
A Review of Discriminant Analysis by
Regression Approach

Yasunori Fujikoshi∗ and Tamio Kan∗∗

∗Graduate School of Science, Hiroshima University
1-3-1 Kagamiyama, Higashi Hiroshima 739-8626, Japan

∗∗I-Stat Institute of Statistical Analysis
Suginami-ku, Tokyo 166-0011, Japan

Abstract

This paper reviews discriminant methods by regression approach.
After a brief review of linear discriminant analysis, we explain an opti-
mum scoring method based on Hastie et al. (1994), which introduces
a formal multivariate regression model useful in deriving various dis-
criminant methods. Based on the multivariate regression model, we
discuss with linear discriminant functions, tests for discriminant func-
tions, information criteria for selection of variables, sparse discrimi-
nant methods. It is examined that most of them are essentially the
same as the ones based on direct approach for discriminant analysis.
However, it is noted that some sparse methods in two approaches may
be not the same.
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1. Introduction

This paper is concerned with multiple discriminant analysis by regres-

sion approach. In two-group discriminant analysis of p variables, if one sets

an appropriate dummy variable Y , a formal regression vector is proportional

to the coefficient vector of the linear discriminant function. This result has

been long, and can be seen in the book by Anderson (1958). An extension

to multiple group was done by Hastie et al. (1994). This formal multivari-

ate regression model is expected to be useful in finding various discriminant

methods. In fact, through the formal multivariate regression model, we can

provide various methods in discriminant analysis. Most of them are essen-

tially equivalent to the ones based on direct approach in discriminant anal-

ysis. However, when the optimal scaling will be sequentially decided as in

sparse methods due to Clemmensenen et al. (2011), the resultant methods

may be different from the ones based on direct approaches.

This paper first reviews linear discriminant methods. Then, we explain

the optimal scaling method which induces a formal multivariate regression

model connecting discriminant analysis. The linear discriminant functions

can be obtained an the estimator of regression coefficients. Tests on signif-

icance of regression coefficients are shown to be the tests of no additional

information hypothesis of a subset of variables in discriminant analysis. We

also examine an equivalence of information criteria for selection of variables

in discriminant model and in multivariate regression model. The result is

extended to the one in the dimensionality problem. We also give a brief

review on sparse discriminant analysis based on regression analysis. For the

case when each of the p variables are categorical, see Kan (2009) and Kan

and Fujikoshi (2011).
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2. Linear Discriminant Analysis

We consider the case of q-group discriminant analysis with p variables

x1, . . . , xp. Let x = (x1, . . . , xp)
′, and let the mean and the covariance matrix

of x in the i-th population Π(i) be µ(i) and Σ, i = 1, . . . , q. Suppose that

there are ni samples x
(i)
1 , . . . ,x

(i)
ni from Π(i) such that

x
(i)
j ∼ Np(µ

(i),Σ), j = 1, . . . , ni; i = 1, . . . , q. (2.1)

Let the sample mean vectors and the sample covariance matrices by

x̄(i) =
1

ni

ni∑
j=1

x
(i)
j , S(i) =

1

ni − 1

ni∑
j=1

(x
(i)
j − x̄(i))(x

(i)
j − x̄(i))′.

All the samples are denoted by the n× p matrix

X = (x
(1)
1 , . . . ,x(1)

n1
, . . . ,x

(q)
1 , . . . ,x(q)

nq
)′, (2.2)

where n = n1+ · · ·+nq. The notation X is also used for the centralized data

matrix

X = (x
(1)
1 − x̄, . . . ,x(1)

n1
− x̄, . . . ,x

(q)
1 − x̄, . . . ,x(q)

nq
− x̄)′, (2.3)

where x̄ is the overall mean vector defined by x̄ = 1
n

∑q
i=1 nix̄

(i).

For testing

H0 : µ(1) = · · · = µ(q), (2.4)

we have two basic statistics given by

B =

q∑
i=1

ni(x̄
(i) − x̄)(x̄(i) − x̄)′, W =

q∑
i=1

(ni − 1)S(i). (2.5)

The matrices B and W are called the matrices of sums of squares and prod-

ucts due to between-groups and within-groups, respectively. The matrix

T = B+W is called the matrix of sums of squares and products due to the

total variation.

