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Abstract:
In practice, we often encounter situations where a sample size is not defined
in advance and can be a random value. In the present paper second order
Chebyshev–Edgeworth and Cornish–Fisher expansions based of Student’s t- and
Laplace distributions and their quantiles are derived for distributions of statis-
tics constructed for random size samples of a special kind. We use a general
transfer theorem, which allows to construct the expansions for distributions of
randomly normalized statistics from the corresponding expansions for distribu-
tions of the non-randomly normalized statistics and for a distribution of the
random size of the underlying sample. Recently, interest in Cornish-Fisher ex-
pansions has increased because of study in risk management. Widespread risk
measure Value at Risk (VaR) substantially depends on the quantiles of the loss
function, which is connected with description of investment portfolio of financial
instruments.
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1 Introduction

In classical problems of mathematical statistics sample size is traditionally con-
sidered to be deterministic and plays role of a known parameter which is, as a
rule, sufficiently large. However, we often encounter situations where a sample
size is not defined in advance and can be a random variable. Usually it hap-
pens when data are accumulated for a time interval, which duration cannot be
considered fixed for different reasons. In this case the problem is raised how to
estimate different parameters of the given statistic, for example, the distribu-
tion function or quantiles based on random size samples. In Gnedenko (1989)
it is demonstrated that asymptotic behaviour of statistics based on random size
samples can radically differ from the the properties of non-random sample size
statistics. Limit distributions for random indexed sequences and its application
are considered e.g. in the monograph Gnedenko and Korolev (1996). In Bening,
Galieva and Korolev (2012, 2013) general transfer theorems are proved to obtain
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rates of convergence and first order Edgeworth type expansions of asymptoti-
cally normal statistics based on random size samples. Their statements depend
on corresponding results for the distributions of the considered non-randomly
normalized statistic and of the random size of the underlying sample.

In the present paper results of Bening, Galieva and Korolev (2012, 2013) are
refined and extended: second order Chebyshev-Edgeworth and Cornish-Fisher
expansions based of Student’s t- and Laplace distributions and their quantiles
are derived for samples with random size of a special kind. The importance
and different practical applications of these limit distributions are discussed
e.g. in Bening and Korolev (2005, 2008) and in Schluter and Trede (2016).
Classical Cornish-Fisher expansions based on quantiles of the standard normal
distribution were introduced in Cornish and Fisher (1937), their generalizations
were proposed in Hill and Davis (1968), see also Ulyanov (2011).

Recently, interest in Cornish-Fisher expansions has increased because of
study in risk management. For example, widespread risk measure Value at
Risk (VaR) substantially depends on the quantiles of the loss function, which
is connected with description of investment portfolio of financial instruments,
for example, see Jaschke (2002).

We use the following notations and symbols: R as real numbers,
N := {1, 2, ...} as positive integers and IA(x) as indicator function.

Let X,X1, X2, . . . ∈ R and N1, N2, . . . ∈ N be random variables on the same
probability space (Ω,A,P). In statistics the random variables X1, X2, . . . , Xm

are observations with non-random size sample m ∈ N and let Nn be random
size of the underlying sample, which depends of natural parameter n ∈ N. We
suppose that random variables Nn ∈ N with n ∈ N are independent of random
variables X1, X2, . . ..

Let Tm := Tm (X1, . . . , Xm) be some statistic of a sample with non-random
sample size m ∈ N. Define the random variable TNn for every n ∈ N, supposing
that

TNn
(ω) := TNn(ω)

(
X1(ω), . . . , XNn(ω)

)
, ω ∈ Ω, (1)

i.e. TNn is some statistic obtained from a random sample X1, X2, . . . , XNn on
the basis of statistics Tm but with random sample size Nn.

In the present paper we consider a sequence of independent identically dis-
tributed (i.i.d.) random variables X,X1, X2, . . . with

E |X|5 <∞, E(X) = µ, 0 < Var(X) = σ2,

skewnessλ3 = σ−3 E (X − µ)
3

and kurtosis λ4 = σ−4 E (X − µ)
4 − 3

}
(2)

and suppose that random variable X admits Cramér’s condition:

lim sup|t|→∞
∣∣EeitX ∣∣ < 1. (3)

As statistic Tm we choose the asymptotically normal sample mean

Tm = (X1 + · · ·+Xm) /m , m = 1, 2, ..., (4)
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Then we have, see Petrov (1995, Theorem 5.18 with k = 5),

supx
∣∣P(σ−1

√
m(Tm − µ) ≤ x)− Φ2;m(x)

∣∣ ≤ Cm−3/2, (5)

where C does not depend on m and with second order asymptotic expansion

Φ2;m(x) = Φ(x)−
(

λ3
6
√
m
H2(x) +

1

m

(λ4
24
H3(x) +

λ23
72
H5(x)

))
ϕ(x),

Φ(x) and ϕ(x) being distribution function and density of standard normal ran-
dom variable and Chebyshev-Hermite polynomials

H2(x) = x2 − 1 , H3(x) = x3 − 3x and H5(x) = x5 − 10x3 + 15x . (6)

Consider now the random mean TNn
, based on statistic (4) with a random

number Nn of summands X1, X2, ..., XNn
:

TNn
= (X1 +X2 + ...+XNn

)/Nn, n ∈ N. (7)

Let gn be a sequence of positive real numbers: 0 < gn ↑ ∞. Suppose that Nn →
∞ in probability as n → ∞. The limit laws of P

(
σ−1
√
gn(TNn

− µ) ≤ x
)

are

scale mixtures of normal distributions with zero mean, depending on the random
sample size Nn. In Section 2 we give auxiliary statements to find Chebyshev-
Edgeworth and Cornish-Fisher expansions for the normalized random mean
TNn

. In Section 3 as random sample size Nn we consider the negative binomial
distribution, shifted by 1, with success probability p = 1/n. This is one of the
leading distributions for count models. Here gn = ENn andNn/gn tends to
the Gamma distribution and the normalized random mean TNn to Student’s t-
distribution. In Section 4 the random size Nn is the maximum of n i.i.d. discrete
Pareto random variables with tail parameter 1, where Nn/gn with gn = n
tends to the reciprocal exponential distribution. In this case, the Laplace law
is the limit distribution of the normalized random mean TNn

. In both cases we
prove first a second Edgeworth type expansion for Nn/gn and then second order
Chebyshev-Edgeworth and Cornish-Fisher expansions. The proofs are collected
in Section 5.

2 Two Auxiliary Transfer Propositions

We suppose that the following condition on the statistic Tm = Tm (X1, . . . , Xm)
is satisfied for a non-random sample size m ∈ N:

Condition 1: There exist differentiable bounded functions f1(x), f2(x) and real
numbers a > 1, C1 > 0 such that for all integer m ≥ 1

supx

∣∣∣P(σ−1√m(Tm−µ) ≤ x
)
−Φ(x)−m−1/2f1(x)−m−1f2(x)

∣∣∣ ≤ C1m
−a. (8)

Consider now the statistic TNn
= TNn

(X1, . . . , XNn
) with a random number

Nn = Nn ∈ N of observations X1, X2, ...XNn
.

Suppose that distribution functions of the normalized random sample size
Nn satisfy the following condition.

Condition 2: There exist a distribution function H(y) with H(0+) = 0, a
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function of bounded variation h2(y), a sequence 0 < gn ↑ ∞ and real numbers
b > 1 and C2 > 0 such that for all integer n ≥ 1

supy≥0
∣∣P(g−1n Nn ≤ y

)
−H(y)− n−1h2(y)

∣∣ ≤ C2n
−b. (9)

Proposition 1. Let X,X1, X2, . . . be i.i.d. random variables satisfying (2) and
Cramér’s condition (3), i.e. due to (5) Condition 1 holds and (8) is satisfied with

f1(x) = − λ3
6 H2(x)ϕ(x), f2(x) = −

(
λ4
24H3(x) +

λ23
72H5(x)

)
ϕ(x) and a = 3/2.

Suppose for the random sample size Nn Condition 2 with (9) is complied
with the additional assumptions

h2(0) = 0, H(g−1n ) ≤ c0 n−γ and h2(g−1n ) ≤ c1 n1−γ for some γ > 1 , (10)

then there exists a constant C3 = C3(λ3, λ4, C2) > 0 such that ∀n ∈ N

supx
∣∣P(σ−1√gn(TNn − µ) ≤ x

)
−G2,n(x)

∣∣ ≤ C1E(N−an ) + C3n
−min{b,γ},

where

G2;n(x) =

∫ ∞
0

Φ(x
√
y)dH(y) +

1
√
gn

∫ ∞
0

f1(x
√
y)

√
y

dH(y)

+
1

gn

∫ ∞
0

f2(x
√
y)

y
dH(y) +

1

n

∫ ∞
0

Φ(x
√
y)dh2(y) . (11)

Similar result is proved in Bening, Galieva and Korolev (2013, Theorem
3.1). However our Proposition 1 has more simple form of G2;n(x) which is more
suitable for applications.

Let Fn(x) be a sequence of distribution functions and each of it admit a

Chebyshev-Edgeworth expansion in powers of g
−1/2
n with 0 < gn ↑ ∞ as n→∞:

Fn(x) = G(x) + g(x)
(
a1(x)g−1/2n + a2(x)g−1n

)
+R(gn), R(gn) = O(g−1n ) (12)

if n→∞, where g(x) is the density of the continuous limit distribution G(x).

Proposition 2. Let Fn(x) be given by (12) and let x(u) and u be quantiles of
distributions Fn and G with the same order, i.e. Fn(x(u)) = G(u). Then the
following expansion occurs:

x(u) = u+ b1(u)g−1/2n + b2(u)g−1n +R∗(gn), R∗(gn) = O(g−1n ), n→∞,

with

b1(u) = −a1(u) and b2(u) =
g′(u)

2 g(u)
a21(u) + a′1(u)a1(u)− a2(u) .

