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Abstract

This paper is concerned with selection of variables in two-group

discriminant analysis with the same covariance matrix. We propose

a distance-based criterion (DC) drawing on the distance of each vari-

ables. The selection method can be applied for high-dimensional data.

Sufficient conditions for the distance-based criterion to be consistent

are provided when the dimension and the sample are large. Our

results, and tendencies therein are explored numerically through a

Monte Carlo simulation.
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1. Introduction

This paper is concerned with the variable selection problem in two-group

discriminant analysis with the same covariance matrix. Some methods have

been proposed for high-dimensional data as well as large-sample data. One

of the methods are based on model selection criteria such as AIC and BIC,

see, e.g., Fujikoshi (1984), Nishii et al. (1988). There are methods based on

misclassification errors by MaLachlan (1976), Fujikoshi (1985), Hyodo and

Kubokawa (2014), Yamada et al. (2017). For high-dimensional data, there

are Lasso and other regularization methods by Clemmensen et al. (2011),

Witten and Tibshirani (2011), etc.

In this paper we propose a distance-based criterion based on the distance

of each variables, which is useful for high-dimensional data as well as large-

sample data. Here, the distance of each variables is measured as the one

except for the effect of other variables. The criterion involves a constant term

which should be determined through some optimality. We propose a class of

constants satisfying a consistency when the dimension and the sample size

are large. The class depends on the parameters. With respect to the actual

use, we also propose a class of estimators for the constant term which satisfies

a consistency. Our results, and tendencies therein are explored numerically

through a Monte Carlo simulation.

The remainder of the present paper is organized as follows. In Section

2, we present the relevant notation and the distance-based criterion. In

Sections 3 we derive sufficient conditions for the distance-based criterion to

be consistent under a high-dimensional case. In Section 4 we also propose

a class of estimators for the constant term. The proposed distance-based

criterion is also examined through a Monte Carlo simulation in Section 5. In

Section 6, conclusions are offered. All proofs of our results are provided in

the Appendix.
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2. Distance-based Criterion

In two-group discriminant analysis, suppose that we have independent

samples y
(i)
1 , . . . ,y

(i)
ni from p-dimensional normal distributions Np(µ

(i),Σ),

i = 1, 2. Let Y be the total sample matrix defined by

Y = (y
(1)
1 , . . . ,y(1)

n1
,y

(2)
1 , . . . ,y(2)

n2
)′.

Let ∆ andD be the population and the sample Mahalanobis distances defined

by ∆ =
{
(µ(1) − µ(1))′Σ−1(µ(1) − µ(1))

}1/2
, and

D =
{
(x̄(1) − x̄(2))′S−1(x̄(1) − x̄(2))

}1/2
,

respectively. Here x̄(1) and x̄(2) are the sample mean vectors, and S be the

pooled sample covariance matrix based on n = n1 + n2 samples. Let β be

the coefficients of the population discriminant function given by

β = Σ−1(µ(1) − µ(2)) = (β1, . . . , βp)
′. (2.1)

Suppose that j denotes a subset of ω = {1, . . . , p} containing pj elements,

and yj denotes the pj vector consisting of the elements of y indexed by the

elements of j. We use the notation Dj and Dω for D based on yj and

yω(= y), respectively.

One of the approaches for variable selection is to consider a set of models

as follows. For each subset j of ω = {1, . . . , p}, consider a variable selection

model Mj defined by

Mj : βi ̸= 0 if i ∈ j, and βi = 0 if i ̸∈ j. (2.2)

We identify the selection of Mj with the selection of yj. Let AICj be the

AIC for Mj. Then, it is known (see, e.g., Fujikoshi 1985) that

Aj = AICj − AICω (2.3)

= n log

{
1 +

g2(D2
ω −D2

j )

n− 2 + g2D2
j

}
− 2(p− pj),
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where g =
√

(n1n2)/n. Similarly, let BICj be the BIC for Mj, and we have

Bj = BICj − BICω (2.4)

= n log

{
1 +

g2(D2
ω −D2

j )

n− 2 + g2D2
j

}
− (log n)(p− pj).

In a large sample framework, it is known (see, Fujikoshi 1985, Nishii et al.

1988) that AIC is not consistent, but BIC is consistent.