Suppose that n − q ≥ p. Then, W is nonsingular. Let ℓ1 > . . . >

ℓm > ℓm+1 = · · · = ℓp = 0 be the non-zero eogenvalues of BW−1, where
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m = min(p, q − 1). Then, the coeeficient vectors hi, i = 1, . . . ,m of linear

(or Fisher’s) discriminant functions are defined as the characteristic vectors

of BW−1 or BT−1 with normalizations, for example, h′
iWhi = n, that is,

the solutions of the characteristic root problem

Bhi = ℓiWhi, h′
iWhj = nδij, (2.6)

where δij is the Kroneker’s delta, i.e., δii = 1, and for i ̸= j, δij = 0.

The coeficient vectors may be defined as the solutions of the characteristic

equations

Bhi = diThi, h′
iThj = n(1− di)

−1δij, (2.7)

where d1 > · · · > dm > dm+1 = · · · = dp = 0 are the characteristic roots of

BT−1. There are relations given by di = ℓi/(1 + ℓi), i = 1, . . . ,m.

Note that the linear discriminant functions may be characterized as the

solution of the following problem:

max
hk

{h′
kBhk} (2.8)

subject to
1

n
h′

kWhk = 1, h′
kWhℓ = 0; ∀ℓ < k.

These discriminant fuctions are also used for a practical classification. In

fact, let x0 be a new observation vector. Let

u0 = Hx0, H = (h1, . . . ,hk)
′

and let ū(i) = Hx̄(i), i = 1, . . . , q. Then, the rule is to assign x0 to Π(i) if

min{∥u0 − ū(1)∥, . . . , ∥u0 − ū(q)∥} = ∥u0 − ū(i)∥.

3. Regression Approach
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In two-group discriminant analysis, it is known that if one sets an appro-

priate dummy variable y, a formal regression coefficient vector of y to x is

proportional to the coefficient vector of the linear discriminant function. In

fact, suppose the values of y are

y
(1)
j =

√
n2/n1, j = 1, . . . , n1, y

(2)
j = −

√
n1/n2, j = 1, . . . , n2.

Note that the mean of y is 0. Consider the regression of y to x, and minimize

2∑
i=1

ni∑
j=1

[y
(i)
j − β′(x

(i)
j − x̄)]2.

Then the optimum solution of β is proportional to S−1(x̄(1) − x̄(2)), where S

is the pooled sample covariance matrix, i.e., S = (n− 2)−1W.

Now we consider the case of q-group discriminant analysis along Hastie

et al.(1994). Let m = min(p, q − 1). Consider an m-dimensional variate

y = (y1, . . . , ym)
′. We denote the matrix value of y for n subjects by

Y = (y
(1)
1 , . . . ,y(1)

n1
, . . . ,y

(q)
1 , . . . ,y(q)

nq
)′.

Consider a scoring of Y which is of the form

Y = (y1, . . . ,ym)

= ZΘ = Z(θ1, . . . ,θm),

where

Z =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
...

...
0 0 · · · 1nq

 ,

and 1n is the n-dimensional vector whose elements are all one. Here, Z = (zij)

may be defined as follows: zij = 1 if the ith sample belongs to Π(j), and 0

otherwise. Hasite et al. (1994) considered the case that m may be any one

less than min(p, q − 1).
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In the following, without loss of information we assume x = 0, that is,

the observations of x have been centralized with respect to the mean. The

regression of Y to X is X(β1, . . . ,βm) = XB. The optimal scoring problem

involves finding the coefficients βj(j = 1, . . . ,m) and the parameter Θ that

minimize the following average squared residual (ASR):

ASR(Θ,B) =
1

n

m∑
j=1

∥yj −Xβj∥2

=
1

n

m∑
j=1

∥Zθj −Xβj∥2 (3.1)

=
1

n
tr(ZΘ−XB)′(ZΘ−XB),

under the restriction

Y′Y = Θ′Z′ZΘ = nIm. (3.2)