Proposition 2 is a direct consequence of more general statements, see e.g.
Fujikoshi, Ulyanov and Shimizu (2010, Chapter 5.6.1) or Ulyanov, Aoshima
and Fujikoshi (2016).
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3 Chebyshev-Edgeworth and Cornish-Fisher
Expansions with Student’s Limit Distribution

Student’s t-distribution function Sν(x) is an absolutely continuous probability
distribution function given by the density

sν(x) =
Γ
(
(ν + 1)/2

)
√
νπ Γ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

, x ∈ R, (13)

where ν > 0 is a real shape parameter. If the parameter ν is positive integer,
then it is called the number of degrees of freedom. Student’s t-distributions
are the limit laws for the statistics TNn

given in (1), if the statistic Tm :=
Tm (X1, . . . , Xm) is asymptotic normal, the random variables X1, X2, . . . have
finite variances and the sample sizes Nn of are drawn from a negative binomial
distribution, independent of X1, X2, . . ., and Nn →∞ in probability if n→∞.

The sample size Nn(r) is negative binomial distributed (shifted by 1) with
success probability 1/n, having probability mass function

P(Nn(r) = j) =
Γ(j + r − 1)

(j − 1)! Γ(r)

(
1

n

)r (
1− 1

n

)j−1
, j = 1, 2, ... r > 0. (14)

Since Nn(r) ∈ {1, 2, ...} the random mean TNn(r) is well-defined. If the pa-
rameter r is positive integer, then r ≥ 1 is the predefined number of successes
and Nn(r)−1 is the random number of failures until the experiment is stopped.
Moreover, for fixed k ∈ N, see formula (5.31) in Johnson, Kemp and Kotz (2005,
p. 218) with renamed notations, the distribution function is

P(Nn(r) ≤ k) =
∑k

j=1

Γ(j + r − 1)

(j − 1)! Γ(r)

(
1

n

)r (
1− 1

n

)j−1
=
B1/n(r, k)

B(r, k)
(15)

with beta function B(r, k) = Γ(k) Γ(r)/Γ(k + r) and incomplete beta function

B1/n(r, k) =

∫ 1/n

0

ur−1 (1− u)k−1du
u=t/(1+t)

=

∫ 1/(n−1)

0

tr−1

(1 + t)k+r
dt. (16)

Define gn := E(Nn(r)) = r (n− 1) + 1 then

supx>0 |P(Nn(r)/E(Nn(r)) ≤ x)−Gr,r(x)| → 0 as n→∞,

where Gα,β(x) is the gamma distribution function with the shape α > 0 and
rate β > 0, having density

gα,β(x) =
βα

Γ(α)
xα−1e−βx I(0 ,∞)(x), x ∈ R. (17)

For an asymptotically normal random mean Tm the limit distribution of

P
(
σ−1

√
r(n− 1) + 1(TNn(r) − µ) ≤ x

)
is Student’s t-distribution S2r(x) hav-

ing density function (13) with shape parameter ν = 2r, see Bening and Korolev
(2005, Corollary 2.1), or Schluter and Trede (2016, Theorem 1). Bening, Galieva
and Korolev (2012, 2013) proved under more moment conditions rates of con-
vergence and first order Edgeworth type expansions of asymptotically normal
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statistics Tm based on samples with random size Nn(r). In order to obtain
second order Edgeworth-type expansion for the normalized TNn(r) we have to
prove second order Edgeworth-type expansion for Nn(r)/E(Nn(r)), see (9) in
Condition 2 above. Since the limit Gamma distribution Gr,r(x) is a continuous
function and P(Nn(r)/E(Nn(r)) ≤ x) is a step function, it is necessary to add
a discontinuous function to overcome the jumps..

Theorem 1. Let r > 1 and the discrete random variable Nn(r) have probability
mass function (14) and ENn(r) = r(n− 1) + 1. For x > 0, and all n ∈ N there
exists a real number C2(r) > 0 such that

supx≥0

∣∣∣∣P( Nn(r)

r(n− 1) + 1
≤ x

)
−G2;n(x)

∣∣∣∣ ≤ C2(r)n−min{r,2}, (18)

where

G2;n(x) =Gr,r(x) +
a0Gr,r(x) + a1Gr+1,r(x) + a2Gr+2,r(x)

2xn
I[2,∞)(n) (19)

= Gr,r(x) +
gr,r(x)

(
(x− 1)(2− r) + 2Q1

(
(r(n− 1) + 1)x

))
2 r n

I[2,∞)(n), (20)

a1 = −2(x+ r) + 1− 2Q1

(
(r(n− 1) + 1)x

)
, a2 = r + 1, a0 = −(a1 + a2),

Q1(y) = 1/2−(y−[y]) and [y] is the integer part of y with y−1 < [y] ≤ y. (21)

Remark 1. Formula (20) shows that (9) is satisfied with H(x) = Gr,r(x),
h2(x) =

(
(x− 1) (2− r) + 2Q1

(
r(n− 1) + 1)x

))
gr,r(x)I[2,∞)(n)/(2r) for x > 0,

b = min{r, 2} and gn = r(n− 1) + 1.
Figure 1 shows the approximation of P (Nn(r) ≤ (r(n− 1) + 1)x) by G2,2(x)

and G2,2(x) + h2(x)/n.

Figure 1: Distribution function P (Nn(r) ≤ (r(n− 1) + 1)x) (solid line), the
limit law G2,2(x) (dashed line) and the second approximation G2,2(x)+h2(x)/n
(doted line) with n = 10 and r = 2

6



Remark 2. Coefficients a0, a1, a2 in (19) meet condition a0 + a1 + a2 = 0.
Ulyanov, Aoshima and Fujikoshi (2016) mention a wide class of statistics allow-
ing similar representation like (19).
Remark 3. Integration by parts allows the passage from (19) to (20) since

Gr+1,r(x) = −(x/r)gr,r(x) +Gr,r(x) (22)

and Gr+2,r(x) = −
(
x2/(r + 1) + x/r

)
gr,r(x) +Gr,r(x).

In the following case the bound (18) is trivial:
Remark 4. If n = 1 then P

(
N1(r) = 1

)
= 1 and the left-hand side in (18)

takes its maximum at x = 1 leading to C2(r) = min{Gr,r(1), 1−Gr,r(1)} < 1.
In addition to the expansion of Nn(r) a bound of E(Nn(r))−a is required,

where m−a is rate of convergence of Edgeworth expansion for Tm, see (8).

Lemma 1. Let r > 1. The random variable Nn(r) is defined by (14), then

E
(
Nn(r)

)−3/2 ≤ C(r)


n−r, 1 < r < 3/2

ln(n)n−3/2, r = 3/2

n−3/2, r > 3/2

(23)

In case of r = 3/2 the convergence rate in (23) cannot be improved.

Now we present the second order Chebyshev-Edgeworth expansion for the
standardized random mean TNn(r).

Theorem 2. Let X,X1, X2, ... be i.i.d. random variables, where X satisfies
(2) and Cramér’s condition (3). Let the discrete random variable Nn = Nn(r)
with parameter r > 1 have probability mass function (14), being independent
of X1, X2, .... Consider the statistic TNn

= N−1n (X1 + ... + XNn
). For the

asymptotically normal statistics Tm the asymptotic expansion (5) and for the
random size Nn(r) with r > 1 the asymptotic expansion (18) hold with gn =
E
(
Nn(r)

)
= r(n− 1) + 1. Then there exists a constant C = C(r) > 0 such that

sup
x

∣∣P (σ−1√gn(TNn
− µ) ≤ x

)
− S2r;n(x)

∣∣ ≤ C

n−r, 1 < r < 3/2

ln(n)n−3/2, r = 3/2

n−3/2, r > 3/2

(24)

for all n ∈ N, where

S2r;n(x) = S2r(x)−
λ3
(
(r − 1)x2 − r

)
s2r(x)

3 (2 r − 1)
√
gn

− x s2r(x)

36 (2r − 1) gn

{
2λ23

(
(r − 2)(r − 3)x4 + 10 r (2− r)x2 + 15r2

)
2r + x2

+ 3λ4
(
(r − 2)x2 − 3r

)
+ 9(r − 2)(x2 + 1)

}
In case of r = 3/2 the convergence rate in (24) cannot be improved.

Figure 2 shows the advantage of the Chebyshev-Edgeworth expansion versus
the limit law in approximating the empirical distribution function.
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Figure 2: Empirical distribution function P
(
σ−1
√
gn(TNn

− µ) ≤ x
)

(solid
line), limit Student law S2r(x) (doted line) and second approximation S2r;n(x)
(dashed line) for random mean of N10(2) independent χ2

1 random variables with
λ3 =

√
8 and λ4 = 12

Remark 5. Bening, Galieva and Korolev (2013) proved

sup
x

∣∣∣∣P (σ−1√gn(TNn − µ) ≤ x
)
− S2r(x) +

λ3 fr(x)

6
√
gn

∣∣∣∣ ≤ C(r)R(n)

with R(n) = n−min{r,1} for r > 1/2, r 6= 1 or R(n) = n−1 ln(n) for r = 1 and

fr(x) =

∫ ∞
0

(1− x2y)
√
y

ϕ(x
√
y) dS2r(y) =

2
(
(r − 1)x2 − r

)
s2r(x)

(2 r − 1)
.

The latter integral was calculated in Markov, Monakhov and Ulyanov (2016),
where also a first order Cornish-Fisher expansion was presented (with some
computational inaccuracies).

