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Abstract

This paper presents moment matching priors for non-regular models whose supports

depend on an unknown parameter. Both one-parameter and multi-parameter cases are

considered. The resulting priors are given by matching the posterior mean and bias-

adjusted maximum likelihood estimator up to the higher order. Some examples of pro-

posed priors are also given.

Keywords: Maximum likelihood estimator; Moment matching priors; Non-regular distribu-

tions; Objective priors

1 Introduction

In Bayesian inference, the selection of priors has been an important and much discussed

problem. When we have a little prior information or it is required the objectivity of data

analysis, we often use ‘objective priors’ or ‘default priors’. Then we are often faced with a

problem of the selection of an appropriate objective prior in a given context. For a regular

family of distributions, the Jeffreys prior which is proportional to the positive square root of

the Fisher information number is widely used as the objective prior. It is also known that the

Jeffreys prior is invariant under smooth one-to-one transformation. Another class of objective

priors is the reference prior, which was proposed by Bernardo (1979). The reference prior

is defined by maximizing the expected Kullback-Leibler divergence between the prior and

the posterior under some regularity conditions. The probability matching prior proposed by

Welch and Peers (1963) is also known as an objective prior (see also Tibshirani (1989) and

Datta and Mukerjee (2004)). These priors match the Bayesian credible intervals with the

corresponding frequentist coverage probabilities, either exactly or approximately. Since the

situations in which there exist exact probability matching priors are very limited, we often

focus on approximating them based on the asymptotic theory of the maximum likelihood

estimator under some regularity conditions. Recently, Ghosh and Liu (2011) derived the

priors which are based on the moment matching criterion for regular one-parameter and multi-

parameter family of distributions. Moment matching criterion leads the prior which is higher

order matching of the moment of the posterior and the maximum likelihood estimator (MLE),

and such priors are called the moment matching priors. Therefore the moment matching prior

leads to the posterior mean which shares the asymptotic optimality of the MLE’s up to the
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higher order. As stated in Ghosh and Liu (2011), if one is interested in asymptotic bias or

mean squared error reduction of the MLE’s through some adjustment, the same adjustment

applies directly to the posterior means. In this sense, it is possible to achieve Bayesian-

frequentist synthesis of point estimates. Interestingly, Ghosh and Liu (2011) showed that the

moment matching prior is different from the Jeffreys or probability matching priors in regular

cases.

However, these objective priors strongly depend on the regularity of statistical models and

cannot be applied for non-regular distributions which does not satisfy regularity conditions

such as the models with parameter-dependent supports. These non-regular models have

been appeared in many practical situations. For examples, the auction and search models in

structural econometric models have a jump in the density and the jump is very informative

about the parameters. In such non-regular cases, for example, the asymptotic normality of the

posterior distribution does not hold. In non-regular cases, the reference priors in the sense of

Bernardo (1979) were obtained by Ghosal and Samanta (1997a) for one-parameter case and

by Ghosal (1997) for multi-parameter case in the presence of nuisance parameter. Ghosal

(1999) derived the probability matching prior for both one-parameter and multi-parameter

non-regular cases and made comparison with the corresponding reference priors. Furthermore,

Wang and Sun (2012) derived the objective prior for another type of non-regular model.

In this paper, we deal with the same non-regular models as those of Ghosal (1999) and

derive the moment matching priors which match the posterior mean and bias-adjusted MLE

in such models. Both one-parameter and multi-parameter cases are considered. The resulting

priors are given by solving certain differential equations. Further, we show some properties

of the resulting prior and make comparison with the corresponding reference or probability

matching priors for non-regular case.

This paper is organized as follows: In Section 2, we give the moment matching prior for

one-parameter case by using the higher order asymptotic expression of posterior. In Section

3, we extend the result in Section 2 to multi-parameter case in the presence of nuisance

parameter. In Section 4, we give some examples of the proposed priors.

