
A high-dimensional bias-corrected AIC for

selecting response variables in multivariate

calibration

Ryoya Oda∗ , Yoshie Mima† ,

Hirokazu Yanagihara and Yasunori Fujikoshi

Department of Mathematics, Graduate School of Science, Hiroshima University

1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8626, Japan

(Last Modified: December 21, 2018)

Abstract

In a multivariate linear regression with a p-dimensional response vector y and a q-
dimensional explanatory vector x, we consider a multivariate calibration problem requiring
the estimation of an unknown explanatory vector x0 corresponding to a response vector
y0, based on y0 and n-samples of x and y. We propose a high-dimensional bias-corrected
Akaike’s information criterion (HAICC) for selecting response variables. To correct the
bias between a risk function and its estimator, we use a hybrid-high-dimensional asymp-
totic framework such that n tends to ∞ but p/n does not exceed 1. Through numerical
experiments, we verify that the HAICC performs better than a formal AIC.

1 Introduction

Multivariate linear regression is very widely used in various fields. Let y = (y1, . . . , yp)
′

and x = (x1, . . . , xq)
′ be a p-dimensional response vector and a q-dimensional nonstochastic

explanatory vector, respectively. A multivariate linear regression is written as

y = α+B′x+ ε, (1)

where α is a p-dimensional unknown vector of intercept coefficients, B is a q × p unknown

matrix of regression coefficients, and ε is a p-dimensional error vector. We assume that ε is

distributed according to the p-dimensional normal distribution with a mean vector 0p, which is

a p-dimensional vector of zeros, and a p × p covariance matrix Σ. Further, assume that there

are n observations (y1,x1), . . . , (yn,xn), which are expressed as Y = (y1, . . . ,yn)
′: n × p and

X = (x1, . . . ,xn)
′: n × q in matrix notation, and X is centralized (X ′1n = 0q), where 1n

is the n-dimensional vector of ones. Our model selection criterion is defined for the case that

rank(X) = q ≤ p and n− p− q − 2 > 0.

∗Corresponding author. Email: oda.stat@gmail.com
†Current address: Institute of educational foundation Fukuyama Akenohoshi, 3-4-1 Nishifukatsucho,

Fukuyama-shi, Hiroshima 721-8545, Japan.



In actual empirical contexts, calibration is often needed and is widely applied (e.g., Alves and

Poppi, 2016; Bro, 2003; Carvalho et al., 2015). A typical calibration problem can be described

as follows. Suppose that a value y0 of y in (1) has been observed, but the corresponding value

x0 of x is unknown. Then the problem is to make an inference about an unknown vector x0,

based on y0, Y , and X. Brown (1982) summarized various aspects of this problem. There is

considerable literature on point estimators of x0 and confidence regions for x0 in the controlled

calibration model. Another calibration problem involves removing redundant response variables

in estimating x0. Generally, estimating a reduced model on a subset of the available data leads

to an inferior fit. This will be the case when all the parameters are known. However, it is

understood that when some response variables are redundant, we can expect better prediction

by neglecting these redundant response variables. In this vein, two approaches are salient: one

based on test procedures for a redundancy hypothesis and the other based on model selection

procedures for selecting response variables. Brown (1982) proposed a procedure based on a test

for redundancy of response variables. In the context of model selection, Fujikoshi and Nishii

(1986) proposed a formal Akaike’s information criterion (AIC) for the redundancy of response

variables in estimating x0.

In the AIC, the goodness of fit of a model is measured by the Kullback-Leibler (KL) discrepancy

function. The best model is defined as that where the risk function defined by the expected

KL loss function is lowest among all the redundancy models. The AIC is defined by adding

an estimator of the bias between the risk function and the expectation of a negative twofold

maximum log-likelihood to the negative twofold maximum log-likelihood, and the AIC is regarded

as an estimator of the risk function. Following Akaike (1973), Fujikoshi and Nishii (1986) formally

regarded the twofold number of parameters in the redundancy model as an estimator of bias.

However, it is known that when the sample size n is small or the number of redundancy models

is large, a formal AIC does not estimate the risk function well and tends to choose a model such

that many response variables are not redundant. Therefore, it is important to correct the bias

in order to better estimate the risk function. For selecting explanatory variables in an ordinary

linear regression, Bedrick and Tsai (1994), Hurvich and Tsai (1989), and Sugiura (1978) corrected

the bias for overspecified models. However, these corrections did not consider the selection of

response variables in multivariate calibration.

In recent years, it has become commonplace to analyze high-dimensional data such that not

only the sample size n but also the dimension p are large. Bedrick and Tsai (1994), Hurvich and

Tsai (1989) and Sugiura (1978) used a large sample (LS) asymptotic framework such that n only

tends to ∞ in order to correct bias. However, corrections using the LS asymptotic framework

become inadequate when the response dimension p is large. It is known that corrections using the

high-dimensional (HD) asymptotic framework such that both n and p tend to ∞ are better than

those using the LS asymptotic framework. Fujikoshi et al. (2014) offered a bias correction using

the HD asymptotic framework in the context of selecting explanatory variables in a multivariate

linear regression. It can be expected that such a correction performs well when both n and p

are large but is inadequate when p is small. However, it can be difficult for analysts to decide

whether p is large or small; thus, when p is moderate, it can be burdensome to determine whether

corrected AICs by the LS or HD asymptotic framework should be applied.

In this paper, we correct the bias under a hybrid-high-dimensional (HHD) asymptotic frame-
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work:

n → ∞,
p

n
→ c ∈ [0, 1).

It should be noted that the LS and HD asymptotic frameworks are included in the HHD asymp-

totic framework as special cases. Thus, it is expected that the bias-corrected AIC determined

by using the HHD asymptotic framework is a better estimator of the risk function regardless of

the size of p. We refer to this bias-corrected AIC as the high-dimensional bias-corrected AIC

(HAICC).

The remainder of the paper is organized as follows. In section 2, we introduce a framework

for selecting response variables in multivariate calibration. In section 3, the HAICC is proposed

and we obtain an asymptotic property of the HAICC. In section 4, we explore, and verify, the

performance of the HAICC through conducting numerical simulations. Technical details are

relegated to the Appendix.

2 A framework for selecting response variables

2.1 A redundancy hypothesis of response variables

Let Z = (1n,X) and Θ = (α,B′)′ be n × (q + 1) and (q + 1) × p matrices. Then, the

multivariate linear regression for Y and X is written as

Y = ZΘ+ E, (2)

where E = (ε1, . . . , εn)
′ is the n × p error matrix and ε1, . . . , εn are mutually independent and

identically distributed according to Np(0p,Σ) assuming that Σ is positive definite. To introduce

the redundancy hypothesis of response variables by Fujikoshi and Nishii (1986), we prepare a

classical estimator of x0. If the population parameters α, B, and Σ are known, then the classical

estimator x̂0 is written as

x̂0 = argmin
x0

{(y0 −α−B′x0)
′Σ−1(y0 −α−B′x0)} = (BΣ−1B′)−1BΣ−1(y0 −α). (3)

We partition y = (y′
1,y

′
2)

′. Without loss of generality, let y1 and y2 be the p1-dimensional and

(p− p1)-dimensional vectors of the candidate redundant variables and non-redundant variables,

respectively. To define the redundancy hypothesis, we consider only the case q ≤ p1 < p. We

express the partitions of y0, α, B, and Σ corresponding to the division of y = (y′
1,y

′
2)

′ as follows:

y0 = (y′
0,1,y

′
0,2)

′, α = (α′
1,α

′
2)

′, B = (B1,B2), Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (4)

where y0,1 and y0,2 are p1-dimensional and (p − p1)-dimensional vectors, α1 and α2 are p1-

dimensional and (p − p1)-dimensional vectors, B1 and B2 are q × p1 and q × (p − p1) matrices,

Σ11 and Σ22 are the p1× p1 and (p− p1)× (p− p1) covariance matrices of y1 and y2, and Σ12 is

the p1× (p−p1) covariance matrix of y1 and y2. Let C = (BΣ−1B′)−1BΣ−1. We also partition

the classical estimator x̂0 in (3) as

x̂0 = C(y0 −α) = C1(y0,1 −α1) +C2(y0,2 −α2),
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where C1 and C2 are the q × p1 and q × (p− p1) submatrices of C = (C1,C2). From Fujikoshi

and Nishii (1986), the hypothesis such that y2 is redundant for estimating x0 is written as

C2 = B2 −B1Γ = Oq,p−p1 , (5)

where Γ = Σ−1
11 Σ12 and Oq,p−p1 is the q × (p− p1) matrix of zeros.

