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Abstract

We put forward a variable selection method for selecting explanatory variables in a
normality-assumed multivariate linear regression. It is cumbersome to calculate variable
selection criteria for all subsets of explanatory variables when the number of explanatory
variables is large. Therefore, we propose a fast and consistent variable selection method
based on Zhao et al. (1986) and Nishii et al. (1988). The consistency of the method is
provided by a high-dimensional asymptotic framework such that the dimensions of response
vectors and explanatory vectors p and k may tend to infinity with sample size n but (p+k)/n
converges to a constant within [0,1). Through numerical simulations, it is shown that the
proposed method has a high probability of selecting the true subset of explanatory variables
and is fast under a moderate sample size even when the number of dimensions is large.

1 Introduction

Multivariate linear regression is a widely known method of inferential analysis. It features in
many theoretical and applied textbooks (see, e.g., Srivastava, 2002, chap 9; Timm, 2002, chap 4)
and it is used by researchers in many fields. Let Y be an n X p observation matrix of p response
variables and X be an n X k observation matrix of k non-stochastic explanatory variables, where
n is the sample size, and p and k are the numbers of response variables and explanatory variables,
respectively. Let N =n—p—k+1and D = {(n,p,k) € N3 | N —4 > 0}. Further, we assume
that rank(X) = k and (n,p, k) € D in proposing our method.

In actual empirical contexts, it is important to specify the factors affecting response variables.
In multivariate linear regression, this is regarded as the problem of selecting a subset of explana-
tory variables. Suppose that j denotes a subset of w = {1,...,k} containing k; elements, and
X; denotes the n x k; matrix consisting of columns of X indexed by the elements of j, where
ka denotes the number of elements in a set A, i.e., ka4 = #(A). Next, j expresses the subset

of explanatory variables. For example, if j = {1,2,4}, then X consists of the first, second and
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fourth column vectors of X. Using the notation j, the candidate model with k; explanatory

variables is expressed as follows:

where ©; is a k; xp unknown matrix of regression coefficients and 3; is a pxp unknown covariance
matrix. In particular, the total number of explanatory variables k., and the explanatory matrix
X, in the full model w express k and X, respectively. Herein, we assume that the data are

generated from the following true model with k;, explanatory variables:
Y ~ NnXP(Xj*Q*a 3.0 1,),

where ©, is a k;, x p true unknown matrix of regression coefficients and X, is a p x p true
unknown covariance matrix assuming that X, is positive definite. For expository purposes, we
represent k;, and X, as k, and X, respectively.

To systematize and optimize the configuration of models, variable selection criteria have been
widely used. Mallows (1973; 1995) proposed the C, criterion. In this paper, we focus on
a generalized variable selection criterion based on the C), criterion, termed the Generalized C),
(GC,) criterion. The GC), criterion for a linear regression with a single response was proposed by
Atkinson (1980), and the counterpart for a multivariate linear regression with multiple responses
was proposed by Nagai et al. (2012). The GC,, criterion can express a wide variety of variable
selection criteria, e.g., the C,, criterion for multivariate contexts proposed by Sparks et al. (1983),
and the modified C,, (MC,) criterion proposed by Fujikoshi and Satoh (1997).

The best subset chosen by a variable selection criterion is usually defined as the subset of
explanatory variables which minimizes the value of that criterion among all candidate subsets.
The basic approach to identifying the best subset involves searching over all candidate subsets.
We call this method the ”full search method”. To elaborate, assuming a full search method is
used, variable selection criteria for 2¥ — 1 subsets need to be calculated. Recently, increasing
attention has been paid to investigating statistical methods for high-dimensional data, in which
the dimension of response vectors p or the number of explanatory variables k is large. However,
in high-dimensional data contexts, particularly where k is large, it may be impossible to apply
the full search method because the total number of subsets of explanatory variables exponentially
increases when k becomes large. For example, if £ = 40 and the time taken to calculate a variable
selection criterion for a subset is 0.01 seconds, then the time required to implement the full search
method will be (24° —1) x 0.01 seconds, i.e., about 35 years. Thus, for practical reasons, we need
another search method when k is large. Zhao et al. (1986) and Nishii et al. (1988) proposed a
practicable selection method when k is large. This method is based on the behavior of variable
selection criteria for the subset where a variable is removed from the full set w. In that selection
method, the best subset ; is determined as follows. For each explanatory variable, if the criterion
for the subset where a variable is removed from w is greater than the criterion for the full set
w, then the removed variable is regarded as the element of the best subset. Since this method
is needed to calculate variable selection criteria for only k subsets and w for searching the best
subset 7, we expect that the method is faster than the full search method, and it is practical for
high-dimensional data contexts. We call this method the "ZKB selection method” and consider

it using a class of the GC,, criterion.