When Θ is fixed, ASR is minimized at

B̂0 = B̂0(Θ) = (X′X)−1X′ZΘ,

and

ASR(Θ, B̂0) =
1

n
{tr(ZΘ)′ZΘ− tr(ZΘ)′PXZΘ}, (3.3)

where PX = X(X′X)−1X′ is the projection operator to the space spanned

by the column vectos of X. The first term of (3.3) is m, since the restriction

(3.2) is satisfied. The optimal problem with respect to Θ is to find Θ such

that (1/n)tr(ZΘ)′PXZΘ is maximized under Θ′Z′ZΘ = nIm. Such Θ is

given as the characteristic vectors of (Z′Z)−1Z′PXZ, that is the solution of

the following general characteristic root problem:

Z′PXZΘ̂ = Z′ZΘ̂D, Θ̂
′
Z′ZΘ̂ = nIm, (3.4)

where D = diag(d1, . . . , dm), d1 > · · · > dm and di’s are the the charac-

teristic roots of (Z′Z)−1Z′PXZ. Noting that X has been centralized, we

have T = X′X and B = X′PZX. So, di(i = 1, . . . ,m) are also the nonzero

characteristic roots of BT−1. Let us define

B̂ = B̂0(Θ̂) = (X′X)−1X′ZΘ̂ = (X′X)−1X′Y, (3.5)
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where Θ̂ is defined by (3.4).

Now we define a scoring for Y as

Y = ZΘ̂, (3.6)

where Θ̂ is defined by (3.4). Note that B̂ can be regarded as an estimator in

a formal multivariate regression model Y(= ZΘ̂):

Y = XB+V, (3.7)

where V = (v1, . . . ,vn)
′. Further, let us assume a usual assumption as in

multivariate regression model such that

(1) v1, . . . ,vn ∼ i.i.d.

(2) E(vi) = 0, Var(vi) = Σ̃.

The least squares estimator B̂ is given by (3.5). Examine a relationship of

H in (2.6) and B in (3.5). The first equation in (3.4) can be rewritten as

BB̂ = TB̂D. (3.8)

Further, the second equation can be rewritten as

B̂′TB̂ = D. (3.9)

These imply that

H = B̂D−1/2.

except the signs of the column vectors. This implies that the coefficient

vectors of the linear discriminant functions can be obtained by a multivariate

regression approah.

Note that an optimum value of Θ = (θ1, . . . ,θm) and B = (β1, . . . ,βm)

may be characterized as follows:

min
βk,θk

{
∥Zθk −Xβk∥2

}
(3.10)

subject to
1

n
θ′
kθk = 1, θ′

kZ
′Zθℓ = 0; ∀ℓ < k.
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The formal model (3.7) is useful in finding some discriminant methods.

However, their properties should be examined under the discriminant model

(2.1).

Using the regression approach, it is possible to consider the discriminant

analysis based on a transformed variate:

t : x → t(x) = (t1(x), . . . , ts(x))
′

instead of x = (x1, . . . , xp)
′. Such discriminant method is called flexible

discriminant analysis (Hastie et al. (1994)).

The discriminant method based on the idea of ridge regression is to use

B̂∗ = {X′X+Ω}−1X′ZΘ̂ (3.11)

instead of the coefficient vectors of the discriminant functions in (3.5). Here

Ω = λIp, and λ is the ridge parameter. This is based on the ridge regression-

based optimal scoring method (Friedman (1989), Hastie et al. (1994, 1995),

Ghosh (2003)) based on the following objective function:

ASR∗(Θ,B) =
1

n
{tr(ZΘ−XB)′(ZΘ−XB) + trB′ΩB} . (3.12)

The optimal scoring is obtained under the restriction Θ′Z′ZΘ = nIp. Then,

similarly, the optimum solution of B when Θ is fixed is given by (3.11) , and

ASR∗(Θ, B̂∗) =
1

n
{tr(ZΘ)′ZΘ− tr(ZΘ)′X(X′X+Ω)−1X′ZΘ}.

