,
A2 and A3-1~3, it was shown that our information criterion jjc has a high-
dimensiona consistency property. The consitency property was shown by
proving that
(1) for j € F_,

—IC() ~1C(G)) %y > 0. (A12)

and
(2) for j € I and j # j.,

L {10G) ~ 106G} % (4= 1)k~ k) > 0 (A13)

where d > 1, my; = np and my = p.
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From the definition of our efficient criterion jgc, we have

P(jep = js)
= P(IC(j)) —1C() > 0, ..., IC(jp) —1C(j) > 0,
Ic(j(b-i-l) - IC(JM) <0, ... IC(](k)) - IC(]w) < O)
- P(ﬂacm)) —1C() > 0)N [ (C(j) ~1C () < 0>>,

which can be expressed as

b k
- P(Uaco@) S1CG) <0) U | (CGw) — ICG) > 0>)
=1 1=b+1

>1-Y P(IC(jw) - IC(j,) < 0) = > P(IC(ju) — IC(j,) > 0)

i=1 j=b+1

—1— Z{l — P(IC(ju) — IC(jw) > 0)}

- Z {1 = P(IC(j) — IC(Jw) < 0)}.

J=b+1

Therefore, we have

P(jep = j.) 21 =Y {1 - P(IC(ju) — IC(j.) > 0)}

i€

— Y {1-P(IC(ju) - IC(j.) < 0)}. (A.14)

€50/ jx

Now, consider to evaluate the following probabilities:

1€ Jx, P(Ic<j(i)) - IC(jw) > 0)7
1€ jw/j*> P(Ic(j(i)) - IC(jw) < 0)'

When i € j,, ju) € -, and hence, using (A.12), it holds that

L 1) — 106.) = milacu(i)) _1C() - milacm ~1C())

my
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When @ € ji,/j, ju) € T4 and hence, using (A.13), it holds that

L (1C(w) ~ 1C0L) = —(1C(w) - 1CG) — —(1C(.) — 1C(.))

L d=1)(k—1-b)—(d—1)(k—b)=—(d—1) <0.

These results imply that

i € Ji, lim P(IC(j)) —IC(j,) > 0) =1,
i € Ju/ds, 1limP(IC(ju) —1C(j,) < 0) = 1.

Using the above results, we can see that the right-hand side of (A.14) tends

’ 1—{2{1—1“ 2{1—1}]:1,

JETx JETk/ I

and P(jgp = j.) — 1. This completes the proof of Theorem 6.1.
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