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Abstract

The method of robust parameter estimation for location and scale parameter in the
skew normal distribution which is the typical asymmetric distribution is proposed. One
of the method of rejection of outliers is the use of heavy tailed distributions in the sense of
the regularly varying functions (e.g., Student t-distribution). In this paper, we proposed
the mixture distribution of the skew-normal and log-regularly varying functions which
tail is heavier than that of regularly varying function, and consider the joint estimation
for location and scale parameters in the presence of outliers. In simulation studies, we
show the behaviors of the maximum likelihood estimators based on our proposal method
for large outlier and also compare the mean square error with other competitors.

Keywords: Heavy tailed distribution; Location and scale parameters; Log-regularly varying
functions; Outliers; Robustness; Skew-normal distribution.

1 Introduction

It has been important to construct the robust posterior distribution and likelihood function
against outliers for the estimation of location and scale parameters in both Bayesian and fre-
quentist contexts. In general, if we assume the symmetric probability distribution, we often
use sample mean and standard deviation for the estimators of location and scale parame-
ters, respectively. However, these estimators is affected the influence of outliers for light
tailed probability or asymmetric distributions. To overcome this problem, we often use the
sample median as an estimator for location parameter. Unfortunately, it is known that it
does not work well if outliers concentrate in one-sided tails. On the other hand, assuming
the heavy tailed model (e.g., Student t-distribution) is one of the method of robust parameter
estimation for location and scale parameters. A research of Bayesian robustness based on the
heavy-tailed distributions is at least dates back to Dawid (1973) and has been developed by
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many authors (Andrade and O’Hagan, 2006, 2011; O’Hagan and Pericchi, 2012; Andrade et
al., 2013; Desgagné, 2013, 2015). However, these method also has serious problem. Though
the influence of outliers of estimator for location parameter is completely removed, that of
estimator for scale parameter can not be removed completely (we called it partial robustness)
(see e.g., Andrade and O’Hagan, 2006, 2011; Andrade et al., 2013). It is well-known that the
regularly varying function is a measure of the heaviness of the distribution and it often ap-
pears in probability theory and extreme value theory (Bingham et al., 1987; Resnick, 1987).
From this measure, Student t-distribution is heavy tailed in the sense of regularly varying. In
this paper, we deal with the heavy-tailed distribution in the sense of the log-regularly vary-
ing function. It is known that the log-regularly varying function has heavier tails than that
of the regularly varying one (Desgagné (2015)). The distribution which have log-regularly
varying tails is also called super-heavy-tailed in some contexts. For example, we note that the
Log-Pareto function which is proportional to |x|(log |x|)−β (β > 1) is log-regularly varying.

Recently, Desgagné (2015) consider the robust parameter estimation based on the log-
regularly varying function, and show the sufficient condition to obtain whole robustness
against outliers for estimation of location and scale parameters. Further, the symmetric dis-
tribution which have the log-regularly varying tails is also constructed. Though they con-
sider the estimation in Bayesian framework, the maximum a posteriori (MAP) estimator
under the uniform prior is equivalent to the maximum likelihood estimator (MLE). Hence,
we note that their result involves the result of the MLE. Robust Bayes estimations based on
the log-regularly varying function are also studied by Gagnon et al. (2016) and Desgagné
and Gagnon (2016) in linear regression setting.

In this paper, we try to extend the symmetric distribution proposed by Desgagné (2015)
to the asymmetric one. In fact, we propose the methods which can be robust estimation for
location and scale parameters in the skew normal distribution which is typical asymmetric
distribution proposed by Azzalini (1985). This paper is organized as follows: In section
2, we introduce the measures of heaviness of the tails of distribution, and some previous
results given by Desgagné (2015). In section 3, a new skew probability distribution (which
is robust against outliers) is proposed and some technical issues are discussed. In section 4,
it is shown that the MLEs for location and scale parameters based on our proposal model is
good robustness properties through some simulation studies.