2.2 Models, Risk, and Bias

Let Y1 and Y2 be the n × p1 and n × (p − p1) partitioned matrices of Y = (Y1,Y2), and

let Θ1 = (α1,B′
1)

′, Θ2 = (α2,B′
2)

′, and Θ̃2 = Θ2 − Θ1Γ. From a property of a conditional

distribution of a multivariate normal distribution (e.g., Srivastava and Khatri, 1979), we can

express (2) as follows:

Y1 ∼ Nn×p1(ZΘ1,Σ11 ⊗ In), Y2|Y1 ∼ Nn×(p−p1)(ZΘ̃2 + Y1Γ,Σ22·1 ⊗ In),

where Σab·c = Σab − ΣacΣ
−1
cc Σca. Under hypothesis (5), it is straightforward to observe that

ZΘ̃2 = 1nδ
′, where δ = α2−Γ′α1. Therefore, the candidate model M such that y2 is redundant

is expressed as

Y1 ∼ Nn×p1(ZΘ1,Σ11 ⊗ In), Y2|Y1 ∼ Nn×(p−p1)(1nδ
′ + Y1Γ,Σ22·1 ⊗ In). (6)

Let S = (Y1,Y2,X)′(In − Jn)(Y1,Y2,X) be n times as large as the sample covariance matrix

of (y′,x′)′, where Jn = n−11n1
′
n. We partition S as follows:

S =

S11 S12 S1x

S21 S22 S2x

Sx1 Sx2 Sxx

 ,

where the sizes of S11, S22, and Sxx are p1 × p1, (p− p1)× (p− p1), and q× q, respectively. Let

f(Y ;Θ,Σ) be the probability density function of Nn×p(ZΘ,Σ⊗ In). Then, the log-likelihood

function is derived as

ℓ(Θ,Σ;Y ,X) = −2 log f(Y ;Θ,Σ)

= −1

2

[
np log 2π + n log |Σ|+ tr{Σ−1(Y −ZΘ)′(Y −ZΘ)}

]
.

By maximizing ℓ(Θ,Σ;Y ,X) under model (6), we can obtain the maximum likelihood estimators

(MLEs) ofΣ11,Σ22·1, α1, α2, B1, B2, Θ1, Θ2, Γ, and δ as follows (the proof is given in Appendix

A):

Σ̂11 =
1

n
Y ′
1 (In − PZ)Y1, Σ̂22·1 =

1

n
Y ′
2 (In − P(1n,Y1))Y2,

α̂1 = ȳ1 − S1xS
−1
xx x̄, α̂2 = ȳ2 − S21S

−1
11 S1xS

−1
xx x̄,

B̂1 = S−1
xx Sx1, B̂2 = S−1

xx Sx1S
−1
11 S12,

Θ̂1 = (Z ′Z)−1Z ′Y1 =

(
α̂′

1

B̂1

)
, Θ̂2 =

(
ȳ′
2 − x̄′S−1

xx Sx1S
−1
11 S12

S−1
xx Sx1S

−1
11 S12

)
,

Γ̂ = S−1
11 S12, δ̂ = ȳ2 − Γ̂′ȳ1,
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where PA = A(A′A)−1A′ for a matrix A, ȳ1 = n−1Y ′
11n, ȳ2 = n−1Y ′

21n, and x̄ = n−1X ′1n.

We assume that the data are generated from the following true model M∗:

Y ∼ Nn×p(∆∗,Σ∗ ⊗ In), y0 ∼ Np(ξ∗,Σ∗),

where ∆∗ is an n × p true mean matrix, ξ∗ is a p-dimensional true mean vector, and Σ∗ is a

p × p true covariance matrix assuming that Σ∗ is positive definite. Under (6), we partition the

true covariance matrix Σ∗ in the same way as Σ, as follows:

Σ∗ =

(
Σ11∗ Σ12∗

Σ21∗ Σ22∗

)
.

Let Γ∗ = Σ−1
11∗Σ12∗. We state that the candidate model M is an overspecified model when M

satisfies

∆∗ = ZΘ∗, B2∗ −B1∗Γ∗ = Oq,p−p1 , (7)

where Θ∗ = (α∗,B′
∗)

′ is a (q+1)×p true unknown matrix, α∗ is the p-dimensional true unknown

vector of intercept coefficients, B∗ is the q × p true unknown matrix of regression coefficients,

and B1∗ and B2∗ are q × p1 and q × (p − p1) submatrices of B∗ = (B1∗,B2∗). Let L(Θ,Σ) be

the expected negative twofold log-likelihood function as follows:

L(Θ,Σ) = E∗
Y [−2ℓ(Θ,Σ;Y ,X)] = −2ℓ(Θ,Σ;∆∗,X) + ntr(Σ−1Σ∗), (8)

where E∗
Y is the expectation with respect to Y under the true model M∗. Then, we define the

risk function RKL as

RKL = E∗
Y [L(Θ̂, Σ̂)].

This type of risk function is essentially the same as the expected KL discrepancy function between

the true model and a redundancy model. Although the best model is defined as the candidate

model with the smallest risk function, we need to estimate the risk function because the risk

function includes unknown parameters. Therefore, we usually estimate RKL as −2ℓ(Θ̂, Σ̂;Y ,X),

which is expressed as

−2ℓ(Θ̂, Σ̂;Y ,X) = np{log (2π) + 1}+ n(log |Σ̂11|+ log |Σ̂22·1|), (9)

under a candidate model M (the proof of (9) is given in Appendix A). However, when RKL is

estimated as (9), there is the following bias between the risk function and −2ℓ(Θ̂, Σ̂;Y ,X):

BKL = RKL − E∗
Y [−2ℓ(Θ̂, Σ̂;Y ,X)]. (10)

Although −2ℓ(Θ̂, Σ̂;Y ,X) + BKL may be considered as a criterion, note that the bias BKL

also includes unknown parameters. Therefore, we usually consider estimating BKL by using its

estimator.
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3 Main results

3.1 High-Dimensional Bias-Corrected AIC

Let the number of parameters in the candidate model M be hM = {p+ qp1 + p(p+ 1)/2}.
Following Akaike (1973), by approximating BKL as 2hM , the formal AIC is given by

AIC =

{
np{log(2π) + 1}+ n(log |Σ̂11|+ log |Σ̂22·1|) + 2hM (q ≤ p1 < p)

np{log(2π) + 1}+ n log |Σ̂ω|+ 2hM (p1 = p)
, (11)

where Σ̂ω = n−1Y ′(In − PZ)Y is the MLE of Σ in the model where none of the response

variables y are redundant. This formal AIC has been given by Fujikoshi and Nishii (1986) and

the model which minimizes the AIC should be selected.

However, since the AIC cannot approximate the risk function well when n is small or when

n and p are both large, the AIC may not perform adequately in general terms. Therefore, it

is important to consider a new criterion that has a better approximation than the AIC in such

cases. Correcting the biasBKL in the HHD asymptotic framework, we propose a high-dimensional

bias-corrected AIC (HAICC) as follows:

HAICC =

 np{log (2π) + 1}+ n(log |Σ̂11|+ log |Σ̂22·1|) + m̂(n, p) (q ≤ p1 < p)

np log(2π) + n log |Σ̂ω|+
np(n+ q + 1)

n− p− q − 2
(p1 = p)

. (12)

Here, m̂(n, p) is defined by

m̂(n, p) = m1(n, p) + m̂2(n, p),

m1(n, p) = −np+
np1(n+ q + 1)

n− p1
+

np1(q + 2)(n+ q + 1)

(n− p1)2
+

n2p1(q + 2)2

(n− p1)3

+
n(p− p1)(n+ 1)

n− p
+

2n(p− p1)(n+ 1)

(n− p)2
+

4n2(p− p1)

(n− p)3

+
n(p− p1)q

(n− p)(n− p1)

[
n

{
1 + 2

(
1

n− p1
+

1

n− p

)}
− (q + 2)

]
+

n(n+ 1)(p− p1)(p1 − q)

(n− p)(n− p1)

{
1 + 2

(
1

n− p1
+

1

n− p

)}
+

4n{n(p1 − q) + p1}(p− p1)

(n− p)(n− p1)

{
1

(n− p1)2
+

1

(n− p)2
+

1

(n− p)(n− p1)

}
+

8n2(p− p1)p1
(n− p)(n− p1)

{
1

(n− p1)3
+

1

(n− p)3
+

1

(n− p)(n− p1)2
+

1

(n− p)2(n− p1)

}
,

(13)

m̂2(n, p) =
n2

(n− p)(n− p1)
{2(q + 1)τ̂1 − τ̂2 − τ̂3} ,

and τ̂1, τ̂2 and τ̂3 are given by

τ̂1 =
p− p1
n− p1

{
tr{Se(Se + Sh)

−1} − (p1 − q)
}
, τ̂2 =

n

n− p1
τ̂21 , (14)

τ̂3 =
n(p− p1)

(n− p1)2
{
tr[{Se(Se + Sh)

−1}2]− (p1 − q)
}

(15)
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where Se = nΣ̂11 = Y ′
1 (In−PZ)Y1 and Sh = Y ′

1PXY1. Practically, to propose the HAICC when

q ≤ p1 < p, we took the following step. We expanded the bias BKL in overspecified models (the

result is given in Appendix B, Proposition B.2). Since there are unknown parameters included

in the expanded term, we replaced the unknown parameters as τ̂1, τ̂2 and τ̂3. Therefore, the

HAICC is proposed using m̂(n, p) instead of BKL. When p1 = p, the redundancy model means

the usual multivariate linear regression such that all response variables y are not redundant.