The variable selection methods based on AIC and BIC are given as

minj AICj and minj BICj, respectively. Therefor, such model selection meth-

ods have a computationally onerous problem when p is large, since the meth-

ods involve minimizing with respect to the subsets of 2p. To circumvent this

issue, we consider a distance-based criterion (DC) drawing on the distance

of each variables. A contribution of yi in the distance between two groups

may be measured by

D2 −D2
(−i) (2.5)

where (−i) is the subset of ω = {1, . . . , p} obtained by omitting i from ω. If

”D2 −D2
(−i)” is large, it may be considered that yi has a large contribution

in discriminant analysis. Conversely, if ”D2 − D2
(−i)” is small, it may be

considered that yi has a small contribution in discriminant analysis. Let us

define

Dd,i = D2 −D2
(−i) − d, i = 1, . . . , p, (2.6)

where d is a positive constant. We propose a distance-based criterion for

the selection of variables defined by selecting the set of suffixes or the set of

variables given by

DCd = {i ∈ ω | Dd,i > 0}, (2.7)

or {yi ∈ {y1, . . . , yp} | Dd,i > 0}. The notation ĵDCd
is also used for DCd.

For a distance-based criterion, there is an important problem how to

decide the constant term d. In Section 3 we derive a range of d which

has a high-dimensional consistency. The range depends on the population

parameters. For a practical usefulness, we also propose a class of estimators
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for d given by

d̂ =
n− 2 + g2D2

(n− p− 1)g2

{
a(np)1/3 +

n− p− 1

n− p− 3

}
, (2.8)

where a is a constant satisfying a = O(1). It is shown that DCd̂ is consistent

under a high-dimensional framwork.

3. High-dimensional Consistency

For studying consistency properties of the variable selection criterion

DCd, it is assumed that the true model M∗ is specified through the val-

ues of µ(1), µ(2) and Σ. For simplicity, we write the variable selection models

in terms of β, or Mj. Assume that the true model M∗ is included in the full

model Mω. Let the minimum model including M∗ be Mj∗ . For a notational

simplicity, we regard the true model M∗ as Mj∗ . Let F be the entire suite of

candidate models, defined by

F = {{1}, . . . , {k}, {1, 2}, . . . , {1, . . . , k}},

Let F separate into two sets, one is a set of overspecified models, i.e., F+ =

{j ∈ F | j∗ ⊆ j} and the other is a set of underspecified models, i.e., F− =

Fc
+ ∩ F.

Here we list some of our main assumptions:

A1 (The true model): Mj∗ ∈ F.

A2 (The high-dimensional asymptotic framework):

p → ∞, n → ∞, p/n → c ∈ (0,∞).

A3 : p∗ is finite, and ∆2 = O(1).

A4 : ni/n → ki > 0, i = 1, 2.
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Relating to our proof of a consistency of DCd in (2.7), note that

DCd = j∗ ⇔ ”Dd,i > 0 for i ∈ j∗”, and ”Dd,i ≤ 0 for i /∈ j∗”

Therefore,

P (DCd = j∗) = P

∩
i∈j∗

”Dd,i > 0”
∩
i/∈j∗

”Dd,i < 0”


= 1− P

∪
i∈j∗

”Dd,i ≤ 0”
∪
i/∈j∗

”Dd,i ≥ 0”


≥ 1−

∑
i∈j∗

P (Dd,i ≤ 0)−
∑
i/∈j∗

P (Dd,i ≥ 0).

Our result will be otained by proving the followings:

[F1] ≡
∑
i∈j∗

P (Dd,i ≤ 0) → 0. (3.1)

[F2] ≡
∑
i/∈j∗

P (Dd,i ≥ 0) → 0, (3.2)

[F1] is the probability that DCd does not select the set of true variables.

[F2] is the probability that DCd select the set of no true variables. Our

consistency depends on

τmin = min
i∈j∗

τi, (3.3)

where τi = ∆2 −∆2
(−i), i ∈ ω.

Theorem 3.1. Suppose that assumptions A1, A2, A3 and A4 are satisfied.