Therefore, the optimum Θ is given by the solution

Z′X{X′X+Ω}−1X′ZΘ = Z′ZΘDα, Θ′Z′ZΘ = nIm, (3.13)

where Dα = diag(α1, . . . , αm) and α1 > · · · > αm are the characteristic roots

of (Z′Z)−1Z′X{X′X+Ω}−1X′Z.
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4. Tests for Additional Information

In discriminant analysis it is important to consider whether a set of vari-

ables has no additional information, in the presence of remainder variables.

For a notational simplicity, consider the case that x2 = (xk+1, . . . , xp)
′ has

no additional information, in the presence of x1 = (x1, . . . , xk)
′. Such notion

may be called sufficiency of x1, or redundancy of x2. Related to the partition

of x, let µ(j) and Σ partition as

µ(j) =

(
µ

(j)
1

µ
(j)
2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

The sufficiency hypothesis of x1 was introduced (see, e.g., Rao (1970, 1973))

as

H2·1 : µ
(1)
2·1 = · · · = µ

(q)
2·1, (4.1)

where µ
(j)
2·1 = µ

(j)
2 −Σ21Σ

−1
11 µ

(j)
1 , j = 1, . . . , q. For two equivalent conditions,

see Fujikoshi (1982). Let W and T partition in the same manner as the

partition of x:

W =

(
W11 W12

W21 W22

)
, T =

(
T11 T12

T21 T22

)
.

Then, the likelihood ratio (LR) criterion λ for the hypothesis H2·1 in (4.1) is

given by

λ2/n = Λ2·1 =
|W22·1|
|T22·1|

,

where W22·1 = W22 − W21W
−1
11 W21 and T22·1 = T22 − T21T

−1
11 T21. Note

that Λ2·1 can be written as

Λ2·1 =
|W|
|W11|

· |T|
|T11|

=
|W|
|T|

·
{
|W11|
|T11|

}−1

. (4.2)

We use the notations,

Λ(x1, · · · , xp) =
|W|
|T|

, Λ(x1, · · · , xk) =
|W11|
|T11|

,
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and

Λ2·1 =
Λ(x1, . . . , xp)

Λ(x1, . . . , xk)

≡ Λ(xk+1, . . . , xp|x1, . . . , xk)

In general, let U and V be independently distributed as a Wishart distribu-

tion Wp(s,Σ) and a Wishart distribution Wp(t,Σ), respectively, with t ≥ p.

Then the distribution of

Λ =
|V|

|U+V|

is called (se, e.g., Anderson (2003)) as a Λ-distribution with the degrees of

freedom p, s, t, whose distribution is denoted as Λp(s, t). Under the hypoth-

esis H2·1, it is known (see, e.g. Fujikoshi et al. (2010)) that

Λ(xk+1, . . . , xp|x1, . . . , xk) ∼ Λp−k(q, n− q − k).

For an n×m matrix Y = ZΘ̂, where Θ̂ is defined as a solution of (3.4),

consider a formal multivariate regression model

Y = XB+V

= X1B1 +X2B2 +V, (4.3)

as in (3.7), where X = (X1,X2), X1 : n × k and B = (B′
1,B

′
2)

′. The

additional information hypothesis (4.1) in discriminant analysis corresponds

to

H̃2·1 : B2 = O, (4.4)

in (4.3). Let Se and Sh be the matrices of sums of squares and products due

to the errors under model (4.3) and the hypothesis H̃2·1. Then they are given

by

Se = Y′(In −PX)Y, Sh = Y′(PX −PX1)Y.

The likelihood ratio criterion under normality is based on

Λ̃2·1 =
|Se|

|Sh + Se|
. (4.5)
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Interestingly, it holds that

Λ2·1 = Λ̃2·1, (4.6)

whose proof is given in Appendix.