Therefore, from Bedrick and Tsai (1994), the bias for p1 = p is exactly equal to −np+ {np(n+

q + 1)}/(n− p− q − 2).

3.2 Asymptotic property of HAICC

To present an asymptotic property of the HAICC, we start by offering some notation and

delineating assumptions. Let Ξ∗ be the p1 × p1 constant matrix given by

Ξ∗ = B′
1∗X

′XB1∗. (16)

Note thatΣ
−1/2
11∗ Ξ∗Σ

−1/2
11∗ is the p1×p1 symmetric matrix and rank(Σ

−1/2
11∗ Ξ∗Σ

−1/2
11∗ ) ≤ min {p1, q} =

q. Therefore, its spectral decomposition can be expressed as

Σ
−1/2
11∗ Ξ∗Σ

−1/2
11∗ = H

(
Λ Oq,p1−q

Op1−q,q Op1−q,p1−q

)
H ′, (17)

where H is a p1 × p1 orthogonal matrix, and Λ is a q × q diagonal matrix of which the a-th

diagonal element is a singular value λa, i.e., Λ = diag(λ1, . . . , λq) with λ1 ≥ · · · ≥ λq ≥ 0. Let

G be a q × q random matrix distributed according to the non-central Wishart distribution with

(n − 1) degrees of freedom, covariance matrix Φ−1, and non-central parameter matrix ΛΦ−1,

that is,

G ∼ Wq(n− 1,Φ−1;ΛΦ−1), (18)

where Φ is defined by

Φ = (n− 1)Iq +Λ. (19)

We prepare the following assumptions for the moments of G:

Assumption A1. E[tr(G−2)] = O(1).

Assumption A2. E[tr(G−4)] = O(1), E[tr(G−2)2] = O(n+ λq), E[tr(G−8)] = O((n+ λq)
3).

Note that Φ−1 = O((n+ λq)
−1) and ΛΦ−1 = O(1) because

||Φ−1||2 =

q∑
i=1

1

(n− 1 + λi)2
≤ q

(n− 1 + λq)2
= O((n+ λq)

−2),

||ΛΦ−1||2 =

q∑
i=1

(
λi

n− 1 + λi

)2

≤ qλ2
1

(n− 1 + λ1)2
= O(1),

where || · || is the Frobenius norm. Therefore, Assumptions A1 and A2 are natural. We obtain

the asymptotic unbiasedness of the HAICC for RKL as Theorem 3.1. Theorem 3.1 is directly

derived from (10), Proposition B.2 in Appendix B, and Proposition C.2 in Appendix C.
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Theorem 3.1. Suppose that q ≤ p1 < p, and Assumptions A1 and A2 hold. Then, under

overspecified models (7), we have

RKL − E∗
Y [HAICC] = O(pn−1(n+ λq)

−1/2),

as n → ∞ and p/n → c ∈ [0, 1), where λq is the q-th singular value of Σ
−1/2
11∗ Ξ∗Σ

−1/2
11∗ .

From Theorem 3.1, the HAICC approximates the risk function well in cases where n is not

large and when n and p are both large. Thus, it is expected that the HAICC will work well.

4 Numerical simulations

We conduct numerical simulations to show that the HAICC in (12) works better than the

AIC in (11). The p redundancy models j (j = 1, . . . , p) were prepared for Monte Carlo sim-

ulations with 10,000 iterations. Here, model j denotes a model such that y1, . . . , yj are not

redundant and yj+1, . . . , yp are redundant. Suppose that the true model is the model such that

p∗-response variables y1, . . . , yp∗ are not redundant. The data Y were generated from the true

model Nn×p(ZΘ∗,Σ∗ ⊗ In), where Z = (1n,X), Θ∗ = (α∗,B′
∗)

′, and we gave α∗ = 1p and

Σ∗ = (1− 0.8)Ip + 0.81p1
′
p. We constructed X and B∗ as follows. First, we independently gen-

erated u1, . . . , un from U(−1, 1), where U(a, b) denotes the uniform distribution with the range

(a, b). Using u1, . . . , un, we constructed X as X = (In − Jn)X0, where (i, j)-th element of X0

is defined by uj
i (1 ≤ i ≤ n, 1 ≤ j ≤ q). Second, let B1∗ and B2∗ be submatrices of B∗ in (4)

when p1 = p∗. Similarly, Σ11∗ and Σ12∗ are submatrices of Σ∗. Using the above notation, we

constructed B2∗ as B2∗ = B1∗Σ
−1
11∗Σ12∗, where the ℓ (1 ≤ ℓ ≤ p∗ − 1)-th column vectors and p∗-

th column vector of B1∗ are defined by (1, 2, . . . , 2)′ and (1, 2p∗, . . . , 2p∗)
′, respectively. Next, we

set q = 2, and data were generated for various combinations of n, p, and p∗. In order to compare

the performances of the HAICC and AIC, the following three properties were considered:

• Ratio of the information criterion (IC) average to the risk function RKL: E
∗
Y [IC]/RKL.

• The probability of selecting the true model: the frequency with which the true model is

chosen as the best model.

• The KL information of the predicted values of the best model chosen by the information

criterion, which is defined by

KL =
1

np
{E∗

Y [L(Θ̂best, Σ̂best)]− L(Θ∗,Σ∗)},

where L(Θ,Σ) is given by (8) and Θ̂best and Σ̂best are the MLEs of Θ and Σ, respectively,

under the best model.

A high-performance model selector is considered to be a model selection criterion where the

ratio of the information criterion average to the risk function is close to 1, where there is a high

probability of selecting the true model, and where there is a small amount of KL information.

Figures 1-3 show the ratio of the average of each criterion, i.e., the HAICC and the AIC to RKL.

From Figures 1-3, it can be observed that the values for the HAICC are closer to 1 than those for
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the AIC. Therefore, the HAICC can approximate the risk exactly, but the AIC underestimates

this risk. Moreover, as the number of dimensions p increases, the bias of the AIC increases.

Table 1 shows the probabilities of selecting the true model and the amount of KL information

for the HAICC and AIC. Therein, it is clear that the probability for the HAICC is higher than

that for the AIC. On the other hand, the KL information for the HAICC nearly equals that for

the AIC, except when p = 80 and p = 160, when it is significantly smaller than that for the AIC.

p = 10, p∗ = 5 p = 20, p∗ = 5

p = 20, p∗ = 10 p = 40, p∗ = 5

p = 40, p∗ = 20

Figure 1: Ratio of the average of each criterion to the risk function with n = 50
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p = 10, p∗ = 5 p = 40, p∗ = 5

p = 40, p∗ = 20 p = 80, p∗ = 5

p = 80, p∗ = 40

Figure 2: Ratio of the average of each criterion to the risk function with n = 100
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p = 10, p∗ = 5 p = 80, p∗ = 5

p = 80, p∗ = 40 p = 160, p∗ = 5

p = 160, p∗ = 80

Figure 3: Ratio of the average of each criterion to the risk function with n = 200
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Table 1: Probabilities of selecting the true model and the KL information of the predicted values

of the best model

Probabilities (%) KL

n p p∗ HAICC AIC HAICC AIC

50 10 5 92.48 68.86 0.2290 0.2329

50 20 5 92.58 61.51 0.5596 0.5715

50 20 10 96.95 52.14 0.5888 0.6075

50 40 5 96.23 10.29 4.7150 6.5024

50 40 20 99.87 1.64 4.7853 6.7014

100 10 5 87.58 75.58 0.0916 0.0921

100 40 5 86.90 72.05 0.4903 0.4909

100 40 20 96.18 56.16 0.5068 0.5109

100 80 5 89.86 16.72 3.9800 4.5527

100 80 40 99.81 0.56 4.0173 4.6931

200 10 5 84.28 77.84 0.0419 0.0419

200 80 5 83.51 76.72 0.4609 0.4610

200 80 40 95.44 60.14 0.4689 0.4696

200 160 5 84.36 22.35 3.6758 3.9010

200 160 80 99.61 0.13 3.6953 3.9898
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Appendix

A Deriving MLEs and proof of (9)

To derive MLEs, we use the following lemma (e.g., Fujikoshi et al., 2010, A.2.11):

Lemma A.1. Let Y be an n × p known matrix and A be an n × k known matrix of rank k.

