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Abstract

We treat the problem of testing mutual independence of k high-dimensional ran-
dom vectors when the data are multivariate normal and k ≥ 2 is a fixed integer.
For this purpose, we focus on the the vector correlation coefficient, ρV and
propose an extension of its classical estimator which is constructed to correct
potential sources of inconsistency related to the high dimensionality. Building
on the proposed estimator of ρV , we derive the new test statistic and study its
limiting behavior in a general high-dimensional asymptotic framework which al-
lows the vector’s dimensionality arbitrarily exceed the sample size. Specifically,
we show that the asymptotic distribution of the test statistic under the main
hypothesis of independence is standard normal and that the proposed test is
size and power consistent. Using our statistics, we further construct the step-
down multiple comparison procedure based the closed testing strategy for the
simultaneous test for independence. Accuracy of the proposed tests in finite
samples is shown through simulations for a variety of high-dimensional scenar-
ios in combination with a number of alternative dependence structures. Real
data analysis is performed to illustrate the utility of the test procedures.
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1. Introduction

Testing independence of random variables is a standard task of statistical in-
ference which naturally arises whenever it is needed to handle the dependence
structures in multivariate data. Test of independence based on the product-
moment correlation was initially explored in the classical seminar paper by Karl
Pearson [13], followed by a substantial amount of research literature regarding
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this topic and its variants. One specific problem which emerges in contempo-
rary applications is the test of independence of k, p-dimensional random vectors,
where k ≥ 2 is an integer representing the number of underlying populations.
In this study, we address this issue and propose the test of significance based on
the high-dimensional extension of the ρV vector correlation, initially introduced
by Escoufier in [3] for characterizing the relationship of random vectors with a
scalar measure of multivariate dependence. Based on the extended estimator of
ρV and its asymptotic theory, we further develop two types of tests of indepen-
dence of k random vectors in arbitrarily high dimensions, and show that both
tests apply whether p ≥ n or p < n settings, where n denotes the sample size.

1.1. Background and motivation

Extensive overview of the classical, large n and fixed p independence testing
techniques is provided in the textbooks on multivariate statistical analysis, see
e.g., Mardia et al [12], Anderson [12], Fang and Zhang [12], and references
there in. But, due to ever growing need of analyzing high- and ultra-high di-
mensional data, examples of applied areas include signal processing, astronomy,
functional genomics and proteomics, just a few to name, the development of
high-dimensional extensions of the classical testing procedures is of crucial im-
portance. For instance, in functional genomics, multiple and high-dimensional
data sets are frequently generated on the same samples of the biological sys-
tem. This naturally calls for data fusion techniques which make it possible to
extract the mutual information from all datasets simultaneously. The first step
of the fusion strategy is to accurately identify whether certain similarities of the
configuration of the samples (i.e., dependencies) occur between the datasets.
Thus, it is necessary to develop novel testing methodologies suitable for testing
the independence between such pairs of high-dimensional data sets. Another
example motivating the research of this paper is discussed by Efron [4], who
analyzed effects of the independence assumption for Cardio microarrays data
comprising n = 63 arrays and p = 20426 genes. Starting with the presump-
tion of independence across microarrays, which underlies most of conventional
statistical inferential procedures, Efron demonstrated that the presence of de-
pendence can invalidate the usual choice of a null hypothesis, leading to flawed
assessments of significance. Hence, before conducting further high-dimensional
statistical analyses such as classification, testing hypothesis of equality of mean
vectors and covariance matrices, it is important to know when independence
fails. For this purpose, testing procedures that are able to cope with nowadays
p ≫ n data must be designed.

Our focus in this paper is on testing mutual independence of multivariate
components building on the high-dimensional extension of ρV . As for the review
of the existing literature on the subject of our study, we refer to Josse et al. [10]
who considered ρV -based independence testing and argued for the permutation
test strategy to approximate the distribution of the test statistic.

Further relevant approaches include Jiang et al. [9] who employed a high-
dimensional correction of LRT to construct the test of independence of two
vectors. However, the asymptotic theory of these corrected LRT statistic, such
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as its distribution under H, is restricted to a bounded limiting ratio for both
sub-vectors, i.e., to the high-dimensional case where pk/n → ck ∈ (0, 1], k = 1, 2.
Testing the independence of two normal sub-vectors based on the structure of
the covariance matrix was considered by Srivastava and Reid [15], and further
generalized by Hyodo et al [8] to testing the independence of k sub-vectors. Yang
and Pan [18] presented the independence test based on the sum of regularized
sample canonical correlation coefficients. Testing of independence that does
not require normality and is based on the distance correlation are presented by
Székely and Rizzo [15] and [16]. Non-parametric approaches to the problem of
testing independence can be found in e.g., a Han and Liu [6] who treated the
maxima of rank correlations measure, such as Kendall’s tau, and Leung and
Drton [11] who used the framework of U -statistics and propose a family of test
statistics which is based on sum of squares of sample rank correlations such as
Kendall’s tau, Hoeffding’s D statistics and a dominating term of Spearman’s ρ.

1.2. Preliminaries and notations

In what follows, we focus on the more precise problem statement, after some
prefatory notations are in place. Henceforth, for an integer k ≥ 2, we will denote
by [k] the set {1, . . . , k}. Let x = (x⊤

1 , . . . ,x
⊤
k )

⊤ denote a (p × k)-dimensional
random vector, in which xg possesses a dimension p for each g ∈ [k]. Denote
further by µg, by Σgg, and by Σgh, the mean vector of the gth sub-vector of
x, the covariance matrix of the gth sub-vector of x, and the cross-covariance
matrix of xg and xh, respectively, for g ̸= h ∈ [k]. Then µ = (µ⊤

1 , . . . ,µ
⊤
k )

⊤

and Σ = (Σgh), g, h ∈ [k] are the mean vector and covariance matrix of x,
respectively. We are interested in testing the following hypothesis

H : ∀g, h ∈ [k] xg and xh are independent vs. A : ¬H. (1)

To this end, we draw a sample of independent observations of x using the
following sampling scheme. Without loss of generality, we first assume that 1 ≤
n1 ≤ · · · ≤ nk and set n0 = 0. Further, ∀h ∈ [k] and ∀j ∈ {nh−1 + 1, . . . , nh},
we denote p(k − h + 1) dimensional vectors by x⟨h⟩j = (x⊤

hj , . . . ,x
⊤
kj)

⊤ and

µ⟨h⟩ = (µ⊤
h , . . . ,µ

⊤
k )

⊤, respectively. By considering a partition of Σ which is
compatible with x⟨h⟩ and µ⟨h⟩, we introduce a (positive definite) matrix

Σ⟨h⟩ =

Σhh · · · Σhk

...
. . .

