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Abstract
In this paper, we consider tests for sub-mean vectors. In the one-sample and two-sample problems,
we give the T? type test statistic and the simultaneous confidence intervals by using the approximate
upper percentiles of T2 type test statistic. In the k-sample problem, we give the simultaneous
confidence intervals for pairwise multiple comparisons by using Bonferroni’s approximation. Finally,
we investigate the asymptotic behavior of the approximate upper percentiles of T2 type statistic by
Monte Carlo simulation, and we give an example to illustrate the simultaneous confidence intervals.
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1 Introduction

Consider the tests of mean when the partial mean vector is given. That is, letting pu = (u}, u5)" be a
mean vector, where p; = (f1, b2, ..., ftr)" and po = (frg1, frt2, - -, 14p)’, the problem is the testing of
py when po is given. For the problem of sub-mean vectors, Eaton and Kariya (1983) derived tests for
the independence of two normally distributed sub-mean vectors for the case that an additional random
sample is available. Provost (1990) obtained explicit expressions for the case that the maximum likelihood
estimators (MLEs) of all the parameters of the multi-normal random vector are given, and the likelihood
ratio statistic for testing the independence between sub-mean vectors has been obtained. For the one-
sample problem, Rao (1949) gave Rao’s U-statistic and additional information. The null distribution
of Rao’s U-statistic has been introduced by Siotani et al. (1985). A test for sub-mean vectors with
two-step monotone missing data was discussed by Kawasaki and Seo (2016). A test for sub-mean vectors
in two-sample problem was introduced by Rencher (2012). For the k-sample problem, Fujikoshi et al.
(2010) gave an asymptotic expansion of the distribution of the generalized U-statistic under normality.

Gupta et al. (2006) gave an asymptotic expansion of the distribution of the generalized U-statistic under



a general condition. However, the problem for sub-mean vectors in terms of simultaneous confidence
intervals does not appear to have been discussed.

In this paper, we give the T? type test statistic and derive the simultaneous confidence intervals for
sub-mean vectors in the one-sample and two-sample problems. For the k-sample problem, we give the
simultaneous confidence intervals for pairwise multiple comparisons for sub-mean vectors. The remainder
of this paper is organized. In Section 2, we propose the T type test statistic for the one-sample case (T?
test statistic), and its approximate upper percentiles and simultaneous confidence intervals. In Section
3, we propose the T? type test statistic for the two-sample case (T%, test statistic), and its approximate
upper percentiles and simultaneous confidence intervals. In Section 4, we present simultaneous confidence
intervals for multiple comparisons in the k& sample problem. In order to obtain the simultaneous confidence

intervals, we derive the approximate upper percentiles of the 72, _statistic by Bonferroni’s approximation.

ax

In Section 5, we investigate the asymptotic behavior of the approximate upper percentiles of the T3, test

statistic and the T2

max

statistic by Monte Carlo simulation. In Section 6, we give an example to illustrate

simultaneous confidence intervals.

2 Omne-sample problem
2.1 T? type test statistic for a sub-mean vector

Let ®1,x9,..., &N i Np(p,%). In this section, we consider the following hypothesis

Ho : py = poy given piy = pgy vs. Hy o puy 7 poy given g = phoy,

where pg = (£0,1, 10,2, - - - s o,p)" = (K01, Ho2)" are given values, and
251 Hr+1
Hq 2 Hr+2 Y1 Yo
po= s = k= RS :
px1 Ho rx1 : sx1 : E21 E22
Hr Hp

We partition x; into a 7 x 1 random vector, a s x 1 random vector as x; = (x}, T5;)’, where x1;: r x 1,
Ty sx1l,p=r+s,57=12,...,N.

This hypothesis test is then the same as the following hypothesis:

Hj 't pyg = Bora VS Hit pyy # Moo,



where 1.5 = pt; — L1505 to, Moro = Moy — 212595 o We then derive the MLEs of p and ¥.
Employing the derivation of Siotani et al. (1985), we use the transformed parameters as follows:
n= ("1) _ <H1 - E122221N()2> v — (‘1’11 ‘1112> _ ( Y112 E122221)
up’ Moo ’ Wo1 Wy Yo Yo Y22 ’
where YX11.0 = Y11 — 21222_21221. We note that (n, ¥) is in one-to-one correspondence with (u,X). Using

the transformed parameters (n, ¥), the likelihood function is given by
_Np N _N
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Therefore, the logarithm of L(n, ¥) can be expressed as
N N N
log L(n, ¥) = — lmg(%) — 5 log|¥1,| - 7 log [
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Differentiating log L(n, ¥) with respect to n and ¥, we have