Let b = τmin/(1 − c), where τmin is defined by (3.3). Then, if 0 < d < b, the

distance-based criterion DCd satisfies [F1], i.e.,∑
i∈j∗

P (Dd,i ≤ 0) → 0. (3.4)
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Related to a sufficient condition for (3.2), we use the following result: for

i ̸⊂ j∗,

E
{
D2 −D2

(−i)

}
=

n− 2

(n− p− 3)(n− p− 2)

{
g−2(n− 3) + ∆2

}
(3.5)

≡ q(p, n,∆2).

Theorem 3.2. Suppose that assumptions A1, A2, A3 and A4 are satisfied.

Then, if d = O(1) and d > q(p, n,∆2), the distance-based criterion DCd

satisfies ∑
i/∈j∗

P (Dd,i ≥ 0) → 0, (3.6)

Combining Theorems 3.1 and 3.2, a sufficiency condition for DCd to be

consistent is given as follows:.

Theorem 3.3. Suppose that assumptions A1, A2, A3 and A4 are satisfied.

Then, if d = O(1) and

q(p, n,∆2) < d < b = τmin/(1− c), (3.7)

the distance-based criterion DCd is consistent.

For an actual use, it is necessary to get an estimator d̂ for d. This problem

is discussed in Section 4.

4. A Method of Determining the Constant

Term

In the previous section we have seen that the distance-based criterion DCd

is consistent if we use a constant term d such that d = O(1) and q(p, n,∆) <

d < τmin, where q(p, n,∆) is given by (3.5), αmin = mini∈j∗ αi and αi =
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∆2 − ∆2
(−i). However, such a d involves unknown parameters. We need to

estimate d by using the estimators of ∆2 and τmin. Here, we consider to

construct an estimator by using the fact that DCd is based on the test of

αi = 0 or βi = 0. The likelihood test is based on (see, e.g., Rao 1973,

Fujikoshi et al. 2010)
g2D2

{i}·(−i)

n− 2 + g2D2
(−i)

whose null distribution is a ratio χ2
1/χ

2
n−p−1 of independent chi-squared vari-

ates χ2
1 and χ2

n−p−1, where D2
{i}·(−i) = D2 −D2

(−i). Let us define d̂ as follows:

d̂ =
n− 2 + g2D2

(n− p− 1)g2

{
a(np)1/3 +

n− p− 1

n− p− 3

}
. (4.1)

Here a is a costant sasisfying a = O(1). Then, it is shown that DCd̂ has a

consistency.

Theorem 4.1. Suppose that assumptions A1, A2, A3 and A4 are satisfied.

Then, the distance-based criterion DCd̂ with d̂ in (4.1) is consistent.

As a special d̂, we consider the followings:

d̂1 =
n− 2 + g2D2

(n− p− 1)g2

{
(np)1/3 +

n− p− 1

n− p− 3

}
, (4.2)

d̂2 =
n− 2 + g2D2

(n− p− 1)g2

{(
1− p

n

)2
(np)1/3 +

n− p− 1

n− p− 3

}
. (4.3)

The estimators d̂1 and d̂2 are defined from d̂ by choosing a as a = 1 and

a = (1− p/n)2, respectively.

In Theorem 3.3, we have seen that DCd is consistent under a high-

dimensional framework if d satisfies q(p, n,∆2) < d < τmin/(1 − c). The

expectation of d̂ is related to the range as follows:

(1) E(d̂) > q(p, n,∆2),

(2) lim
p/n→c

E(d̂) = 0 ≤ τmin/(1− c).
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The above result follows from that

E[d̂] =

{
a(np)1/3 +

n− p− 1

n− p− 3

}
n− 2 + g2 p+g2∆2

n−p−3

(n− p− 1)g2

= a(np)1/3
{

(n− 2)(n− 3)

g2(n− p− 3)(n− p− 1)
+

n− 2

(n− p− 3)(n− p− 1)
∆2

}
+

(n− 2)(n− 3)

g2(n− p− 3)2
+

n− 2

(n− p− 3)2
∆2.

5. Numerical Study

In this section we numerically explore the validity of our claims through

three distance-based criteria, DCd0 , DCd̂1
, and DCd̂2

. Here, d0 is the midpoint

in the interval [q(p, n,∆2), τmin/(1− c)] in (3.7).

