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Abstract

This paper presents moment matching priors for non-regular models whose supports
depend on an unknown parameter. Both one-parameter and multi-parameter cases are
considered. The resulting priors are given by matching the posterior mean and bias-
adjusted maximum likelihood estimator up to the higher order. Some examples of pro-
posed priors are also given.
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1 Introduction

In Bayesian inference, the selection of priors has been an important and much discussed
problem. When we have a little prior information or it is required the objectivity of data
analysis, we often use ‘objective priors’ or ‘default priors’. Then we are often faced with a
problem of the selection of an appropriate objective prior in a given context. For a regular
family of distributions, the Jeffreys prior which is proportional to the positive square root of
the Fisher information number is widely used as the objective prior. It is also known that the
Jeffreys prior is invariant under smooth one-to-one transformation. Another class of objective
priors is the reference prior, which was proposed by Bernardd (T979). The reference prior
is defined by maximizing the expected Kullback-Leibler divergence between the prior and
the posterior under some regularity conditions. The probability matching prior proposed by
Welch_and Peers (I963) is also known as an objective prior (see also [Tibshirani (I98Y) and
Datta and Mukerjed (2004)). These priors match the Bayesian credible intervals with the
corresponding frequentist coverage probabilities, either exactly or approximately. Since the
situations in which there exist exact probability matching priors are very limited, we often
focus on approximating them based on the asymptotic theory of the maximum likelihood
estimator under some regularity conditions. Recently, (Ghosh and Liu (20011) derived the
priors which are based on the moment matching criterion for regular one-parameter and multi-
parameter family of distributions. Moment matching criterion leads the prior which is higher
order matching of the moment of the posterior and the maximum likelihood estimator (MLE),
and such priors are called the moment matching priors. Therefore the moment matching prior
leads to the posterior mean which shares the asymptotic optimality of the MLE’s up to the



higher order. As stated in Ghosh“and Tiu (2011), if one is interested in asymptotic bias or
mean squared error reduction of the MLE’s through some adjustment, the same adjustment
applies directly to the posterior means. In this sense, it is possible to achieve Bayesian-
frequentist synthesis of point estimates. Interestingly, Ghosh"and L (P2011) showed that the
moment matching prior is different from the Jeffreys or probability matching priors in regular
cases.

However, these objective priors strongly depend on the regularity of statistical models and
cannot be applied for non-regular distributions which does not satisfy regularity conditions
such as the models with parameter-dependent supports. These non-regular models have
been appeared in many practical situations. For examples, the auction and search models in
structural econometric models have a jump in the density and the jump is very informative
about the parameters. In such non-regular cases, for example, the asymptotic normality of the
posterior distribution does not hold. In non-regular cases, the reference priors in the sense of
Bernardd (I979) were obtained by Ghosal'and Samanta ([997a) for one-parameter case and
by Ghosal (T997) for multi-parameter case in the presence of nuisance parameter. (Ghosal
(999) derived the probability matching prior for both one-parameter and multi-parameter
non-regular cases and made comparison with the corresponding reference priors. Furthermore,
Wang and Sun (2012) derived the objective prior for another type of non-regular model.

In this paper, we deal with the same non-regular models as those of (Ghosal (T999) and
derive the moment matching priors which match the posterior mean and bias-adjusted MLE
in such models. Both one-parameter and multi-parameter cases are considered. The resulting
priors are given by solving certain differential equations. Further, we show some properties
of the resulting prior and make comparison with the corresponding reference or probability
matching priors for non-regular case.

This paper is organized as follows: In Section B, we give the moment matching prior for
one-parameter case by using the higher order asymptotic expression of posterior. In Section
B, we extend the result in Section B to multi-parameter case in the presence of nuisance
parameter. In Section B, we give some examples of the proposed priors.