5. Information Criteria for Selection of Vari-

ables

First we consider information criteria for selection of variables in discrim-

inant model (2.1). It is natural to select x1 if the sufficiency hypothesis H2·1

of x1 is true, or the no additional information hypothesis of x2 is true. It is

known that the hypothesis H2·1 can be expressed in terms of the population

discriminant functions as follows. Let ρi be the prior probability of popu-

lations Π(i), where prior means the a priori probability that an individual

selected at random belongs to Π(i). The population between groups matrix

is defined by

Ψ =

q∑
i=1

ρi(µ
(i) − µ̄)′(µ(i) − µ̄), (5.1)

and µ̄ = ρ1µ
(1)+· · ·+ρqµ

(q). Let λ1 ≥ · · · ≥ λr > λr+1 = · · · = λp = 0 be the

characteristic roots of ΨΣ−1. Then, the corresponding characteristic vectors

are denoted by γ1, . . . ,γp with normalizations γ ′
iΣγi = 1, i = 1, . . . , p. They

are the solutions of

Ψγi = λiΣγi, γ ′
iΣγj = δij. (5.2)

Then, γi is the coefficient vector of the ith population linear discriminant

function. Let γi and Ψ be partitioned as

γj =

(
γ1j

γ2j

)
, Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
in the same way as µ(i) and Σ. Then the statement H2·1 is equivalent to one
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of the following statments:

(1) γ2j = 0, j = 1, . . . , r, r = rank(Ψ).

(2) trΣ−1Ψ = trΣ−1
11 Ψ11.

Related to a seletion of variables, we may consider a slight modification of

H2·1, (1) or (2). The modification of (1) is defined by

M2·1 : γ2j = 0, and γij ̸= 0, i = 1, . . . , k, for j = 1, . . . , r. (5.3)

Then, AIC for M2·1 is given (see, e.g., Fujikoshi et al. (2010)) as

AD = −n log{|W22·1|/|T22·1|}+ n log |n−1W|

+ np(1 + log 2π) + 2

{
k(q − 1) + p+

1

2
p(p+ 1)

}
. (5.4)

Next, let us consider AIC in a formal multivariate regression model (4.3).

Let B = (B′
1,B

′
2)

′ = (βij). Related to H̃2·1, consider

M̃2·1 : B2 = O, and βij ̸= 0, for i = 1, . . . , k, j = 1, . . . ,m. (5.5)

Under M̃2·1, we can write the minimum of −2 log f(Y ;B, Σ̃) as

n log |n−1Y′(In −PX1)Y|+mn(log(2π) + 1)

= −n log{|Y′(In −PX)Y|/|Y′(In −PX1)Y|}

+ n log{n−1Y′(In −PX)Y|+mn(log(2π) + 1).

The AIC for M̃2·1 is given by

AR = −n log{|Y′(In −PX)Y|/|Y′(In −PX1)Y|}

+ n log | 1
n
Y′(In −PX)Y|+mn(log(2π) + 1) (5.6)

+ 2

{
km+

1

2
m(m+ 1)

}
.

We have seen (see (4.5)) that

−n log
|W22·1|
|T22·1|

= −n log
|Y′(In −PX)Y|
|Y′(In −PX1)Y|

.
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When p ≥ q − 1, m = q − 1, and then, the model selection criterion AD is

equivalent to AR.

Similarly, it is seen that BIC for H̃2·1 in discriminant model (2.1) is equiv-

alent to BIC for M̃2·1 in regression model (4.3).

6. Estimation of Dimensionality

The dimensionality in discriminant model is defined by the number of

nonzero characteristic roots λi of Ψ, or equivalently the rank of Ψ, which is

the number of meaningful discriminant functions. Let rank(Ψ) = k. This is

equivalent to rank(Ξ) = k, where

Ξ = (µ(1) − µ(q), . . . ,µ(q−1) − µ(q)).

In this section we consider to estimate the dimensionality based on selection

of models Dk, k = 0, 1, . . . ,m, where

Dk : rank(Ξ) = k. (6.1)

It is known (see, e.g., Fujikoshi et al. (2010)) that −2 logmax likelihood is

n log(1 + ℓk+1) · · · (1 + ℓm) + n log |n−1W|+ np(log 2π + 1),

where m = min{p, q − 1}, ℓ1 > · · · > ℓm > 0 are the characteristic roots of

BW−1. Noting that the dimensionality of Ξ when rank(Ξ) = k is k(p+ q −
1− k), the number of independent parameters under Dk is

d(Dk) = k(p+ q − 1− k) + p+
1

2
p(p+ 1).