Using the second order Chebyshev-Edgeworth expansion in Theorem 2 and
transfer Proposition 2 we obtain the following statement:

Theorem 3. Let x = xα and u = uα be α-quantiles of standardized statistic
σ−1

√
r(n− 1) + 1

(
TNn(r) − µ

)
and of the limit Student’s t-distribution S2r(x),

respectively. Then for u 6= 0 with previous definitions the following asymptotic
expansion holds

x = u+
λ3
(
(r − 1)u2 − r

)
3 (2 r − 1)

√
gn

+
1

gn
B2(u) +


O(n−r), 1 < r < 3/2

O(ln(n)n−3/2), r = 3/2

O(n−3/2), r > 3/2
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as n→∞, where

B2(u) = − (2r + 1)u

2(2r + u2)

λ23
(
(r − 1)u2 − r

)2
9 (2r − 1)2

+
2λ23(r − 1)u

(
(r − 1)u2 − r

)
9 (2r − 1)2

+
u

36 (2r − 1)

{
2λ23

(
(r − 2)(r − 3)u4 + 10 r (2− r)u2 + 15r2

)
2r + u2

+ 3λ4
(
(r − 2)u2 − 3r

)
+ 9(r − 2)(u2 + 1)

}
Figure 3 shows a Q–Q plot comparing the empirical quantiles of a randomly

generated standardized random mean on the horizontal axis to the quantiles
based on its Cornish-Fisher approximation on the vertical axis.

Figure 3: QQ-plot for quantiles of Cornish-Fisher approximation against the
quantiles of the empirical quantiles of a standardized random mean of N10(2)
independent χ2

1 random variables with λ3 =
√

8 and λ4 = 12

Remark 6. Since gn = r(n − 1) + 1 and |g−γn − (rn)−γ | ≤ C(r)n−γ−1,

the factors g
−1/2
n and g−1n in both Chebyshev-Edgeworth and Cornish-Fisher

expansions may be replaced by (rn)−1/2 and (rn)−1, respectively.

4 Chebyshev-Edgeworth and Cornish-Fisher
Expansions with Laplace Limit Distribution

Let Y (s) be discrete Pareto II distributed with parameter s > 0 and probability
mass function

P(Y (s) = k) =
s

s+ k − 1
− s

s+ k
, k ∈ N = {1, 2, ...}, s > 0, (25)

which is a particular class of a more general model of discrete Pareto distribu-
tions, obtained by discretization continuous Pareto II (Lomax) distributions on
integers, considered e.g. in Buddana and Kozubowski (2014), where also main
properties and characteristics of discrete Pareto distributions are discussed.
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Let s ≥ 1 be integer, Z1, Z2, ... be independent and identically distributed
random variables with some continuous distribution function and

Y (s) = min{k ≥ 1 : max1≤j≤s Zj < maxs+1≤j≤s+k Zj} ,

then Y (s) has probability mass function (25). The random variable Y (s) plays
an important part in the theory of records and describes the number of further
trials required to obtain the next extreme observation, see e.g. Wilks (1959) or
Bening and Korolev (2008).

The telescoping nature of the probabilities in (25) leads to a compact form
of the distribution function:

P
(
Y (s) ≤ k

)
=
∑k

m=1
P
(
Y (s) = m

)
= 1− s

s+ k
=

k

s+ k
, k ∈ N, s > 0. (26)

Now, let Y1(s), Y2(s), ..., s > 0, be independent random variables with the
same distribution (26). Define the random variable

Nn(s) = max
1≤j≤n

Yj(s) with P(Nn(s) ≤ k) =

(
k

s+ k

)n
, k ∈ N, s > 0, (27)

and using P(Nn(s) = k) = P(Nn(s) ≤ k)− P(Nn(s) ≤ k − 1) we find

P(Nn(s) = k) =

(
k

s+ k

)n
−
(

k − 1

s+ k − 1

)n
, k ∈ N, s > 0. (28)

Consider now a random mean TNn(s) given in (7) with a random number
Nn(s) of observations X1, X2, ..., where Nn(s) has probability mass function
(28). Bening and Korolev (2008) proved for integer s ≥ 1

limn→∞ P (Nn(s) ≤ nx) = H(x) = e−s/x I(0 ,∞)(x) (29)

and the limit distribution of P
(
σ−1
√
n(TNn(s) − µ) ≤ x

)
is the Laplace distri-

bution function L1/
√
s(x) having density function

l1/
√
s(x) =

√
2 s

2
e−
√
2 s|x| , x ∈ R. (30)

In Bening, Galieva and Korolev (2012, 2013) rates of convergence in (29) and

a first order asymptotic expansion for P
(
σ−1
√
n(TNn(s) − µ) ≤ x

)
are proved

for integer s ≥ 1.
Now we prove an Edgeworth-type expansion for P

(
Nn(s)/n ≤ x

)
satisfy-

ing (9).

Theorem 4. Let the discrete random variable Nn = Nn(s) have probability
mass function (28). For x > 0, fixed s ≥ s0 > 0 and all n ∈ N then there exists
a real number C2(s) > 0 such that

sup
x>0

∣∣∣∣∣P
(
Nn(s)

n
≤ x

)
− e−s/x

{
1 +

s
(
s− 1 + 2Q1(nx)

)
2x2 n

}∣∣∣∣∣ ≤ C2(s)

n2
(31)

where Q1(x) is defined in (21).

10



Remark 7. Formula (31) shows that Condition 2, see (9), is satisfied with
gn = n, H(x) = e− s/x, h2(x) = e−s/x s

(
s− 1 + 2Q1(nx)

) /
(2x2) and β = 2.

Figure 4 shows the approximation of P (Nn(s) ≤ nx) by e−s/x and
e−s/x + h2(x)/n, x > 0.

Figure 4: Distribution function P (Nn(s) ≤ nx) (solid line), limit law e−s/x

(dashed line) and second approximations e−s/x + h2(x)/n (doted line) with
n = 10 and s = 2

Remark 8. Lyamin (2010) proved a first order bound in (31) for integer s ≥ 1∣∣∣∣P(Nn(s)

n
≤ x

)
− e−s/x

∣∣∣∣ ≤ C(s)

n
, C(s) =

{
8e−2/3 = 0.360..., s = 1, n ≥ 2

2e−2 = 0.270..., s ≥ 2, n ≥ 1
.

In case n = 1 and s = 1 we have P (N1(1) ≤ x) = 0 for 0 < x < 1 and

sup0<x<1

∣∣∣P (N1(1) ≤ x)− e−1/x
∣∣∣ = sup0<x<1 e

−1/x = e−1 = 0.367... .

Remark 9. The random variable Nn(s) is a discrete one with integer values
k ≥ 1. Therefore the distribution function P (Nn(s) ≤ nx) is discontinuous
with discontinuity points x = k/n, k = 1, 2, ..., whereas the limit distribution
H(x) = e−s/x I(0 ,∞)(x) is continuous. In the interval (x, x + 1/n] with x > 0
the distribution function P (Nn(s) ≤ nx) has only one jump point ([nx] + 1)/n.
The increase of limit distribution H(x) over the interval (x, x+ 1/n] is

H(x+ 1/n)−H(x) = e−s/(x+1/n) − e−s/x = s e−s/x/(nx2) +O(n−2), n→∞

which is equivalent to the jump at ([nx] + 1)/n of the discontinuity correcting
function in (31).

Remark 10. The continuous function e−s/xI(0 ,∞)(x), s > 0, is the distribu-
tion function of the reciprocal random variable W (s) = 1/V (s), where V (s) is
exponentially distributed with rate parameter s > 0.

11



In Theorems 2 and 3 the normalizing sequence is gn = E
(
Nn(r)

)
, if the

random size is negative binomial distributed, see (15). In Theorem 4 and in next
Theorem 5 the normalizing sequence is now gn = n, since both P

(
Nn(s) ≤ nx

)
and e−s/xI(0 ,∞)(x) for fixed s > 0 are heavy tailed with shape parameter 1.

Lemma 2. For random size Nn(s) with probabilities (28) and random variable
W (s) with distribution function e−s/xI(0 ,∞)(x), s > 0 and 1 ≤ r < 2 we have

i) E
(
Nn(s)

)
=∞ and E

(
W (s)

)
=∞,

ii) first absolute pseudo moment ν1 =
∫∞
0
x
∣∣d(P(Nn(s) ≤ nx

)
− e−s/x

)∣∣ =∞,

iii) absolute difference moment χr =
∫∞
0
xr−1

∣∣P(Nn(s) ≤ nx
)
−e−s/x

∣∣dx <∞.

On pseudo moments and some of their generalizations see e.g. Christoph and
Wolf (1993, Chapter 2).

In addition to the expansion of Nn(s) a bound of E(Nn(s))−3/2 is required,
where m−3/2 is rate of convergence of Edgeworth expansion for Tm, see (8).

Lemma 3. For random size Nn(s) with probabilities (28) with reals s ≥ s0 > 0
and arbitrary small s0 > 0 and n ≥ 1 we have

E
(
Nn(s)

)−3/2 ≤
ζ(3/2) = 2.612... n = 1

sn
Γ(5/2)(n− 3/2)5/2

, n ≥ 2

 ≤ C(s)n−3/2.

Now we present the second order Chebyshev-Edgeworth expansion for the
standardized random mean TNn(s).