...
Σhk · · · Σkk

 ,

and assume that x⟨h⟩j
i.i.d.∼ Np(k−h+1)(µ⟨h⟩,Σ⟨h⟩). In addition,

x⟨1⟩1, . . . ,x⟨1⟩n1
, . . . ,x⟨k⟩nk−1+1, . . . ,x⟨k⟩nk

are assumed to be mutually independent across k populations, constituting
thereby a sample of independent observations of x to be used for construct-
ing the test procedure.
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Observe that under the null hypothesis H of (1) stated in the multivari-
ate normal setting, the population covariance matrix Σ⟨h⟩ has all the cross-
covariance components Σgh = O which explicitly represents the classical in-
ferential assumption of independence among k populations. To enhance the
presentation, we use the notation

D⟨h⟩ = diag(Σhh, . . . ,Σkk) =

Σhh · · · O
...

. . .
...

O · · · Σkk

 ,

to denote the diagonal block matrix with blocks Σhh, . . . ,Σkk, i.e.,
∀h ∈ [k] all

off-diagonal blocks of D⟨h⟩ are O. Here, Op×p will be used to denote the p× p
null matrix and will be abbreviated to O when the dimensionality will be clear
from the context. With the aid of these notations, the test of independence (1)
can equivalently stated as

H : Σ⟨1⟩ = D⟨1⟩ vs. A : ¬H. (2)

The natural approach is to design a test statistic that measures the depen-
dence among the components of x based on the sample, and reject H when its
value is too large, where the critical value of rejection is set according to the
asymptotic distribution of the test statistic under the null. Our focus in this
paper is on the use of ρV vector correlations in settings where the dimension p
may exceed the sample size ni. The new statistic we propose for testing H is
constructed as a function of consistent estimators of the pairwise vector correla-
tion coefficients and the corresponding asymptotic theory is developed to obtain
the limit null distribution of this statistic with p, ni → ∞. The test statistic is
presented in the next section, beginning with the high-dimensional adjustment
of the estimator of the vector correlation coefficient, followed by the character-
ization of the test’s asymptotic behavior. A simultaneous test of independence
is further constructed in Section 3, where the proposed statistic is incorporated
into the step-down multiple comparison algorithm. A finite sample performance
of the proposed tests is shown in Section 4 through a number of simulation sce-
narios and application. Section 5 summarizes the main results. More technical
details and proofs are gathered in the appendix.

Throughout the paper, tr(M) and ∥M∥2F = tr(MM⊤) represent the trace
of a square matrix M and its squared Frobenious norm, respectively. The sym-
bol ⇝ denotes convergence in distribution. The symbol ⊗ denotes Kronecker
product.

2. Methodology and theory

Our proposed testing procedures will be studied under the high-dimensional
or, as is frequently known as, (n, p)-asymptotic regime which is kept general
implying that both ni → ∞ and p → ∞, but without requiring the two indices
to satisfy any specific relationship of mutual growth order, i.e. p may arbitrarily
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exceed ni. With the sampling scheme derived in Section 1.2, without loss of
generality, we focus on n1 and denote the high-dimensional asymptotic regime
by n1, p → ∞ throughout the paper.

2.1. Vector correlation coefficient in high-dimensional setting

For any indices g ̸= h ∈ [k], let ρVgh denote the vector correlation coefficient
between the two components of x, xg and xh, defined as (see [3])

ρVgh =
∥Σgh∥2F

∥Σgg∥F ∥Σhh∥F
.

It is immediately clear that Pearson’s product-moment correlation coefficient is
a special case ρVgh when p = 1. Furthermore, ρVgh = ρVhg, and ρVgh = 0 if
and only if Σgh = O. In a view of this, if the joint distribution of xg and xh

is normal, independence between xg and xh is equivalent to asserting that the
population vector correlations all vanish, i.e., ∀g ̸= h ∈ [k], ρVgh = 0. Thus, the
summation of these measurements over all (g, h) pairs, subject to g < h, serves
as an effective population measure of the overall dependency among k parts of
x and the natural criteria for testing H should be based on a suitable statistic
for
∑k

g<h ρVgh.
The sample counterpart of ρVhg can be obtained as

RVgh =
∥Sgh∥2F

∥Sgg∥F ∥Shh∥F
,

where the sample covariance matrix of xℓ and the cross sample covariance matrix
of xg and xh are constructed as

∀ℓ ∈ {g, h} Sℓℓ =
1

nℓ − 1

nℓ∑
j=1

(xℓj − x̃ℓ)(xℓj − x̃ℓ)
⊤,

Sgh =
1

ng − 1

ng∑
j=1

(xgj − xg)(xhj − xh)
⊤, Shg = S⊤

gh.

Here, xℓ = n−1
g

∑ng

j=1 xℓj , x̃ℓ = n−1
ℓ

∑nℓ

j=1 xℓj for ℓ ∈ {g, h}.
Note that the empirical measure of the vector correlation, RVgh, is invariant

by location, rotation, and overall scaling, and consistent for the classical case of
the sample size n tending to infinity and the dimension p remaining fixed. The
invariance property of RVgh is of special advantage because it allows to discuss
the asymptotic behavior of the test statistic constructed from RVgh without
knowing explicit information of the population mean vector and covariance ma-
trix. However, as the ”naive plug-in” estimator of the dependency measure,
RVgh is flawed when p > n1 and needs to be modified. Specifically RVgh lacks
consistency under H when p tends to infinity along with n1 which is justified
by the following lemma proved in Appendix section A.
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Lemma 1. Let RVgh be as already defined. Then, for any indices g ̸= h ∈ [k],
the following representation holds

RVgh =

(
ρVgh +

tr(Σgg)tr(Σhh)

ng∥Σgg∥F ∥Σhh∥F

) ∏
ℓ∈{g,h}

(
1 +

{tr(Σℓℓ)}2

nℓ∥Σℓℓ∥2F

)−1/2

+ op(1)

(3)
as p → ∞.