Consider a function of p× p positive definite matrix Σ and k × p matrix Θ given by

g(Θ,Σ) = m log |Σ|+ tr{(Y −AΘ)Σ−1(Y −AΘ)′},

where m > 0 and all elements of Θ are bounded. Then, g(Θ,Σ) takes the minimum at

Θ = Θ̂ = (A′A)−1A′Y , Σ = Σ̂ =
1

m
Y ′(In − PA)Y ,

12



and the minimum value is given by m log |Σ̂|+mp.

First, we derive MLEs of Σ11, Σ22·1, α1, α2, B1, B2, Θ1, Θ2, Γ, and δ. From (6), we have

−2ℓ(Θ,Σ;Y ,X) = np log 2π

+ n log |Σ11|+ tr{(Y1 −ZΘ1)Σ
−1
11 (Y1 −ZΘ1)

′}

+ n log |Σ22·1|+ tr{(Y2 − 1nδ
′ − Y1Γ)Σ

−1
22·1(Y2 − 1nδ

′ − Y1Γ)
′}.

Let g1(Θ1,Σ11) = n log |Σ11|+tr{(Y1−ZΘ1)Σ
−1
11 (Y1−ZΘ1)

′} and g2(δ,Γ,Σ22·1) = n log |Σ22·1|+
tr{(Y2−1nδ

′−Y1Γ)Σ
−1
22·1(Y2−1nδ

′−Y1Γ)
′}. The set of unknown parameters {Θ,Σ} exhibits

one-to-one correspondence with the set {α1,B1,C2, δ,Γ,Σ11,Σ22·1}, and each set of parameters

for g1 and g2 is separated. Thus, we only consider each minimization of g1 and g2. Note that

rank(Z) = q + 1 and rank{(1n,Y1)} = p1 + 1. Then, from Lemma A.1, we can state that

min
Θ1,Σ11

g1(Θ1,Σ11) = n log |Σ̂11|+ tr{(Y1 −ZΘ̂1)Σ̂
−1
11 (Y1 −ZΘ̂1)

′}

= n log |Σ̂11|+ np1,

min
δ,Γ,Σ22·1

g2(δ,Γ,Σ22·1) = n log |Σ̂22·1|+ tr{(Y2 − 1nδ̂
′ − Y1Γ̂)Σ̂

−1
22·1(Y2 − 1nδ̂

′ − Y1Γ̂)
′}

= n log |Σ̂22·1|+ n(p− p1),

where Θ̂1 = (Z ′Z)−1Z ′Y1 ,Σ̂11 = n−1Y ′
1 (In−PZ)Y1, (δ̂, Γ̂

′)′ = {(1n,Y1)
′(1n,Y1)}−1(1n,Y1)

′Y2

and Σ̂22·1 = n−1Y ′
2 (In −P(1n,Y1))Y2. Therefore, the MLEs of α1, α2, B1, B2, and Θ2 can also

be derived from Θ̂1 and δ̂.

Next, we show (9). From Lemma A.1, it is clearly that

−2ℓ(Θ̂, Σ̂;Y ,X) = np{log (2π) + 1}+ n(log |Σ̂11|+ log |Σ̂22·1|).

□

B Calculating and expanding bias

Here, we present propositions for calculating and expanding the bias BKL in (10).

B.1 Calculating bias and its proof

Proposition B.1. Suppose that q ≤ p1 < p. In overspecified models (7), we obtain the exact

expression of the bias as follows:

BKL = −np+
np1(n+ q + 1)

n− p1 − q − 2
+

n(n+ 1)(p− p1)

n− p− 2

+
n(n+ 1)(p− p1)

n− p− 2
E∗

Y [tr(S−1
11 Σ11∗)] +

n(p− p1)

n− p− 2
E∗

Y [tr(S−1
11 Ξ∗)], (B.1)

where Ξ∗ is defined in (16).

The proof of Proposition B.1 is presented as follows. To calculate the bias, we describe a

lemma for distributions of some statistics (the proof is given in Appendix D).
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Lemma B.1. Suppose that q ≤ p1 < p. Let Σ̂22·1 be the MLE of Σ22·1 under model (6), and let

T = {Y ′
1 (In − Jn)Y1}1/2

[
Γ̂− {Y ′

1 (In − Jn)Y1}−1Y ′
1 (In − Jn)Ω∗ − Γ∗

]
Σ

−1/2
22·1∗, (B.2)

U = {(1n,Y1)
′(1n,Y1)}1/2

[(
δ̂′

Γ̂

)
− {(1n,Y1)

′(1n,Y1)}−1(1n,Y1)
′(Ω∗ + Y1Γ∗)

]
Σ

−1/2
22·1∗, (B.3)

where Ω∗ = ∆2∗−∆1∗Γ∗, and ∆1∗ and ∆2∗ are the n×p1 and n×(p−p1) partitioned matrices of

∆∗ = (∆1∗,∆2∗). Then, T and U are independent of Y1, and nΣ̂22·1 and (δ̂, Γ̂′)′ are mutually

conditional independent under Y1, and

nΣ̂22·1|Y1 ∼ Wp−p1(n− p1 − 1,Σ22·1∗; Ω̃∗),

T ∼ Np1×(p−p1)(Op,p−p1 , Ip−p1 ⊗ Ip1),

U ∼ N(p1+1)×(p−p1)(Op1+1,p−p1 , Ip−p1 ⊗ Ip1+1),

where Ω̃∗ = Ω′
∗(In−P(1n,Y1))Ω∗. Moreover, if the model is overspecified model (7), then nΣ̂22·1

and Y1 are mutually independent, nΣ̂22·1 and (δ̂, Γ̂′)′ are also mutually independent, and

nΣ̂22·1 ∼ Wp−p1(n− p1 − 1,Σ22·1∗),

T = {Y ′
1 (In − Jn)Y1}1/2(Γ̂− Γ∗)Σ

−1/2
22·1∗,

U = {(1n,Y1)
′(1n,Y1)}1/2

(
δ̂′ − δ′∗

Γ̂− Γ∗

)
Σ

−1/2
22·1∗,

where δ∗ = α2∗ − Γ′
∗α1∗ and α1∗ and α2∗ are the p1- and (p − p1)-dimensional subvectors of

α∗ = (α′
1∗,α

′
2∗)

′.

From the general formula of the determinant of a partitioned matrix (e.g., Lütkepohl, 1997,

4.2.2 (6)), log |Σ̂| = log |Σ̂11| + log |Σ̂22·1| holds. Under overspecified models (7), L(Θ̂, Σ̂) can

be expressed as

L(Θ̂, Σ̂)

= np log 2π + n(log |Σ̂11|+ log |Σ̂22·1|) + ntr(Σ∗Σ̂
−1) + tr{Σ̂−1(Θ̂−Θ∗)

′Z ′Z(Θ̂−Θ∗)}.

Thus, from the above equation and (9), the bias BKL in (10) can be expressed as

BKL = −np+ E∗
Y

[
ntr(Σ∗Σ̂

−1) + tr{Σ̂−1(Θ̂−Θ∗)
′Z ′Z(Θ̂−Θ∗)}

]
.

We separate the second and third terms in the above equation into four terms in order to calculate

the bias. It follows from the general formula for the inverse of a block matrix (e.g., Harville,

1997, Theorem 8.5.11) that

Σ̂−1 =

(
Σ̂−1

11 Op1,p−p1

Op−p1,p1 Op−p1,p−p1

)
+

(
−Γ̂

Ip−p1

)
Σ̂−1

22·1(−Γ̂′, Ip−p1).