The true model was assumed as follows: the true dimension is p∗ = 4, 8,

the true mean vectors;

µ1 = α(1, . . . , 1, 0, . . . , 0)′, µ2 = α(−1, . . . ,−1, 0, . . . , 0)′,

and the true covariance matrix is Σ∗ = Ip.

The selection rates associated with these criteria are given in Tables 5.1 to

5.4. ”Under”, ”True”, and ”Over” denote the underspecified models, the true

model, and the overspecified models, respectively. We focused on selection

rates for 103 replications in Tables 5.1 ∼ 5.4. From these tables, we can

identify the following tendencies.

Table 5.1. Selection rates of DCd0 , DCd̂1
and DCd̂2

for p∗ = 4 and α = 1
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p∗ = 4, α = 1 d0 d̂1 d̂2
n1 n2 p Under True Over Under True Over Under True Over

50 50 10 0.34 0.65 0.01 0.44 0.56 0.00 0.25 0.75 0.01
100 100 10 0.11 0.89 0.00 0.00 1.00 0.00 0.00 0.99 0.01
200 200 10 0.01 0.99 0.00 0.00 1.00 0.00 0.00 1.00 0.00

50 50 25 0.39 0.51 0.10 0.95 0.05 0.00 0.45 0.52 0.03
100 100 50 0.19 0.81 0.01 0.63 0.37 0.00 0.06 0.94 0.00
200 200 100 0.03 0.97 0.00 0.06 0.94 0.00 0.00 1.00 0.00

50 50 50 0.55 0.17 0.29 1.00 0.00 0.00 0.54 0.24 0.22
100 100 100 0.28 0.59 0.13 1.00 0.00 0.00 0.10 0.61 0.29
200 200 200 0.09 0.91 0.00 0.99 0.01 0.00 0.00 0.92 0.08

Table 5.2. Selection rates of DCd0 , DCd̂1
and DCd̂2

for p∗ = 4 and α = 10

p∗ = 4, α = 10 d0 d̂1 d̂2
n1 n2 p Under True Over Under True Over Under True Over

50 50 10 0.28 0.71 0.01 0.18 0.82 0.00 0.10 0.90 0.01
100 100 10 0.07 0.93 0.00 0.00 1.00 0.00 0.00 1.00 0.00
200 200 10 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

50 50 25 0.34 0.62 0.04 0.76 0.24 0.00 0.19 0.78 0.03
100 100 50 0.10 0.90 0.00 0.18 0.82 0.00 0.01 0.98 0.01
200 200 100 0.01 0.99 0.00 0.00 1.00 0.00 0.00 1.00 0.00

50 50 50 0.49 0.29 0.22 1.00 0.00 0.00 0.30 0.36 0.34
100 100 100 0.22 0.72 0.06 1.00 0.01 0.00 0.02 0.69 0.29
200 200 200 0.05 0.95 0.00 0.81 0.19 0.00 0.00 0.90 0.10

Table 5.3. Selection rates of DCd0 , DCd̂1
and DCd̂2

for p∗ = 8 and α = 1

p∗ = 8, α = 1 d0 d̂1 d̂2
n1 n2 p Under True Over Under True Over Under True Over

50 50 10 0.81 0.18 0.01 1.00 0.00 0.00 1.00 0.00 0.00
100 100 10 0.52 0.48 0.00 0.79 0.21 0.00 0.65 0.35 0.00
200 200 10 0.20 0.80 0.00 0.03 0.97 0.00 0.02 0.98 0.00

50 50 25 0.86 0.05 0.09 1.00 0.00 0.00 1.00 0.00 0.00
100 100 50 0.68 0.26 0.06 1.00 0.00 0.00 0.97 0.03 0.00
200 200 100 0.30 0.69 0.01 1.00 0.00 0.00 0.53 0.47 0.00

50 50 50 0.93 0.00 0.07 1.00 0.00 0.00 1.00 0.00 0.00
100 100 100 0.79 0.05 0.16 1.00 0.00 0.00 0.96 0.02 0.02
200 200 200 0.52 0.40 0.09 1.00 0.00 0.00 0.53 0.43 0.04
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Table 5.4. Selection rates of DCd0 , DCd̂1
and DCd̂2

for p∗ = 8 and α = 10

p∗ = 8, α = 1 d0 d̂1 d̂2
n1 n2 p Under True Over Under True Over Under True Over

50 50 10 0.79 0.19 0.02 1.00 0.00 0.00 0.99 0.01 0.00
100 100 10 0.48 0.52 0.00 0.61 0.40 0.00 0.48 0.52 0.00
200 200 10 0.14 0.86 0.00 0.00 1.00 0.00 0.00 1.00 0.00