2 Moment matching prior for one parameter non-regular model

Let X1, . . . , Xn be independent and identically distributed observations from a density f(x; θ)

(θ ∈ Θ ⊂ R) with respect to the Lebesgue measure. We assume that for all θ ∈ Θ, f(x; θ) is

strictly positive in a closed interval S(θ) := [a1(θ), a2(θ)] depending on unknown parameter

θ and is zero outside S(θ). It is permitted that one of the endpoints is free from θ and may

be plus or minus infinity. In order to ensure the validity of the expansion of the posterior

density, we assume the conditions (A1)–(A5) and (A6) with r = 1 in Ghosal and Samanta

(1997b) on a1(·), a2(·) and f(x; θ). Some examples which belong to this family are given in

Section 4.

Let π be a prior density of θ, and we assume that π is twice differentiable. Without

loss of generality, we assume that S(θ) is monotone decreasing with respect to θ, that is,

we assume that a1(·) is monotone increasing and a2(·) is monotone decreasing. Indeed, the
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case where S(θ) increases with θ may be reduced to the case where S(θ) decreases by the

reparametrization θ 7→ (−θ). By the assumption of S(θ), the MLE of θ is given by

θ̂n := min{a−1
1 (X(1)), a

−1
2 (X(n))},

where X(1) := min1≤i≤nXi and X(n) := max1≤i≤nXi. Note that it holds that θ̂n − θ =

Op(n
−1) (n → ∞), rather than Op(n

−1/2) as in regular cases. Hereafter, we often omit the

argument ‘n → ∞’ for simplicity. Define

σ :=
1

n

n∑
i=1

∂

∂θ
log f(Xi; θ̂n).

Note that it holds that σ − c(θ) = Op(n
−1) (Lemma 2.1 in Ghosal and Samanta (1997b)),

where

c(θ) := E

[
∂

∂θ
log f(Xi; θ)

]
= a′1(θ)f(a1(θ); θ)− a′2(θ)f(a2(θ); θ).

is the expectation of the score function. Since S(θ) is monotone decreasing, we note that it

holds c(θ) > 0. By Theorem 3.1 of Ghosal and Samanta (1997b), the posterior density of

the normalized random variable u = nσ(θ − θ̂n) given X = (X1, . . . , Xn) has the stochastic

expansion

π(u|X) = eu

[
1 +

1

n

{
π′(θ̂n)

σπ(θ̂n)
(u+ 1) +

c2
σ2

(u2 − 2)

}
+Op(n

−2)

]
(2.1)

for u < 0, where

c2 :=
1

2n

n∑
i=1

∂2

∂θ2
log f(Xi, θ̂n).

From (2.1) we note that the first order asymptotic posterior is the exponential distribution.

We find a prior such that the difference between the resulting posterior mean and the bias-

adjusted maximum likelihood estimator converges to zero up to the order of Op(n
−3). From

(2.1) we have the following theorem.

Theorem 2.1. Let θ̂Bn,π be the posterior mean of θ under the prior π(θ) and θ̂∗n = θ̂n−{1/(σn)}
be the bias-adjusted MLE of θ. Then we have

θ̂Bn,π − θ̂∗n =
1

n2

{
1

σ2

(
π′(θ̂n)

π(θ̂n)
− 4c2

σ

)}
+Op

(
1

n3

)
. (2.2)

The proof of this theorem is omitted because the proof can be make the use of the moment

of the exponential distribution and transformation of variable. As we mentioned before, it

holds that θ̂n−θ = Op(n
−1) and σ−c(θ) = Op(n

−1). Also, by the law of large number and the

condition (A6) with r = 1 in Ghosal and Samanta (1997b), we can show that c2 − (d(θ)/2) =
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Op(n
−1). By using these facts and continuity of the prior density π(θ), we have

n2(θ̂Bn,π − θ̂∗n)
p→ 1

c(θ)2

(
π′(θ)

π(θ)
− 2d(θ)

c(θ)

)
, (2.3)

where d(θ) := E[(∂2/∂θ2) log f(Xi; θ)] and we assume that d(θ) < ∞. If we now choose the

prior as

π(θ) = exp

[
2

∫ θ d(t)

c(t)
dt

]
, (2.4)

the right-hand side of (2.3) equals zero. Hence, we obtain θ̂Bn,π − θ̂∗n = Op(n
−3) under the

prior (2.4). In other words, this prior leads to the posterior mean which matches with the

bias-adjusted MLE’s up to the order of Op(n
−3). We will denote this prior as πM (θ) and

call it the moment matching prior for θ. We note that it is not clear whether the prior

πM (θ) is proper or not in general. Proprieties of the prior and the corresponding posterior

are discussed in Section 4 through some specific examples. The prior πM (θ) is different from

the reference prior π(θ) ∝ c(θ) for non-regular case given by Ghosal and Samanta (1997a) or

the probability matching prior π(θ) ∝ c(θ) for non-regular case given by Ghosal (1999). We

note that if S(θ) is monotone increasing, these priors are π(θ) ∝ |c(θ)|. We have the following

theorem concerning the one-to-one transformation of θ.