Therefore, the AIC for Dk is

AICk = n log(1 + ℓk+1) · · · (1 + ℓm) + n log |n−1W|+ np(log 2π + 1)

+ 2

{
k(p+ q − 1− k) + p+

1

2
p(p+ 1)

}
. (6.2)

Based on AIC, if

min{AIC0,AIC1, . . . ,AICm} = AICk,
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we estimate the dimensionality as k. Instead of AIC, we may consider

Ak = AICk − AICm

= n log
m∏

j=k+1

(1 + ℓj)− 2(p− k)(q − 1− k), k = 0, . . . ,m. (6.3)

Here Am = 0. Then the estimation method is equivalent to that of

min{A0,A1, . . . ,Am} = Ak

and we estimate the dimensionality as k.

Next we consider to estimate the rank of B = (β1, . . . ,βm) in the formal

multivariate regression model (3.7). We have seen that the least squares

estimator B̂ is the coefficient vectors of the linear discriminant functions.

So, the rank of B means the number of meaningful discriminant functions.

We consider to estimate the rank of B based on selection of models D̃k, k =

0, 1, . . . ,m, where

D̃k : rank(B) = k. (6.4)

Let f(Y;B, Σ̃) be the density function of Y in a formal multivariate regres-

sion model (3.7). Then,

(−2) log f(Y;B, Σ̃)

= n log |Σ̃|+ trΣ̃
−1
(Y −XB)′(Y −XB) +mn log(2π)

≥ n log |n−1Q(B)|+mn{log(2π) + 1}

where Q(B) = (Y −XB)′(Y −XB). In the above inequality, the equality

holds when Σ̃ = n−1(Y −XB)′(Y −XB). Note that

Q(B) = A+ (B̂−B)′(X′X)(B̂−B)

= A1/2{Im + (V −∆)′(V −∆)}A1/2,

where

A = Y′(In −PX)Y, B̂ = (X′X)−1X′Y,

V = (X′X)1/2B̂A−1/2, ∆ = (X′X)1/2BA−1/2.

14



Using (3.4), we have

Y′PXY = Θ̂
′
· Z′PXZΘ̂

= Θ̂
′
Z′ZΘ̂D = nD.

Further,

A = n(Im −D).

V′V = A−1/2Y′PXYA−1/2 = (Im −D)−1D = L.

Therefore,

min
rank(B)=k

|Q(B)| = |I−D|
m∏

i=k+1

(1 + ℓi).

Let ÃICk be AIC for D̃k. Instead of ÃIC, we may consider

Ãk = ÃICk − ÃICm

= n log
m∏

j=k+1

(1 + ℓj)− 2(p− k)(m− k), k = 0, . . . ,m. (6.5)

Here Ãm = 0.

When p ≥ q−1, the two estimation criteria Ak and Ãk are eqivalent. For

high-dimensional consistency properties of AICk, see Fujikoshi and Sakurai

(2016).

7. Sparse Discriminant Analysis

When p > n − q, the matrix W of sums of squares and products due

to within-groups becomes singular. The linear discriminant problem can be

not performed. In order to overcome this problem, regularized and sparse

methods have been proposed, based on direct discriminant approach and

regression approach. However, their details are not given here, and we explain

only a few methods.
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One approach is to use a regularized estimate of W in the linear discrim-

inant problem. For instance,

max
hk

{h′
kBhk} (7.1)

subject to
1

n
h′

k(W + nΩ)hk = 1, h′
k(W + nΩ)hℓ = 0; ∀ℓ < k,

where Ω is a positive definite marix. Witten and Tibshirani (2011) proposed

the following sparse method based on an ℓ1 penalty. The method is defined

sequentially as follows:

max
hk

{h′
kBhk − nγ∥hk∥1} (7.2)

subject to
1

n
h′

k(W + nΩ)hk = 1, h′
k(W + nΩ)hℓ = 0, ∀ℓ < k.