Olog L(n, ¥) =t 3 (15 — Viama; — M),

on, j=1
310%(:7‘1’) - _?‘1’1_11 +3 ; U (@1 — Vaama; — my) (T — Wiowg; — 1) UL,
810%# Z U {(z1y — T1) (@) — Fa) — Via(@a; — To)(wo; — T2)'},
%%37(27277‘1’) - _g‘l’ﬁl ) ; Woy (2) — po2) (T2) — pos) U5 -

Solving the partial derivative of log L(n, ¥) = 0, the MLEs of n and ¥ are given by
~ _ = _ = 1 ~ 15 ~ 1
N =71 — Vo, ¥y = Nvll-Qa Uig = VigVyy W, Wop = NVQ%

where
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Therefore, using the relation that (n, ¥) is in one-to-one correspondence with (u, ), the MLEs of g and

G (fh) _ (ml — 2120 (@ - H02)>
ﬁ2 Ho2

S 1 o alia .
S (Eu 212> N‘/HQ + 21585, 801 ViaVay'Tao
Yo1 Yoo fJggVleVgl — Vs

> are given by

The T} test statistic for sub-mean vectors is then given by

~ —— -1,
T12 = (1.9 — N01-2)I{COV(H1-2 - H01-2)} (H1.0 — Ho1.2),

where [i;.9, éaz(ﬁm — Hg1.2) are estimators of py., Cov(fiy.o — Ho1.2). We note that under Hf, T? is
approximately distributed as a F' distribution with r and N — p degrees of freedom. Using this result,

the approximate upper 100 percentile of the T7 test statistic is given by

_(N=1)r

N —p Fr,pr(a)a

where F,. ny_p(c) is the upper 100« percentile of the F' distribution with r and N — p degrees of freedom.

2.2 Simultaneous confidence intervals for sub-mean vectors

We consider the simultaneous confidence intervals for any and all linear compounds of the sub-mean. Us-

ing the approximate upper percentiles of 77 from Section 2.1, for any nonnull vector a = (ay,az,--- ,a,)’,

the simultaneous approximate confidence intervals for a’(p.9 — pg1.5) are given by

a'u — %Rapp < a/(ﬂl-z — Po1.2) < a'u+ ~—— Ry, Va € R" — {0},

where

N(N —2)
N—-s5-2

Nl=

u="T1 — po; — Vi2Vas (T2 — pgy), Ry = (2, (@)a'Vi12a)2, ¢1 =

3 Two-sample problem
3.1 T? type test statistic for sub-mean vectors

Let wgi),mg),n- ,.ilig\i[)(i) i Np(u(i)72), i=1,2 N=NO 4 N®?_ In this section, we consider the

following hypothesis

1 2 . 1 2 1 2 . 1 2
Ho: iV = pf? given p$? = pl® vs. Hy: pf? # pf? given p) =



where

(i) (@)

:ur-‘,-l
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n = ONE Hy = . » Ho' = . 8= » » .
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We partition :cy) into a r X 1 random vector and a s x 1 random vector, as @ Y —
j=1,2,...,N® and p=r+s.

This hypothesis test is then the same as the following hypothesis

1 2
Ho u%%—uﬁ% VS~H1 lv‘127éli12a

where u% = pgi) — D980 toy My = ug ) = /,Lg) We derive the MLEs of p and X as follows.

As for the one-sample case, we use the following transformed parameters (n®, ¥)

i) = n{" B pl? =255 o - Uy Uip\ [ Sne S12¥g
e Lo ’ Uy Uoo Yoo Yot Y29 ’

where ¥11.9 = Y11 — 2122521221, i = 1,2. We note that (n(i), ) is in one-to-one correspondence with

(D, ¥). Using the transformed parameters (n(*, ¥), the likelihood function is given by

N
LnW,n® W) =(2m) 2 [Wy1 |5 Wy

2 [ N®
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Therefore, the logarithm of L(n(l), n®, U) can be expressed as

N N N
log L(n(l),n(z)AI/) =— —p log(27) — 5 log |Wq1| — 5 log |Was|
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Differentiating log L(n™,n(®), ¥) with respect to n(9), ¥, we have
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Solving the partial derivative of log L(n(l), n®?, U) = 0, the maximum likelihood estimates of nM, n®@,

and W are given by

() — —G) . =~ 1 ~ 15
77( ( ) ‘11129'3(21),Z =1,2, Ny =T, V11 = Nvll-% WUpg = ViaVoy' Was,
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Therefore, using the relation that (n®, 5 ¥) is in one-to-one correspondence with (u(, u(?, %), the
MLEs of u(, () and ¥ are given by
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The T%, test statistic for the sub-mean vector is then given by