To realize the essence of Lemma 1, observe that for Σℓℓ = Ip and nℓ = o(p),
Rgh = 1 + op(1) as p → ∞, indicating that the RVgh coefficient is not able to
capture the correlation.

By these arguments, the crucial step in our construction of test statistic for
testing (1)-(2) is to obtain an estimator of ρVgh suitable for high-dimensional
settings. We first consider the following unbiased estimators of ∥Σgh∥2F and
∥Σℓℓ∥2F , (see Srivastava and Reid [15])

∀g < h ∈ [k], ̂∥Σgh∥2F =
(ng − 1)2

(ng − 2)(ng + 1)

{
∥Sgh∥2F − tr(Sgg)tr(Shh)

ng − 1

}
,

∀ℓ ∈ [k], ̂∥Σℓℓ∥2F =
(nℓ − 1)2

(nℓ − 2)(nℓ + 1)

[
∥Sℓℓ∥2F − {tr(Sℓℓ)}2

nℓ − 1

]
.

and then define the estimator of ρVgh with the high dimensionality adjustment
as

HRVgh =
̂∥Σgh∥2F

̂∥Σgg∥F ̂∥Σhh∥F
. (4)

Apparently, the adjustment proposed in (4) preserves the invariance of HRVgh

by location, rotation, and overall scaling. Now, to proceed further with the test
statistic construction, we need one more result. The following theorem, proved
in Appendix section B, shows consistency of HRVgh in high-dimensional regime.

Theorem 1. Let HRVgh be as already defined. Then, as n1, p → ∞, for any
indices g ̸= h ∈ [k], it holds that HRVgh = ρVgh + op(1).

Remark 1. Theorem 1 remains valid with p fixed and n1 → ∞.

2.2. The proposed test statistic and its asymptotic properties

In order to construct the test statistic, we first observe that the tests (1) and
(2) can be restated in terms of ρV coefficient as

H : ∀g ̸= h ∈ [k] ρVgh = 0 vs. A : ρVgh > 0. (5)

Further, with the high-dimensional adjustment HRVgh at hand, we propose our
test statistic for (1), (2) and (5), namely the vector correlation type statistics,

T =
∑

1≤g<h≤k

HRVgh,
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which consistently estimates the population measure of the overall dependency,∑
1≤g<h≤k ρVgh in the joint distribution of x1, . . . ,xk, and sums all pairwise

sample correlations for a ”one-sided” test. Note that under the null hypothesis,
all of the population’s ρVgh should be zero corresponding to zero off-diagonal
blocks Σgh. Hence, as an immediate consequence of Theorem 1, the asymptotic
behavior of proposed test statistic under the null H and alternative A when
n1, p → ∞ is as follows

T =

{
op(1) under H,∑

1≤g<h≤k ρVgh + op(1) under A,

i.e. the large values of T indicate departures from H.
To state the size-α test of significance using T , we need to characterize its

null asymptotic distribution. One of the main results of our study is the central
limit theorem for T under H, provided below. Let ∀g ∈ [k], ∥Σgg∥F and ∥Σ2

gg∥F
be functions of p, and, letting p be the asymptotic driving index assume that

(A1) ∥Σ2
gg∥2F /∥Σgg∥4F = o(1) as p → ∞.

Theorem 2. Suppose that the null hypothesis H from (5) is true. Suppose
further that (A1) is satisfied for all g ∈ [k] and consider the asymptotic regime
n1, p → ∞. Then, after suitable rescaling, T is asymptotically normal, namely,
σ−1T ⇝ N (0, 1) with σ2 = 2

∑
1≤g<h≤k n

−2
g .

Proof. See, Appendix C.

Remark 2. Under H and (A1), var(T )/σ2 = 1 + o(1) as n1, p → ∞.

By Theorem 2, a critical value for the approximate size-α test can be cali-
brated based on the normal quantiles.

An alternative idea of how to express the test and show that we can control
size is as follows. Using Theorem 2, our proposed approximate size-α test of the
null hypothesis H can be based on the statistic

Qα = 1

 ∑
1≤g<h≤k

HRVgh/σ ≥ z1−α

 ,

where 1(·) represents the indicator function and zα = Φ−1(α) denotes the upper
α quantile of N (0, 1). The following corollary states that the test Qα can
efficiently control the size.

Collorary 1. Suppose that the condition (A1) holds, then, as n1, p → ∞,

Pr(Qα = 1 | H) = α+ o(1).

We further evaluate the power of T under a kind of local alternative. Con-
sider the alternative hypothesis

A : xg and xh are dependent for some g, h ∈ [k]
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satisfying condition (6) below. Draw ni samples from such alternatives x fol-
lowing sampling scheme of Section 1 to form the respective analogues of HRVgh

and Qα and denote them by HRV A
gh and QA

α , respectively.

Theorem 3. In addition to assumptions in Theorems 2 let

Θn1 = {Σ⟨1⟩ : max
g<h

ρVgh ≥ n−δ
1 } (6)

be a set of alternatives Σ⟨1⟩ such that maxg<h ρVgh ≥ n−δ
1 , where 0 < δ < 1.

Then, as n1, p → ∞,

inf
Θn1

Pr(QA
α = 1 | A) = 1 + o(1).

Proof. See, Appendix D.

3. Stepwise multiple significance test

In this section, we proceed to explore the proposed statistic T and construct
the new step-down multiple comparison significance test for simultaneous testing
of independence.

Let Mq be the family of subsets with cardinal number q ≥ 2 of the set [k].
Also, let these subsets be denoted bym = {ℓ1, . . . , ℓq} ∈ Mq where ℓ1 < · · · < ℓq
and let Σ(q,m) be the following pq × pq matrix for these m:

Σ(q,m) =

 Σℓ1ℓ1 · · · Σℓ1ℓq
...

. . .
...

Σℓqℓ1 · · · Σℓqℓq

 .