Theorem 2.2. Let πM (θ) be a moment matching prior for θ given by (2.4) and η is a one-

to-one function of θ. Then we have

π∗
M (η) = πM (θ)

(
dθ

dη

)2

. (2.5)

Proof. Let g(x; η) be a reparametrized density. Define

c(η) = E

[
∂

∂η
log g(Xi; η)

]
and d(η) = E

[
∂2

∂η2
log g(Xi; η)

]
.

From (2.4) we obtain

πM (η) = exp

[
2

∫
d(η)

c(η)
dη

]
.

We note that it holds that c(η) = c(θ)(dθ/dη). By the chain rule of differentiation, we have

d(η) = d(θ)

(
dθ

dη

)2

+ c(θ)

(
d2θ

dη2

)
.

Hence, we have

π∗
M (η) = exp

[
2

∫
d(η)

c(η)
dη

]
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= exp

[
2

∫
d(θ)(dθ/dη)2

c(θ)(dθ/dη)
dη

]
· exp

[
2

∫
d2θ/dη2

dθ/dη
dη

]
= πM (θ) exp

[
2 log

(
dθ

dη

)]
= πM (θ)

(
dθ

dη

)2

.

This completes the proof.

Unfortunately, the moment matching prior πM (θ) is not invariant under smooth one-to-

one transformation. However, in the model considered in this paper, we are mainly interested

in the estimation of θ not other parametrizations, e.g., θ2,
√
θ, and so on. If we are interested

in the estimation of θ2 or
√
θ, then we have to derive other moment matching prior for θ2 or√

θ. Although the invariance of smooth one-to-one transformation is desirable property for

the prior distribution, there exists objective priors which are not necessary to have invariant

property. For example, Datta and Ghosh (1996) showed that the reverse reference prior is not

invariant under smooth one-to-one transformation (for details, see Datta and Ghosh (1996)).

In a regular parametric model, Ghosh and Liu (2011) derived the moment matching prior

πM (θ) = exp

[
−1

2

∫ θ g3(t)

I(t)
dt

]
, (2.6)

where I(θ) = −d(θ) < ∞ and g3(θ) = E[(∂3/∂θ3) log f(Xi; θ)] < ∞. They also showed

that the prior (2.6) is not invariant under smooth one-to-one transformation. It may be

interesting to find conditions which the moment matching prior corresponds to the reference

(or probability matching) prior π(θ) ∝ c(θ) for non-regular case or the uniform prior π(θ) ∝
constant. The former holds if and only if d(θ) = c′(θ)/2, while the later holds if and only if

d(θ) = 0. Some examples of the moment matching prior by (2.4) are given in Section 4.

3 Moment matching priors for multi-parameter non-regular

model

We now consider an additional parameter φ, and consider the parametric model f(x; θ, φ).

We suppose that φ is the regular parameter, that is, we assume that the model is regular

parametric family when the non-regular parameter θ is known. For simplicity, we give the

result in the case of scalar φ. The multi-dimensional extension of φ may also be treated in

the same manner. Let π(θ, φ) be the joint prior density of (θ, φ), and we assume that π(θ, φ)

is piecewise differential in θ and φ up to the third order. Further, we assume that f(x; θ, φ)

is piecewise differentiable in θ and φ up to the forth order. Let φ̂n be a solution of the the

modified likelihood equation

n∑
i=1

∂

∂φ
log f(Xi; θ̂n, φ̂n) = 0. (3.1)

Smith (1985) showed the consistency for the special case when θ is a location parameter, but

the argument can easily be generalized. Hence, we may assume that (θ̂n, φ̂n) is consistent.
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We put

σ :=
1

n

n∑
i=1

∂

∂θ
log f(Xi; θ̂n, φ̂n), b2 := − 1

n

n∑
i=1

∂2

∂φ2
log f(Xi; θ̂n, φ̂n)

and we note that σ → c(θ, φ) and b2 → λ2(θ, φ) almost surely, where

c(θ, φ) := E

[
∂

∂θ
log f(X; θ, φ)

]
, λ2(θ, φ) := E

[
− ∂2

∂φ2
log f(X; θ, φ)

]
.