2 Robust parameter estimation based on the log-regularly varying
functions

First, we introduce the measures which characterize the heaviness of the tail of distributions.
The following regularly varying function is well-known as a measure of the heaviness of the
tails (see e.g., Resnick, 1987).

Definition 2.1 (Regular variation). The positive valued measurable function f on [x0, ∞) (x0 ∈ R)
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is regularly varying at ∞ with index ρ (∈ R), written f ∈ Rρ(∞), if for all λ > 0 it holds

f (λx)
f (x)

→ λρ (x → ∞).

For example, Student t-distribution is called heavy tailed distribution in the sense of
regularly varying. Next, we define log-regularly varying function which characterizes the
heavier tails than regularly varying one like Student t-distribution.

Definition 2.2 (Log-regular variation). The positive valued measurable function f on [x0, ∞) (x0 ∈
R) is log-regularly varying at ∞ with index ρ (∈ R), written f ∈ Lρ(∞), if for all ν > 0 it holds

g(xν)

g(x)
→ ν−ρ (x → ∞).

We note that it is easy to show that g ∈ Lρ(∞) is equivalent to f ∈ R−ρ(∞) if we put
f (x) = g(ex), that is, g(x) = f (log x).

Next, we introduce the setting of statistical model and some results of Desgagé (2015).
Let X1, . . . , Xn be random variables conditonally independent given µ and σ with their con-
ditional densities given by (1/σ) f ((xi − µ)/σ) (µ ∈ R, σ > 0). We put Xn = (X1, . . . , Xn)

and let its realized values xn = (x1, . . . , xn). Let π(µ, σ) be joint prior density of (µ, σ) and
we assume that σπ(µ, σ) < ∞. Then the posterior distribution of (µ, σ) given Xn is given by

π(µ, σ|xn) = [m(xn)]
−1π(µ, σ)

n

∏
i=1

1
σ

f
(

xi − µ

σ

)
,

where m(x) is the marginal density of X given by

m(xn) =
∫ ∫

π(µ, σ)
n

∏
i=1

1
σ

f
(

xi − µ

σ

)
dµdσ.

In this paper, we consider the joint estimation problem for µ and σ in the presence of outliers
in data xn. For i = 1, . . . , n, we define three binary functions ki, li and ri as follows:

ki =

{
1 if xi is a nonoutlying

0 otherwise
, li =

{
1 if xi is a left outlier

0 otherwise
,

ri =

{
1 if xi is a right outlier

0 otherwise
.

Then for each i = 1, . . . , n, we have ki + li + ri = 1 and we put ∑n
i=1 ki =: k, ∑n

i=1 li =: l and
∑n

i=1 ri =: r. Now, there are k = n− r− l non-outliers and let xk be nonoutlying observations.
We can write xi = ai + biω (i = 1, . . . , n) for i = 1, . . . , n, where ai and bi are some constant
such that ai ∈ R and

bi = 0 (ki = 1), bi < 0 (li = 1), bi > 0 (ri = 1),
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and we consider the asymptotic behavior when ω → ∞. Recently, the sufficient condition to
whole robustness against outliers was shown by Desgagné (2015).

Theorem 2.1 (Desgagné, 2015). Under some regularity conditions, we assume that (i) x f (x) ∈
Lρ(∞) and (ii) k > max(l, r). Then we have the following:

(a) lim
ω→∞

m(xn)

∏n
i=1[ f (xi)]li+ri

= m(xk),

(b) lim
ω→∞

π(µ, σ|xn) = π(µ, σ|xk) uniformly on µ and σ,

(c) lim
ω→∞

∫ ∞

0

∫ ∞

−∞
|π(µ, σ|xn)− π(µ, σ|xk)| dµdσ = 0,

(d) µ, σ|xn
d→ µσ|xk, µ|xn

d→ µ|xk, σ|xn
d→ σ|xk (ω → ∞),

(e) lim
ω→∞

L(µ, σ|xn) = L(µ, σ|xk) uniformly on µ and σ,

where

π(µ, σ|xk) = [m(xk)]
−1π(µ, σ)

n

∏
i=1

[
1
σ

f
(

xi − µ

σ

)]ki

,

m(xk) =
∫ ∫

π(µ, σ)
n

∏
i=1

[
1
σ

f
(

xi − µ

σ

)]ki

dµdσ

and L(µ, σ|xn) is the likelihood function of (µ, σ).