~(1)  ~@v A= (~1)  ~@\1-1,~1) ~(2
T = (A3 - a3y {Cov (813 - a12)} @l - a2,
where ﬁg’é and Cov (ﬁﬁ% - ﬁ?g) are the estimators of u(ll)Q and Cov (ﬁ?; - ﬁg), respectively. We
note that under H{, T3, is asymptotically distributed as a x? distribution with r degrees of freedom.
However, when the sample is not large, the x? distribution is not a good approximation of the upper

percentile of T%,.

Let

N(N —3)

— _
) 2= NON®(N s —3)

uip =) -2 — VioVip (@) — 2§

We can then rewrite T2 as

ZW1z

T2, = (N = 2)cisu)uVijhuy = (N = 2)2/ Wz = (N — 2)2'2 pope

)

where z = 01_2%21_1%21“2, W = 21_1%21/11.221_1%2. We note that w is distributed on N, (u{"” —p$?, ¢12511.)
when N, N — s0. Therefore, the distribution of 2’z is a x? distribution with r degrees of freedom.
We note that under Hj), (N —p — s — 1)T% /(N — 2)r is approximately distributed as a F distribution
with » and N — p — s — 1 degrees of freedom. Using this result, the approximate upper 100« percentile

of the TZ statistic is given by

(N —=2)r

t? = =
12-app(a) N _p — s — 1

r,N—p—s—l(a)v
where F,. ny_p—s—1(c) is the upper 100« percentiles of the F' distribution with r and N —p—s—1 degrees
of freedom.

3.2 Simultaneous confidence intervals

We consider the simultaneous confidence intervals for any and all linear compounds of the sub-mean.
Using the upper percentiles of 7% from Section 3.1, for any nonnull vector a = (aj,az,- - ,a,)’, the

simultaneous confidence intervals for a’ (uglg — u:(f%) are given by

C12
N —2

M <a'(pl) — pi) < a'us +

a’u12 —

M R" —
N3 , Va € {0},



where M = (£2,(a)a’Vi1.2a)?, and t2,(c) is the upper 100a percentiles of the T2, test statistic. However,

it is not easy to obtain t2,(«). Therefore, using the approximate upper 100« percentiles of the T%, test

statistic, ¢7, . (c), the approximate simultaneous confidence intervals for a (uglg 52%) can obtained by
C C
a'uir =/ = 5 Mapp < a/ (i) — i) < a'uz + N “-M 5 Mupp, Va € R" — {0},

where M,,, = (2, (a)a'Vii.0a)2.

12-app

4 k-sample problem

4.1 The T2 _ type test statistic

max

In this section, we consider the T2

max

type test statistic for testing any two sub-mean vectors and pro-
pose the approximate upper 100a percentiles of this statistic with Bonferroni’s approximation. Let
a:l ,wg), e EV)M “r Ny(p, %) for i =1,2,-+- ,k, N = Zz L N@. Gupta et al. (2006) has derived

the likelihood ratio test (LRT) statistic for testing the hypothesis

k) . k
Ho:piV = pf? = = pf™ given pl! = pf? = = pf
vs. Hy : at least two p,gi)s are an equal given ugl) = ,u,g) =...= ,u,ék).

When Hj is rejected, our interest is pairwise comparisons of sub-mean vectors. Under the assumption
of the common population covariance matrix, for fixed a; b, we can use the T2 type statistic for the

two-sample problem derived in Section3.1, that is,

» e
T2 = (@), — ) {Cov(aly — ah)} " (mih — aY)),

where i) (= pl" — S15550,) and Cov(l) — i) are estimators of p!’) and Cov(i\ — Al

respectively. Similarly, as for the two-sample case, the MLEs are given by

A(Z) A( ) _ 5gz') _ 21222—21 (Eg) — @)
Iy )

1 PN ~
N — Vit + 1285 Soy ViaVis 1 300
o (211 Eu) N 2 22

)
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where

1 W _ (® Ly (i)
(i) _ i) 1 = _ (3) == (%
T NG 2“’1‘ = (xm)’ T2 = NZ;N T2

(i) () (i) (D) (i) vy vy

1) __ 1) _ = 1) =)y —

v =3 (@ -3 @ -z VORRVONE
=1 21 Voo

V—Xk:V(“— I I R e
2 Var Vi)’ 11-2 11 12 Vo9 Vo1.