Theorem 5. Let X,X1, X2, ... be i.i.d. random variables, where X satisfies (2)
and Cramér’s condition (3). Let the discrete random variable Nn = Nn(s) with
real parameter s ≥ s0 > 0 have probability mass function (28), being independent
of X1, X2, .... Consider the statistic TNn = N−1n (X1 + ... + XNn). For the
asymptotically normal statistics Tm the asymptotic expansion (5) and for the
random size Nn(s) with s ≥ s0 > 0 the asymptotic expansion (31) hold with
gn = n . There exists a constant C(s) > 0 such that

supx
∣∣P (σ−1√n(TNn(s) − µ) ≤ x

)
− L1/

√
s ;n(x)

∣∣ ≤ C(s)n−3/2

for all n ∈ N, where

L1/
√
s ;n(x) = L1/

√
s(x)+n−1/2A1(x) l1/

√
s(x)+n−1

(
A2,1(x)+A2,2(x)

)
l1/
√
s(x)

A1(x) = λ3
6

(
−x2 +

|x|√
2s

+ 1
2s

)
, A2,2(x) =

x(1− s)
8s (

√
2 s |x|+ 1) and

A2,1(x) =
xλ4
48 s

(
3−2sx2+3

√
2s|x|

)
+
xλ23
144 s

(
20sx2−(2s)3/2|x|3−15

√
2s|x|−15

)
.
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Figure 5: Empirical distribution of P
(
σ−1
√
n(TNn(s) − µ) ≤ x

)
(solid line),

Laplace approximation L1/
√
2(x) (dotted line) and second approximation

L1/
√
2 ;n(x) (dashed line) for standardized random mean of Nn(s) independent

χ2
1 random variables with λ3 =

√
8 and λ4 = 12 for n = 10 and s = 2

Remark 11. Bening, Galieva and Korolev (2013) proved under the moment
condition E|X|3+2δ for some 0 < δ < 1/2 as n→∞

supx

∣∣∣∣P (σ−1√n(TNn(s) − µ) < x
)
− L1/

√
s(x)− λ3l

∗
s(x)

6
√
n

∣∣∣∣ = O
(

1

n1/2+δ

)
,

where

l∗s(x) =

∫ ∞
0

ϕ(x
√
y)

1− x2y
√
y

de−s/y = l1/
√
s(x)

(
|x|√
2s

+
1

2s
− x2

)
.

The latter integral was calculated in Markov, Monakhov and Ulyanov (2016),
where also a first order Cornish-Fisher expansion was presented (with some
computational inaccuracies).

Using the second order Chebyshev-Edgeworth-expansion in Theorem 4 and
transfer Proposition 2 we obtain the following statement:

Theorem 6. Let x = xα be α-quantile of standardized statistic
σ−1
√
n
(
TNn(s) − µ

)
and let u = uα be α-quantile of the limit Laplace distribu-

tion L1/
√
s(x). Then for u 6= 0 with previous definitions the following asymptotic

expansion holds

x = u− λ3
6
√
n

(
|u|√
2s

+
1

2s
− u2

)
+

1

n
B2(u) +O

(
n−3/2

)
as n→∞,

13



where

B2(u) =−λ
2
3

36

(√
2s u

2|u|

(
u2 − |u|√

2s
− 1

2s

)2
+
(
u2 − |u|√

2s
− 1

2s

)(
2u− u√

2s|u

))

+
uλ23
144 s

(
20su2 − (2s)3/2|u|3 − 15

√
2s|u| − 15

)
+
uλ4
48 s

(
3− 2su2 + 3

√
2s|u|

)
+

u(1− s)
8s

(
√

2 s |u|+ 1)

Figure 6 shows a Q–Q plot comparing the empirical quantiles of a randomly
generated standardized random mean on the horizontal axis to the quantiles
based on its Cornish-Fisher approximation on the vertical axis.

Figure 6: QQ-plot for quantiles of Cornish-Fisher approximation against the
quantiles of the empirical quantiles of a standardized random mean of N10(2)
independent χ2

1 random variables with λ3 =
√

8 and λ4 = 12

5 Proofs

Proof of Proposition 1: Under the Condition 1 for the statistic Tm(X1, ..., Xm)
and Condition 2 for the random sample size Nn Bening, Galieva and Ko-
rolev (2013, Theorem 3.1) proved in the setting of Proposition 1 the following
Edgeworth-type expansion for the statistic TNn

(X1, ..., XNn
) :

sup
x

∣∣P(σ−1√gn(TNn −µ) ≤ x
)
−G2,n(x, 1/gn)

∣∣≤C1E(N−an )+(C∗3 +C2Mn)n−b,

∀n ∈ N, where C∗3 > 0 is a constant independent of n, 0 < gn ↑ ∞,

G2;n(x, 1/gn) =

∫ ∞
1/gn

Φ(x
√
y)dH(y) +

1
√
gn

∫ ∞
1/gn

f1(x
√
y)

√
y

dH(y)

+
1

gn

∫ ∞
1/gn

f2(x
√
y)

y
dH(y) +

1

n

∫ ∞
1/gn

Φ(x
√
y)dh2(y),

Mn = sup
x
Mn(x) := sup

x

∫ ∞
1/gn

∣∣∣∣ ∂∂y
(

Φ(x
√
y) +

f1(x
√
y)

√
ygn

+
f2(x
√
y)

ygn

)∣∣∣∣ dy,
14



f1(x) = −λ36 H2(x)ϕ(x) and f2(x) = −
(
λ4
24H3(x) +

λ23
72H5(x)

)
ϕ(x) with

Chebyshev-Hermite polynomials Hm(x) given in (6) .
To prove Proposition 1 we have to estimate |G2;n(x)−G2;n(x, 1/gn)| where

G2;n(x) is given in (11) and Mn. Define

Vm(z) = Hm(z)ϕ(z) with Hermite polynomials Hm(z), for m = 2, 3, 5 .

Since V ′m(zm) = 0, m = 2, 3, with z2 = 0,±
√

2 and z3 = ±
√

3±
√

6, then

|V2(z)| ≤ |V2(0)| = 1/
√

2π ≤ 0.399, |V3(z)| ≤ |V3(±
√

3−
√

6)| ≤ 0.551. Nu-
merical calculus lead to |V5(z)| ≤ |V5(0.380...)| ≤ 2.308. Together with Φ(z) ≤ 1
and (10) we find

|G2;n(x)−G2;n(x; 1/gn)| ≤ C0(2 + 0.067|λ3|+ 0.023λ4 + 0.033λ23)g−γn .

To estimate Mn we consider three cases:

Mn = supx |Mn(x)| = max{supx>0 |Mn(x)|, supx<0 |Mn(x)|, |Mn(0)|}.

Let x > 0. Since ∂
∂y

Φ(x
√
y) =

xϕ(x
√
y)

2
√
y

≥ 0 we find

∫ ∞
1/gn

∣∣∣∣ ∂∂yΦ(x
√
y)

∣∣∣∣ dy =

∫ ∞
1/gn

xϕ(x
√
y)

2
√
y

dy = Φ(∞)− Φ(x/
√
gn) ≤ 1/2.

Consider now

∂

∂y

V2(x
√
y)

√
y

=
Q2(x

√
y)

y3/2
with Q2(z) =

1

2
(1 + 2z2 − z4)ϕ(z)

and |Q2(z)| ≤ Q2(
√

3−
√

6) ≤ 0.273,

∂

∂y

V3(x
√
y)

y
=
Q3(x

√
y)

y2
with Q3(z) =

z

2
(3 + 4z2 − z4)ϕ(z)

and numerical calculus lead to |Q3(z)| ≤ Q3(1.210...) ≤ 0.780. Next

∂

∂y

V5(x
√
y)

y
=
Q5(x

√
y)

y2
with Q5(z) =

z

2
(−15− 25z2 + 13z4 − z6)ϕ(z)

and |Q5(z)| ≤ |Q5(1.061...)| ≤ 3.395. Finally we obtain for x > 0

Mn(x) ≤ 1

2
+

2|λ3|Q2(
√

3−
√

6)

6
+
λ4Q3(1.210...)

24
+
λ23Q5(1.061...)

72

≤ 0.5 + 0.091|λ3|+ 0.033λ4 + 0.032λ23 .

For x < 0 we find the same upper bounds for the considered integrals as for
x > 0. Finally, Mn(0) = |λ3|/(6

√
2π) ≤ 0.067 |λ3|. Proposition 1 is proved. �

Next we collect some mostly well-known inequalities used in different proofs.
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Lemma 4.

0 ≤ g1(t) := ln(1 + t)− t+ t2/2 ≤ t3/3, 0 ≤ t ≤ 1, (32)

0 ≤ (1 + t)−a − 1 + at ≤ a(a+ 1)t2/2, 0 ≤ t ≤ 1, a > 0, (33)

0 ≤ (1 + t)r − 1− rt ≤ (1/2)r(r − 1)t22|r−2|, −1/2 < t ≤ 1, r > 1, (34)

0 ≤ g2(t) = (1− t)−1 − 1− t ≤ 3t2/2 , 0 ≤ t ≤ 1/3 , (35)

0 ≤ g3(t) = (1− t)−2 − 1 ≤ 15t/4 , 0 ≤ t ≤ 1/3 , (36)

i) |e−t − 1| ≤ t , t > 0, ii) 0 ≤ et − 1− t ≤ t2emax{0,t}/2 ,∀t , (37)

{tke−at , t−ke−a/t} ≤ (k/a)ke−k , t > 0 with fixed a > 0, k > 0 . (38)

Proof of Lemma 4. Inequalities (32), (33), (34) and (37) may be obtained
using Taylor’s theorem with Lagrange form of the remainder in the given inter-
val. The convergent geometric series leads to (35). Inequality (36) follows from
(1 − t)−2 − 1 = 2t(1 − t/2)(1 − t)−2 and since (1 − t/2)(1 − t)−2 is monotone
increasing in the considered interval. We obtain (38) because both functions
tke−at and t−ke−a/t take the maxima at t = k/a respectively t = a/k. �

Proof of Theorem 1: We have to consider only the case n ≥ 2, see Remark 4.
Remember gn = ENn(r) = r(n− 1) + 1.
If gnx = (r(n− 1) + 1)x < r + 1 then 0 ≤ x < 2/(n− 1) ≤ 4/n,

P
(
Nn(r) ≤ (r(n− 1) + 1)x

)
≤ n−r

∑[r]+1

k=1

Γ(k + r − 1)

Γ(r) (k − 1)!
≤ c∗1(r)n−r,

Gr,r(x) ≤ (rr−1/Γ(r))xr ≤ c∗2(r)n−r, gr,r(x) ≤ rr/Γ(r))xr−1 ≤ c∗3(r)n−r+1

and (18) holds with C2(r) = c∗1(r) + c∗2(r) + c∗3(r). We have to consider (15)
only for k ≥ [r] + 1 > r.