As sparse discriminant analysis based on regression approach, there are

two cases: (i) the case that Y = ZΘ has been defined as in (3.6), and (ii)

the case that Y = ZΘ has been sequentially defined. For the first case,

we can apply sparse method in multivariate regression model. For example,

related to the problem of selection of x, we can apply the penalized regression

with a grouped lasso penalty (Yuan and Lin (2006)) based on the following

optimization problem:

min
B

{
∥Y −XB∥2 +

p∑
i=1

λi∥β(i)∥

}
, (7.3)

where B = (β(1), . . . ,β(m))
′, and λi > 0 are penalty parameters. For simulta-

neous dimension reduction and variable selection, we can use a sparse method

based on Chen and Huang (2012). For the second case, Clemmensen et al.

(2011) proposed a sparse method based on the elastic net due to Zou and

Hastie (2005). The kth sparse discriminant analysis solution pair {θk,βk}
are defined as the solutions of the problem:

max
θk,βk

{
∥Zθk −Xβk∥2 + γβ′

kΩβk + λ∥βk∥1
}

(7.4)

subject to
1

n
θ′
kZ

′Zθk = 1, θ′
kZ

′Zθℓ = 0, ∀ℓ < k,
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where γ > 0 and λ > 0 are penalty parameters. It will be important to

compare these methods with penalized and sparse methods based on direct

discriminant approach.

Appendix: Proof of Λ2·1 = Λ̃2·1 in (4.6)

Let the nonzero roots of BT−1 be d1 > · · · > dm. Then,

|W|
|T|

= (1− d1) · · · (1− dm).

Similarly, let the nonzero roots of B11T
−1
11 be d̃1 > · · · > d̃m̃, where m̃ =

min(p1, q − 1). Then,

|W11|
|T11|

= (1− d̃1) · · · (1− d̃m̃).

Therefore, from (4.2) we have

Λ2·1 =
(1− d1) · · · (1− dm)

(1− d̃1) · · · (1− d̃m̃)
. (A.1)

Next, consider Λ̃2·1. We have seen in Section 6 that Y′PXY = nD. This

implies that Se = Y′Y −Y′PXY = n(Im −D), and

|Se| = nm(1− d1) · · · (1− dm).

Next we consider Sh + Se = Y′(In − PX1)Y. We construct an extended

version of Y such that

Ye = (Y,Y0) = Z(Θ̂, Θ̂0)

= ZΘ̂e,

where Θ̂0 is a q×(q−m) and the columns of Θ̂0 are the characteristic vectors

corresponding to the characteristic root 0 in the characteristic root problem

(3.4). The lenghs of Θ̂0 are determined by the restriction Y′
eYe = nIq. The

characteristic root problem (3.4) can be extended as follows:

Z′PXZΘ̂e = Z′ZΘ̂De, Θ̂
′
eZ

′ZΘ̂e = nIq, (A.2)
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where De = diag(d1, . . . , dm, 0, . . . , 0). Note that PX1Y0 = O. In fact, from

(A.2), Z′PXY0 = O. Multipling Θ̂
′
0 from left, Y′

0PXY0 = O. Since PX is

idenpotent, PXY0 = O. Further, since PXPX1 = PX1 , we get PX1Y0 = O.

This implies that

Y′
e(In −PX1)Ye =

(
Y′(In −PX1)Y O

O nIq−m

)
. (A.3)

Let Θ̃e = (1/
√
n)(Z′Z)1/2Θe. Then, we have

(1/n)Y′
ePX1Ye = Θ̃

′
eGΘ̃e,

where G = (Z′Z)−1/2ZX1(X
′
1X1)

−1X′
1Z(Z

′Z)−1/2. Since Θ̃e is an orthogonal

matrix, the nonzero characteristic roots of G are the same as B11T
−1
11 . Using

these properties, the determinant of the leftside in (A.3) is expressed as

|Y′
e(Iq −PX1)Ye| = nq|Iq − Θ̃

′
eGΘ̃e|

= nq(1− d̃1) · · · (1− d̃m̃).

On the other hand, the determinant of the right side in (A.3) is

nq|Y′(In −PX1)Y|,

and hence

|Y′(In −PX1)Y| = (1− d̃1) · · · (1− d̃m̃).

This implies (4.6).
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