This theorem means that the marginal density, joint posterior density, marginal posterior
density and likelihood function does not be affected by outliers ω for large ω. The condi-
tion (i) means that tails of underlying distribution are log-regularly varying and (ii) means
that the number of non-outlying observations is larger than max(l, r). Further, Desgagné
(2015) constructed the symmetric distribution with log-regularly varying tails as a mixture
of the symmetric density and log-Pareto-tailed functions. A random variable X have the
log-Pareto-tailed symmetric distribution if the density function is given by

f (x|ϕ, α, β) = K(ϕ,α,β)

{
g(x|ϕ)1[−α,α](x) + g(α|ϕ)

α

|x|

(
log α

log |x|

)β

1(α,∞)(|x|)
}

, (2.1)

where z ∈ R, α > 1 and β > 1. Here, 1A(·) is an indicator function which is defined by
IA(x) = 1 (x ∈ A); = 0 (x /∈ A), and g(·|ϕ) is any symmetric at origin and continuous
function on [−α, α] with vector parameter ϕ ∈ Θ. In the case of location-scale family, we
often consider ϕ = (µ, σ) ∈ Θ ⊂ R × R>0. The normalized constant Kϕ,α,β is given by

Kϕ,α,β =
β − 1

(2G(α|ϕ)− 1)(β − 1) + 2g(α|ϕ)α log α
,

where G(α|ϕ) =
∫ α
−∞ g(u|ϕ)du.
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3 Construction of Log-Pareto-tailed skew-normal distribution

In this section, we extend the symmetric mixture distribution (2.1) constructed by Desgagné
(2015) to asymmetric case. In particular, we construct Log-Pareto-tailed skew-normal distri-
bution.

The most popular asymmetric family of distributions is skew family and its probability
density function is defined by

f (x) = 2 f0(x)G0(w(x)), (3.1)

where we assume that the functions f0(·), G0(· · · ) and w(·) satisfy the conditions f0(−x) =
f0(x), G0(−y) = 1 − G0(y) and w(−x) = −w(x), respectively. It is known that the skew
family (3.1) has some good properties by putting w(x) = λx (λ ∈ R) (Azzalini, 2014)). Now,
let φ(x) and Φ(x) be the density function and distribution function of N(0, 1), respectively.
By putting f0(x) = φ(x), G0(x) = Φ(x), and w(x) = λx, we have

φ(x; λ) = 2φ(x)Φ(λx), (3.2)

where λ ∈ R is called the skew parameter which is a measure of skewness of distributions.
The distribution with the density (3.2) is called the skew-normal distribution (written by
SN(0, 1, 3)) and have been widely used in application in recent years. We note that if we put
λ = 0 in (3.2), φ(x; 0) = φ(x) is the density function of the standard normal distribution.
This means that the skew-normal distribution involve the (symmetric) normal distribution
as a special case. Further, we also note that the density (3.2) corresponds to the density of the
half-normal distribution as λ → ∞.

It is not easy to construct Log-Pareto-tailed asymmetric distribution based on (3.1), so we
construct Log-Pareto-tailed skew normal distribution in this paper. Hereafter, we assume
that the skew parameter λ is known and we focus on the estimation for location and scale
parameters in this paper.