Similarly, as Section 3.1, under the hypothesis that the two sub-mean vectors are equal, we have the

following approximate upper 100« percentile of the T test statistic for fixed i = a, b:

(N —k)r
tfbudpp(a) = N —r— k(s ¥ 1) + lFT,N—T‘—k(S+1)+1(a)7

where F,. N __g(s+1)41() is the upper 100a percentile of the F' distribution with r and N —r—k(s+1)+1
degrees of freedom.

Using the test statistic, the T2 type test statistic for

Hy: uga) = ugb) for all a,b, 1 <a<b<k given uél) = NéQ) == uék)
vs. Hy :# Hj given uél) = u?) == Hék)a
is given by
Tia" - 1§%13§(§ka,) ’

Generally, it is not easy to obtain the upper percentile of the T2 statistic. Therefore, in this section,

ax

we adopt Bonferroni’s approximation, which is one of the solutions to this problem. We first consider

statistic ¢2

the T2 test statistic. We consider the upper 100« percentile of the T2 a) when N =
ab pPp p max max

N® = ... = N®)_ An approximate upper percentile of T2 ., 2o« (@), is a solution of the equation given

by
Z Pr(TaZb > t§ON (@) = a.
1<a<b<k

2

Using Bonferroni’s approximation, 3, («) is given by

t§ON (a) = tib(a*)v



where o* = 2a/k(k — 1), t2,(a*) is the upper 100a* percentiles of the T2 test statistic. However, it is

2

not easy to obtain ¢2, (a*). Using t2,..0p (@), the approximate upper 100a* percentile of the T2, statistic

ax

is given by

(N —k)r
t2 = Fr N b(sat)—par (@
B-app(a) N _ I{?(S—f— 1) —r+1 r,N—k(s+1) 7+1(a )a

where the F. n_j(s4+1)—r41(a”) is the upper approximate 100a* percentile of F* distribution with r and

N —r —k(s+ 1)+ 1 degrees of freedom.

4.2 Simultaneous confidence intervals for multiple comparisons among sub-
mean vectors

In this section, we consider simultaneous confidence intervals for pairwise multiple comparisons among

sub-mean vectors. Using the approximate upper percentile of 72

the approximate simultaneous confidence intervals for a’ (,ngz)2 - ,u,gJ%), 1 <a < b<k are given by

Cab
N -k

Cab

a b
N o kLﬁPP S a/(ﬂgg - Ng%) S a/uab +

a'ug, — L., Vae R"—{0}, 1 <a<b<k,

where
(N@ £ NOYN —k—1)
N@ONO(N —k—s—1)°

Nl

Lapp = (t2 (a)a/‘/il?a) y Cab =

5 Simulation studies

In this section, we perform a Monte Carlo simulation (with 10 runs) in order to evaluate the asymptotic
behavior of the F approximations and the accuracy of the approximate upper 100a percentiles of the 7%,

and T2

ax test statistic.

Tables la and 1b present the simulated upper 100a percentile of the TZ test statistic and the
approximate upper 100 percentile of the TZ test statistic for the two-sample problem; (p,r,s) =
(4,1,3),(4,2,2),(4,3,1),(8,2,6),(8,4,4),(8,6,2); « = 0.05,0.01; and for the following two cases of
(N N@):

(N(l), N(Q)) _ (£,0), £ =20,40,100, 200,400
(¢,2¢), ¢ =20,40,100,200

Tables 1a and 1b present the type I errors for the upper 100a percentile of the x? distribution with r

degrees of freedom and the approximate upper 100« percentile of the T test statistic given by

ar = Pr(Tf, > x} (@), oz =Pr(T% > £, (@),

10

axs for any nonnull vector @ = (a1, a2, - ,ap)’,



statistic, t2, (), and

respectively. Table 2 gives the approximate upper 100a percentile of the 772

ax

the approximate upper 100 percentile of the T2, statistic, tzB_app(a), for the k-sample problem; k& =

3,4,5,6,10; (p,7,5) = (4,2,2); a = 0.05,0.01; N®) = ¢, where £ = 20,40, 100, 200, 400. Table 2 presents

the type I error for the approximate upper 100« percentile of the T2 statistic:

ax

g = Pr(T] 0 > th ., (0),

where o* = 2a/k(k — 1). It may be noted from Tables 1la and 1b that the simulated values approach
closer to the upper percentile of the x? distribution when both of the sample sizes N and N become
large. In addition, it can be seen from both tables that the proposed approximation value is good for all
cases even when the sample size is small. The results for the type I error of the proposed approximation
value are closer than those of the x? value for all cases.