Let now r > 1, n ≥ 2 and gnx = (r(n− 1) + 1)x ≥ r + 1, then

x ≥ r + 1

gn
≥ r + 1

r(n− 1) + 1
≥ r

r(n− 1)
≥ 1

n
. (39)

Let us define τ = gn x− [gn x] ∈ [0 , 1) and introduce the abbreviations

mn,x = gnx+ r− τ, nr = r(n− 1), xr = x+ r− τ and q = 1/(n− 1). (40)

Distribution function (15) of the discrete Nn(r) jumps at {1, 2, 3, ...}, therefore

P
(
Nn(r) ≤ gn x

)
= P

(
Nn(r) ≤ [gn x]

)
= P

(
Nn(r) ≤ gn x− τ

)
.

and we have to calculate (15) for k with [r] + 1 ≤ k = [gn x] = gn x− τ .
First we consider the second integral representation in (16) of the incomplete

beta function B1/n(r, k) at the given point k = gn x− τ :

B1/n(r, k) =

∫ 1/(n−1)

0

tr−1(1 + t)−gnx−r+τdt =

∫ q

0

tr−1(1 + t)−mn,xdt. (41)

Since n ≥ 2, t ≤ 1/(n− 1), nr t ≤ r, t− t2/2 ≥ t/2 for 0 ≤ t < 1 and xr > 0 we
find for the second factor under the integral on the right-hand site in (41)

(1 + t)−mn,x = e−mn,x ln(1+t) (32)
= e−mn,x(t−t2/2) − r1

= e−mn,xt
(
1 + nrxt

2/2
)

+ e−mn,xtxrt
2/2 + r2 − r1

= e−(nrx+xr)t
(
1 + nrxt

2/2
)

+ r3

= e−nrxt
(
1− xrt+ nrt

2/2
)

+ r4 (42)
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where

r1 = e−mn,x(t−t2/2)
(
1−e−mn,xg1(t)

) (37i),(32)

≤ mn,xt
3

3
e−mn,xt/2

(38)

≤ 4t2

3e
e−mn,xt/4,

r2 =
(
emn,xt

2/2 − 1−mn,xt
2/2
) (37ii)

≤ m2
n,xt

4e−mn,xxt/2/8
(38)

≤ 8e−2t2e−mn,xt/4,

r3 = e−mn,xtxrt
2/2 + r2 − r1 with |r3| ≤

(
4/(3e) + 8e−2 + xr

)
t2e−mn,xt/4

and using (37ii)

r4(t) = r3 + e−nrxt
(
xrnrxt

3/2 + (e−xrt − 1 + xrt)(1 + nrxt
2/2)

)
(38)

≤ |r3|+
(
x2r + xr

)
t2e−nrxt/2 ≤

(
c1(r) + c2(r)x2

)
t2e−nrxt/4, (43)

where c1(r), c2(r) > 0 are constants independent of n, x, t.
It follows now from (41) and (42) that with k = gn x− τ and q = 1/(n− 1)

B1/n(r, k) =

∫ q

0

1− xrt+ nrxt
2/2

t1−r enrxt
dt+

∫ q

0

tr−1r4(t)dt =: J1(x) +R1(n). (44)

Change of variable s = (n− 1)xt results in 0 ≤ s ≤ x and

Ij(x; r) :=

∫ 1/(n−1)

0

tr+j−1e−nrxtdt =
rr+j

(nr x)r+j

∫ x

0

sr+j−1e−rsds

=
Γ(r + j)

(nr x)r+j
Gr+j,r(x) with j = 0, 1, 2, (45)

where Gα,β(x) is the gamma distribution function with density (17), we obtain

J1(x) =
Γ(r)

(nrx)r

(
Gr,r(x)− r xr

nrx
Gr+1,r(x) +

r(r + 1)

2nr x
Gr+2,r(x)

)
. (46)

To calculate R1(x) we use (43) and (45):

R1(n) =

∫ 1/(n−1)

0

tr−1r4(t)dt ≤ (c1(r) + c2(r)x2)

∫ 1/(n−1)

0

tr+1e−nrxt/4dt

≤ c1(r)(n− 1)−2I0(x/4; r) + c2(r)x2I2(x/4; r)

≤ c1(r)Γ(r)Gr,r(x/4)

(n− 1)2(nrx/4)r
+
c2(r)Γ(r+2)Gr+2,r(x/4)

(nr/4)2(nrx/4)r
≤ Γ(r)R2(n)

(nrx)r
(47)

with
R2(n) ≤ c3(r)n−2

(
Gr,r(x/4) +Gr+2,r(x/4)

)
≤ 2 c3(r)n−2, (48)

where c3(r) and the following c4(r) till c14(r) are positive constants independent
of n and x.

In the next step we estimate the beta function B(r, k) involved in (15).
Nemes (2015, Theorem 1.3) proved that for z > 0

Γ(z) =
√

2πzz−1/2e−z(1 + 1
12z +R3(z))

1
Γ(z)

= 1√
2π

z−z+1/2ez(1− 1
12z +R4(z))

with |R3(z)|, |R4(z)| ≤ c

z2
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and c = (
√

2 + 1)(1 + π2/6)/(16π3). Hence, with k = [gn x] = gn x− τ

1

B(r, k)
=

Γ(r + k)

Γ(r) Γ(k)
=

(r + k)r+k−1/2 e−(r+k)

Γ(r) kk−1/2 e−k
(
1 +R5(k)

)
=

e−rkr

Γ(r)

(
1 +

r

k

)k+r−1/2 (
1 +R5(k)

)
(49)

with
(
1 +R5(k)

)
=

(
1 + 1

12(r + k)
+R3(r + k)

) (
1− 1

12k
+R4(k)

)
. Since

(
1 +

1

12(r + k)

) (
1− 1

12k

)
= 1− 12r + 1

144k(k + r)
we find R5(k) ≤ c4(r)

k2
.

Remember that r ≤ k = [gn x] = gn x− τ , the case r > k was considered at the
beginning. With (1 + r/k) = exp{ln(1 + r/k)} we obtain

(1 + r/k)
k+r−1/2 (32)

= exp
{

(k + r − 1/2)
(
r/k − r2/(2k2)

)}
+R6(k)

= er
(

1 +
r2 − r

2k
+R7(k)

)
+R6(k)

= er
(

1 +
r2 − r

2k

)
+R8(k) , (50)

where utilizing (k + r − 1/2)g1(r/k)
(32)

≤ (1/3)(k + r − 1/2)r3k−3 ≤ c5(r)k−2

R6(k) = er e(r
2−r)/(2k) e−(r−1/2)r

2/(2k2)
(
e(k+r−1/2)g1(r/k) − 1

)
≤ er e(r

2−r)/(2k)c5(r)k−2ec5(r)/k
2

≤ c6(r)k−2 ,

|R7(k)| = e(r
2−r)/(2k)∣∣e−(r−1/2)r2/(2k2) − 1

∣∣+ e(r
2−r)/(2k) − 1− (r2 − r)/(2k)

(37)

≤ e(r
2−r)/2

(
(r − 1/2)r2/(2k2) + (r2 − r)2/(8k2)

)
≤ c7(r)k−2

and
R8(k) = R6(k) + er|R7(k)| ≤ c8(r)k−2 .

It follows from (49) and (50) that

Γ(r)(
nrx

)r
B(r, k)

=
kr(
nrx

)r (1 +
r2 − r

2k
+R9(k)

)
(51)

with

R9(k) = e−rR8(k) +R5(k)
(

1 + (r2 − r)/(2k) +R8(k)
)
≤ c9(r)k−2 .

Having in mind τ ≤ 1 ≤ k = [gnx] = [(nr + 1)x] = (nr + 1)x− τ , we obtain

1 +
x− τ
nrx

=
k

nrx
=

[(nr + 1)x]

nrx


≤ (nr + 1)x

nrx ≤ 1 + 1
r(n− 1)

< 2

≥ [nr + 1)x]
(nr + 1)x

≥ k
k + τ

> 1
2

.
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Hence z = x− τ
nrx ∈

(
−1

2 , 1
)

and with
∣∣∣ 1
1 + z − 1

∣∣∣ =
|z|

1 + z ≤ 2|z| we find

1

k
=

1

nrx

(
1 +

x− τ
nrx

)−1
=

1

nrx
+R10(n, x) with |R10(n, x)| ≤ 2x+ 2

(nrx)2
.

With nr = r(n− 1) ≥ r for n ≥ 2 and x ≥ 1/(nr + 1) we find

i)

∣∣∣∣1k − 1

nrx

∣∣∣∣ ≤ 2 + 2x

(nrx)2
, ii)

1

k2
≤ 4

(nrx)2
and iii)

1

nrx
≤ 1 +

1

r
. (52)

On the other hand we have(
k

nrx

)r
=

(
nrx+ x− τ

nrx

)r
=

(
1 +

x− τ
nrx

)r
= 1+

r(x− τ)

nrx
+R11(n, x) (53)

where

|R11(n, x)| =

∣∣∣∣(1 +
x− τ
nrx

)r
− 1− r(x− τ)

nrx

∣∣∣∣ (34)≤ r(r − 1)

2

(
x− τ
nrx

)2

2|r−2|

≤ (c10(r) + x2c11(r))(nrx)−2.