Then, we can derive another expression of the bias BKL as follows:

BKL = −np+ nE∗
Y [tr(Σ11∗Σ̂

−1
11 )] + nE∗

Y

[
tr

{
Σ̂−1

22·1(−Γ̂′, Ip−p1)Σ∗

(
−Γ̂

Ip−p1

)}]
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+ E∗
Y

[
tr{Σ̂−1

11 (Θ̂1 −Θ1∗)
′Z ′Z(Θ̂1 −Θ1∗)}

]
+ E∗

Y

[
tr

{
Σ̂−1

22·1(−Γ̂′, Ip−p1)(Θ̂−Θ∗)
′Z ′Z(Θ̂−Θ∗)

(
−Γ̂

Ip−p1

)}]
= −np+ (i) + (ii) + (iii) + (iv) (say), (B.4)

where Θ1∗ and Θ2∗ are the (q + 1)× p1 and (q + 1)× (p− p1) submatrices of Θ∗ = (Θ1∗,Θ2∗).

Now, we calculate (i), (ii), (iii), and (iv) in (B.4). Starting with (i) in (B.4), it can be stated that

nΣ
−1/2
11∗ Σ̂11Σ

−1/2
11∗ is distributed according to Wp1(n−q−1, Ip1). Thus, by using the expectation

of an inverted Wishart distribution (see, Watamori, 1990), we have

(i) = nE∗
Y [tr(Σ11∗Σ̂

−1
11 )] =

n2p1
n− p1 − q − 2

. (B.5)

Now we calculate (ii) in (B.4). From Lemma B.1, by using the expectation of an inverted

Wishart distribution (e.g., Fujikoshi et al., 2010, Theorem 2.2.7), the expectation of E∗
Y [Σ̂−1

22·1]

can be calculated as

E∗
Y [Σ̂−1

22·1] = nE∗
Y [(nΣ̂22·1)

−1] =
n

n− p− 2
Σ−1

22·1∗.

From the above equation and the fact that Σ̂22·1 is independent of Γ̂, (ii) can be expressed as

(ii) =
n2

n− p− 2
E∗

Y

[
tr

{
Σ∗

(
−Γ̂

Ip−p1

)
Σ−1

22·1∗(−Γ̂′, Ip−p1)

}]
.

By the definition of T in (B.2), we have

Σ∗

(
−Γ̂

Ip−p1

)
Σ−1

22·1∗(−Γ̂′, Ip−p1)

= Σ∗

(
−Γ∗

Ip−p1

)
Σ−1

22·1∗(−Γ′
∗, Ip−p1)

+Σ∗

(
−{Y ′

1 (In − Jn)Y1}−1/2TΣ
−1/2
22·1∗Γ

′
∗ −{Y ′

1 (In − Jn)Y1}−1/2TΣ
−1/2
22·1∗

Op−p1,p1 Op−p1,p−p1

)

+Σ∗

(
−{Y ′

1 (In − Jn)Y1}−1/2TΣ
−1/2
22·1∗Γ

′
∗ −{Y ′

1 (In − Jn)Y1}−1/2TΣ
−1/2
22·1∗

Op−p1,p1 Op−p1,p−p1

)′

+Σ∗

(
{Y ′

1 (In − Jn)Y1}−1/2TT ′{Y ′
1 (In − Jn)Y1}−1/2 Op1,p−p1

Op−p1,p1 Op−p1,p−p1

)
= (ii.a) + (ii.b) + (ii.c) + (ii.d) (say).

From the general formula for the inverse of a block matrix, it is straightforward to observe that

tr{(ii.a)} = p− p1.

Since T and Y1 are mutually independent, we can calculate the expectations of tr{(ii.b)} and

tr{(ii.c)} as follows:

E∗
Y [tr{(ii.b)}] = 0, E∗

Y [tr{(ii.c)}] = 0.
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Note that E∗
Y [TT ′] = (p− p1)Ip1 . Then, from the independence of T and Y1, we can calculate

tr{(ii.d)} as

E∗
Y [tr{(ii.d)}] = (p− p1)E

∗
Y

[
tr
{
Σ11∗{Y ′

1 (In − Jn)Y1}−1
}]

.

Hence, (ii) can be expressed as

(ii) =
n2(p− p1)

n− p− 2

{
1 + E∗

Y

[
tr
{
Σ11∗{Y ′

1 (In − Jn)Y1}−1
}]}

. (B.6)

Now we move on to calculating (iii) in (B.4). Recall that nΣ̂11 = Y ′
1 (In − PZ)Y1 and

Θ̂1 = (Z ′Z)−1Z ′Y1. Since it is straightforward to observe that (Z ′Z)−1Z ′(In −PZ) = Oq+1,n,

nΣ̂11 and Θ̂1 are mutually independent from Cochran’s Theorem (e.g., Fujikoshi et al., 2010,

Theorem 2.4.2). Thus, by using a property of conditional expectations, we obtain

(iii) =
n

n− p1 − q − 2
E∗

Y

[
tr{Σ−1

11∗(PZY1 −ZΘ1∗)
′(PZY1 −ZΘ1∗)}

]
=

n

n− p1 − q − 2
tr(PZ)tr(Ip1)

=
np1(q + 1)

n− p1 − q − 2
. (B.7)

Finally, we calculate (iv) in (B.4). Recall that Θ∗ is expressed by α1∗, α2∗, B1∗, and B2∗.

Then, we can express (−Γ̂′, Ip−p1)(Θ̂−Θ∗)
′ as

(−Γ̂′, Ip−p1)(Θ̂−Θ∗)
′ = (−Γ̂′, Ip−p1)

(
α̂1 −α1∗ (B̂1 −B1∗)

′

α̂2 −α2∗ (B̂2 −B2∗)
′

)
=
(
α̂2 −α2∗ − Γ̂′(α̂1 −α1∗), (B̂2 −B2∗)

′ − Γ̂′(B̂1 −B1∗)
′
)′

. (B.8)

From the definitions of δ̂, α̂1, and α̂2, we have δ̂ = α̂2 − Γ̂′α̂1. Thus,

α̂2 −α2∗ − Γ̂′(α̂1 −α1∗) = α̂2 − Γ̂′α̂1 − (α2∗ − Γ̂′α1∗)

= δ̂ − δ∗ +α2∗ − Γ′
∗α1∗ − (α2∗ − Γ̂′α1∗)

= δ̂ − δ∗ + (Γ̂− Γ∗)
′α1∗

=

{
(1,α′

1∗)

(
(δ̂ − δ∗)

′

Γ̂− Γ∗

)}′

. (B.9)

Since it is straightforward that B̂2−B̂1Γ̂ = Oq,p−p1 and it is prudent that B2∗−B1∗Γ∗ = Oq,p−p1

under overspecified models, we obtain

(B̂2 −B2∗)− (B̂1 −B1∗)Γ̂ = B̂2 − B̂1Γ̂− (B2∗ −B1∗Γ∗) +B1∗(Γ̂− Γ∗)

= (0q,B1∗)

(
(δ̂ − δ∗)

′

Γ̂− Γ∗

)
. (B.10)

By using (B.9) and (B.10), we can express (B.8) as

(−Γ̂′, Ip−p1)(Θ̂−Θ∗)
′ =

(
(δ̂ − δ∗)

′

Γ̂− Γ∗

)′(
1 α′

1∗

0q B1∗

)′
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= Σ
1/2
22·1∗U

′{(1n,Y1)
′(1n,Y1)}−1/2

(
1 α′

1∗

0q B1∗

)′

,

where U is defined in (B.3). Thus, by using the above equation and the independence of U and

Σ̂22·1, (iv) can be expressed as follows:

(iv) =
n(p− p1)

n− p− 2
E∗

Y

[
tr

{
{(1n,Y1)

′(1n,Y1)}−1

(
n nα′

1∗

nα1∗ nα1∗α
′
1∗ +B′

1∗X
′XB1∗

)}]
.

From the general formula for the inverse of a block matrix, {(1n,Y1)
′(1n,Y1)}−1 is expressed as

{(1n,Y1)
′(1n,Y1)}−1 =

(
n−1 + ȳ′

1S
−1
11 ȳ1 −ȳ′

1S
−1
11

−S−1
11 ȳ1 S−1

11

)
.