When S(θ) is monotone decreasing, we can show that c(θ, φ) > 0. Hereafter, we may assume

that c(θ, φ) > 0. Let u := nσ(θ − θ̂n) and v :=
√
nb(φ− φ̂n) be normalized random variables

of θ and φ, respectively. From Appendix in Ghosal (1999) the joint posterior density of (u, v)

given X = (X1, . . . , Xn) has the stochastic expansion up to the order Op(n
−3/2)

π(u, v|X) =
1√
2π

eu−(v2/2)

{
1 +

1√
n
D1 +

1

n
D2 +Op(n

−3/2)

}
(3.2)

for u < 0, where

D1 =
π̂01
π̂00b

v +
2a11
σb

uv +
a03
b3

v3,

D2 =
π̂10
π̂00σ

(u+ 1) +
π̂02

2π̂00b2
(v2 − 1) +

a20
σ2

(u2 − 2)

+
2(π̂01/π̂00)a11 + 3a12

σb2
(uv2 + 1) +

π̂01a03
π̂00b4

(v4 − 3)

+
2a211
σ2b2

(u2v2 − 2) +
2a11a03
σb4

(uv4 + 3) +
a203
b6

(v6 − 15)

with

π̂rs =
∂r+s

∂θr∂φs
π(θ̂n, φ̂n), ars =

1

(r + s)!n

n∑
i=1

∂r+s

∂θr∂φs
log f(Xi; θ̂n, φ̂n)

for r, s = 0, 1, 2, . . . , and note that ars → Ars(θ, φ) almost surely, where

Ars(θ, φ) =
1

(r + s)!
E

[
∂r+s

∂θr∂φs
log f(Xi; θ, φ)

]
for r, s = 0, 1, 2, . . . . Note that c(θ, φ) = A10 and λ2(θ, φ) = −2A02. From (3.2) we can

find that the random variables u and v are the first order asymptotic independent and their

first order asymptotic marginal posterior distributions are the exponential and the normal

distributions, respectively. From (3.2) we can obtain the second order asymptotic marginal

posterior densities π(u|X) and π(v|X). The second order asymptotic marginal posterior
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density of u is given by

π(u|X) =eu

[
1 +

1

n

{(
π̂10
π̂00σ

+
2(π̂01/π̂00)a11 + 3a12

σb2
+

6a11a03
σb4

)
(u+ 1)

+

(
a20
σ2

+
2a211
σ2b2

)
(u2 − 2)

}
+Op

(
n−2

) ]
(3.3)

for u < 0, while that of v is given by

π(v|X) =
1√
2π

e−v2/2

[
1 +

1√
n

{(
π̂01
π̂00b

− 2a11
σb

)
v +

a03
b3

v3

}
+Op

(
n−1

) ]
. (3.4)

First, we assume that θ is the parameter of interest and φ is the nuisance parameter. From

the asymptotic expansion of marginal posterior (3.3) we have the following theorem.

Theorem 3.1. Let θ̂∗n = θ̂n−{1/(σn)} be the bias-adjusted MLE of θ. The marginal posterior

mean θ̂Bn,π under the prior π(θ, φ) is expressed by

θ̂Bn,π − θ̂∗n =
1

n2

{(
π̂10
π̂00σ

+
2(π̂01/π̂00)a11 + 3a12

σb2
+

6a11a03
σb4

)

− 4

(
a20
σ2

+
2a211
σ2b2

)}
+Op

(
n−3

) ]
. (3.5)

The proof of theorem is omitted for the same reason as Theorem 2.1. From (3.5), by the

law of large number and consistency of (θ̂n, φ̂n), we have

n2(θ̂Bn,π − θ̂∗n)
p→ 1

c(θ, φ)