Combining (51), (53) and (52) we find

Γ(r)(
nrx

)r
B(r, k)

= 1 +
r(x− τ)

nrx
+
r2 − r
2nrx

+R12(n, x) (54)

with

|R12(n, x)| ≤ r|x− τ |(r2 − r)
2k nrx

+ |R11(n, x)|
(

1 +
r2 − r

2k
+R9(k)

)
+

(
1 +

r|x− τ |
nrx

)
R9(k) ≤ c12(r) + x2c13(r)

(nrx)2
. (55)

Taking together (15), (44), (46), (47), (48) and (54) we find

B1/n(r, k)

B(r , k)
=

(
Gr,r(x)− rxr

nrx
Gr+1,r(x) +

r(r + 1)

2nrx
Gr+2,r(x) +R2(n)

)
·
(

1 +
r(x− τ)

nrx
+
r2 − r
2nrx

+R12(n, x)

)
= Gr,r(x) +

a0Gr,r(x) + a1Gr+1,r(x) + a2Gr+2,r(x)

2(n− 1)x
+R13(n, x)

with a0 = 2(x− τ) + r − 1, a1 = −2(x+ r − τ), a2 = r + 1 and

R13(n, x) = Gr,r(x)R12(n, x) +R2(n)

(
1 +

a0
2(n− 1)x

+R12(n, x)

)
+

(
a1Gr+1,r(x) + a2Gr+2,r(x)

(n− 1)x

)(
a0

2(n− 1)x
+R12(n, x)

)
.

In order to obtain an uniform in x > 0 bound for R13(n, x) we use

Gr+j,r(x) ≤ 1 for j = 0, 1, 2, Gr,r(x) ≤ rr xr/Γ(r + 1), for 1 < r ≤ 2,
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Gr+j,r(x) =
(r + j)r+j

Γ(r + j)

∫ x

0

y yr+j−2e−rydy ≤ (r + j)r+j

Γ(r + j)

(
r + j − 2

e r

)r+j−2
x2

2

for j = 0, r > 2 and j = 1, 2, r > 1 and also x−1Gr+2,r(x) ≤ Gr+1,r(x) ≤ 1.
Together with (47), (48), (55), |a0a1| ≤ 12x2+12r2, |a0a2| ≤ 2(r+1)x+(r+1)2

and (n − 1)x ≥ 1 by (39) we find |R13(n, x)| ≤ c14n
−min{r,2}. Theorem 1 is

proved with C2(r) = c14(r) . �

Proof of Lemma 1: If n = 1 then P(N1(r) = 1) = 1 and (23) holds with
C(r) = 1. Let n ≥ 2. From the definition of Nn(r) by (14) for r > 1 we have

E(Nn(r))−3/2 =
1

nr

 [r]∑
k=1

+

∞∑
k=[r]+1

 Γ(k + r − 1)

k3/2 Γ(r)Γ(k)

(
1− 1

n

)k−1
=:
∑

1
+
∑

2
,

where obviously
∑

1 ≤ c1(r)n−r. To estimate
∑

2 we use the beta function
B(r , k) with k > r > 1 and the equations (49) and (50) with their corresponding
bounds from the proof of Theorem 1, which leads to

Γ(k + r − 1)

Γ(r)Γ(k)
=

1

(k + r − 1)B(r , k)
=
kr−1

Γ(r)

(
1+R1(k)

)
, |R1(k)| ≤ c2(r)

k
. (56)

For r > 1 and x ≥ k ≥ 2 using (1− 1/n)x ≤ e−x/n we find

kr−1(1− 1/n)k−1

k3/2
≤
∫ k+1

k

xr−1 (1− 1/n)x−2

(x− 1)3/2
dx ≤ 8

√
2

∫ k+1

k

xr−5/2 e−x/ndx.

Hence, with c3 = 8
√

2(1 + c2)/Γ(r) we obtain∑
2
≤ c3(r)n−rJr(n) where Jr(n) =

∫ ∞
1

xr−5/2 e−x/ndx

Since Jr(n) ≤ (3/2 − r)−1 for 1<r<3/2, Jr(n) ≤ nr−3/2 Γ(r−3/2) for r > 3/2

and J3/2(n) ≤
∫ n
1

1
xdx+ 1

n
∫∞
n
e−x/ndx ≤ lnn+ e−1 bound (23) is proved.

Let now r = 3/2. Consider (56), 0 ≤
∑∞
k=2 k

−1|R1(k)| ≤ c2(3/2)π2/6 <∞,∑
(n) :=

∑n−1
k=2

1
k
≥ lnn − 1 and

∑n−1
k=2

1− (1− 1/n)k−1

k
≤
∑n−1
k=2

k − 1
k n

≤ 1

we find a lower bound for E(Nn(3/2))−3/2:

E(Nn(3/2))−3/2 ≥ n−3/2
∑

2 ≥ (2/
√
π)n−3/2(

∑
(n)−c2(3/2)π2/6)

≥ (2/
√
π)n−3/2(lnn − c2(3/2)π2/6− 1). �

Proof of Theorem 2: Since in the transfer Proposition 1 the additional assump-
tions (10) for the limit gamma distribution H(x) = Gr,r(x) of the normalized
sample size Nn(r) are satisfied with γ = r > 1, we have to calculate the integrals
in (11). Remember gn = E

(
Nn(r)

)
= r(n− 1) + 1 and define

J1(x) =

∫ ∞
0

Φ(x
√
y)dGr,r(y), J2(x) =

∫ ∞
0

H2(x
√
y)ϕ(x

√
y)

√
y

dGr,r(y)

J3,1(x) =

∫ ∞
0

H3(x
√
y)ϕ(x

√
y)

y
dGr,r(y),

J3,2(x) =

∫ ∞
0

H5(x
√
y)ϕ(x

√
y)

y
dGr,r(y) and J4(x) =

∫ ∞
0

Φ(x
√
y)dh2(y)
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with h2(y) =
(

(y − 1) (2 − r) + 2Q1

(
(r(n − 1) + 1)y

))
gr,r(y)/(2r), Q1(y) =

1/2− (y− [y]) and Chebyshev-Hermite polynomials Hm(x) given in (6) . Then

G2;n(x; 0) = J1(x)− λ3 J2(x)

6
√
gn

− 1

gn

(
λ4
24
J3,1(x) +

λ23
72
J3,2(x)

)
+
J4(x)

n
. (57)

Using formula 2.3.3.1 in Prudnikov, Brychkov and Marichev (2002, p. 322)
with α = r − 1/2, r + 1/2, r + 3/2 and p = 1 + x2/(2 r)

Kα(x) =
rr

Γ(r)
√

2π

∞∫
0

yα−1e−(r+x
2/2)ydy =

Γ(α) rr−α

Γ(r)
√

2π

(
1 + x2/(2r)

)−α
(58)

we calculate the integrals occurring in (57). Consider

∂

∂x
J1(x) =

∫ ∞
0

y1/2ϕ(x
√
y)gr,r(y)dy =

rr

Γ(r)
√

2π

∫ ∞
0

yr−1/2e−(r+x
2/2)ydy

= Kr+1/2(x) = s2r(x) and J1(x) = S2r(x) .

The integrals J2(x), J3,1(x) and J3,2(x) in (57) we calculate again with (58)
using Kr−1/2(x) = s2r(x) (2r + x2)/(2r − 1) and Kr+1/2(x) = s2r(x)

J2(x) :=

∫ ∞
0

(x2y − 1)
√
y

ϕ(x
√
y) gr,r(y) dy

= x2Kr+1/2(x)−Kr−1/2(x) =
2

2 r − 1

(
(r − 1)x2 − r

)
s2r(x) ,

J3,1(x) :=
rr√

2π Γ(r)

∫ ∞
0

1

y

(
x3y3/2 − 3x y1/2

)
yr−1 e−(r+x

2/2)ydy

=
(
x3Kr+1/2(x)− 3xKr−1/2(x)

)
= 2

(r − 2)x2 − 3r

2r − 1
x s2r(x)

and together with Kr+3/2(x) = 2r + 1
2r + x2

s2r(x)

J3,2(x) :=
rr√

2π Γ(r)

∫ ∞
0

1

y

(
x5y5/2− 10x3y3/2+ 15xy1/2

)
yr−1 e−(r+x

2/2)ydy

= x5Kr+3/2(x)− 10x3Kr+1/2(x) + 15xKr−1/2(x)

=
(r − 2)(r − 3)x4 + 10r(2− r)x2 + 15r2

(2r − 1) (2r + x2)
4x s2r(x).

Integration by parts in the integral J4(x) in (57) leads to

J4(x) =

∫ ∞
0

Φ(x
√
y)dh2(y) = − x

2
√

2π

∫ ∞
0

e−x
2y/2

√
y

h2(y)dy

= − xrr

4r
√

2πΓ(r)

∫ ∞
0

yr−3/2
(
(y − 1) (2− r) + 2Q1(gny)

)
e−(r+x

2/2)y dy

=
(r − 2)x

4r

(
Kr+1/2(x)−Kr−1/2(x)

)
− J∗4 (x)

=
(2− r)x(x2 + 1)

4r(2r − 1)
s2r(x)− J∗4 (x).
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with

J∗4 (x) =
xrr−1

2
√

2πΓ(r)

∫ ∞
0

yr−3/2Q1

(
gny
)
e−(r+x

2/2)y dy .

The function Q1(y) is periodic with period 1:

Q1(y) = Q1(y + 1) for all y ∈ R and Q1(y) := 1/2− y for 0 ≤ y < 1 , (59)

it is right-continuous and has the jump 1 at every integer point y. The Fourier
series expansion of Q1(y) at all non-integer points y is

Q1(y) = 1/2− (y − [y]) =
∑∞

k=1

sin(2π k y)

k π
, y 6= [y], (60)

see formula 5.4.2.9 in Prudnikov, Brychkov and Marichev (2002, p. 726) with
a = 0. Now we may estimate the integral J∗4 . Using (60), interchange
sum and integral and applying formula 2.5.31.4 in Prudnikov, Brychkov and
Marichev (2002, p. 446) with α = r − 1/2, p = (r + x2/2) and b = 2πkgn

J∗4 (x) =
xrr−1

2
√

2πΓ(r)

∫ ∞
0

yr−3/2 e−(r+x
2/2)y

( ∞∑
k=1

sin
(
2πkgny

)
πk

)
dy

=
xrr−1

2π
√

2πΓ(r)

∞∑
k=1

1

k

∫ ∞
0

yr−3/2 e−(r+x
2/2)y sin

(
2πkgny

)
dy

=
xrr−1Γ(r − 1/2)

2π
√

2πΓ(r)

∞∑
k=1

sin

(
(r − 1/2) arctan

(
4πkgn/(x

2 + 2r)
))

k

((
2πkgn

)2
+ (r + x2/2)2

)(r−1/2)/2

=:
rr−1Γ(r − 1/2)

2π
√

2πΓ(r)

∞∑
k=1

ak(x;n)

k
.