2 Moment matching prior for one parameter non-regular model

Let X1,..., X, be independent and identically distributed observations from a density f(z;6)
(f € © C R) with respect to the Lebesgue measure. We assume that for all § € O, f(x;0) is
strictly positive in a closed interval S(6) := [a1(6), a2(6)] depending on unknown parameter
0 and is zero outside S(f). It is permitted that one of the endpoints is free from 6 and may
be plus or minus infinity. In order to ensure the validity of the expansion of the posterior
density, we assume the conditions (A1l)—(A5) and (A6) with r = 1 in Ghosal"and Samanta
(I997H) on aq(+), az(-) and f(z;0). Some examples which belong to this family are given in
Section 4.

Let m be a prior density of 6, and we assume that 7 is twice differentiable. Without
loss of generality, we assume that S(#) is monotone decreasing with respect to 6, that is,
we assume that a;(-) is monotone increasing and as(-) is monotone decreasing. Indeed, the



case where S(0) increases with # may be reduced to the case where S(#) decreases by the
reparametrization 6 — (—6). By the assumption of S(6), the MLE of 6 is given by

0, = min{al_l(X(l))y GQ_I(X(H))}’
where X(1) := minj<;<, X; and X,y := maxj<ij<, X;. Note that it holds that 0, — 0 =

Op(n™1) (n — 00), rather than O,(n~'/2) as in regular cases. Hereafter, we often omit the
argument ‘n — oo’ for simplicity. Define

Note that it holds that o — ¢(0) = Op(nfl) (Lemma 2.1 in Ghosal"and Samanta (T997H)),
where

(6) 1= B | 3108 F(Xs8) | = ai(0)F (@(0):6) ~ 05(0)(02(0):0)

is the expectation of the score function. Since S(6) is monotone decreasing, we note that it
holds ¢(¢) > 0. By Theorem 3.1 of Ghosal and Samanta (T997H), the posterior density of

the normalized random variable u = no (0 — 6,,) given X = (X1,...,X,) has the stochastic
expansion
m(ulX)=¢€" |1+ — —(u+1)+ 5w —2)p + Op(n 2.1
(1] X) n{mwn)( )+ 2= 2) 4 O (21)

for u < 0, where

1 < 02 .
— ) 5l Xi,0n).
2n,1ae2°gf( n)

1=

Co =

From (270) we note that the first order asymptotic posterior is the exponential distribution.
We find a prior such that the difference between the resulting posterior mean and the bias-
adjusted maximum likelihood estimator converges to zero up to the order of Op(n_S). From
(20) we have the following theorem.

Theorem 2.1. Let égﬂ be the posterior mean of @ under the prior m(0) and 0 = 6,—{1/(on)}
be the bias-adjusted MLE of 8. Then we have

A 11 (70, 4 1
B * n
O =0 =~ {02 <7r(§n) —— 1 t%(.3) (22)

The proof of this theorem is omitted because the proof can be make the use of the moment

of the exponential distribution and transformation of variable. As we mentioned before, it
holds that 6,, —0 = Op(n™1) and 0 —c(0) = Op(n~1). Also, by the law of large number and the
condition (A6) with » = 1 in Ghosal'and Samanta (T997h), we can show that co — (d(0)/2) =



O,(n~1). By using these facts and continuity of the prior density 7(0), we have

b g s 1 (T(0) _2d0)
0% =0 (T - ) 23

where d(0) := E[(0%/06?) log f(X;;0)] and we assume that d(f) < oo. If we now choose the
prior as

(0) = exp [2 / ’ Cclg))dt] , (2.4)

the right-hand side of (2Z33) equals zero. Hence, we obtain Qfm — 0% = 0y(n~?) under the
prior (2Z4). In other words, this prior leads to the posterior mean which matches with the
bias-adjusted MLE’s up to the order of O,(n=3). We will denote this prior as m(f) and
call it the moment matching prior for #. We note that it is not clear whether the prior
ma(0) is proper or not in general. Proprieties of the prior and the corresponding posterior
are discussed in Section @ through some specific examples. The prior 7y () is different from
the reference prior 7(6) o< ¢(#) for non-regular case given by Ghosal’and Samanta ([997a) or
the probability matching prior 7(6) o ¢(6) for non-regular case given by Ghosal (I999). We
note that if S(6) is monotone increasing, these priors are 7(6) o< |¢(0)|. We have the following
theorem concerning the one-to-one transformation of 6.