∂

∂θ
log π(θ, φ) +

2A11(θ, φ)

c(θ, φ)λ2(θ, φ)

∂

∂φ
log π(θ, φ)

+
3A12(θ, φ)

c(θ, φ)λ2(θ, φ)
+

6A11(θ, φ)A03(θ, φ)

c(θ, φ)λ4(θ, φ)

− 4

(
A20(θ, φ)

c2(θ, φ)
+

2A2
11(θ, φ)

c2(θ, φ)λ2(θ, φ)

)
. (3.6)

Then the moment matching prior πθ
M (θ, φ) when θ is the parameter of interest is the solution

of the partial differential equation

1

c(θ, φ)

∂

∂θ
log π(θ, φ) +

2A11(θ, φ)

c(θ, φ)λ2(θ, φ)

∂

∂φ
log π(θ, φ)

= 4

(
A20(θ, φ)

c2(θ, φ)
+

2A2
11(θ, φ)

c2(θ, φ)λ2(θ, φ)

)
− 3A12(θ, φ)

c(θ, φ)λ2(θ, φ)
− 6A11(θ, φ)A03(θ, φ)

c(θ, φ)λ4(θ, φ)
. (3.7)

If we choose the prior as the solution of (3.7), the right-hand side of (3.6) equals zero. Hence,

we obtain θ̂Bn,π − θ̂∗n = Op(n
−3) under the prior as the solution of (3.7).

When φ is the parameter of interest we consider the moment matching prior in a similar

way to the above. From the asymptotic expansion of marginal posterior (3.3) we have the
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following theorem.

Theorem 3.2. Let φ̂n be the solution of the modified likelihood equation (3.1). The marginal

posterior mean φ̂B
n,π under the prior π(θ, φ) is expressed by

φ̂B
n,π − φ̂n =

1

nb2

(
π̂01
π̂00

− 2a11
σ

+
3a03
b2

)
+Op

(
1

n
√
n

)
. (3.8)

The proof of theorem is omitted for the same reason as Theorem 2.1. From (3.8), by the

law of large number and consistency of (θ̂n, φ̂n), we have

n(φ̂B
n,π − φ̂n)

p→ 1

λ2(θ, φ)

(
∂

∂φ
log π(θ, φ)− 2A11(θ, φ)

c(θ, φ)
+

3A03(θ, φ)

λ2(θ, φ)

)
. (3.9)

If we now choose the prior as

π(θ, φ) = exp

[∫ φ(2A11(θ, t)

c(θ, t)
− 3A03(θ, t)

λ2(θ, t)

)
dt

]
, (3.10)

the right-hand side of (3.9) equals zero. Hence, we obtain φ̂B
n,π − φ̂n = Op(n

−3/2) under the

prior (3.10). We will denote this prior as πφ
M (θ, φ) and we call it the moment matching prior

when φ is the parameter of interest. In contrast to the case θ is the parameter of interest, the

moment matching prior is given by explicit form when φ is the parameter of interest.

4 Examples

In this Section, we consider some examples of proposed priors, and discuss the corresponding

posterior propriety through some specific examples. First, we give examples for one-parameter

case.

Example 4.1 (Location family). Let f0 be a strictly positive density on [0,∞). Consider

the location family of distribution f(x, θ) = f0(x− θ). In particular, the shifted exponential

distribution f(x; θ) = e−(x−θ) (x > θ) belongs to this location family. In this case, we have

c(θ) = f0(0+), d(θ) = ι1,

where ι1 =
∫∞
0 {f ′′

0 (t)− (f ′
0(t)

2/f0(t))dt}. Hence, the moment matching prior of θ is given by

πM (θ) ∝ exp(θ2τ1),

where τ1 = ι1/f0(0+). For the shifted exponential distribution, we have τ1 = 0 because

f0(0+) = 1 and ι1 = 0. Therefore we have πM (θ) ∝ constant, so this is the uniform prior. In

this case, the marginal density of X = (X1, . . . , Xn) (n ≥ 1) is given by

m(x) =

∫
f(x; θ)π(θ)dθ ∝

∫ x(1)

−∞
e−

∑n
i=1(xi−θ)dθ =e−

∑n
i=1 xi

∫ x(1)