In Table 2, the simulated values also approach the upper 100« percentile of the x? distribution when
both of the sample sizes N and N become large. The results for the type I error of the proposed
approximation value are always lower than « for all cases. That is, it is conservative in terms of the type
I error when k is large. Therefore, in terms of the type I error, it can be concluded that the proposed
approximation values are more accurate than the simulated values for all cases. In addition, we perform
a Monte Carlo simulation (with 10° runs) in order to evaluate the powers of the T%, test statistic.

Table 3a presents the powers of the T2 test statistic for the two-sample problem; (p,r, s) = (4,2,2);
a=0.05,0.01; 6 = |u§1) — /JJ?)\ =0,0.2,...,2; and for the following cases of (N(), N(2)).: N() = N() =
¢ = 10,40, 50. Table 3b presents the powers of the T3, test statistic for the two-sample problem; r = 2,
(p,7,8) = (4,2,2),(5,2,3), (6,2,4), (10,2,8); & = 0.05,0.01; 6 = | — u¥| =0,0.2,...,2; (ND, N@)

= (50,50). Tables 3a and 3b present the powers of the T, test statistic:

B = Pr(Th > xi(@)|Hy), B2 = Pr(Ty > 13, (a)|H1),

12-app

respectively. It may be noted from Table 3a that the power takes conservative values when both of the
sample sizes N and N® become small. In addition, it may be noted from Table 3b that the power
takes values that are a little conservative when s become small. The reasons are that the power may

depend on the noncentrality parameters only through 62 = 6’1221_1142612 /2¢12, where 812 = ,ugl) — u?).

11



6 Numerical example

In this section, we discuss an example to illustrate the approximation of ¢2, pp (@) Dy comparing each of
the simultaneous confidence intervals in Section 4.2. In this example, we utilize the data in the iris plant
taken from Fisher (1936). Data are presented on three species of iris, setosa, versicolor, and virginica,

comprising four different measurements: zi: petal width, xo: petal length, z3: sepal width, and x4:

sepal length. The population mean vectors are pu(?) = (ng) ,ug) ) = (,ug )»Nz 7ugl),uff)) , where u( ).

mean of petal width, ,ugi): mean of petal length, ,ugi): mean of sepal width, uff): mean of sepal length,

p) = (7, udY, and py

py = pst) = pd =

0 = = (p O 8 )) . We assume that these data are distributed normality, and

K3y iy

We consider the simultaneous approximate confidence intervals of pairwise comparisons for testing

the sub-mean vectors hypothesis:

Hy: uga) = ugb) for all a,b, 1 <a<b<3 given ugl) = ug) = ué?’)

vs. Hy :# Hy given u( ) = ;4( ) :ugs).

Table 4 presents the simultaneous confidence intervals obtained by using 2, (), t2 (), and 2 («).

For example, let @ = (0,1)" and @ = 0.05; then the simultaneous confidence intervals obtained by
using ¢2,,,(0.05), ¢2,,(0.05), and ¢, (0.05) for pairwise comparisons are constructed as a (uglg u(12%)

obtained by using

(0.05) : (—2.274, —2.066), 2, (0.05) : (—2.275, —2.065), 2. (0.05) : (—2.277, —2.063),

de B -app

respectively. These simultaneous confidence intervals present the petal length between the score of the
setosa population and the score of the versicolor population. The simultaneous confidence intervals
obtained by using the approximate upper 100« percentile, 2 pp(0.05), are a little longer than those

obtained by using t2(0.05) and ¢2

2 ax(0.05). The remaining results are the same. Therefore, it can be

concluded that the simultaneous confidence intervals obtained by using ¢2 () are useful.