Theorem 2.2. Let mps(0) be a moment matching prior for 6 given by (E4) and n is a one-
to-one function of 0. Then we have

741(n) = mar(0) (jﬁ) | 25)

Proof. Let g(x;7n) be a reparametrized density. Define
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c(n) =E [;7 logg(Xi;n)] and d(n) =E [;72 logg(Xi;n)] -

From (Z4) we obtain

ar(n) = exp [2 / fég;dn] |

We note that it holds that ¢(n) = ¢(0)(df/dn). By the chain rule of differentiation, we have

d(n) = d(6) (jzf +c(0) (3;2) .

Hence, we have



e[z [ a0 2 oy ]

= mr(0) exp |2log (jz)] = mar(0) (jﬁ)

This completes the proof. O

Unfortunately, the moment matching prior 757() is not invariant under smooth one-to-
one transformation. However, in the model considered in this paper, we are mainly interested
in the estimation of  not other parametrizations, e.g., 2, V0, and so on. If we are interested
in the estimation of 62 or v/0, then we have to derive other moment matching prior for 62 or
V6. Although the invariance of smooth one-to-one transformation is desirable property for
the prior distribution, there exists objective priors which are not necessary to have invariant
property. For example, Datfa’and Ghosh (T996) showed that the reverse reference prior is not
invariant under smooth one-to-one transformation (for details, see Datfa and Ghosh (998)).
In a regular parametric model, Ghosh“and Tiul (2001) derived the moment matching prior

7 (0) = exp [—;/0 g;’(%)dt] , (2.6)

where I(0) = —d(f) < oo and g3(0) = E[(9%/00%)log f(X;;0)] < oo. They also showed
that the prior (E8) is not invariant under smooth one-to-one transformation. It may be
interesting to find conditions which the moment matching prior corresponds to the reference
(or probability matching) prior m(0)  ¢(#) for non-regular case or the uniform prior 7(6)
constant. The former holds if and only if d(f) = ¢/(6)/2, while the later holds if and only if
d(#) = 0. Some examples of the moment matching prior by (24) are given in Section 4.

3 Moment matching priors for multi-parameter non-regular
model

We now consider an additional parameter ¢, and consider the parametric model f(x;6, ).
We suppose that ¢ is the regular parameter, that is, we assume that the model is regular
parametric family when the non-regular parameter 8 is known. For simplicity, we give the
result in the case of scalar ¢. The multi-dimensional extension of ¢ may also be treated in
the same manner. Let 7(6, ¢) be the joint prior density of (6, ), and we assume that 7(6, ¢)
is piecewise differential in # and ¢ up to the third order. Further, we assume that f(x;6,p)
is piecewise differentiable in # and ¢ up to the forth order. Let ¢, be a solution of the the
modified likelihood equation

Z Ing Xwenv()on) =0. (31)

Smith (T985) showed the consistency for the special case when 6 is a location parameter, but
the argument can easily be generalized. Hence, we may assume that (6,,@,) is consistent.



We put
z:l%f&ﬂm% =—f§j l%f&ﬂm%)

and we note that o — ¢(6, ) and b> — X\2(#, ¢) almost surely, where
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8bﬁ@ﬂwﬂ ﬁ@w:Efal%ﬂ&aw

0.9) = | o

When S(0) is monotone decreasing, we can show that ¢(, ) > 0. Hereafter, we may assume
that ¢(0,¢) > 0. Let u := no (0 — 0,) and v := /nb(p — ¢y,) be normalized random variables
of  and ¢, respectively. From Appendix in Ghosal (1999) the joint posterior density of (u,v)
given X = (Xi,...,X,) has the stochastic expansion up to the order O,(n=3/2)