Note that S11 and ȳ1 are mutually independent and E∗
Y [ȳ1] = α1∗. Thus, we can calculate (iv)

as follows:

(iv) =
n(p− p1)

n− p− 2

[
1 + E∗

Y

[
tr
{
{n(ȳ1 −α1∗)(ȳ1 −α1∗)

′ +B′
1∗X

′XB1∗}S−1
11

}]]
=

n(p− p1)

n− p− 2

[
1 + E∗

Y

[
tr
{
{Σ11∗ +B′

1∗X
′XB1∗}S−1

11

}]]
. (B.11)

Therefore, from (B.4), (B.5), (B.6), (B.7), and (B.11), Proposition B.1 can be derived. □

B.2 Results for expanding bias and its proof

Proposition B.2. Suppose that q ≤ p1 < p and Assumption A1 both hold. Then, under

overspecified models (7), we have

BKL = m(n, p) +O(p ·max {n−2, (n+ λq)
−3/2}), (B.12)

as n → ∞, p/n → c ∈ [0, 1), where λq is the q-th diagonal element of Λ defined in (17). Here,

m(n, p) is the constant given by

m(n, p) = m1(n, p) +m2(n, p),

where m1(n, p) is defined in (13), and m2(n, p) is given by

m2(n, p) =
n2(p− p1)

(n− p)(n− p1)

{
2(q + 1)tr(Φ−1)− ntr(Φ−1)2 − ntr(Φ−2)

}
,

in which Φ is defined by (19).

The proof of Proposition B.2 is presented as follows. We use the following lemma (the proof

is given in Appendix D).

Lemma B.2. Suppose that n− q − 2 > 0. Let G̃ be random matrices defined by

G̃ =
√
n+ λq(G− Iq),
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where G is defined by (18), λq are given by (17), and Φ = (n − 1)Iq + Λ is defined by (19).

Then, using the HHD asymptotic framework, we have G̃ = Op(1), and G−1 can be expanded as

G−1 = Iq −
1√

n+ λq

G̃+
1

n+ λq
G̃2 +RG, (B.13)

where RG = (n+ λq)
−3/2G−1G̃3 = Op((n+ λq)

−3/2). Further, when Assumption A1 holds, we

have

E[tr(D11Φ
−1RG)] = O(n−1(n+ λq)

−3/2), (B.14)

where D11 = (1 + n−1)Iq + n−1Λ and Λ is given in (17).

We focus on the case that q < p1 < p because the proof is simpler where p1 = q. Let

V = H ′Σ
−1/2
11∗ S11Σ

−1/2
11∗ H, (B.15)

whereH is the p1×p1 orthogonal matrix given by (17). It is straightforward that V is distributed

according to Wp1(n− 1, Ip1 ; Λ̃), where Λ̃ is given by

Λ̃ =

(
Λ Oq,p1−q

Op1−q,q Op1−q,p1−q

)
. (B.16)

Further, we partition V as

V =

(
V11 V12

V21 V22

)
,

where the sizes of V11 and V22 are q × q and (p1 − q) × (p1 − q), respectively. Let Ṽ11 be the

p1 × p1 random matrix given by

Ṽ11 = Φ−1/2V11Φ
−1/2. (B.17)

SinceΦ = E∗
Y [V11], it is straightforward that Ṽ11 is distributed according toWq(n−1,Φ−1;ΛΦ−1).

Now, we calculate the parts of the expectations in (B.1). Using the definitions in (17) and (B.15),

we have

n(n+ 1)(p− p1)

n− p− 2
E∗

Y [tr(S−1
11 Σ11∗)] +

n(p− p1)

n− p− 2
E∗

Y [tr(S−1
11 Ξ∗)] =

n2(p− p1)

n− p− 2
E∗

Y

[
tr(DV −1)

]
,

(B.18)

where D and the partitioned expression are given by

D = (1 + n−1)Ip1 + n−1Λ̃ =

(
D11 Oq,p1−q

Op1−q,q D22

)
.

By applying the general formula for the inverse of a block matrix to V , tr(DV −1) can be

expressed as

tr(DV −1) = tr(D11V
−1
11 ) + tr(D11V

−1
11 V12V

−1
22·1V21V

−1
11 ) + tr(D22V

−1
22 ).

Recall that V ∼ Wp1(n−1, Ip1 ; Λ̃). By using the properties of a partitioned non-central Wishart

matrix (see Kabe, 1964), we can state that V11 ∼ Wq(n − 1, Iq;Λ), V22·1 ∼ Wp1−q(n − q −

18



1, Ip1−q), V21V
−1/2
11 ∼ N(p1−q)×p1

(Op1−q,p1 , Ip1 ⊗ Ip1−q), and V11, V22·1 and V21V
−1/2
11 are

mutually independent. Thus, we can calculate the expectations of tr(D11V
−1
11 V12V

−1
22·1V21V

−1
11 )

and tr(D22V
−1
22 ) as follows:

E∗
Y [tr(D11V

−1
11 V12V

−1
22·1V21V

−1
11 )] =

p1 − 2

n− p1 − 2
E∗

Y [tr(D11V
−1
11 )],

E∗
Y [tr(D22V

−1
22 )] =

1

n− p1 − 2
tr(D22).

Hence, from the above equations, E∗
Y

[
tr(DV −1)

]
is expressed as

E∗
Y

[
tr(DV −1)

]
=

n− q − 2

n− p1 − 2
E∗

Y [tr(D11V
−1
11 )] +

1

n− p1 − 2
tr(D22). (B.19)

From the definition of Ṽ11 in (B.17), E∗
Y [tr(D11V

−1
11 )] is expressed as E∗

Y [tr(D11Φ
−1Ṽ −1

11 )]. Let

L =
√
n+ λq(Ṽ11 − Iq).

Then, by using (B.13) and (B.14) in Lemma B.2, we can expand E∗
Y [tr(D11V

−1
11 )] as

E∗
Y [tr(D11V

−1
11 )] = tr(D11Φ

−1) +
1

n+ λq
E∗

Y [tr(D11Φ
−1L2)] +O(n−1(n+ λq)

−3/2). (B.20)

From the expectation of a non-central Wishart distribution, (n+ λq)
−1E∗

Y [tr(D11Φ
−1L2)] can

be calculated as

1

n+ λq
E∗

Y [tr(D11Φ
−1L2)]

= −2

(
1− 1

n

)
tr(Φ−3)−

(
1− 5

n

)
tr(Φ−2)− 2

(
1− 1

n

)
tr(Φ−1)tr(Φ−2)

−
(
1− 5

n

)
tr(Φ−1)2 +

2(q + 1)

n
tr(Φ−1) +

q

n
− tr(D11Φ

−1). (B.21)

From (B.21), we can express (B.20) as

E∗
Y [tr(D11V

−1
11 )] = −tr(Φ−2)− tr(Φ−1)2 +

2(q + 1)

n
tr(Φ−1) +

q

n
+O(n−1(n+ λq)

−3/2).

(B.22)

Thus, by using (B.18), (B.19), (B.22), and Proposition B.1, we can expand the bias as follows:

BKL = −np+
np1(n+ q + 1)

n− p1 − q − 2
+

n(n+ 1)(p− p1)

n− p− 2

+
n2(n− q − 2)(p− p1)

(n− p− 2)(n− p1 − 2)

{
−tr(Φ−2)− tr(Φ−1)2 +

2(q + 1)

n
tr(Φ−1) +

q

n

}
+

n2(p− p1)

(n− p− 2)(n− p1 − 2)

(
1 +

1

n

)
(p1 − q) +O(p(n+ λq)

−3/2).

Note that

1

n− p1 − q − 2
=

1

n− p1

{
1 +

q + 2

n− p1
+

(q + 2)2

(n− p1)2
+O(n−3)

}
,

1

n− p− 2
=

1

n− p

{
1 +

2

n− p
+

4

(n− p)2
+O(n−3)

}
,
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1

n− p1 − 2
=

1

n− p1

{
1 +

2

n− p1
+

4

(n− p1)2
+O(n−3)

}
,

1

(n− p− 2)(n− p1 − 2)
=

1

(n− p)(n− p1)

{
1 +

2

n− p
+

2

n− p1
+

4

(n− p)2
+

4

(n− p1)2

+
4

(n− p)(n− p1)
+

8

(n− p)3
+

8

(n− p1)3

+
8

(n− p)2(n− p1)
+

8

(n− p)(n− p1)2
+O(n−4)

}
.

Therefore, by using the above equations, we can derive (B.12). □

C Asymptotic properties of τ̂1, τ̂2 and τ̂3

Here we present the results for expanding τ̂1, τ̂2 and τ̂3 defined by (14) and (15).