We wish to test the following hypothesis:

H{q,m} : ∀g ̸= h ∈ {ℓ1, . . . , ℓq}, Σgh = O vs. A{q,m} : ¬H{q,m},

and for this, we obtain the test statistic T {q,m}/σ2
{q,m} based on results of Sec-

tion 2, where T {q,m} =
∑ℓq

g<h HRVgh and g ̸= h ∈ {ℓ1, . . . , ℓq}. Here, we

consider the problem of testing family of hypotheses F = {H{2,m} : Σℓ1ℓ2 =
O,m ∈ M2}.

Let Gq be the set consisting of all hypothesis H{q,m} and let G = ∪k
q=2Gq.

Then the family G is closed. Hence, we can derive a step-down multiple com-
parison procedure based on closed testing procedure for G. We define

αq =

{
1− (1− α)q/k for q ∈ {2, . . . , k − 2}

α for q ∈ {k − 1, k}

and let t{q,m}(α) be the upper α percentiles of the statistic T {q,m} underH{q,m},

that is, t{q,m}(α) satisfies Pr{T {q,m} ≥ t{q,m}(α)} = α. Then we carry out the
following Tukey-Welsch type step-down multiple test for all hypotheses in G by
using the T {q,m}:
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Step 1. We test hypothesis H{k,m} = H.

(C1) If T ≥ t(αk), we reject H and go to Step 2.

(C2) If T < t(αk), we retain all hypotheses in G and stop the test.
Here, t(α) satisfies Pr{T ≥ t(α)} = α under H.

Step 2. We test all hypotheses H{k−1,m} in Gk−1.

(C1) If T {k−1,m} ≥ t{k−1,m}(αk−1), we reject H{k−1,m}.

(C2) If T {k−1,m} < t{k−1,m}(αk−1), we retain H{k−1,m} and

all hypotheses in ∪k−2
q=2Gq implied by H{k−1,m}.

If all hypotheses in ∪k−2
q=2Gq are retained, we finish the test. Otherwise,

we go to Step 3.

Step 3. We test all hypotheses H{k−2,m} in Gk−2 which are not retained in
Step 2.

(C1) If T {k−2,m} ≥ t{k−2,m}(αk−2), we reject H{k−2,m}.

(C2) If T {k−2,m} < t{k−2,m}(αk−2), we retain H{k−2,m} and

all hypotheses in ∪k−3
q=2Gq implied by H{k−2,m}.

If all hypotheses in ∪k−3
q=2Gq are retained, we finish the test. Otherwise, we

repeat similar judgments till Step k − 1 at the maximum.

Remark 3. From a principle of closed testing procedure, we note that the max-
imum type-I FWE (family-wise error rate) of our proposed step-down multiple
comparison procedure is not greater than α.

By the results of Theorem 2, the critical values t{q,m}(α) for an approximate

α-size test can be set as σ{q,m}z1−α, where σ{q,m}z1−α satisfies Pr{T {q,m} ≥
σ{q,m}z1−α} = α+ o(1) under H{q,m} and assuming that (A1) holds.

4. Numerical study

We present results from numerical studies which are designed to evaluate
the performance of the proposed statistic T for testing independence hypothesis
H and for the multiple comparison procedure based on the simultaneous test
of independence. Our simulations explore the size of the tests when critical
values are selected using asymptotic normality of T and compare their power
for a number of alternative scenarios. We also employ the proposed test to
analyze data from Electroencephalograph (EEG) experiment to illustrate the
application of our results.
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4.1. Simulation experiments

We first assess the accuracy of the proposed test statistic for its size control.
The test compares a rescaled statistic T to the limiting standard normal distri-
bution from the Theorem 2. Targeting the size of α = 0.05, the null hypothesis
(2) is rejected when the value of the rescaled statistic exceeds the 0.95th per-
centile of the standard normal distribution. With ℓ replications of the data set
generated under the null hypothesis H, we calculate the empirical size as

α̂T =
# {TH/σ ≥ zα}

ℓ
,

where TH represents the values of of the test statistic T based on the data
generated under the null hypothesis.

Table 1: The empirical power of proposed test α = 0.05.

n⊤ p Size Power (A1) Power (A2)
ρ = 0.0 ρ = 0.4 ρ = 0.6 ρ = 0.4 ρ = 0.6

(20,20,20,20,20) 50 0.060 0.159 0.361 0.333 0.783
100 0.059 0.160 0.365 0.337 0.796
200 0.060 0.156 0.367 0.336 0.801
300 0.060 0.157 0.366 0.335 0.803

(10,15,20,25,30) 50 0.064 0.122 0.228 0.215 0.507
100 0.064 0.124 0.231 0.215 0.518
200 0.063 0.121 0.229 0.211 0.520
300 0.063 0.122 0.229 0.215 0.519

(40,40,40,40,40) 50 0.055 0.313 0.788 0.728 0.998
100 0.055 0.317 0.796 0.742 0.999
200 0.055 0.312 0.798 0.745 0.999
300 0.055 0.313 0.799 0.759 1.000

(20,30,40,50,60) 50 0.058 0.198 0.495 0.450 0.928
100 0.056 0.196 0.496 0.455 0.937
200 0.057 0.195 0.500 0.459 0.943
300 0.055 0.194 0.498 0.456 0.943

(60,60,60,60,60) 50 0.053 0.522 0.976 0.947 1.000
100 0.053 0.521 0.978 0.956 1.000
200 0.054 0.524 0.979 0.961 1.000
300 0.052 0.522 0.979 0.966 1.000

(40,50,60,70,80) 50 0.056 0.388 0.891 0.840 1.000
100 0.053 0.387 0.895 0.853 1.000
200 0.052 0.388 0.900 0.860 1.000
300 0.053 0.390 0.901 0.862 1.000

Table 1 reports Monte-Carlo estimates of the finite-sample sizes for a variety
of combinations of n = (n1, . . . , nk) and p to reflect both large-sample and high-
dimensional scenarios. The data underlying the table are i.i.d. p × k-variate
normal with k = 5 and the covariance matrix having the following within-block
structures Σ⟨1⟩ = diag(Σ11, · · · ,Σ55), where each Σgg has an AR(1) structure,

i.e., Σgg = g(0.5|i−j|). For each combination of p and nnn, empirical sizes of the
tests are calculated from ℓ = 100, 000 independently generated data sets. As
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expected, in general, the tests have their sizes converging to the the nominal
level 0.05 as both p and nk increase together. For certain combinations of p and
nk, the test sizes are not very satisfactory when nk are very small, but they all
become close to the nominal 0.05 level when nk get above 40-50, indicating that
the asymptotic properties of T described by Theorem 2 pitch in.