Now we split the exponent (r − 1/2)/2 = (r − 1)/2 + 1/4 and obtain

|ak(x;n)| ≤ |x|((
2πkgn

)2
+
(
r + x2/2

)2)(r−1)/2+1/4

≤ |x|
(2πkgn)r−1 (r + x2/2)1/2

≤
√

2

(2π r k (n− 1))r−1
.

Since r > 1 and n ≥ 2 we find uniform in x

n−1 |J∗4 | ≤
c(r)

nr

∑∞

k=1
k−r =

c1(r)

nr
.

Together with |1/gn − 1/(rn)| ≤ max{2, r}(r − 1)(rn)−2, Proposition 1 and
Lemma 1 the estimate (24) is proved.

Consider now the case r = 3/2. If the random variable X has an addi-
tional moment condition E|X|5+δ < ∞ with some 0 < δ < 1, then for the
statistic Tm instead of (5) one can obtain a third order Edgeworth expan-
sion with convergence rate m−(3+δ)/2. Like in the proof of Lemma 1 we find
E(Nn(r))−(3+δ)/2 ≤ Cn−3/2. The additional term in Edgeworth expansion is

m−3/2f3(x) = −m−3/2ϕ(x)
(
H4(x)λ5/5! +H6(x)λ3λ4/(3!4!) +H8(x)(λ3/3!)3

)
,
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where λk, k = 3, 4, 5 are normalized cumulants of X and Hk(x) with absolute
terms Hk(0) > 0 are Chebyshev-Hermite polynomials of even degree k = 4, 6, 8,
see Petrov (1995, Theorem 5.19 with r = 5 + δ).

The corresponding additional term in the expansion of TNn(3/2) is

g
−3/2
n

∫∞
1/gn

y−3/2f3(x
√
y)dG3/2,3/2(y), see Bening, Galieva and Korolev (2013,

Theorem 3.1). Therefore there are terms like Hk(0)g
−3/2
n J(x) with

J(x) =

∫ ∞
1/gn

y−1e−(x
2−3)y/2dy ≥

∫ 1

(x2−3)y/(2gn)
(y−1 − y−1(1− e−y))dy

≥ − ln((x2 − 3)y/(2gn))− 1 = ln(3(n− 1) + 2)− ln(x2 + 3)− 1.

Hence, for |x| ≤ K <∞ in case r = 3/2 the factor lnn in (24) vanishes only if
λ3 = λ5 = 0. �

Proof of Theorem 4. Put again τ = nx − [nx] ∈ [0 , 1), i.e. [nx] = nx − τ . We
consider the case

0 ≤ max{s, 1}
nx− τ

<
1

3
including also 0 ≤ s

nx
<

1

3
and 0 ≤ τ

nx
<

1

3
(61)

and offer preliminary estimates to prepare the proof of (31). Define and estimate

a(n, x) := −n
( s

nx− τ
− s2

2(nx− τ)2

) (61)

≤ − 5ns

6(nx− τ)
≤ − 5s

6x
(62)

b(n, x) := − s
x

+
s2 − 2sτ

2nx2
≤ − s

x
+

s

2x

s

nx

(61)

≤ − 5s

6x
, (63)

f(n, x) := − s
x
g2

( τ

nx

)
+

s2

2nx2
g3

( τ

nx

)
, (64)

where g2(.) ≥ 0 and g3(.) ≥ 0 are defined in (35) and (36). Then

|f(n, x)| ≤ max

{
s

x
g2

( τ

nx

)
,

s2

2nx2
g3

( τ

nx

)} (35),(36)

≤ 15smax{1, s}
8n2x3

(61)

≤ 5s

24x
.

(65)
Now we are ready to prove (31):

P
(
Nn(s)

n
≤ x

)
= P(Nn(s) ≤ nx) = P(Nn(s) ≤ [nx])

(27)
=

(
[nx]

s+ [nx]

)n
=

(
1 +

s

[nx]

)−n
= exp

{
− n ln

(
1 +

s

nx− τ

)}
(32),(62)

= exp
{
− ng1

( s

nx− τ

)
+ a(n, x)

}
= ea(n,x) − r1(n, x)

= exp
{
− s

x

(
1− τ

nx

)−1
+

s2

2nx2

(
1− τ

nx

)−2}
− r1(n, x)

(63)
= eb(n,x) + r2(n, x)− r1(n, x)

= e−s/x
(

1 +
s(s− 2τ)

2nx2

)
+ r3(n, x) + r2(n, x)− r1(n, x)
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where

r1(n, x) :=
(

1− exp
{
− ng1

( s

nx− τ

)})
ea(n,x)

(37)i,(62)

≤ ng1

( s

nx− τ

)
e−5s/(6x)

(32)

≤ ns3e−5s/(6x)

3(nx− τ)3
=

s3e−5s/(6x)

3n2x3(1− τ/(nx))3

(61)

≤ 9s3e−s/(2x)

8n2x3

(38)

≤ c1(s)

n2
,

r2(n, x)
(64)
:=

∣∣∣∣exp
{
− s

x
g2

( τ

nx

)
+

s2

2nx2
g3

( τ

nx

)}
− 1

∣∣∣∣ eb(n,x)
(37)i

≤ |f(n, x)|e{|f(n,x)|+b(n,x)}
(65),(63)

≤ 15smax{1, s}
8n2x3

exp
{ 5s

24x
− 5s

6x

}
=

15smax{1, s}
8n2x3

e−5s/(8x)
(38)

≤ c2(s)

n2

and with s(τ) := s2 − 2sτ using |s(τ)| ≤ max{s2 , 2s}

r3(n, x) :=

∣∣∣∣eb(n,x) − e−s/x(1 +
s(τ)

2nx2

)∣∣∣∣ = e−s/x
∣∣∣∣exp

{ s(τ)

2nx2

}
− 1− s(τ)

2nx2

∣∣∣∣
(37)ii

≤ e−s/x
s2(τ)

8n2x4
e|s(τ)|/(2nx

2)
(61)

≤ max{s4, 4s2}
8n2x4

e−2s/(3x)
(38)

≤ c3(s)

n2
.

Hence, (31) is proved for s/(nx− τ) ≤ 1/3 with C2(s) = c1(s) + c2(s) + c3(s).

Let now s/(nx − τ) = s/[nx] ≥ 1/3, which is satisfied only for the jump-
points x = k/n of Nn(s)/n with k = 1, 2, ..., 3s. Then we have for x ≤ 3s/n

P
(
Nn(s)

n
≤ x

)
=

3s∑
k=1

P (Nn(s) = k)
(28)
=

(
3s

4s

)n
=
n2

n2

(
3

4

)n (38)

≤ c4
n2
.

If s/(nx− τ) ≥ 1/3, then 1 ≤ (3s+ 1)/(nx) and we find

e−s/x

∣∣∣∣∣1 +
s
(
s− 2 τ

)
2x2 n

∣∣∣∣∣ ≤ (3s+ 1)2

n2x2

{
1 +

max{s2, 2s}
2x2

}
e−s/x

(38)

≤ c5(s)

n2

and (31) is proved for s/(nx − τ) ≥ 1/3 with C2 = c4 + c5(s) . Theorem 4 is
proved. �

Proof of Lemma 2: Let s > 0 and n ≥ 1 be fixed. For k ≥ 1 put ak = k/(s+ k)
and bk = (k − 1)/(s + k − 1). Then ak − bk = s/

(
(s + k)(s + k − 1)

)
, ak > bk

and ank − bnk = (ak− bk)
(
an−1k +an−2k bk + ...+akb

n−2
k + bn−1k

)
> (ak− bk)nbn−1k .

Further, for k ≥ s∗ = 2s+ 1 we find bk ≥ 2/3, ak − bk ≥ (3k/2)−2 and

∑∞

k=s∗
k(ank − bnk ) ≥

∑∞

k=s∗

4n

9k

(
2

3

)n−1
=∞ . Hence, ENn(s) =∞ .

Remark 10 leads to EW (s) = s
∫∞
0
x−1e−s/xdx = s

∫∞
0
y−1e−sydy =∞.

To investigate the absolute pseudo moment ν1 we split the integration
domain R+ = (0 , ∞) = (R+ \Mn) ∪Mn for any fixed integer n ≥ 1 , where
Mn = {k/n : k ∈ N} is the set of discontinuity points of P(Nn(s) ≤ nx). Since
the distribution function e−s/xIR+

(x) is continuous and Lebesgue measure
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λ(Mn) = 0 we find ν1=
∫
R+
x
∣∣d(P(Nn(s)≤nx

)
− e−s/x

)∣∣ ≥∫R+\Mn
xde−s/x =∞ .

If k/n ≤ x < (k+1)/n then 0 ≤ e−s/x−1+s/x
(37)ii

≤ s2/(2x2) ≤ n2s2/(2k2),

(1 + s/k)−n − 1 + ns/k
(33)

≤ n(n+ 1)s2/(2k2), 0 ≤ ns/k − s/x and∣∣e−s/x−P (Nn(s) ≤ nx
)∣∣ (27)=

∣∣e−s/x−(1+s/k
)−n∣∣ ≤ ns/k−s/x+2n(n+1)s2/k2.

Moreover, Ik =

∫ (k+1−0)/n

k/n

(
ns/k−s/x

)
dx ≤ s/k−s ln(1+1/k) ≤ s/(2k2).