−∞
enθdθ

=
1

n
e−

∑n
i=1(xi−x(1)) < ∞,
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where x(1) := min1≤i≤n xi. Although the prior π(θ) ∝ 1 is improper, the posterior distribution

is proper for n ≥ 1 in the shifted exponential case. The posterior density of θ given X =

(X1, . . . , Xn) is π(θ|X) = n exp{n
∑n

i=1(θ − x(1))} (−∞ < θ < x(1)), and the corresponding

posterior mean is given by θ̂Bn,π = E(θ|X) = X(1) − (1/n). We can find that θ̂Bn,π is the same

as the bias adjusted MLE θ̂∗n = θ̂n − {1/(σn)} = X(1) − (1/n), and θ̂∗n is also the unique

uniformly minimum variance unbiased (UMVU) estimator. Since the moment matching prior

π(θ) ∝ 1 is also the probability matching prior in Ghosal (1999) and the reference prior in

Ghosal and Samanta (1997a), we note that the same result is obtained under these priors.

Example 4.2 (Scale family). Let f0 be a strictly positive density on [0, 1]. Consider the scale

family of distribution f(x; θ) = θ−1f0(x/θ) (θ > 0). In this case, we have

c(θ) = − ι2
θ
, d(θ) =

ι3
θ2

,

where ι2 = 1+
∫ 1
0 tf ′

0(t)dt and ι3 =
∫ 1
0 [1+t2{(f ′′

0 (t)/f0(t))−(f ′
0(t)/f0(t))

2}+t(f ′
0(t)/f0(t))]f0(t)dt

are constant numbers which does not depend on θ. Hence, the moment matching prior of θ

is given by

πM (θ) ∝ exp[(log θ)−2τ2 ] = θ−2τ2 ,

where τ2 = ι3/ι2. In the case of the uniform distribution U(0, θ) (θ > 0), we have τ2 = 1.

Since the support of U(0, θ) is monotone increasing, we may consider the reparametrization

θ ↔ −θ as we mentioned in Section 2. Therefore the moment matching prior is given by

πM (θ) ∝ θ−2. In this case, the marginal density of X = (X1, . . . , Xn) (n ≥ 1) is given by

m(x) =

∫
f(x; θ)π(θ)dθ ∝

∫ ∞

x(n)

1

θn
· 1

θ2
dθ =

1

n+ 1
x
−(n+1)
(n) < ∞,

where x(n) = max1≤i≤n xi. Although the prior π(θ) ∝ θ−2 is improper, the posterior distribu-

tion is proper for n ≥ 1 in the uniform case. The posterior density of θ givenX = (X1, . . . , Xn)

is π(θ|X) = (n + 1)Xn+1
(n) θ−(n+2) (x(n) < θ < ∞), and the corresponding posterior mean is

given by θ̂Bn,π = E(θ|X) = (1 + n−1)X(n). We can find that θ̂Bn,π is the same as the bias

adjusted MLE θ̂∗n = θ̂n − {1/(σn)} = (1 + n−1)X(n), and θ̂∗n is also the unique uniformly

minimum variance unbiased (UMVU) estimator. On the other hand, the prior π(θ) ∝ θ−1 is

the probability matching prior in Ghosal (1999) and is also the reference prior in Ghosal and

Samanta (1997a). The posterior mean under the prior π(θ) ∝ θ−1 is given by nX(n)/(n− 1)

(n ≥ 2), and this is not UMVU estimator.

Example 4.3 (Truncation family). Let g(x) be a strictly positive density on (0,∞) and let

f(x; θ) = g(x)/Ḡ(θ) (x > θ), where Ḡ(θ) =
∫∞
θ g(t)dt. In this case, we have

c(θ) =
g(θ)

Ḡ(θ)
, d(θ) =

g′(θ)

Ḡ(θ)
− g(θ)Ḡ′(θ)

Ḡ(θ)2
.

9



Hence, the moment matching prior of θ is given by

πM (θ) = exp

[
2

∫ (
g′(θ)

g(θ)
− Ḡ′(θ)

Ḡ(θ)

)
dθ

]
∝ exp

[
2 log

(
g(θ)

Ḡ(θ)

)]
=

(
g(θ)

Ḡ(θ)

)2

.