C.1 Expanding τ̂1, τ̂2, and τ̂3 and the proof

Proposition C.1. Suppose that q ≤ p1 < p. Then, we have

τ̂1 = (p− p1)tr(Φ
−1) +Op(pn

−1/2(n+ λq)
−1),

τ̂2 = n(p− p1)tr(Φ
−1)2 +Op(pn

1/2(n+ λq)
−2),

τ̂3 = n(p− p1)tr(Φ
−2) +Op(pn

1/2(n+ λq)
−2),

as n → ∞, p/n → c ∈ [0, 1), where Φ is defined by (19).

The proof of Proposition C.1 is presented as follows. To expand τ̂1, τ̂2 and τ̂3 by using a HHD

asymptotic framework, we use the following lemma which was essentially obtained in Wakaki et

al. (2014):

Lemma C.1. Let Fh = F ′F and Fe be independently distributed according to Wp(q, Ip;M
′M)

and Wp(n, Ip), respectively. Here, F is a q×p random matrix distributed according to Nq×p(M , Ip⊗
Iq). Put

B = FF ′, W = B1/2(FF−1
e F ′)−1B1/2.

Then, B and W are independently distributed according to Wq(p, Iq;MM ′) and Wq(n−p+q, Iq),

respectively. Further, the nonzero eigenvalues of FhF
−1
e are the same as those of BW−1, and

we have

tr{Fe(Fe + Fh)
−1} = tr{W (W +B)−1}+ (p− q),

tr
[
{Fe(Fe + Fh)

−1}2
]
= tr

[
{W (W +B)−1}2

]
+ (p− q).

We consider the distributions of Se and Sh defined in (15). Since Y1 is distributed according

to Nn×p1(ZΘ1∗,Σ11∗ ⊗ In), it is straightforward that Se and Sh are mutually independent and

Se ∼ Wp1(n− q − 1,Σ11∗), Sh ∼ Wp1(q,Σ11∗;Ξ∗),
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where Ξ∗ is given by (16). Let

Te = H ′Σ
−1/2
11∗ SeΣ

−1/2
11∗ H, Th = H ′Σ

−1/2
11∗ ShΣ

−1/2
11∗ H,

where H is the p1 × p1 orthogonal matrix defined in (17). It follows from the properties of

non-central Wishart matrices that

Te ∼ Wp1(n− q − 1, Ip1), Th ∼ Wp1(q, Ip1 ; Λ̃),

where Λ̃ is defined by (B.16). Then, we can express tr{Se(Se+Sh)
−1} and tr[{Se(Se+Sh)

−1}2]
as

tr{Se(Se + Sh)
−1} = tr{Te(Te + Th)

−1}, tr[{Se(Se + Sh)
−1}2] = tr

[
{Te(Te + Th)

−1}2
]
.

First, we express tr{Se(Se + Sh)
−1} and tr[{Se(Se + Sh)

−1}2] as functions of q × q matrices

in order to examine their asymptotic behaviors. From the definition of the non-central Wishart

distribution, a different expression for Th is given by Th = U ′
hUh, whereUh ∼ Nq×p1(Λ̃1, Ip1⊗Iq)

and Λ̃1 is the q × p1 partitioned matrix of Λ̃ = (Λ̃′
1,Op1,p1−q)

′ satisfying Λ̃′
1Λ̃1 = Λ. Let

W1 = UhU
′
h, W2 = W

1/2
1 (UhT

−1
e U ′

h)
−1W

1/2
1 . (C.1)

Then, from Lemma C.1, W1 and W2 are independently distributed according to Wq(p1, Iq;Λ)

and Wq(n− p1 − 1, Iq), respectively, and we have

tr{Se(Se + Sh)
−1} = tr{W2(W1 +W2)

−1}+ (p1 − q),

tr[{Se(Se + Sh)
−1}2] = tr

[
{W2(W1 +W2)

−1}2
]
+ (p1 − q).

Next, we expand tr{W2(W1 +W2)
−1} and tr

[
{W2(W1 +W2)

−1}2
]
. Let

W3 = Φ−1/2(W1 +W2)Φ
−1/2. (C.2)

Since W1 and W2 are mutually independent, we can state that W3 ∼ Wq(n − 1,Φ−1;ΛΦ−1).

Therefore, using (B.13) in Lemma B.2, W−1
3 can be expanded as

W−1
3 = Iq +Op((n+ λq)

−1/2). (C.3)

By calculating the expectation and variance of W2, we can also expand W2 as

W2 = (n− p1 − 1)Iq +Op(n
1/2).

Thus, Φ−1/2W2Φ
−1/2 is expressed as

Φ−1/2W2Φ
−1/2 = (n− p1)Φ

−1 +Op(n
1/2(n+ λq)

−1). (C.4)

From (C.3) and (C.4), the following equations can be derived:

tr{W2(W1 +W2)
−1} = tr(Φ−1/2W2Φ

−1/2W−1
3 )

= (n− p1)tr(Φ
−1) +Op(n

1/2(n+ λq)
−1),

tr{W2(W1 +W2)
−1}2 = (n− p1)

2tr(Φ−1)2 +Op(n
3/2(n+ λq)

−2),
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tr
[
{W2(W1 +W2)

−1}2
]
= tr{(Φ−1/2W2Φ

−1/2W−1
3 )2}

= (n− p1)
2tr(Φ−2) +Op(n

3/2(n+ λq)
−2).

Thus, we can derive the following equations:

p− p1
n− p1

tr{W2(W1 +W2)
−1} = (p− p1)tr(Φ

−1) +Op(pn
−1/2(n+ λq)

−1),

n(p− p1)

(n− p1)2
tr{W2(W1 +W2)

−1}2 = n(p− p1)tr(Φ
−1)2 +Op(pn

1/2(n+ λq)
−2),

n(p− p1)

(n− p1)2
tr
[
{W2(W1 +W2)

−1}2
]
= n(p− p1)tr(Φ

−2) +Op(pn
1/2(n+ λq)

−2).

Therefore, we can derive the result of Proposition C.1. □

C.2 Expanding the expectations of τ̂1, τ̂2, and τ̂3

Proposition C.2. Suppose that q ≤ p1 < p and Assumptions A1 and A2 hold. Then, we have

E∗
Y [τ̂1] = (p− p1)tr(Φ

−1) +O(pn−1(n+ λq)
−1/2),

E∗
Y [τ̂2] = n(p− p1)tr(Φ

−1)2 +O(pn−1(n+ λq)
−1/2),

E∗
Y [τ̂3] = n(p− p1)tr(Φ

−2) +O(pn−1(n+ λq)
−1/2),

as n → ∞, p/n → c ∈ [0, 1), where Φ is defined by (19).

The proof of Proposition C.2 is presented as follows. Let W̃3 =
√
n+ λq(W3 − Iq), where

W3 is given by (C.2). Then, from Lemma B.2, we can observe that W−1
3 is expanded as

W−1
3 = Iq−RW3 , where RW3 = (n+λq)

−1/2W−1
3 W̃3. We consider E∗

Y [tr{W2(W1+W2)
−1}],

E∗
Y [tr{W2(W1 +W2)

−1}2] and E∗
Y [tr[{W2(W1 +W2)

−1}2]], where W1 and W2 are given by

(C.1). By using RW3 , we have

E∗
Y [tr{W2(W1 +W2)

−1}] = E∗
Y [tr(Φ−1/2W2Φ

−1/2)]− E∗
Y [tr(Φ−1/2W2Φ

−1/2RW3)],

(C.5)

E∗
Y [tr{W2(W1 +W2)

−1}2] = E∗
Y [tr(Φ−1/2W2Φ

−1/2)2]

− 2E∗
Y [tr(Φ−1/2W2Φ

−1/2)tr(Φ−1/2W2Φ
−1/2RW3)]

+ E∗
Y [tr(Φ−1/2W2Φ

−1/2RW3)
2], (C.6)

E∗
Y [tr[{W2(W1 +W2)

−1}2]] = E∗
Y [tr{(Φ−1/2W2Φ

−1/2)2}]− 2E∗
Y [tr{(Φ−1/2W2Φ

−1/2)2RW3}]

+ E∗
Y [tr{(Φ−1/2W2Φ

−1/2RW3)
2}]. (C.7)

Since Φ−1/2W2Φ
−1/2 is distributed according to Wq(n − p1 − 1,Φ−1), we can calculate the

expectation as follows:

E∗
Y [tr(Φ−1/2W2Φ

−1/2)] = (n− p1)tr(Φ
−1) +O((n+ λq)

−1), (C.8)

E∗
Y [tr(Φ−1/2W2Φ

−1/2)2] = (n− p1)
2tr(Φ−1)2 +O(n(n+ λq)

−2), (C.9)