1 2 1 1
7 (u, v| X :e“_(”/g){1+D + —Dy+ O n_3/2} 3.2
(101X) = = J=D1+ D2+ Oy~ (32
for u < 0, where
p, _ ol ot 2an1 g 0033
S S
710 702 a , o
D 1 —1 — —2
2=+ 1)+ (P - 1)+ S - 2)
2(7o1 /7 3
(7T01/7T00)6;11 + 3a12 (uv2 L)+ 7TA01€Z(13 (v4 _3)
ab Toob
2a] w22 2a11003 , 4 ags
+Tb2( (% —2)+ O'b4 (U +3)+b76(1] —15)
with
grts . 1 n grts R
rs = 7o 0717 Dn)s rs — 1 Xz'§9n7 Dn
i 897”390S7T( Pn), @ (r+s)ln ; 007 0ps og f( #n)
for r,s =10,1,2,..., and note that a,s — A,s(0, @) almost surely, where
An(00) = — B[ oe £(Xi:0,0)
T8 190 - (T’+S)' 89Ta(p5 Og (2] 7SO
for r,s = 0,1,2,.... Note that c(,¢) = Ajp and \3(0,p) = —2Ag2. From (B2) we can

find that the random variables v and v are the first order asymptotic independent and their
first order asymptotic marginal posterior distributions are the exponential and the normal
distributions, respectively. From (B2) we can obtain the second order asymptotic marginal
posterior densities m(u|X) and m(v|X). The second order asymptotic marginal posterior



density of u is given by

m(u|X) =e

1 7 2(mo1/7o0)a11 + 3a
1+{< 0 (01/7t00) @11 12

6a11a03
1
n 000 ob? + obt >(u—|— )

for u < 0, while that of v is given by

1
(0] X) =——e "/

V2r

1 o1 2a1 ao3 3 ~1
1+ — — = — v+ —v O, (n . 3.4
+ \/ﬁ { <7AT oob ob + b3 O ( ) ( )
First, we assume that 6 is the parameter of interest and ¢ is the nuisance parameter. From

the asymptotic expansion of marginal posterior (BZ3) we have the following theorem.

Theorem 3.1. Let 0% = 0,,—{1/(con)} be the bias-adjusted MLE of 6. The marginal posterior
mean éffm under the prior (0, ) is expressed by

i A1 7t 2(7o1/700)a11 + 3a 6ai1a
Qfﬂ — 0= o, (7o1/700) 211 12 11403
' n Moo ob ob

(3.5)

~

The proof of theorem is omitted for the same reason as Theorem EZ1. From (B3), by the
law of large number and consistency of (0, ¢,), we have

2A11(9, (p) 6

—1 0 1] 6

c(0, ) 00 embe) ¥ c(0,0)A2(0, @) Op g6 )
3A12(0, ») 6A411(0, ¢)Aos (0, )
+ 4
c(0, )N (0, )
_y(Anl9) 24%,(9, )
2(0,0)  2(0,9)N(0,0) )

Then the moment matching prior 71']9\4
of the partial differential equation

(3.6)

(0, ) when 0 is the parameter of interest is the solution

1

a 21411(9780) 8
— 1 o) — 77 ] 0
(0,200 8™ ) ¥ G (6, o) o 08T %)

[ A(0,0) 2A2,(0, ) C 34p(0,9)  641(0,0) A0, 9)
N 4< (0, ) " 02(9790))\2(9#)) c(6,0)N2(0, o) (0, N0, 0) (3.7)

If we choose the prior as the solution of (BZ7), the right-hand side of (88) equals zero. Hence,
we obtain éf - — 0% = 0,(n?) under the prior as the solution of (&)

When ¢ is the parameter of interest we consider the moment matching prior in a similar

way to the above. From the asymptotic expansion of marginal posterior (B33) we have the



following theorem.