12



Table 1la t3,(«) and t2

12-app

(o) when p =4

Sample Size a=0.05 a=0.01
N N@ L 2(a) () o1 le% t3(Q)  th.0(Q) o a2
(r,s) = (1,3), x1(0.05) = 3.84, x3(0.01) = 6.64
20 20 4.48 4.93 0.068 0.040 | 8.06 8.91 0.018  0.007
40 40 4.13 4.31 0.058  0.045 7.27 7.58 0.014  0.009
100 100 3.94 4.01 0.053  0.048 7.15 7.37 0.013  0.009
200 200 3.89 3.92 0.052  0.049 | 6.84 6.98 0.011  0.009
400 400 3.88 3.88 0.051  0.050 | 6.76 6.80 0.011  0.010
20 40 4.23 4.49 0.062 0.044 | 7.55 7.97 0.015  0.008
40 80 4.04 4.14 0.056  0.047 | 7.05 7.23 0.012  0.009
100 200 3.92 3.95 0.052  0.049 | 6.80 6.86 0.011  0.010
200 400 3.88 3.90 0.051  0.050 | 6.71 6.75 0.010  0.010
(r,s) = (2,2), x3(0.05) =5.99, x3(0.01) =9.21
20 20 7.10 7.57 0.077  0.042 | 11.45 12.23 0.022  0.008
40 40 6.50 6.67 0.062  0.046 | 10.20 10.49 0.015  0.009
100 100 6.19 6.24 0.055  0.049 | 9.60 9.68 0.012  0.010
200 200 6.07 6.11 0.052  0.049 | 9.38 9.44 0.011  0.010
400 400 6.03 6.05 0.051  0.049 | 9.30 9.32 0.010  0.010
20 40 6.68 6.94 0.067  0.045 | 10.63 11.01 0.018  0.009
40 80 6.32 6.43 0.058 0.048 | 9.86 10.02 0.013  0.009
100 200 6.12 6.16 0.053  0.049 | 9.46 9.52 0.011  0.010
200 400 6.05 6.07 0.051 0.049 | 9.32 9.36 0.011  0.010
(r,s) = (3,1), x3(0.05) = 7.81, x3(0.01) = 11.35
20 20 9.37 9.67 0.085  0.045 | 14.38 14.81 0.026  0.009
40 40 8.53 8.63 0.066  0.048 | 12.68 12.83 0.017  0.009
100 100 8.09 8.12 0.056  0.049 | 11.84 11.89 0.012  0.010
200 200 7.94 7.96 0.053  0.049 | 11.59 11.61 0.011  0.010
400 400 7.87 7.89 0.051  0.050 | 11.43 11.48 0.010  0.010
20 40 8.77 8.94 0.071  0.047 | 13.14 13.43 0.019  0.009
40 80 8.27 8.36 0.060  0.049 | 12.18 12.29 0.014  0.010
100 200 7.99 8.01 0.054  0.050 | 11.66 11.70 0.012  0.010
200 400 7.91 7.91 0.052  0.050 | 11.54 11.52 0.011  0.010

13




Table 1b  t3,(a) and ¢3, (o) when p =8
Sample Size a=0.05 a=10.01
N N@ L 2(a) () o1 le% t3(Q)  th.0(Q) o a2
(r,s) = (2,6), x3(0.05) = 5.99, x3(0.01) = 9.21
20 20 8.13 10.29 0.103  0.025 | 13.36 16.93 0.035  0.004
40 40 6.87 7.53 0.072  0.038 | 10.82 11.87 0.019  0.007
100 100 6.31 6.52 0.058 0.045 | 9.75 10.11 0.013  0.009
200 200 6.13 6.24 0.054  0.047 | 9.49 9.64 0.011  0.009
400 400 6.06 6.11 0.052  0.049 | 9.35 9.42 0.011  0.010
20 40 7.24 8.26 0.082 0.034 | 11.55 13.17 0.024  0.006
40 80 6.53 6.93 0.064  0.042 | 10.17 10.82 0.015  0.008
100 200 6.19 6.33 0.055  0.047 | 9.60 9.79 0.012  0.009
200 400 6.08 6.16 0.052  0.048 | 9.38 9.49 0.011  0.009
(r,s) = (4,4), x3(0.05) =9.49, x3(0.01) =13.3
20 20 | 13.16 15.36 0.129  0.028 | 19.69 23.11 0.048  0.005
40 40 | 11.00 11.68 0.082  0.040 | 15.80 16.82 0.023  0.007
100 100 | 10.02 10.25 0.061  0.046 | 14.15 14.49 0.014  0.009
200 200 9.75 9.85 0.550  0.048 | 13.74 13.85 0.012  0.010
400 400 9.61 9.67 0.052  0.049 | 13.52 13.56 0.011  0.010
20 40 | 11.62 12.68 0.096  0.036 | 16.92 18.50 0.030  0.006
40 80 | 10.43 10.84 0.067  0.043 | 14.89 15.44 0.018  0.008
100 200 9.84 9.98 0.057  0.047 | 13.91 14.06 0.013  0.009
200 400 9.65 9.73 0.530  0.048 | 13.56 13.66 0.011  0.010
(r,s) = (6,2), x&(0.05) = 12.59, x2(0.01) = 16.8
20 20 | 17.79 19.12 0.152  0.038 | 25.49 27.51 0.062  0.007
40 40 | 14.71 15.15 0.091  0.044 | 20.27 20.86 0.027  0.008
100 100 | 13.35 13.50 0.064  0.048 | 17.98 18.22 0.015  0.009
200 200 | 12.95 13.03 0.057  0.049 | 17.38 17.49 0.011  0.010
400 400 | 12.80 12.80 0.054  0.050 | 17.07 17.14 0.010  0.010
20 40 | 15.59 16.27 0.109  0.042 | 21.74 22.69 0.036  0.008
40 80 | 13.93 14.18 0.076  0.046 | 18.95 19.30 0.020  0.009
100 200 | 13.10 13.18 0.059  0.049 | 17.57 17.72 0.013  0.009
200 400 | 12.80 12.80 0.054  0.050 | 17.20 17.26 0.012  0.010
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Table 2 2 («) and t2