An important property of a variable selection criterion is its consistency. Consistency is
achieved where the probability of selecting the true subset j, converges to 1, i.e., P(j =js«) — L
However, since we do not know the true subset j., we often hope to specify j. by variable se-
lection. Then, we should use a variable selection criterion that maximizes the probability of
selecting the true subset. It is expected that a consistent variable selection criterion has a high-
probability of selecting the true subset j,. Hence, it is important to ensure the consistency of the
selection method using a variable selection criterion. To this end, Zhao et al. (1986), Nishii et al.
(1988), Rao and Wu (1989), and Nishii (1988) used the large-sample (LS) asymptotic framework
such that only n tends to infinity. However, it is not appropriate to use the LS asymptotic
framework for high-dimensional data because approximate accuracy using the LS asymptotic
framework deteriorates as p or k become large.

The aim of this paper is to propose the ZKB selection method using a class of the GC,
criterion, which is consistent even in high-dimensional contexts. To achieve this, we use the

following high-dimensional (HD) asymptotic framework:
k
n — oo, ‘Tiace [0,1).
n
Importantly, the HD asymptotic framework includes the following six asymptotic frameworks:

e n — o0, p,k: fixed,

(n,p) — oo, p/n — c €[0,1), k: fixed,

(n,k) = o0, k/n— c€[0,1), p,k.: fixed,

(n,k,ky) = 00, k/n— c€[0,1), p: fixed,
e (n,p, k) = o0, (p+k)/n—cel0,1), k,: fixed,
o (n,p,k, ki) — 00, (p+k)/n—cel0,1).

Hence, our proposed method is consistent under all the above situations. Thus it is expected
that our proposed method will have a high probability of selecting the true subset where n is
large regardless of the sizes of p, k and k,.

The remainder of the paper is organized as follows. In section 2, we present the necessary
notation and assumptions to ensure consistency of our method. In section 3, we put forward the
proposed method, explicate its consistency, and present a fast algorithm. We also propose an
extended ZKB selection method. In section 4, we conduct numerical experiments for verification

purposes. Technical details are relegated to the Appendix.

2 Preliminaries

First, we present the GC,, criterion. Let S; be the unbiased estimator of 3; in model (1),
which is defined by

1
S = Y'(I, - P)Y,
J n—kj ( ])




where P; is the projection matrix to the subspace spanned by the columns of X}, ie., P; =
X;(X;X;)"' X}. Then, the GC), criterion in model (1) is defined by

GCp(j) = (n — k;)tx(S;8,1) + apk;, (2)

where « is a positive constant. The first and second terms in (2) express the residual sum of
squares with the weighted matrix S;! and « times the strength of the penalty for the number
of elements of ®; in model (1), respectively.

Next, we present notation and assumptions to ensure consistency of our method. For a subset
J C w, let a p X p non-centrality matrix and parameter be denoted by

A; =30, x!(I, - P,)X.0.3%;'% 5; = tr(A;). (3)

J

where w; = j° and j¢ denotes as w\j. It should be emphasized that A; = O, , and J; = 0 hold
if and only if j C j¢, where O, is a p x p matrix of zeros. To ensure the consistency of our

method, the following two assumptions are prepared:

Assumption Al. j, C w.

1
A tion A2. V¢ € j,, inf —d&pn > 0.
ssumption i (n,g}%)eD n {¢}

Assumption Al is needed to consider consistency because the probability of selecting the true
subset becomes 0 if it does not hold. Assumption A2 restricts the divergence order of the
non-centrality parameter dgpy. If k is fixed, Assumption A2 is as per what was put forward in
Yanagihara (2016).

Finally, we identify the upper bound of the rank of the non-centrality parameter matrix Aj,
which is used to ensure consistency. For a subset j C w (j # w), let m; and d; be the number

of elements of j and the rank of A; as follows:
mj = #(j), dj =rank(A;). (4)

In accordance with Yanagihara et al. (2015), it follows from Assumption A1l that the rank of

X.(P, — P,,)X, is calculated as
0 (jcje
rank(X. (P, — P,,)X.) = U 5
mj (J CJ)

It is straightforward that rank(©,X;'@’) < min{p, k.}. Since m; < k, holds when j C j,, the
following equation can be derived:

0 (4 <)
min{m;,p}  (j C j«)

d; < min{rank(X/(P, — P,,)X.),rank(©,3,'0))} < { (5)

3 Main Results

3.1 Proposed Selection Method

We define a class of the GC), criterion, denoted as the high-dimensionality-adjusted consistent
generalized C), (HCGC)) criterion:



Definition 3.1. The HCGC,, criterion is defined by the GC), criterion (2) satisfying