50 50 25 0.84 0.08 0.08 1.00 0.00 0.00 1.00 0.00 0.00
100 100 50 0.60 0.33 0.06 1.00 0.00 0.00 0.91 0.09 0.00
200 200 100 0.25 0.75 0.00 1.00 0.00 0.00 0.27 0.73 0.00

50 50 50 0.91 0.00 0.09 1.00 0.00 0.00 0.99 0.00 0.01
100 100 100 0.74 0.08 0.18 1.00 0.00 0.00 0.89 0.06 0.04
200 200 200 0.45 0.49 0.06 1.00 0.00 0.00 0.31 0.63 0.06

From Tables 5.1 ∼ 5.4, we can identify the following tendncies.

• In all the DC criteria with d0, d̂1 and d̂1, there are cases which their

selection rates are high. Especially, when the dimension p is small as

in p = 10, their selection rates are near to 1. However, when n and p

are near, their selection rates do not near to one when n and p are not

large. On the other hand, for the case which a consistency can not be

seen in Tables, it will be expected to be consistent as the values of n

and p are large.

• In all the DC criteria with d0, d̂1 and d̂1, their selection rates of the

true model are incresing as n and p are large.

• In all the DC criteria with d0, d̂1 and d̂1, their selection rates of the

true model are decreasing as n and p are closer.

• In all the DC criteria with d0, d̂1 and d̂1, their selection rates of the

true model are decreasing as the dimension p∗ is increasing.

• In all the DC criteria with d0, d̂1 and d̂1, their selection rates of the true

model are increasing as the distance between groups or α is increasing.

• The DC criteria with d0 has a tendency of not selecting overspecified

models as p is small in comparison with n, and has a tendency of

selecting overspcified models as p and n are near.
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• The DC criteria with d̂1 does not select overspesified models, and has

a tendancy of choosing the variables strictly.

• The DC criteria with d̂2 has a tendency of not selectiong overspecified

models when p is small, and has a tendency of selecting overspesified

models as n and p are near, as in the DC criteria with d0.

6. Concluding Remarks

In this paper we propose a distance-based criterion (DC) for the variable

selection problem, based on drawing on the significance of each the variables

except for the effect due to other variables. The criterion involves a constant

term d, and is denoted by DCd. DCd need not to examine all the subsets,

but need to examine only the p subsets ω(−i). The circumvent computa-

tional complexities associated with all the subsets selection procedures been

resolved. Further, it was identified that a range of d and a class of its estima-

tors such that DCd has a high-dimensional consistency property. Especially

the criteria DCd with d = d0, d = d̂1 and d = d̂2 were numerically examined.

However, an optimality problem on d̂ is left for future research. A study of

high-dimensional consistency properties when p∗ is infinite and ∆2 = O(p)

are also left.

Appendix: Proofs of Theorems 3.1 and 3.2

A1 Preliminary Lemmas

First we summarize the distributional results related to the Mahalanobis

distance and the statistics Dd,i in (2.5). For a notational simplicity, consider

a decomposition of y = (y′
1,y

′
2)

′, y; p1×1, p2; p2×1. Let D1 and D be the
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sample Mahalanobis distances based on y1 and y, respectively. Let D2
2·1 =

D2 − D2
1. Similarly, the corresponding population quantities are expressed

as ∆1, ∆ and ∆2
2·1. Let the coefficient vector β of the linear discriminant

function in (2.1) decompose as β = (β′
1,β

′
2)

′, β1; p1 × 1, β2; p2 × 1. The

following lemmas (see, e.g., Fujikoshi et al. 2010) are used.

Lemma A1.1. For the population Mahalanobis distances ∆ and ∆1, it holds

that

(1) ∆2
2·1 = ∆2 −∆2

1 ≥ 0.

(2) ∆2
2·1 = 0 ⇔ β2 = 0.