E∗
Y [tr{(Φ−1/2W2Φ

−1/2)2}] = (n− p1)
2tr(Φ−2) +O(n(n+ λq)

−2). (C.10)
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By using the Cauchy-Schwarz inequality, we have

E∗
Y [tr(Φ−1/2W2Φ

−1/2RW3)]

=
1√

n+ λq

E∗
Y [tr(Φ−1/2W2Φ

−1/2W−1
3 W̃3)]

≤ 1√
n+ λq

E∗
Y [tr{(Φ−1/2W2Φ

−1/2)4}]1/2E∗
Y [tr(W̃ 4

3 )]
1/2E∗

Y [tr(W−2
3 )]1/2

= O((n+ λq)
−1/2), (C.11)

E∗
Y [tr(Φ−1/2W2Φ

−1/2)tr(Φ−1/2W2Φ
−1/2RW3)]

≤ 1√
n+ λq

E∗
Y [tr{(Φ−1/2W2Φ

−1/2)8}]1/4E∗
Y [tr(W̃ 4

3 )]
1/4E∗

Y [tr(W−2
3 )]1/2

= O((n+ λq)
−1/2), (C.12)

E∗
Y [tr(Φ−1/2W2Φ

−1/2RW3)
2]

≤ 1

n+ λq
E∗

Y [tr{(Φ−1/2W2Φ
−1/2)4}2]1/4E∗

Y [tr{(W̃ 4
3 )}2]1/4E∗

Y [tr{(W−2
3 )}2]1/2

= O((n+ λq)
−1/2), (C.13)

E∗
Y [tr{(Φ−1/2W2Φ

−1/2)2RW3}]

≤ 1√
n+ λq

E∗
Y [tr{(Φ−1/2W2Φ

−1/2)4}]1/2E∗
Y [tr(W̃ 8

3 )]
1/4E∗

Y [tr(W−4
3 )]1/4

= O((n+ λq)
−1/2), (C.14)

E∗
Y [tr{(Φ−1/2W2Φ

−1/2RW3)
2}]

≤ 1

(n+ λq)2
E∗

Y [tr{(Φ−1/2W2Φ
−1/2)4}]1/2E∗

Y [tr(W̃ 8
3 )]

1/2E∗
Y [tr(W−8

3 )]1/2

= O((n+ λq)
−1/2). (C.15)

Therefore, from (C.5)-(C.15), we have

E∗
Y [τ̂1] = (p− p1)tr(Φ

−1) +O(pn−1(n+ λq)
−1/2),

E∗
Y [τ̂2] = n(p− p1)tr(Φ

−1)2 +O(pn−1(n+ λq)
−1/2),

E∗
Y [τ̂3] = n(p− p1)tr(Φ

−2) +O(pn−1(n+ λq)
−1/2).

□

D Proofs of Lemma B.1 and B.2

D.1 Proof of Lemma B.1

From a property of a conditional distribution of a multivariate normal distribution (e.g., Sri-

vastava and Khatri, 1979), we have

Y2|Y1 ∼ Nn×(p−p1)(Ω∗ + Y1Γ∗,Σ22·1∗ ⊗ In).

Then, another expression of the true model M∗ is given as follows:

Y1 ∼ Nn×p1(∆1∗,Σ11∗ ⊗ In), Y2|Y1 ∼ Nn×(p−p1)(Ω∗ + Y1Γ∗,Σ22·1∗ ⊗ In).
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On the other hand, we can express Y2 as

Y2 = Ω∗ + Y1Γ∗ +AΣ
1/2
22·1∗, (D.1)

whereA and Y1 are mutually independent, andA is distributed according to Nn×(p−p1)(On,p−p1 ,

Ip−p1 ⊗ In). By using (D.1), nΣ̂22·1, Γ̂, and (δ̂, Γ̂′)′ are expressed as

nΣ̂22·1 = (Ω∗ +AΣ
1/2
22·1∗)

′(In − P(1n,Y1))(Ω∗ +AΣ
1/2
22·1∗). (D.2)

Γ̂ = {Y ′
1 (In − Jn)Y1}−1Y ′

1 (In − Jn)(Ω∗ +AΣ
1/2
22·1∗) + Γ∗,(

δ̂′

Γ̂

)
= {(1n,Y1)

′(1n,Y1)}−1(1n,Y1)
′(Ω∗ + Y1Γ∗ +AΣ

1/2
22·1∗).

Hence, the conditional distribution of nΣ̂22·1, Γ̂, and (δ̂, Γ̂′)′ under Y1 are

nΣ̂22·1|Y1 ∼ Wp−p1(n− p1 − 1,Σ22·1∗; Ω̃∗),

Γ̂|Y1 ∼ Np1×(p−p1)({Y
′
1 (In − Jn)Y1}−1Y ′

1 (In − Jn)Ω∗ + Γ∗,Σ22·1∗ ⊗ {Y ′
1 (In − Jn)Y1}−1),(

δ̂′

Γ̂

)
|Y1

∼ N(p1+1)×(p−p1)({(1n,Y1)
′(1n,Y1)}−1(1n,Y1)

′(Ω∗ + Y1Γ∗),Σ22·1∗ ⊗ {(1n,Y1)
′(1n,Y1)}−1).

From the above equations, we can state that T and U are distributed according to Np1×(p−p1)

(Op,p−p1 , Ip−p1 ⊗Ip1) and N(p1+1)×(p−p1)(Op1+1,p−p1 , Ip−p1 ⊗Ip1+1), respectively, and are inde-

pendent of Y1.

Next, we show that nΣ̂22·1 and (δ̂, Γ̂′)′ are mutually conditionally independent under Y1. It

is straightforward that

{(1n,Y1)
′(1n,Y1)}−1(1n,Y1)

′(In − P(1n,Y1)) = Op1+1,n. (D.3)

Hence, from Cochran’s Theorem, the conditional independence of nΣ̂22·1 and (δ̂, Γ̂′)′ is obtained.

Finally, we consider the case that the model is overspecified. By the definition of overspecified

models in (7), the equation Ω∗ = 1nδ
′
∗ holds. Thus, from (D.2), we can state that

nΣ̂22·1 = Σ
1/2
22·1∗A

′(In − P(1n,Y1))AΣ
1/2
22·1∗ ∼ Wp−p1(n− p1 − 1,Σ22·1∗),

and nΣ̂22·1 and Y1 are mutually independent. Also, T and U are expressed as

T = {Y ′
1 (In − Jn)Y1}1/2(Γ̂− Γ∗)Σ

−1/2
22·1∗,

U = {(1n,Y1)
′(1n,Y1)}1/2

(
δ̂′ − δ′∗

Γ̂− Γ∗

)
Σ

−1/2
22·1∗,

and nΣ̂22·1 and (δ̂, Γ̂′)′ are mutually independent from (D.3). □

D.2 Proof of Lemma B.2

This proof is based on an idea in Hashiyama et al. (2014). From the expectation of a non-

central Wishart distribution, we can calculate the expectations as E[G] = Iq and

E
[
||G− Iq||2

]
= −(n− 1)tr(Φ−2)− (n− 1)tr(Φ−1)2 + 2(q + 1)tr(Φ−1)
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= O((n+ λq)
−1).

The above equation implies that G̃ = Op(1). By applying Taylor expansion to G−1, we derive

G−1 =

(
Iq +

1√
n+ λq

G̃

)−1

= Iq −
1√

n+ λq

G̃+
1

n+ λq
G̃2 +RG, (D.4)

where RG is a remainder term in the Taylor expansion. First, we calculate an explicit form of

RG. From (D.4), the following equation can be derived:

Iq = GG−1

=

(
Iq +

1√
n+ λq

G̃

)(
Iq −

1√
n+ λq

G̃+
1

n+ λq
G̃2 +RG

)

= Iq +GRG − 1

(n+ λq)3/2
G̃3.

From the above equation, RG can be expressed as

RG =
1

(n+ λq)3/2
G−1G̃3.

Next, we show (B.14). By using the Cauchy-Schwarz inequality, we have

E[|tr(D11Φ
−1RG)|] ≤ (n+ λq)

−3/2
{
E[tr(D2

11Φ
−2G̃6)]E[tr(G−2)]

}1/2

.

We can observe that D11Φ
−1 = O(n−1) because

||nD11Φ
−1||2 =

q∑
i=1

(
n+ 1 + λi

n− 1 + λi

)2

= O(1).

By using results for expectations of the multivariate normal random vector (e.g., Gupta and

Nagar, 2000), we can calculate E[tr(D2
11Φ

−2G̃6)] = O(n−2). Therefore, we derive (B.14). □
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