Definition 3.1 (Log-Pareto-tailed skew normal distribution). Let λ > 0. A random variable X
have the Log-Pareto-tailed skew normal (LPT-SN) distribution if the density function is given by

f (x|λ, α1, α2, β)

= C(λ,α1,α2,β)

{
φ(x; λ)1[−α1,α2](x) + φ(−α1; λ)

1 + α1

|1 − x|

(
log(1 + α1)

log |1 − x|

)β

1(−∞,−α1)(x)

+ φ(α2; λ)
α2

|x|

(
log α2

log |x|

)β

1(α2,∞)(x)
}

, (3.3)

where x ∈ R, λ > 0, 0 < α1 < 1.96, α2 > 1.96 and β > 1, and the normalized constant C(λ,α1,α2,β)

can be given by the following analytical form

C(λ,α1,α2,β) =

{ ∫ [
φ(x; λ)1[−α1,α2](x) + φ(−α1; λ)

1 + α1

|1 − x|

(
log(1 + α1)

log |1 − x|

)β

1(−∞,−α1)(x)

5



−2.0 −1.5 −1.0 −0.5 0.0

0.
00

0.
02

0.
04

0.
06

0.
08

Left tail

x

D
en

si
ty

LPT−SN

SN

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.

00
0.

02
0.

04
0.

06
0.

08

Right tail

x

D
en

si
ty

LPT−SN

SN

Figure 1: Tail behaviors of Log-Pareto tailed skew-normal (LPT-SN) distribution and skew
normal (SN) distribution for λ = 3.

+ φ(α2; λ)
α2

|x|

(
log α2

log |x|

)β

1(α2,∞)(x)
]

dx
}−1

=
β − 1

{H(α1; λ) + H(α2; λ)− 1}(β − 1) + φ(−α1; λ)(1 + α1) log(1 + α1) + φ(α2; λ)α2 log α2
,

where H(α; λ) :=
∫ α
−∞ φ(t; λ)dt. For λ < 0, (3.3) is also defined by the same way.

Note that LPT-SN distribution (3.3) is the mixture distribution of the skew normal dis-
tribution and log-Pareto function, that is, the core part of the density function is the skew-
normal distribution (SN(0, 1; λ)) and both tails is the function which is proportional to |x|(log |x|)−β (β >

1). We also note that the log-Pareto function is also called super-heavy-tailed because its tail
is heavier than that of like Student t-distribution in general.

We now introduce the location and scale parameters (µ, σ) in the density (3.3), and con-
sider the estimation problem for (µ, σ). However, we have the two problem, that is, (i) how
to determine the mixture ratio and (ii) how to choose the parameters α1, α2 and β. In this
paper, we determine the mixture ratio q in advance, e.g., q = .95. It may be unnatural as-
sumption because the outliers are usually in the far away from the core part. Then we can
propose the algorithm to determine the parameters α1, α2 and β by following way.

1. Determine the mixture ratio q (0 < q < 1) and find k (> 0) satisfies∫
{x: f (x)≥k}

ϕ(x; λ)dx = q,
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where ϕ(x; λ) = 2ϕ(x)Φ(λx) is the density function of skew normal distribution with
skew parameter λ.

2. By using k and quantile points of ϕ(x; λ), find α1, α2.

3. By solving C(λ,α1,α2,β) = 1, we obtain β > 0.

This algorithm is slightly different from that of Desgagné (2015). In fact, we use the concept
of the highest posterior density (HPD) interval in step 1 because the skew-normal distribu-
tion is asymmetric. For λ = 3 and q = .95, we can determine the parameters α1 ≈ 0.41,
α2 ≈ 2.08, and β ≈ 4.57, for example.

4 Simulation studies

In this section, we show some simulation studies for estimation of (µ, σ) in the presence of
outliers. We consider the following mixture model with three parameters ϕ = (µ, σ, λ).

f (x|ϕ, α1, α2, β)

= C(ϕ,α1,α2,β)

{
φ

(
x − µ

σ
; ϕ

)
1[−α1,α2]

(
x − µ

σ

)
+ φ(−α1; ϕ)

1 + α1

|1 − ((x − µ)/σ)|

(
log(1 + α1)

log |1 − ((x − µ)/σ)|

)β

1(−∞,−α1)