Note that

∆2 −∆2
(−i) = 0 ⇔ βi = 0. (A1.1)

Lemma A1.2. For the sample Maharanobis distances D1 and D, it holds

that

(1) D2
1 = (n− 2)g−2χ2

p1
(g2∆2

1)
{
χ2
n−p1−1

}−1
.

(2) If ∆2
2·1 = 0, g2(D2 −D2

1){n− 2 + g2D2
1}−1 = χ2

p2
{χ2

n−p−1}−1.

(3) If ∆2
2·1 = 0, (D2 −D2

1){n− 2 + g2D2
1}−1and D2

1 are independent,

(4) D2
2·1 = (n− 2)g−2χ2

p2

(
g2∆2

2·1 ·
1

1 +R

){
χ2
n−p−1

}−1
(1 +R),

where R = χ2
p1
(g2∆2

1)
{
χ2
n−p1−1

}−1
. Here, χ2

p1
(·), χ2

n−p1−1, χ
2
p2
(·), and χ2

n−p−1

are independent chi-square variates.

From Lemma A1.1, D2 and D2
(−i) can be expressed as

D2 = (n− 2)g−2
χ2
p(g

2∆2)

χ2
n−p−1

, D2
(−i) = (n− 2)g−2

χ2
p−1(g

2∆2
(−i))

χ2
n−p−2

, (A1.2)

where g =
√

(n1n2)/n. It is easy to see that

1

m
χ2
m

p→ 1,
1

m
χ2
m(δ

2)
p→ 1 + η2, (A1.3)

if η2 = limm→∞ δ2/m.
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A2 Proofs of Theorems 3.1 and 3.2

Without loss of generality, we may j∗ = {1, . . . , s} and p∗ = s. Then, [F1]

and [F2] are expressed as

[F1] =
s∑

i=1

P (Dd,i ≤ 0), [F2] =

p∑
i=s+1

P (Dd,i ≥ 0).

Proof of Theorem 3.1

Using (A1.2) and (A1.3),

D2 = (n− 2)g−2
χ2
p(g

2∆2)

χ2
n−p−1

= (n− 2)
n

n1n2

·
χ2
p(g

2∆2)

p
· n− p− 1

χ2
n−p−1

· p

n− p− 1

p→ c

k1k2(1− c)
+

1

1− c
∆2.

Similarly,

D2
(−i)

p→ c

k1k2(1− c)
+

1

1− c
∆2

(−i).

Therefor,

D2 −D2
(−i)

p→ 1

1− c

(
∆2 −∆2

(−i)

)
If i ∈ j∗ = {1, . . . , s}, then, τi = ∆2 −∆2

(−i) > 0, i = 1, . . . , s, and

D2 −D2
(−i)

p→ 1

1− c
τi.

Therefor, if d < 1
1−c

τmin, where τmin = mini=1,...,s τi, Dd,i = D2 −D2
(−i) − d is

positive, and

P (Dd,i ≤ 0) → 0

⇒ [F1] =
s∑

i=1

P (Dd,i ≤ 0) → 0,
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since s is finite.

Proof of Theorem 3.2

Next we shall show [F2] under the assumptions in Theorem 3.2. Assume

that i ∈ {s + 1, . . . , p}. Then, we have ∆2 = ∆2
(−i). In general, note that

D2 −D2
(−i) > 0. Using Lemma A1.2 (1),

E(D2) =
(n− 2)np

n1n2(n− p− 3)
+

n− 2

n− p− 3
∆2,

and hence

E
{
D2 −D2

(−i)

}
= q(p, n,∆2),

where q(p, n,∆2) is given by (3.5). Suppose that.

d > q(p, n,∆2).

Then, we have

P
(
D2 −D2

(−i) ≥ d
)

= P
(
D2 −D2

(−i) − E[D2 −D2
(−i)] ≥ d− E[D2 −D2

(−i)]
)

≤ P
(∣∣D2 −D2

(−i) − E[D2 −D2
(−i)]

∣∣ ≥ d− E[D2 −D2
(−i)]

)
≤ 1

(d− E[D2 −D2
(−i)])

2
Var(D2 −D2

(−i)).

The last inequality follows from Chebyshev’s inequality. It is easy to see that

E[D2 −D2
(−i)] = O(n−1). Since d = O(1) from our assumption,

(d− E[D2 −D2
(−i)])

2 = O(1).