Theorem 3.2. Let ¢, be the solution of the modified likelihood equation (B). The marginal
posterior mean g&fm under the prior w(0, ) is expressed by

1 T 2a 3a 1
"B . _ 01 4011 03
Pna — Pn o) (ﬁ'oo & + e ) + 0, <n\/ﬁ> ) (3.8)

The proof of theorem is omitted for the same reason as Theorem PZ1. From (BR), by the

~

law of large number and consistency of (0, ¢,), we have

B _ s pn L (O ~ 2401(0,9) | 3A03(0, )
n(sonmr Son) - )\2(07()0) 8()0 log (07 80) C(e’@) )\2(07()0)

(3.9)

If we now choose the prior as

e[ [ (oo o

the right-hand side of (B9) equals zero. Hence, we obtain cﬁ,]i + = Pn = O0,(n™3/2) under the
prior (87M). We will denote this prior as 7}, (6, ¢) and we call it the moment matching prior
when ¢ is the parameter of interest. In contrast to the case 6 is the parameter of interest, the
moment matching prior is given by explicit form when ¢ is the parameter of interest.

4 Examples

In this Section, we consider some examples of proposed priors, and discuss the corresponding
posterior propriety through some specific examples. First, we give examples for one-parameter
case.

Example 4.1 (Location family). Let fo be a strictly positive density on [0,00). Consider
the location family of distribution f(z,6) = fo(z — #). In particular, the shifted exponential
distribution f(z;0) = e=@=% (z > 0) belongs to this location family. In this case, we have

c(0) = fo(0+), d(0) = u1,
where 1] = fooo{fg (t) — (f4(t)?/ fo(t))dt}. Hence, the moment matching prior of @ is given by
mar(6) o< exp(62™),

where 71 = 11/f0(0+). For the shifted exponential distribution, we have 71 = 0 because
fo(0+) =1 and ¢; = 0. Therefore we have 7y;(f) o constant, so this is the uniform prior. In
this case, the marginal density of X = (X1,...,X,) (n > 1) is given by

Z(1) n n Z(1)

m(zx) = / flx;0)m(0)do o / e” 2= (@m0 qp = iz T / e"dp
L -2 @imaa)

=—e 4= < oo,
n



where x(1) := minj <;<p, z;. Although the prior 7(¢) oc 1 is improper, the posterior distribution
is proper for n > 1 in the shifted exponential case. The posterior density of 6 given X =
(X1,...,Xy) is m(0]X) = nexp{n ) ;" (0 —x(1))} (—o0 < 0 < x(1)), and the corresponding
posterior mean is given by éfm = E(0]X) = X1) — (1/n). We can find that éffm is the same
as the bias adjusted MLE 0, = 0, — {1/(on)} = X(1) — (1/n), and 6}, is also the unique
uniformly minimum variance unbiased (UMVU) estimator. Since the moment matching prior
m(0) o 1 is also the probability matching prior in Ghosal (T999) and the reference prior in
Ghosal'and Samanta ([997a), we note that the same result is obtained under these priors.

Example 4.2 (Scale family). Let fy be a strictly positive density on [0, 1]. Consider the scale
family of distribution f(z;0) = 0~ fo(x/6) (6 > 0). In this case, we have

()= ~=2, dO) = 2.

where 1y = 14 [ tfj(t)dt and 5 = [ [1H2{(fy ()/ fo(£) = (f3(6) / Fo(£) 2} +E(f5()/ fo(t))) fo(t)dt
are constant numbers which does not depend on 6. Hence, the moment matching prior of 6
is given by

71 (6) o exp[(log §) 72| = 67272,

where 75 = 13/12. In the case of the uniform distribution U(0,60) (6 > 0), we have 75 = 1.
Since the support of U(0,#) is monotone increasing, we may consider the reparametrization
f < —6 as we mentioned in Section B. Therefore the moment matching prior is given by
7 () oc 72, In this case, the marginal density of X = (X1,...,X,) (n > 1) is given by