_n—k VP ¥ kp
a—N_2+ﬂ,ﬁ>()s.t. QT%/EB—M)o, p 8 —0, (6)

asn — oo, (p+k)/n—cel0,1), for somery €N and ro € N\{1}.
We now introduce the ZKB selection method using a variable selection criterion (SC). Let ¢

be an element of w. The best subset chosen by the ZKB selection method using an SC is written

as
{{ e w | SC(wyey) > SC(w)},

where wyyy expresses {£}¢ or w\{/}. The ZKB selection method is based on the idea that the
value of the SC for the subset where a true variable is removed from w will be greater than that
for w asymptotically. We define the following best subset chosen by the ZKB selection method
using the HCGC,, criterion:

Definition 3.2. The best subset chosen by the ZKB selection method using the HCGC), criterion
is defined by

j={tew| HCGCy(wiy) > HCGC,y(w)}. (7)

Next, to use this method in actual empirical contexts we have to decide the value of a because
the HCGC), criterion is expressed as the class of criteria. Hence, we show the following value of

a

n—k VB B (n—k)VN+p—4 \/Elogn.

N -2 (N-2)VN -4 N ®)

This & is based on Yanagihara (2016). It is straightforward to observe that B is satisfied with
(\/;T)/VE)B — oo and (Vkp/n)B — 0 as n — oo, (p+k)/n — ¢ € [0,1). Therefore, the GO,
criterion with o = & is included in the class of the HC'GC), criterion. In practice, regardless of
whether there is the constant value {(n — k)v/N + p — 4}/{(N — 2)/N — 4} in §3, the criterion
belongs to the class of the HCGC), criterion. However, the constant value plays a role in terms
of stabilizing the behavior of p=*/2{HCGC,(wysy) — HCGCy(w)} for £ € j¢.

Since the ZKB selection method using the GC), criterion only necessitates calculating the
differences GCp(wysy) — GCp(w) for £ = 1,...,k, it can be expected that the calculation time
associated with this method will be shorter than that for the full search method. However, it is

0y = Ko (X, Xogy) 1 XL,
and the calculation time of an inverse matrix costs about the cube of the size of the matrix.
Hence, it is not advisable to calculate (X‘L“}me
this problem, we offer an efficient calculation of GCp(wiepy) — GCp(w). Let 7, and 2, be the
(¢,0)-th element of (X’'X)~! and the /-th column vector of X (X’'X)™!, respectively. Then,

using ry and 2y, we can express P, — P,

important that GC)(wye}) consists of the projection matrix P,

)~! for each £ when k is large. To overcome

«y as follows (the proof of (9) is given in Appendix A):

1
P,-P,, = T—Zzgzz. (9)



Using the above equation, GCy(wysy) — GCp(w) can be expressed as

1
GCp(win) — GCy(w) = —2, Y S;'Y "2, — pa. (10)

Te

Note that (10) does not need to calculate (X[, X )~1if only (X’X)~! can be calculated.

Moreover, the calculation cost of the product of each Yz, relies on n. Hence, we also present

wiey

an efficient calculation of zéYS;lY’z@ when p is small. Let £, be the ¢-th column vector of
SJI/ZY’X(X’X)_l. Then, the following equation can be derived:

2)YS;'Y 'z = t)t,. (11)

Since t, is a p-dimensional vector, the calculation cost of ¢)t, does not rely on n. Therefore, we
propose to use (10) (and also use (11) when p is small) to perform the ZKB selection method

using the GC,, criterion.

3.2 Consistency of Proposed Selection Method

We ensure the consistency of the ZKB selection method using the HCGC, criterion (7). To
do so, we present a lemma for the sufficient conditions for consistency (the proof is given in
Appendix B). Importantly, Lemma 3.1 does not rely on a specific asymptotic framework, indeed

any such framework could be applied here.

Lemma 3.1. Suppose that Assumption A1 and the following equations hold:

Y P(HCGCy(wiyy) > HCGCy(w)) = 0, Y P(HCGCy(wiey) < HCGCy(w)) — 0. (12)
L] L€

Then, the ZKB selection method using the HCGC, criterion (7) is consistent, that is P(j =
Jx) — 1 holds.

By showing that the sufficient conditions (12) in Lemma 3.1 hold, the consistency of the ZKB
selection method using the HCGC,, criterion (7) can be obtained as follows (the proof is given

in Appendix C):

Theorem 3.1. Suppose that Assumptions A1 and A2 hold. Then, the ZKB selection method
using the HCGC,, criterion (7) is consistent as n — oo, (p+k)/n — c€[0,1).

From Theorem 3.1, the ZKB selection method using the HCGC), criterion with o = & given
by (8) is also consistent under Assumptions Al and A2.