In particular, this family corresponds to the shifted exponential distribution when g(x) = e−x.

In this case, the moment matching prior of θ is

πM (θ) ∝
(
g(θ)

Ḡ(θ)

)2

=

(
e−θ∫∞

θ e−tdt

)2

= 1.

Hence, πM (θ) is the uniform prior which is the same as that of Example 4.1. Other examples

of the truncation family are discussed in Example 4.4 and Example 4.5.

Next, we give some examples for multi-parameter case in the presence of a nuisance pa-

rameter. In the following examples, we consider the set-up of Example 4.3 where the density

g also involves an additional regular parameter φ.

Example 4.4 (Shifted exponential distribution with scale). Consider the shifted exponen-

tial distribution with scale parameter φ ∈ (0,∞) with the density function f(x; θ, φ) =

φ−1e−(x−θ)/φ (x > θ). In this case, we have c(θ, φ) = φ−1, λ2(θ, φ) = φ−2, A11(θ, φ) =

−1/(2φ2), A12(θ, φ) = 1/(3φ3), A20(θ, φ) = 0 and A03(θ, φ) = 2/(3φ3). If θ is the parame-

ter of interest, the moment matching prior πθ
M (θ, φ) of (θ, φ) is given by solving the partial

differential equation

φ
∂

∂θ
log π(θ, φ)− φ

∂

∂φ
log π(θ, φ) = 3. (4.1)

The prior π(θ, φ) ∝ φ−3 is a solution of the partial differential equation (4.1) and πθ(θ, φ) ∝
φ−3 is a moment matching prior when θ is the parameter of interest. This prior also satisfies

the equation (3.10) which is the moment matching prior when φ is the parameter of interest.

Hence, both cases lead to the same moment matching prior. The marginal density of X =

(X1, . . . , Xn) (n ≥ 2) under the prior π(θ, φ) ∝ φ−3 is given by

m(x) =

∫ ∫
f(x; θ, φ)π(θ, φ)dθdφ

∝
∫ ∞

0

∫ x(1)

−∞
φ−ne−(1/φ)

∑n
i=1(xi−θ)φ−3dθdφ

=
Γ(n+ 1)

n{
∑n

i=1(xi − x(1))}n+1
< ∞,

where x(1) = min1≤i≤n xi and Γ(k) (k > 0) is the gamma function defined by Γ(k) =∫∞
0 xk−1e−xdx. Although the prior πθ

M (θ, φ) = πφ
M (θ, φ) ∝ φ−3 is improper, the posterior

distribution is proper for n ≥ 2. The joint posterior density of (θ, φ) given X = (X1, . . . , Xn)
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under the prior π(θ, φ) ∝ φ−3 is given by

π(θ, φ|x) = 1

m(x)
φ−(n+3) exp

{
− 1

φ

n∑
i=1

(xi − θ)

}

for −∞ < θ < x(1) and 0 < φ < ∞. Hence, the marginal posterior density of θ and φ are

given by

π(θ|x) =n(n+ 1)
{
∑n

i=1(xi − x(1))}n+1

{
∑n

i=1(xi − θ)}n+2
(−∞ < θ < x(1)),

π(φ|x) =
{
∑n

i=1(xi − x(1))}n+1

Γ(n+ 1)
φ−(n+2) exp

{
− 1

φ

n∑
i=1

(xi − x(1))

}
,

respectively. They are the same as the bias-adjusted MLE θ̂∗n = θ̂n − {1/(σn)} for θ and the

MLE φ̂n of φ. In particular, the marginal posterior distribution of φ|X is the inverse gamma

distribution with the shape n+ 1 and the scale
∑n

i=1(xi − x(1)), that is, IG(n+ 1,
∑n

i=1(xi −
x(1))). Further, the marginal posterior means of θ and φ are expressed by

E(θ|X) =X(1) −
1

n2

n∑
i=1

(Xi −X(1)),

E(φ|X) =

∑n
i=1(Xi −X(1))

(n+ 1)− 1
=

1

n

n∑
i=1

(Xi −X(1)),

respectively. Next, we consider the marginal posterior means of θ and φ under the probability

matching prior π(θ, φ) ∝ φ−2 in Ghosal (1999) (or the reference prior in Ghosal and Samanta

(1997a)). In a similar way to the case of the moment matching prior, we have

E(θ|X) = X(1) −
1

n(n− 1)

n∑
i=1

(Xi −X(1)),

E(φ|X) =
1

n− 1

n∑
i=1

(Xi −X(1)).