Next, we consider the power of the tests, as studied in Section 2. The
empirical power is calculated as

β̂T =
# {TA/σ ≥ zα}

ℓ
,

where TA represents the values of the test statistic T based on the data gen-
erated under the alternative hypothesis. For different combinations of n =
(n1, . . . , nk) and p, we generate data as a set of independent draws from two
p × k-variate normal distributions with different forms of alternatives of the
covariance structure of Σ[1]. These are

i) A1 : Σ[1] = diag(Σ11, · · · ,Σ55) +


0 η 0 0 0
η 0 η 0 0
0 η 0 η 0
0 0 η 0 η
0 0 0 η 0

⊗Σ11.

ii) A2 : Σ[1] = diag(Σ11, . . . ,Σ55) +


0 η η η 0
η 0 η η η
η η 0 η η
η η η 0 η
0 η η η 0

⊗Σ11.

Further, for each distribution, two levels of η’s are considered: 0.4 and 0.6. The
power of the proposed test is largely dependent on (i) the sample size ng, and

(ii) the variation in η as it determines
∑k

g<h ρVgh, the quantity which in turn
determines the asymptotic power of the test as shown in Theorem 3. Specifically,
if A1 holds, then

∑k
g<h ρVgh = 8η2/5, and if A2 holds, then

∑k
g<h ρVgh =

67η2/20. Observe that the value
∑k

g<h ρVgh does not depend on the dimension
p, hence the power is expected to be mainly related to the value of η and number
of η entries in the covariance structures under alternatives. In particular, the
first alternative, A1, is designed to challenge the test procedure for some near
block-diagonal structures with sparsely distributed non-zero off-blocks entries,
whereas the second alternative, A2 represents a dense alternative. Table 1
reports empirical power β̂ of the test for a range of configurations of p and
n = (n1, n2, n3, n4, n5)

⊤, computed based on ℓ = 100, 000 replications of the
experiments for the test based on T . We find the powers for the alternative A1

are less affected by the increased dimensionality as compared to A2. Overall,
the power of T under the second alternative increases systematically much faster
than that under the first alternative, as the sample sizes and the dimension are
increased. Tacking into account that the value of

∑k
g<h ρVgh is systematically

11



larger underA2 as compared toA1, this is a natural trend. And when η increases
from 0.4 to 0.6 the power gets larger under both alternatives since the increase
of η contributes to the increase of each ρVgh, which measures the departure
from the null hypothesis. With η increased under the second alternative, many
entries of empirical powers of the test approach 1, which could be viewed as an
empirical indication of the proposed test being consistent.

Next, we investigate the behavior of test power when the alternative hypoth-
esis depends on n1. According to Theorem 3, the power converge to 1 when
δ < 1. To reflect the conditions of Theorem 3, we further δ and c:

A3 : Σ⟨1⟩ = diag(Σ11, · · · ,Σ55) + cn
−δ/2
1


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⊗Σ11.

We set (δ, c) ∈ {(0.3, 1.0), (0.5, 1.5), (0.7, 2.0)}, p = 5 × n1, n1 = · · · = n5, and
n1 = 10×i, where i ∈ {1, . . . , 20}. The empirical powers of our proposed test are
listed in Figure 1 for the case (δ, c) = (0.3, 1.0) (•), for the case (δ, c) = (0.5, 1.5)
(×), and for the case (δ, c) = (0.7, 2.0) (△).
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●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

×

×
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×

×

×

×

×
×

× × × × × × × × × × ×

△

△

△

△

△

△

△
△

△
△

△
△

△ △ △ △
△

△ △
△

50 100 150 200
n1

0.2

0.4

0.6

0.8

1.0

Power

Figure 1: The empirical powers

As the results in Figure 1 show, T tends to have rather similar power con-
verging to 1 across the set of alternatives generated by (δ, c). This convergence
becomes slower with larger values of δ.

Finally, we investigate the probability of selecting the correct model with the

12



proposed multiple comparison procedure. Let Σ⟨1⟩ has the following structure

Σ⟨1⟩ = diag(Σ11, . . . ,Σ44) +


0

√
2η 0 0√

2η 0
√
6η 0

0
√
6η 0 2

√
3η

0 0 2
√
3η 0

⊗Σ11.

We check whether the proposed procedure can correctly capture this covariance
structure. That is, we count the number of times that H{2,{1,3}}, H{2,{1,4}} and
H{2,{2,4}} are retained by the procedure. As η is larger, the selection probability
tends to be larger. Also, as the dimension p increases, the selection probability
slightly increases. When the total sample size is the same, the balance type has
a higher selection probability than the unbalanced type.

Table 2: The empirical power of multiple comparison procedure.

ρ 0.4 0.5 0.6
n⊤ \ p 100 200 300 100 200 300 100 200 300

(40,40,40,40) 0.321 0.336 0.342 0.889 0.906 0.909 0.999 0.999 0.999
(30,35,45,50) 0.173 0.182 0.183 0.735 0.747 0.750 0.980 0.980 0.981
(50,50,50,50) 0.654 0.674 0.678 0.987 0.989 0.991 1.000 1.000 1.000
(40,45,55,60) 0.490 0.510 0.514 0.948 0.954 0.955 1.000 1.000 1.000
(60,60,60,60) 0.865 0.879 0.881 0.999 0.999 1.000 1.000 1.000 1.000
(50,55,65,70) 0.762 0.779 0.783 0.995 0.996 0.997 1.000 1.000 1.000
(70,70,70,70) 0.960 0.965 0.967 1.000 1.000 1.000 1.000 1.000 1.000
(60,65,75,80) 0.915 0.923 0.926 1.000 1.000 1.000 1.000 1.000 1.000

4.2. Applications : An example

For illustration, we employ the step-down multiple comparison significance
testing to analyze the Electroencephalography (EEG) data publicly available at
the University of California-Irvine Machine Learning Repository, web address

https://archive.ics.uci.edu/ml/datasets/EEG+Database

The data arose from a large study to examine Electroencephalograph (EEG)
correlates of genetic predisposition to alcoholism. Monitoring of the brain elec-
tric activity is performed with 64 electrodes evenly distributed over subjects
scalps and recording 256 measurements for 1 second. The initial study involved
two groups of subjects: alcoholic and control. Each subject was exposed to
either a single stimulus (S1) or to two stimuli (S1 and S2) which were pictures
of objects chosen from a picture set. The outcome measurements are Event-
Related Potentials (ERP) indicating the level of electrical activity (in volts) in
the region of the brain where each of the electrodes is placed.