B-app

(o) when (p,r,s) = (4,2,2)

Sample Size a=0.05 a=0.01
N® ton (@) 1Rapp(@) as ton(@)  thapp(a) o
k=3
20 9.01 10.14 0.033 13.26 14.61 0.006
40 8.43 9.04 0.038 12.15 12.79 0.008
100 8.15 8.51 0.043 11.67 11.92 0.009
200 8.05 8.34 0.044 11.43 11.66 0.009
400 7.99 8.27 0.044 11.36 11.53 0.009
k=4
20 10.21 11.68 0.028 14.32 15.99 0.005
40 9.69 10.50 0.035 13.45 14.19 0.007
100 9.39 9.92 0.039 12.93 13.31 0.008
200 9.32 9.74 0.041 12.77 13.05 0.009
400 9.26 9.66 0.042 12.68 12.92 0.009
k=5
20 11.06 12.77 0.025 15.10 16.98 0.005
40 10.62 11.56 0.033 14.32 15.21 0.007
100 10.33 10.96 0.035 13.88 14.33 0.008
200 10.26 10.77 0.040 13.72 14.07 0.009
400 10.22 10.68 0.040 13.64 13.94 0.009
k=6
20 11.77 13.63 0.024 15.78 17.76 0.004
40 11.33 12.40 0.032 15.03 16.01 0.006
100 11.11 11.78 0.037 14.63 15.14 0.008
200 11.03 11.59 0.039 14.51 14.88 0.008
400 10.99 11.50 0.040 14.48 14.75 0.009
k=10
20 13.63 15.93 0.019 17.47 19.89 0.004
40 13.32 14.65 0.028 16.97 18.19 0.006
100 13.16 14.00 0.035 16.70 17.34 0.007
200 13.09 13.80 0.036 16.60 17.08 0.008
400 13.07 13.70 0.038 16.57 16.95 0.008

. 01 0.05 0.01
Note : x3 (0305> =8.19, x3 <O§> =11.41, x3 <6> =9.57, X3 <6) =12.79,
0.05 0.01 0.05 0.01
X3 (> =10.60, x3 <10) =13.82, x3 (15) =11.41, x3 (15> = 14.63,

0.05 0.01
X3 () =13.60, x3 (45) = 16.82.
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Table 3a Power for T% test statistic when (p,r,s) = (4,2,2)

a = 0.05 a=0.01

5 (NW, N@) 1- 5 1— B, 1— 6 1— B,
0 (10,10) 0.106 0.028 0.040 0.004
0.2 0.114 0.031 0.045 0.005
0.4 0.147 0.046 0.063 0.008
0.6 0.191 0.065 0.088 0.013
0.8 0.259 0.099 0.130 0.022
1.0 0.342 0.146 0.187 0.037
1.2 0.438 0.208 0.258 0.059
14 0.541 0.286 0.346 0.091
1.6 0.637 0.376 0.442 0.139
1.8 0.726 0.473 0.541 0.198
2.0 0.811 0.575 0.642 0.269
0 (40,40) 0.062 0.046 0.015 0.009
0.2 0.094 0.072 0.027 0.017
0.4 0.203 0.167 0.078 0.053
0.6 0.393 0.341 0.196 0.146
0.8 0.620 0.568 0.391 0.318
1.0 0.814 0.776 0.622 0.545
1.2 0.932 0.912 0.817 0.759
1.4 0.981 0.974 0.932 0.902
1.6 0.996 0.995 0.982 0.971
1.8 1.000 0.999 0.997 0.994
2.0 1.000 1.000 0.999 0.999