We note that the UMVU estimators of θ and φ are given by θ̂UMVU = X(1) − n−1(n −
1)−1

∑n
i=1(Xi −X(1)) and φ̂UMVU = (n− 2)−1

∑n
i=1(Xi −X(1)), respectively.

Example 4.5 (Truncated Weibull distribution). Consider the truncated Weibull distribution

with the scale parameter φ > 0 and the shape parameter α > 0 with the density function

f(x; θ, φ) = αφαxα−1 exp{−φα(xα − θα)} (x > θ). We assume that the shape parameter

α > 0 is known and θ > 0 in this example, and consider moment matching priors for (θ, φ).

In this case, we have c(θ, φ) = αφαθα−1, λ2(θ, φ) = α2/φ2, A11(θ, φ) = (1/2)α2φα−1θα−1,

A12(θ, φ) = (1/6)α2(α − 1)φα−2θα−1, A20(θ, φ) = (1/2)α(α − 1)φαθα−2 and A03(θ, φ) =

−α2(α − 3)/(6φ3). If θ is the parameter of interest, the moment matching prior πθ
M (θ, φ) of
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(θ, φ) is given by solving the partial differential equation

φ−αθ1−α ∂

∂θ
log π(θ, φ) + φ

∂

∂φ
log π(θ, φ) = 2(α− 1)φ−αθ−α + 2α− 1. (4.2)

The prior π(θ, φ) ∝ θ2(α−1)φ2α−1 is a solution of the partial differential equation (4.2) and

πθ
M (θ, φ) ∝ θ2(α−1)φ2α−1 is a moment matching prior when θ is the parameter of interest. In

this case, the marginal density of X = (X1, . . . , Xn) is given by

m(x) =

∫ ∫
f(x; θ, φ)πθ(θ, φ)dθdφ

∝
∫ ∞

0

∫ x(1)

0
αnφnα

(
n∏

i=1

xα−1
i

)
exp

[
−φα

n∑
i=1

xαi

]
exp[nφαθα]

× θ2(α)−1φ2α−1dθdφ

<
C1

2α− 1
x2α−1
(1) αn−1

(
n∏

i=1

xα−1
i

)
Γ(n+ 2)

(
∑n

i=1 x
α
i )

n+2
< ∞

for α ≥ 1, where x(1) = min1≤i≤n xi and C1 > 0 is a constant. For α < 1, we note that

it holds m(x) = ∞. Although the prior πθ(θ, φ) ∝ θ2(α−1)φ2α−1 is improper, the posterior

distribution is proper for α ≥ 1 and n ≥ 1.

On the other hand, if φ is the parameter of interest, from (3.10) the moment matching

prior πφ
M (θ, φ) of (θ, φ) is given by πφ

M (θ, φ) ∝ φ3(α−1)/2. In this case, the marginal density

of X = (X1, . . . , Xn) is given by

m(x) =

∫ ∫
f(x; θ, φ)πφ(θ, φ)dθdφ

∝
∫ ∞

0

∫ x(1)

0
αnφnα

(
n∏

i=1

xα−1
i

)
exp

[
−φα

n∑
i=1

xαi

]
exp[nφαθα]

× φ3(α−1)/2dθdφ

<C2x(1)α
n−1

(
n∏

i=1

xα−1
i

)
Γ((2n+ α− 3)/(2α))

(
∑n

i=1 x
α
i )

(2n+α−3)/(2n)
< ∞

for α > max{0, 3−2n}, where x(1) = min1≤i≤n xi and C2 > 0 is a constant.. Although the prior

πφ
M (θ, φ) ∝ φ3(α−1)/2 is improper, the posterior distribution is proper for α > max{0, 3− 2n}

and n ≥ 1. In this case, since the posterior distribution is intractable, we may compute the

posterior mean by using Markov chain Monte Carlo method. However, we do not discuss it

here.
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