(
x − µ

σ

)
+ φ(α2; ϕ)

α2

|(x − µ)/σ|

(
log α2

log |(x − µ)/σ|

)β

1(α2,∞)

(
x − µ

σ

)}
, (4.1)

where ϕ = (µ, σ, λ) and µ ∈ R, σ > 0. We assume that λ is known. Without loss of
generality, we choose the improper and uninformative joint prior density π(µ, σ) ∝ 1/σ. So,
both the Bayesian and frequentist approaches can be used. We note that under this prior, the
MLEs and posterior modes are very similar behavior. So, hereafter, we consider the MLEs
for (µ, σ).

4.1 Behavior of the maximum likelihood estimators for (µ, σ)

For comparison, we consider the following three models with location and scale parame-
ters, that is, (a) skew-normal (SN) distribution, (b) Log-Pareto tailed skew-normal (LPT-SN)
distribution and (c) skew-t (St) distribution with degree of freedom ν = 10. In all models,
we assume that the skew parameter λ = 3.0 and we set q = .95 in model (b). As we men-
tioned in previous section, we can set (α1, α2, β) = (0.41, 2.08, 4.57) in model (b). We gener-
ate the data x1, . . . , x20 (sample size n = 20) from the skew normal distribution SN(0, 1, 3)
and let x21(ω) = (x1, . . . , x20, ω). We note that the MLEs for (µ, σ) based on x1, . . . , x20 are
(0.035, 0.809). We study the impact of moving ω from 0 to 100 on estimation for location and
scale parameters based on the maximum likelihood method calculated from different three
models in the above. In these models, it is not easy to calculate the MLEs in analytical forms,
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Figure 2: Behaviors of the maximum likelihood estimators of (µ, σ) under the three models
as moving an outlier ω from 0 to 100.The horizontal lines are values of MLEs without ω
(outlier).

so we calculate these by numerical computation. We show the result in Figure (4.1). From
this figure, we can find that the MLEs based on the skew-normal and skew-t is unstable for
large ω. On the other hand, the case of Log-Pareto tailed skew-normal distribution is stable
even if an outlier ω is large.

4.2 Comparison of the mean square error of MLEs

In this subsection, we change the contamination ratios. We consider the following three data
generating distributions, that is, (a) SN(0, 1, 3), (b) 0.90 × SN(0, 1, 3) + 0.10 × N(0, 6) and
(c) 0.95 × SN(0, 1, 3) + 0.05 × N(8, 1). We generate the sample (sample size n = 30), and we
calculate the mean squared error (MSE) for MLEs of (µ, σ) by using 25, 000 times Monte Carlo
simulation (Table 1, 2). From these tables, we can find that our proposal model has minimum
MSE among three models in the presence of outliers. In particular, for the estimation of scale
parameter, MLE based on the Log-Pareto-tailed skew-normal distribution outperform the
others. Hence, it can be found that our proposal model leads to the whole robust estimators
for both location and scale parameters.
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Table 1: MSEs for MLEs of location parameter µ (n = 30)

Model 100% SN(0, 1, 3) 10% N(0, 6) 5% N(8, 1)
Log-Pareto-tailed SN 0.01 0.08 0.01
Skew-t (ν = 10) 0.01 0.17 0.02
SN 0.01 0.66 0.09

Table 2: MSEs for MLEs of scale parameter σ (n = 30)

Model 100% SN(0, 1, 3) 10% N(0, 6) 5% N(8, 1)
Log-Pareto-tailed SN 0.02 0.13 0.06
Skew-t (ν = 10) 0.02 0.28 0.23
SN 0.02 1.18 1.31

5 Concluding remarks

A skew normal distribution with log-regularly varying function was constructed. It was
shown that the maximum likelihood estimators for location and scale parameters are more
robust against outliers than other competitors through some numerical studies.

As future works, we will extend our proposal distribution to more general skew family
of distributions. Further, the joint estimation for (µ, σ, λ) with unknown λ should be also
considered.
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