This data set has been analyzed by several statisticians for various purposes,
see e.g Harrar and Kong [7] whose main hypotheses of interest are whether ERP
profiles are similar between the alcoholic and control groups, and if different, to
identify for which electrode (which part of the brain) dissimilarity occurs.
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In this paper, we conduct the analysis the for the single stimulus (S1) expo-
sure in the alcoholic group. We are interested in testing the independence of the
level of electrical activity withing the frontal regions of the brain. Specifically,
the data set we focus on, consists of four channels (electrodes) FC1, FCz, FC2
and Cz where each channel has names identifying the location of the electrode
on the scalp; F stands for frontal lobe, letter z (zero) is used for the mid-line
and C identifies the central location between the frontal and parietal lobes.
Combinations of two letters indicates intermediate locations, for example FC is
in between frontal and central electrode locations (see Figure 5 of Harrar and
Kong [7] for illustration). In the notations of the paper, this data set comprises
k = 4 sub-vectors (FC1 (1), FCz (2), FC2 (3), Cz (4)), each of dimensionality
p = 256 with equal sample sizes, that is ni = 77 for i = 1, . . . , k. The multiple
comparison procedure proposed in Section 3 is applied to clarify whether the
levels of the brain activity at FC1, FCz, FC2 and Cz channels are mutually
independent. By setting the significance level as α = 0.05, the testing model is
established in a stepwise fashion as follows.

Step 1. We test hypothesis H{4,{1,2,3,4}}.
We calculate test statistic T {4,{1,2,3,4}}/σ{4,{1,2,3,4}} ≈ 32.44, and we also
obtain z0.05 ≈ 1.645 as an approximate critical value. Therefore, we reject
H{4,{1,2,3,4}} and move on to Step 2.

Step 2. We test following hypotheses:

H{3,{1,2,3}}, H{3,{1,2,4}}, H{3,{1,3,4}}, H{3,{2,3,4}}.

The test statistic corresponding to each hypothesis is calculated as follows:

T {3,{1,2,3}}/σ{3,{1,2,3}} ≈ 44.56, T {3,{1,2,4}}/σ{3,{1,2,4}} ≈ 18.43,

T {3,{1,3,4}}/σ{3,{1,3,4}} ≈ 15.94, T {3,{2,3,4}}/σ{3,{2,3,4}} ≈ 12.84.

We also obtain z0.05 ≈ 1.645 as an approximate critical value. Therefore,
we reject all hypotheses and move on to Step 3.

Step 3. We test following hypotheses:

H{2,{1,2}}, H{2,{1,3}}, H{2,{1,4}}, H{2,{2,3}}, H{2,{2,4}}, H{2,{3,4}}

The test statistic corresponding to each hypothesis is calculated as follows:

T {2,{1,2}}/σ{2,{1,2}} ≈ 29.41, T {2,{1,3}}/σ{2,{1,3}} ≈ 26.38,

T {2,{1,4}}/σ{2,{1,4}} ≈ 1.45, T {2,{2,3}}/σ{2,{2,3}} ≈ 21.39,

T {2,{2,4}}/σ{2,{2,4}} ≈ 1.06, T {2,{3,4}}/σ{2,{3,4}} ≈ −0.22.

We also obtain z1−
√
0.95 ≈ 1.955 as an approximate critical value.

To summarize, the hypotheses H{2,{1,2}}, H{2,{1,3}}, H{2,{2,3}} are rejected,
whereas H{2,{1,4}}, H{2,{2,4}}, H{2,{3,4}} are retained. Hence, with the results
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above we have strong evidence to believe that the three channels, FC1, FCz,
and FC2 correlate with each other, but there is no correlation between (FC1,
FCz, FC2) and Cz. This suggests that the assumption on the cross-channel
independence in such empirical studies may not be appropriate. The four steps
of the testing model for this example are illustrated on the Figure below.
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5. Summary

A test statistic for mutual independence of k random vectors coming for multi-
variate normal populations is developed when the dimensionality is large, pos-
sibly much larger than the sample size. Such a test is usually carried out as a
preliminary test in large scale multivariate inference; examples include discrim-
inant analysis or model-based clustering, testing equality of mean vectors and
covariance matrices where the ability to detect departures from independence
is of crucial importance.

With a view towards alternatives in which dependence is spread out over
vector components, the test statistic is formed as a sum of consistent estimators
of the pairwise vector correlation coefficients. The corresponding asymptotic
theory is then developed to derive the asymptotic normal limit of the proposed
test when both sample size and dimensionality go to infinity. A step-down
multiple comparison procedure that allows to controls the family-wise error
rate under independence is presented as a direct by-product.

Simulation results are used to demonstrate the finite sample performance of
the test with respect to its size control and power, for large samples, arbitrary
dimensions and a variety of dependence structure models often used in multivari-
ate analysis. Our methodology is illustrated with the Electroencephalography
(EEG) data where we applied the proposed step-down procedure for assessment
of independence of electrical activity over certain regions of the human brain.
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A. Proof of Lemma 1

First, we evaluate expectation and variance of ∥Sℓℓ∥2F :

E(∥Sℓℓ∥2F ) =
nℓ

nℓ − 1
∥Σℓℓ∥2F +

{tr(Σℓℓ)}2

nℓ − 1
,

var
(
∥Sℓℓ∥2F

)
=

8

(nℓ − 1)3
{tr(Σℓℓ)}2∥Σℓℓ∥2F +

4nℓ

(nℓ − 1)3
∥Σℓℓ∥4F

+
16nℓ

(nℓ − 1)3
tr(Σℓℓ)tr(Σ

3
ℓℓ) +

4(2n2
ℓ + nℓ + 2)

(nℓ − 1)3
tr(Σ4

ℓℓ).