0 (50,50) 0.059 0.046 0.014 0.009
0.2 0.100 0.081 0.029 0.020
0.4 0.239 0.206 0.097 0.072
0.6 0.470 0.427 0.252 0.205
0.8 0.720 0.683 0.497 0.435
1.0 0.895 0.874 0.746 0.692
1.2 0.973 0.965 0.908 0.879
1.4 0.995 0.994 0.977 0.967
1.6 0.999 0.999 0.996 0.994
1.8 1.000 1.000 1.000 0.999
2.0 1.000 1.000 1.000 1.000

Note : § = \ugl) -
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Table 3b  Power for T2 test statistic when (N, N®)) = (50, 50), r = 2

a = 0.05 a=0.01
0 (p,7,5) 1-5 15 1-5 1-0
0 (4,2,2) 0.059 0.046 0.014 0.009
0.2 0.100 0.081 0.029 0.020
0.4 0.239 0.206 0.097 0.072
0.6 0.470 0.427 0.252 0.205
0.8 0.720 0.683 0.497 0.435
1.0 0.895 0.874 0.746 0.692
1.2 0.973 0.965 0.908 0.879
1.4 0.995 0.994 0.977 0.967
1.6 0.999 0.999 0.996 0.994
1.8 1.000 1.000 1.000 0.999
2.0 1.000 1.000 1.000 1.000
0 (5,2,3) 0.060 0.044 0.014 0.008
2 0.102 0.079 0.030 0.019
0.4 0.239 0.198 0.097 0.068
0.6 0.470 0.416 0.254 0.197
0.8 0.718 0.670 0.497 0.421
1.0 0.894 0.866 0.744 0.678
1.2 0.972 0.963 0.908 0.871
1.4 0.995 0.993 0.977 0.964
1.6 0.999 0.999 0.996 0.993
1.8 1.000 1.000 1.000 0.999
2.0 1.000 1.000 1.000 1.000
0 (6,2,4) 0.062 0.043 0.015 0.008
0.2 0.102 0.075 0.030 0.017
0.4 0.241 0.192 0.098 0.064
0.6 0.469 0.405 0.256 0.189
0.8 0.720 0.661 0.499 0.408
1.0 0.893 0.860 0.745 0.665
1.2 0.972 0.959 0.907 0.862
1.4 0.995 0.992 0.978 0.960
1.6 0.999 0.999 0.996 0.992
1.8 1.000 1.000 1.000 0.999
2.0 1.000 1.000 1.000 1.000
0 (10,2,8) 0.067 0.035 0.017 0.006
0.2 0.110 0.063 0.034 0.014
0.4 0.247 0.164 0.103 0.050
0.6 0.472 0.360 0.261 0.153
0.8 0.715 0.610 0.498 0.349
1.0 0.889 0.824 0.740 0.602
1.2 0.970 0.944 0.903 0.818
1.4 0.995 0.988 0.971 0.941
1.6 0.999 0.998 0.996 0.987
1.8 1.000 1.000 0.999 0.998
2.0 1.000 1.000 1.000 1.000
Note : 6 = [ui” — p$?|, B = Pr(T2, > X2(a)|H), B2 = Pr(Th > 1%, (@) Hy)
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Table 4 : Simultaneous confidence intervals obtained by using ¢

max

(0.05), t2,,(0.05), and ¢2

a

(1,0)

B-app
(1,1)

a'(n}) — u%)

i

(0, 1)
Py

1 2 2
WV + i) = (1 + 6$)

t2 ...(0.05)
t2 4 (0.05)
t2 .., (0.05)

(—1.277,—1.070)
(—1.277,-1.070)
(—1.281,—1.067)

(—2.274, —2.066)
(—2.275, —2.065)
(—2.277, —2.063)

(—3.448, —3.240)
(—3.449, —3.239)
(—3.451, —3.237)

a'(n}) — ui%)

T

Py

@V + i) = (1 + )

t2...(0.05)
t2 4 (0.05)

(—1.889, —1.681)
(—1.890, —1.679)

(—3.153, —2.945)
(—3.155, —2.944)

(—4.938, —4.730)
(—4.939, —4.729)

2. (0.05) | (—1.892,~1.678) (—3.156,—2.942) (—4.940, —4.727)
a'(pi) — 1) u? — Y us) — s @+ u$) = (1P + )

t2...(0.05)

(—0.715,-0.507)

(—0.983,-0.775)

(—1.594, —1.386)

2. (0.05) | (—0.716,—0.506) (—0.984, —0.774) (—1.595, —1.385)
#2...(0.05) | (=0.718,—0.504) (—0.986, —0.772) (—2.012, —0.968)
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