L1 Lty
/fm@ d@cx/)en @dQ +1() < 00,

where z(,,) = maxj<;<, ;. Although the prior 7 () o 6~2 is improper, the posterior distribu-
tion is proper for n > 1 in the uniform case. The posterior density of 8 given X = (X,..., X},)
is w(0]X) = (n+ D)X;07 ) (2,
given by éf’m = E(9|X) = (1+n1)X(,). We can find that HBTF is the same as the bias
adjusted MLE 0% = 6, — {1/(on)} =

minimum variance unbiased (UMVU) estimator. On the other hand, the prior 7(6) o< 871 is

< # < 0), and the corresponding posterior mean is

(1 + n~1)X(,), and 0% is also the unique uniformly

the probability matching prior in Ghosal (I999) and is also the reference prior in (Ghosal’and
Samanta (1997a). The posterior mean under the prior 7(6) oc 6! is given by nX,)/(n —1)
(n > 2), and this is not UMVU estimator.

Example 4.3 (Truncation family). Let g(x) be a strictly positive density on (0,00) and let
f(@;0) = g(x)/G(8) (x> 6), where G(0) = [;° g(t)dt. In this case, we have

6 — 9 dw)fg’(@) 9(0)G'(6)




Hence, the moment matching prior of 4 is given by

= (4~ 50 o (23] - (25"

In particular, this family corresponds to the shifted exponential distribution when g(z) = e

—x

In this case, the moment matching prior of 6 is

Hence, m/(0) is the uniform prior which is the same as that of Example B Other examples
of the truncation family are discussed in Example B4 and Example B3.

Next, we give some examples for multi-parameter case in the presence of a nuisance pa-
rameter. In the following examples, we consider the set-up of Example =3 where the density
g also involves an additional regular parameter (.

Example 4.4 (Shifted exponential distribution with scale). Consider the shifted exponen-
tial distribution with scale parameter ¢ € (0,00) with the density function f(z;0,¢) =
@ le=(@=0/¢ (z > @). In this case, we have ¢(6,p) = ¢, N2(0,¢) = ¢ 2, A11(6,p) =
—1/(2¢%), A12(0,¢) = 1/(3¢?), A20(0,p) = 0 and Agz(0, ) = 2/(3¢3). If 6 is the parame-
ter of interest, the moment matching prior 74,(6, ¢) of (6, ¢) is given by solving the partial
differential equation

0 0
wﬁlogﬂ(ﬁ,w) — w%bm(@,w) = 3. (4.1)

3

The prior 7(6, ) o< 2 is a solution of the partial differential equation (2) and (8, ¢)

¢~ is a moment matching prior when 6 is the parameter of interest. This prior also satisfies
the equation (BTM) which is the moment matching prior when ¢ is the parameter of interest.
Hence, both cases lead to the same moment matching prior. The marginal density of X =

X1,...,X,) (n>2) under the prior 7(6, ) x =3 is given by
¥

mi@) = [ [ 1(@so.0m(6. 21000

0o rT(1) n
N /0 / e~ (19 T @i=0) ;=349 d.
I'(n+

_ 1)
{0 (s — @) Pt

where z(;) = mini<i<p2; and T'(k) (K > 0) is the gamma function defined by I'(k) =
3

< 00,

o @ le7®dz. Although the prior 4, (6,¢) = 7%;(6,¢) o ¢ is improper, the posterior

distribution is proper for n > 2. The joint posterior density of (¢, ¢) given X = (X1,..., Xy)

10



3

under the prior (6, p) x ¢ ° is given by

(0, pla) = mgx)w‘("*?’) exp {—; > (@i - 9)}

i=1

for —oo < 6 < z(;) and 0 < ¢ < oco. Hence, the marginal posterior density of 6 and ¢ are
given by

(> (@i = z@y)) )"t
(>0 (i — 0))n+2

i=1\Ti — (1 n+1 —(n 1 ¢
m(plaw) = PR 1(F(n+1) )} ” (“)exp{—w Z(aﬁ—%))},

w(0|lx) =n(n+ 1)