Thus, we obtain

∥Sℓℓ∥2F = 1 +
{tr(Σℓℓ)}2

nℓ∥Σℓℓ∥2F
+Op(n

−1/2
ℓ ). (7)

Next, we evaluate expectation and variance of ∥Sgh∥2F :

E(∥Sgh∥2F ) =
ng

ng − 1
∥Σgh∥2F +

tr(Σgg)tr(Σhh)

ng − 1
,

var
(
∥Sgh∥2F

)
=

2

(ng − 1)3
[{tr(Σgg)}2∥Σhh∥2F + {tr(Σhh)}2∥Σgg∥2F

+ 2tr(Σgg)tr(Σhh)∥Σgh∥2F ]

+
2ng

(ng − 1)3
(∥Σgh∥4F + ∥Σgg∥2F ∥Σhh∥2F )

+
8ng

(ng − 1)3
tr(Σgg)tr(ΣhhΣhgΣgh)

+
8ng

(ng − 1)3
tr(Σhh)tr(ΣggΣghΣhg)

+
4(n2

g + ng + 2)

(ng − 1)3
tr(ΣggΣghΣhhΣhg)

+
4n2

g

(ng − 1)3
∥ΣghΣhg∥2F .

Thus, we obtain

∥Sgh∥2F
∥Σgg∥F ∥Σhh∥F

= ρVgh +
tr(Σgg)tr(Σhh)

ng∥Σgg∥F ∥Σhh∥F
+Op(n

−1/2
g ). (8)

Combining (7) and (8), the result is established.
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B. Proof of Theorem 1

First, we evaluate the variance of ̂∥Σgh∥2F , for which we obtain

var
(

̂∥Σgh∥2F
)
=

2

(ng − 2)(ng + 1)
(∥Σgh∥4F + ∥Σgg∥2F ∥Σhh∥2F )

+
4(n2

g − 5)

(ng − 2)(ng − 1)(ng + 1)
tr(ΣggΣghΣhhΣhg)

+
4

ng − 1
tr{(ΣghΣhg)

2}.

From tr(ΣggΣghΣhhΣhg) ≤ ∥Σgg∥F ∥Σhh∥F ∥Σgh∥2F , tr{(ΣghΣhg)
2} ≤ ∥Σgh∥4F

and ρVgh < 1, we get var( ̂∥Σgh∥2F )/(∥Σgg∥F ∥Σhh∥F )2 = O
(
n−1
g

)
. Using

Chebyshev’s inequality, we obtain

̂∥Σgh∥2F
∥Σgg∥F ∥Σhh∥F

= ρVgh + op (1) . (9)

Next, we evaluate the variance of ̂∥Σℓℓ∥2F for ℓ ∈ {g, h}. It is obtained by

var
(

̂∥Σℓℓ∥2F
)
=

4∥Σℓℓ∥4F
(nℓ − 2)(nℓ + 1)

+
4(2n2

ℓ − nℓ − 7)∥Σ2
ℓℓ∥2F

(nℓ − 2)(nℓ − 1)(nℓ + 1)
.

From ∥Σ2
ℓℓ∥2F ≤ ∥Σℓℓ∥4F , we get var( ̂∥Σℓℓ∥2F )/∥Σℓℓ∥4F = O

(
n−1
g

)
. Using Cheby-

shev’s inequality, we obtain

̂∥Σℓℓ∥2F
∥Σℓℓ∥2F

= 1 + op (1) . (10)

From (9) and (10), we obtain HRVgh = ρVgh + op(1).

C. Proof of Theorem 2

From (10), under (A1), ̂∥Σℓℓ∥F = ∥Σℓℓ∥F (1 + op(1)) for ℓ ∈ {g, h}. Thus

T = T̃ + op(1), where

T̃ =

k∑
g<h

̂∥Σgh∥2F
∥Σgg∥F ∥Σhh∥F

.

Therefore, it sufficient to show the asymptotic normality of T̃ .
Under H, we have

∀g ∈ [k], j ∈ [nk] xgj = Σ1/2
gg zgj + µg,
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where zgj ∼ Np(0, Ip) and zgj are mutually independent. We define p × ℓ
matrix, Zg(ℓ) = (zg1, . . . , zgℓ) for ℓ ≤ ng. Note that each component of Zg(ng)

independently N (0, 1) distributed. For g < h, i.e. ng ≤ nh, under H,

̂∥Σgh∥2F =
tr(ΣggZg(ng)Z

⊤
h(ng)

ΣhhZh(ng)Z
⊤
g(ng)

)

n2
g

−
tr(ΣggZg(ng)Z

⊤
g(ng)

)tr(ΣhhZh(ng)Z
⊤
h(ng)

)

n3
g

+ op

(
∥Σgg∥F ∥Σhh∥F

ng

)
.

Let Γg be orthogonal matrix s.t. Γ⊤
g ΣggΓg = Λg = diag(λg1, . . . , λgp). For

i ∈ [p], we define ugi = (e⊤i Γ
⊤
g zg1, . . . , e

⊤
i Γ

⊤
g zgng

)⊤. Then ugi ∼ Nng
(0, Ing

)

and e⊤j ugi = z⊤gjΓgei are mutually independent whenever (g, i, j) are distinct
indices.

Let ugi(ℓ) = (e⊤i Γ
⊤
g zg1, . . . , e

⊤
i Γ

⊤
g zgℓ)

⊤. Then

Γ⊤
ggZg(ng) = (ug1(ng), . . . ,ugp(ng))

⊤, Γ⊤
hhZh(ng) = (uh1(ng), . . . ,uhp(ng))

⊤.

Using these variables, we rewrite

̂∥Σgh∥2F = n−2
g

p∑
i=1

p∑
j=1

λgiλhj(u
⊤
gi(ng)

uhj(ng))
2

−n−3
g

p∑
i=1

p∑
j=1

λgiλhju
⊤
gi(ng)

ugj(ng)u
⊤
hi(ng)

uhj(ng)

+op

(
∥Σgg∥F ∥Σhh∥F

ng

)
.