Then for k ≥ s∗ = 2s+ 1 and 1 ≤ r < 2 we find

∑∞

k=s∗

∫ (k+1−0)/n

k/n

xr−1
∣∣e−s/x − P (Nn(s) ≤ nx

)∣∣dx
≤
∑∞

k=s∗

(
k + 1

n

)r−1(
Ik +

2n(n+ 1)s2

k2

)
≤ c(s, n)

∑∞

k=s∗

(k + 1)r−1

k2
<∞

and χr <∞ for 1 ≤ r < 2 is proved. �

Proof of Lemma 3: Let n ≥ 2. Proceeding as in Bening, Galieva and Ko-
rolev (2013) using

P(Nn(s) = k) =

(
k

s+ k

)n
−
(

k − 1

s+ k − 1

)n
= s n

∫ k

k−1

xn−1

(s+ x)n+1
dx

and Formula 2.2.4.24 in Prudnikov, Brychkov and Marichev (2002, p. 298), then

E(N−3/2n ) = s n

∞∑
k=1

1

k3/2

∫ k

k−1

xn−1

(s+ x)n+1
dx ≤ s n

∞∑
k=1

∫ k

k−1

xn−5/2

(s+ x)n+1
dx

= s n

∫ ∞
0

xn−5/2

(s+ x)n+1
dx = s nB(5/2, n− 3/2)

(51)

≤ sn

Γ(5/2)(n− 3/2)5/2
.

Moreover E(N
−3/2
1 ) ≤

∑∞
k=1 k

−3/2 = ζ(3/2) = 2.612.... Lemma 3 is proved. �

Proof of Theorem 5. In the transfer Proposition 1 the additional assumptions
(10) for the limit inverse exponential distribution H(x) = e−s/x I(0 ,∞)(x) of

the normalized sample size Nn(s), s ≥ s0 > 0 and h2(y) = e−s/y s
(
s − 1 +

2Q1(y n)
)
/(2 y2), Q1(y) = 1/2 − (y − [y]), y > 0 are satisfied with gn = n and

γ = 3/2, where h2(0) = limy↓0 h2(y) = 0. Hence, we have to calculate the
integrals in (11). Define

J1(x) =

∫ ∞
0

Φ(x
√
y)de−s/x(y), J2(x) =

∫ ∞
0

H2(x
√
y)ϕ(x

√
y)

√
y

de−s/x(y)

J3,1(x) =

∫ ∞
0

H3(x
√
y)ϕ(x

√
y)

y
de−s/x(y),

J3,2(x) =

∫ ∞
0

H5(x
√
y)ϕ(x

√
y)

y
de−s/x(y) and J4(x) =

∫ ∞
0

Φ(x
√
y)dh2(y)
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with Chebyshev-Hermite polynomials Hm(x) given in (6) . Then

G2;n(x; 0) = J1(x)− λ3 J2(x)

6
√
n
− 1

n

(
λ4
24
J3,1(x) +

λ23
72
J3,2(x)

)
+
J4(x)

n
. (66)

Using formula 2.3.16.3 in Prudnikov, Brychkov and Marichev (2002, p. 444):∫ ∞
0

e−py−s/y

ym+1/2
dy = (−1)

m
√
π

p

∂m

∂sm
e−2
√
p s, p > 0, s > 0, m = 0, 1, 2, ... (67)

and Appendix II.1 in Prudnikov, Brychkov and Marichev (2002, p. 773):∫ ∞
0

y−m−1/2e−s/ydy = s−m+1/2

∫ ∞
0

tm−3/2e−tdt = s−m+1/2 Γ(m− 1/2) ,

with s > 0 and m > 1/2. For p = x2/2 and s > 0 we find

Km(x) :=

∞∫
0

e−(x
2/2)y−s/y

√
2π ym+1/2

dy =


(−1)

m

|x|
∂m

∂sm
e−
√
2 s |x|, x 6= 0,m = 0, 1, 2

s−m+1/2 Γ(m− 1/2), x = 0, m = 1, 2.

(68)

Since Γ(1/2) =
√
π and Γ(3/2) =

√
π/2 then for x 6= 0

K0(x) =
1

|x|
e−
√
2s |x| =

2√
2s |x|

l1/
√
s(x),

K1(x) =
1√
2s
e−
√
2s |x| =

1

s
l1/
√
s(x),

K2(x) = e−
√
2s |x|

(
1

(2s)3/2
+
|x|
2s

)
=

2

(2s)2
(1 +

√
2s|x|) l1/√s(x)

and K1(x), K2(x) and |x|γK0(x) with some γ > 1 are continuous ∀x ∈ R.

Let us now calculate the integrals occurring in (66). Consider

∂

∂x
J1(x) =

s√
2π

∫ ∞
0

y−3/2e−(x
2/2)y−s/ydy = s K1(x) = l1/

√
s(x)

and J1(x) = L1/
√
s(x) .

The second and third integrals in (66) we calculate again with (68)

J2(x) :=
s√
2π

∫ ∞
0

x2y − 1

y5/2
e−(x

2/2)y−s/ydy = s
(
x2K1(x)−K2(x)

)
=

(
x2 − |x|√

2s
− 1

2 s

)
l1/
√
s(x) ,

J3,1(x) := s
(
x3K1(x)− 3xK2(x)

)
=

x

2 s

(
2sx2 − 3

√
2s|x| − 3

)
l1/
√
s(x)

and

J3,2(x) := s
(
x5K0(x)− 10x3K1(x) + 15xK2(x)

)
=

x

2 s

(
(2s)3/2 |x|3 − 20sx2 + 15

√
2s |x|+ 15

)
l1/
√
s(x) .
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Integration by parts in the last integral of (66) leads to

J4(x) :=

∫ ∞
0

Φ(x
√
y)d(h2(y)) = −

∫ ∞
0

x

2
√
y
ϕ(x
√
y)h2(y)dy

= − x s(s− 1)

4
√

2π

∫ ∞
0

y−5/2e−(x
2/2)y−s/ydy + J∗4 (x)

(68)
=

xs(1− s)
4

K2(x) + J∗4 (x) =
x(1− s)

8s

(√
2s|x|+ 1

)
l1/
√
s(x) + J∗4 (x),

where

J∗4 = − x s

2
√

2π

∫ ∞
0

y−5/2e−(x
2/2)y−s/y Q1(n y))dy.

Figure 7: The function h(y) = y−5/2e−(x
2/2)y−s/y Q1(n y) under the integral J∗4

for 0 ≤ y ≤ 2 and x = 1 with s = 2 and n = 10

Using the Fourier series expansion (60) of the periodic function Q1(y), given
in (59), and interchange sum and integral, we find

J∗4 = − s x

2
√

2π

∑∞

k=1

1

k

∫ ∞
0

y−5/2 e−(x
2/2)y−s/y sin(2π k n y)dy. (69)

Let p > 0, s > s0/2 > 0 and b > 0 be some real constants. Formula 2.5.37.3 in
Prudnikov, Brychkov and Marichev (2002, p. 453) is∫ ∞

0

y−3/2 e−p y−s/y sin(b y)dy =

√
π√
s
e− 2

√
s z+ sin(2

√
s z−) (70)

with 2 z2± =
√
p2 + b2 ± p.

In order to estimate J∗4 (x) in (69) we prove that we can apply Leibniz’s
integral rule and differentiate with respect to s under the integral sign in (70).
Consider the function f(s, y) =

√
2 p y−3/2 e−p y−s/y sin(b y). For p > 0 we find∫ ∞

0

|f(s, y)|dy ≤
√

2 p

∫ ∞
0

y−3/2 e−p y−s/ydy
(67)
=

√
2π p s

s
e− 2

√
p s

(38)

≤
√

2π

e s0

uniformly in p > 0, b > 0 and s > s0/2. Moreover, the partial derivative
∂
∂s
f(s, y) =

√
2 p y−5/2 e−p y−s/y sin(b y) is continuous in s and y in the region
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(s0/2,∞)× (0,∞) and for s > s0/2∣∣∣∣ ∂∂sf(s, y)

∣∣∣∣ ≤√2 p
e−p y−s/y

y5/2
=
√

2 p
e−p y

y1/2
e−s/y

y2

(38)

≤
√

2 p
e−p y

y1/2
16

e2 s20
=: g(y)

with ∫ ∞
0

g(y)dy =
16

e2 s20

√
2 p

∫ ∞
0

e−p y

y1/2
dy =

16

e2 s20

√
2 Γ(1/2) <∞

for all p > 0, b > 0 and s > s0/2. Hence, differentiation with respect to s under
the integral sign in (70) is allowed and we find∫ ∞

0

y−5/2 e−p y−s/y sin(b y)dy = (
√
π/2) e−2

√
s z+

(
s−3/2 sin(2

√
s z−)

+ 2 s−1 z+ sin(2
√
s z−) − 2 s−1 z− cos(2

√
s z−)

)
.

Consider z± defined in (70) with p = x2/2, b = 2πkn, k ≥ 1 and n ≥ 1:

z± = (1/
√

2)

√√
x4/4 + (2πkn)2 ± x2/2 .

Then 0 < z− ≤ z+, z+ ≥ |x|/2 and z+ ≥
√
πkn ≥

√
π(
√
k +
√
n)/2,

(1+z+) e−
√
s z+/2

(38)

≤ 1+2/(e
√
s0) and with

∑∞
k=1 e

−
√
πsk/2/k ≤ C we obtain

|J∗4 | ≤ C1(s)|x|
∑∞

k=1

(1 + z+)e−2
√
s z+

k
≤ C2(s)|x|e−

√
s |x|/4

∑∞

k=1

e−
√
s z+

k

≤ C3(s) e−
√
πsn/2

∑∞

k=1

1

k
e−
√
πsk/2 ≤ C4(s) e−

√
πsn/2 ≤ C(s)n−3/2 .

Note that the constant C(s) may not be uniform bounded in s > 0, but there
exist a constant C∗(s0) <∞ such that C(s) ≤ C∗(s0) for s ≥ s0. Together with
Proposition 1, (66) and Lemma 3 the statement of Theorem 5 is proved. �
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