(—OO <0< l‘(l)),

respectively. They are the same as the bias-adjusted MLE 6% = 6, — {1/(on)} for 6 and the
MLE ¢, of ¢. In particular, the marginal posterior distribution of ¢|X is the inverse gamma
distribution with the shape n + 1 and the scale 7" | (z; — z(1)), that is, IG(n 41,3 7" (2; —
x(1))). Further, the marginal posterior means of § and ¢ are expressed by

E(0|X) =X — QZX Xq

(X — X "
Blepx) ==t 1“’) - %Z% - Xa)
=1

respectively. Next, we consider the marginal posterior means of # and ¢ under the probability
matching prior 7(6, ) x ¢ 2 in Ghosal (T999) (or the reference prior in Ghosal and Samanta
(r9972)). In a similar way to the case of the moment matching prior, we have

1 n
=1 Z(Xi - X)),

i=1

EO|X) =X -

1 n
E(p|X) = 1 Z(Xi - X))
i=1

We note that the UMVU estimators of 8 and ¢ are given by éUMVU = X — n~t(n —
1)_1 Z?:l(Xi — X(l)) and @UMVU = (TL — 2)_1 Z:-L:l(Xi — X(l)), respectively.

Example 4.5 (Truncated Weibull distribution). Consider the truncated Weibull distribution
with the scale parameter ¢ > 0 and the shape parameter o > 0 with the density function
f(z;0,0) = ap®x®Lexp{—p®(z® — 6%)} (z > 0). We assume that the shape parameter
a > 0 is known and € > 0 in this example, and consider moment matching priors for (6, ¢).
In this case, we have c(0,¢) = ap®0®~1, A\2(0,¢0) = a?/p?, A11(0,p) = (1/2)a2e 1oL,
Mol6.) — (1/6)0%(a — g™ 261, Am(6.4) — (1/2)a(a — Dot and Aum(6. ) —
—a?(a—3)/(6¢>). If 0 is the parameter of interest, the moment matching prior 4,(8, o) of

11



(0, ) is given by solving the partial differential equation

0 0
@‘ael—a% log (0, ) + QO% logm(0,0) =2(a—1)p %07 + 20 — 1. (4.2)

The prior 7(6, @) o §2@"Dp2e=1 is a solution of the partial differential equation (E=2) and

Tr?\/[ (0, p) x 92(a=1) p20=1 ig 4 moment matching prior when 6 is the parameter of interest. In

this case, the marginal density of X = (X1,...,X,,) is given by
mi@) = [ [ f(@sb.on(6. 0000,
[e.e] .T(l) n n
x / / e H 281 ) exp [—¢® Z x| exp[np®69]
0 0 i=1 i=1

> 02(04)—1()0204—1(19(180

Cl 901 net [T 0ot ['(n+2)
<on 1% @ NE: 57, goyE <

i=1 =1

for « > 1, where T(1) = MiNi<i<n Tj and C7 > 0 is a constant. For o < 1, we note that
it holds m(z) = oco. Although the prior 7?(8,¢) x #2(@1p22=1 is improper, the posterior
distribution is proper for a« > 1 and n > 1.

On the other hand, if ¢ is the parameter of interest, from (BTId) the moment matching
prior 7y, (0, ) of (6,¢) is given by 73,(0, ¢) x ©3@=1)/2 Tn this case, the marginal density
of X = (Xy,...,X,) is given by

mi@) = [ [ 10,06, 00000
x /0 h /0 " " (ﬁl x?‘1> exp [—soazn:w?] exp[ny®6°]

i= =1
x 3@ 1/2d0dyp

1) T((2n+a—3)/(2q))
H«TZ' 1) (Z?:l x?)(2n+a—3)/(2n)

<Cga:(1)a"*1 (

i=1

for & > max{0,3—2n}, where T(1) = MiNi<i<n Tj and Cy > 0is a constant.. Although the prior
i (0, ) o P32
and n > 1. In this case, since the posterior distribution is intractable, we may compute the

is improper, the posterior distribution is proper for o > max{0,3 — 2n}

posterior mean by using Markov chain Monte Carlo method. However, we do not discuss it
here.
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