Thus T̃ can be expressed as T̃ /σ =
∑p

i=1 εi + op(1), where

εi =
∑
g<h

1

σn2
g

[
λgiλhi

∥Σgg∥F ∥Σhh∥F

{
(u⊤

gi(ng)
uhi(ng))

2 −
∥ugi(ng)∥2∥uhi(ng)∥2

ng

}

+
i−1∑
j=0

λgiλhj

∥Σgg∥F ∥Σhh∥F

{
(u⊤

gi(ng)
uhj(ng))

2 −
∥ugi(ng)∥2∥uhj(ng)∥2

ng

}

+

i−1∑
j=0

λgjλhi

∥Σgg∥F ∥Σhh∥F

{
(u⊤

gj(ng)
uhi(ng))

2 −
∥ugj(ng)∥2∥uhi(ng)∥2

ng

} .

Here, for i = 1, both the second and the third term ignore 0. Define F0 = {∅,Ω},
and let Fi for i ∈ N be the σ-algebra generated by the random variables Ui−1,
where

Ui−1 = (u11, . . . ,u1i−1, . . . ,uk1, . . . ,uki−1).

Then we find that F0 ⊆ · · · ⊆ F∞ and E(εi|Fi−1) = 0. Thus, (εi) is a martingale
difference sequence. We show the asymptotic normality of ε1 + · · · + εp by
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adapting the martingale difference central limit theorem; see, e.g., [14]. Let
Ei−1 = E(ε2i |Fi−1). Then

E

(
p∑

i=1

Ei−1

)
= 1 + o(1), var

(
p∑

i=1

Ei−1

)
= O(n−1

1 ).

Thus, (I) :
∑p

i=1 Ei−1 = 1 + op(1) as n1 → ∞. Also

p∑
i=1

E(ε4i ) = O

(
k∑

g=1

∥Σ2
gg∥2

∥Σgg∥4

)
.

Thus, under (A1), (II) :
∑p

i=1 E(ε
4
i ) = o(1) as p → ∞. The above results (I)

and (II) complete the proof.

D. Proof of Theorem 3

From (10), the power of our proposed test at Σ⟨1⟩ is Pr(QA
α = 1 | A) =

Pr(T̃ ≥ σzα) + o(1) as n1 → ∞. Thus it is sufficient to show that Pr(T̃ ≥
σzα) = 1 + o(1) for any Σ⟨1⟩ ∈ Θn1 .

We note that E(T̃ ) =
∑

g<h ρVgh > 0 for any Σ⟨1⟩ ∈ Θn1 , and

Pr
(
T̃ ≥ σzα

)
≥ 1− Pr

(
|T̃ − E(T̃ )− σzα| ≥ E(T̃ )

)
.

Using Markov’s inequality and Cauchy-Schwarz inequality in the context of
expectation, we obtain

Pr
(∣∣∣T̃ − E(T̃ )− σzα

∣∣∣ ≥ E(T̃ )
)

≤ E
(∣∣∣T̃ − E(T̃ )− σzα

∣∣∣ /E(T̃ ))
≤ E

(∣∣∣T̃ − E(T̃ )− σzα

∣∣∣2) /{E(T̃ )}2.

Since E(|T̃ − E(T̃ )− σzα|2) = var(T̃ ) + σ2z2α, we obtain

Pr(T̃ ≥ σzα) ≥ 1− var(T̃ ) + σ2z2α

{E(T̃ )}2
. (11)

We further evaluate var(T̃ ). For any g < h, g, h ∈ [k], we define Agh =

H̃RV gh − ρVgh, where H̃RV gh = ̂∥Σgh∥2F /(∥Σgg∥F ∥Σhh∥F ). Then

var(T̃ )

{E(T̃ )}2
=

E{(
∑

g<h Agh)
2}

{E(T̃ )}2
≤

k(k − 1)
∑

g<h E(A
2
gh)

2{E(T̃ )}2
.
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E(A2
gh) is obtained by

E(A2
gh) =

2

(ng − 2)(ng + 1)
(ρV 2

gh + 1)

+
4(n2

g − 5)tr(ΣggΣghΣhhΣhg)

(ng − 2)(ng − 1)(ng + 1)∥Σgg∥2F ∥Σhh∥2F

+
4tr{(ΣghΣhg)

2}
(ng − 1)∥Σgg∥2F ∥Σhh∥2F

.

From tr(ΣggΣghΣhhΣhg) ≤ ∥Σgg∥F ∥Σhh∥F ∥Σgh∥2F and tr{(ΣghΣhg)
2} ≤ ∥Σgh∥4F ,

we get
E(A2

gh)

{E(T̃ )}2
= O

(
ρVgh + ρV 2

gh

(
∑

g<h ρVgh)2ng
+

ρV 2
gh + 1

(
∑

g<h ρVgh)2n2
g

)
Note that E(T̃ ) =

∑
g<h ρVgh ≥ maxg<h ρVgh ≥ n−δ

1 . Thus, for anyΣ⟨1⟩ ∈ Θn1 ,

E(A2
gh)

{E(T̃ )}2
= O

(
1

n1−δ
1

+
1

n1
+

1

n2
1

)
.

Since k is fixed, we obtain

var(T̃ )

{E(T̃ )}2
= O

(
1

n1−δ
1

+
1

n1
+

1

n2
1

)
. (12)

Next, we evaluate σ2/{E(T̃ )}2. Since σ2 = O(n−2
1 ) and {E(T̃ )}2 ≥ (maxg<h ρVgh)

2 ≥
n−2δ
1 , we obtain

σ2z2α

{E(T̃ )}2
= O

(
1

n2(1−δ)

)
. (13)

Substituting (12) and (13) to (11), for any Σ⟨1⟩ ∈ Θn1 ,

Pr(T̃ ≥ σzα) = 1 +O

(
1

n1−δ
1

+
1

n
2(1−δ)
1

+
1

n1
+

1

n2
1

)
.

Therefore, under n1 → ∞, infΘn1
Pr(T̃ ≥ σzα) = 1 + o(1).
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