Using Lemma A1.2 (4), the denominator is expressed as

Var(D2 −D2
(−i)) = E{(D2 −D2

(−i))
2} − {E(D2 −D2

(−i))}2

= (n− 2)2g−4E

{(
χ2
1

χ2
n−p−1

)2(
1 +

χ2
p−1(g

2∆2)

χ2
n−p

)2
}

− (n− 2)2g−4 1

(n− p− 3)2

(
1 +

p− 1 + g2∆2

n− p− 2

)2

.

15



The expectation of the first term can be computed as

E

{(
χ2
1

χ2
n−p−1

)2(
1 +

χ2
p−1(g

2∆2)

χ2
n−p

)2
}

=
1

(n− p− 3)(n− p− 5)
E

{
1 + 2

χ2
p−1(g

2∆2)

χ2
n−p

+

(
χ2
p−1(g

2∆2)

χ2
n−p

)2
}

=
1

(n− p− 3)(n− p− 5)

{
1 + 2

p− 1 + g2∆2

n− p− 2

+
(p− 1)2 + 2(p− 1) + 2(p− 1)g2∆2 + 4g2∆2 + g4∆4

(n− p− 2)(n− p− 4)

}
=

1

(n− p− 3)(n− p− 5)

{
1 +O(1) +O(1)

}
= O(n−2).

The second term is evaluated as

(n− 2)2g−4 1

(n− p− 3)2

(
1 +

p− 1 + g2∆2

n− p− 2

)2

= O(1)× 1

(n− p− 3)2
(1 +O(1))2 = O(n−2).

Therefore, we have

Var(D2 −D2
(−i)) = (n− 2)2g−4O(n−2)−O(n−2) = O(n−2).

These imply the followings:

P
(
D2 −D2

(−i) ≥ d
)
≤ O(n−2), and hence

p∑
i=s+1

P
(
D2 −D2

(−i) ≥ d
)
→ 0,

which proves ”[F2] → 0”.
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A3 Proof of Theorem 4.1

As in the proofs of Theorems 3.1 and 3.2, assume that j∗ = {1, . . . , s}, and
show that

[F1] ≡
s∑

i=1

P
(
D2 −D2

(−i) ≤ d̂
)
→ 0,

[F2] ≡
p∑

i=s+1

P
(
D2 −D2

(−i) ≥ d̂
)
→ 0.

First consider [F1], and assume that i ∈ {1, . . . , p∗}. In the proof of Theorem

3.1, it has been shown that

D2 p→ c

k1k2(1− c)
+

1

1− c
∆2.

Using this result, we have

d̂
p→ 0.

These imply that

D2 −D2
(−i) − d̂

p→ 1

1− c
τi > 0,

and hence

P (D2 −D2
(−i) ≤ d̂) = 0,

which implies ”[F1] → 0”.

Next, consider to show ”[F2] → 0”. Assume that i ∈ {s+1, . . . , p}. Then,
∆2 = ∆2

(−i). Denote that D2 −D2
(−i) = D{i}·(−i). Using Lemma A1.2(2) and

(3), we can write as

P
(
D2 −D2

(−i) ≥ d̂
)
= P

(
χ2
1

χ2
n−p−1

≥ g2d̂

n− 2 + g2D2
(i)

)

≤ P

(
χ2
1

χ2
n−p−1

≥ g2d̂

n− 2 + g2D2

)

= P

(
F1,n−p−1 −

n− p− 1

n− p− 3
≥ a(np)1/3

)
.

17



Noting that the mean of F1,n−p−1 is (n− p− 1)(n− p− 3)−1,

P
(
D2 −D2

(−i) ≥ d̂
)
≤ P

(
|F1,n−p−1 − E[F1,n−p−1]| ≥ a(np)1/3

)
≤ 1

a2(np)2/3
Var(F1,n−p−1)

=
1

a2(np)2/3
2n2(n− 1)

(n− 2)2(n− 4)
.

This implies that

[F2] ≤
p∑

i=j∗+1

1

a2(np)2/3
2n2(n− 1)

(n− 2)2(n− 4)

≤ 1

a2
p

(np)2/3
2n2(n− 1)

(n− 2)2(n− 4)
= O(n−1/3),

which proves ”[F2] → 0”.
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