3.3 Extension of the ZKB selection method

In the previous sub sections, we proposed the ZKB selection method using the HCGC), crite-
rion (7). However, when the full model w includes several explanatory variables such as multi-
nomial variables, it will be not appropriate to use the ZKB selection method because whether
such explanatory variables should be chosen or not should be decided simultaneously. To over-

come this problem, we extend the ZKB selection method. Let J be a family of sets of some



explanatory variables denoted by J = {j1,...,Jq}, where ¢ is the number of these sets. Since
we suppose dummy variables or non-dummy variables as explanatory variables, we assume that
my, is finite, j, is satisfied with j, C j. or j, C j¢ and j, Njp = 0 (a # b) for ja,jp € J, where
m;, is defined by (4). Then, it is clear that U!_, j, = w holds. For example, if k = 7 and the sets
of explanatory variables are {1}, {2}, {3,5} and {4,6,7} then J = {{1},{2},{3,5},{4,6,7}},
q = 4, and the subsets {3,5} and {4, 6,7} express the subsets of binomial and trinomial dummy
variables, respectively. Using this notation, we consider the following best subset chosen by the
extended ZKB (EZKB) selection method using an SC:

{j € T | SC(wj) > SC(w)}.

We observe that the EZKB selection method is equivalent to the ZKB selection method (7) when
m; =1 (Vj € J) or ¢ = k. Moreover, since the EZKB selection method can accommodate the
selection of grouped explanatory variables, the method is similar to Group Lasso as proposed by
Yuan and Lin (2006). We define the following best subset chosen by the EZKB selection method
using the HCGC,, criterion:

Definition 3.3. The best subset chosen by the EZKDB selection method using the HCGC,, crite-
rion is defined by

jo = {j € T | HOGC,(wj) > HOGC,(w)}. (13)

Next, we ensure the consistency of the EZKB selection method using the HCGC), criterion
(13). Let Iy ={je T |jCistand J- ={j € T |j Cj¢}. Then, as with Lemma 3.1, we
present the following lemma for the sufficient conditions for consistency (the proof is given in
Appendix D).

Lemma 3.2. Suppose that Assumption A1 and the following equations hold:
> P(HCGCy(w;) < HCGCp(w)) 0, Y P(HCGCy(w;) > HCGCp(w)) — 0.
SVAS JET-

Then, the EZKB selection method using the HCGC), criterion (13) is consistent.

Using Lemma 3.2, the consistency of the EZKB selection method using the HCGC), criterion
(13) can be obtained as follows (the proof is given in Appendix E):

Theorem 3.2. Suppose that Assumptions A1 and A2 hold. Then, the EZKB selection method
using the HCGC,, criterion (13) is consistent as n — oo, (p+k)/n —c€[0,1).

From Theorem 3.2, we can observe that the EZKB selection method using the HCGC), criterion
is also consistent as with the ZKB selection method (7). Hence, as an example of the consistent
EZKB selection method, we can use the method using the HCGC), criterion with a = & in (8).

Finally, we provide an efficient calculation of GCp(w;)—GCp(w). Let R; and Z; be the m; xm;
and n x m; matrices consisting of the row and column elements of (X’X)~! and the column
vectors of X (X’X)~! indexed by the elements of j, respectively. For example, if j = {2,5},

then R; and Z; are expressed as

Too  Tos L.
R; = <~ ) . Zj = (Z2,25),

T2  Tss



where Z,, is the (a,b)-element of (X’X)™! and z, is the a-th column vector of X (X’'X)™1.
Then, using R; and Z;, GCp(w;) — GCp(w) can be expressed as

GCy(wj) — GCy(w) = tr(R; ' ZJY S 'Y’ Z;) — mpa. (14)

The proof of the above equation is omitted because it essentially mimics (9). Although (14)
requires the calculation of the inverse matrix of R;, it will not be computationally onerous

because the size is finite.

4 Numerical studies

We present numerical results to explore the validity of our claim based on Monte Carlo simu-
lations with 1,000 iterations executed in MATLAB 9.3.0 on a Panasonic CF-SVTUFKVS with
an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz and 16 GB of RAM. The prob-
abilities of selecting the true subset and the CPU times are presented for the ZKB selection
methods using the HCGC,, criterion with & = & given in (8) and the three GC, criteria
with @ = 2, 2loglogn and logn (named GCI(,I), GC’,(,Q) and GCI(;?’)). The calculations were
performed using (10) (and (11) if p < 100 and & > p). We constructed the true model:
Y ~ Nnxk(X(@;,OZ,k*,p)/,E* ® I,). The explanatory matrix X, the true coefficient ma-

trix ©, and the true covariance matrix X, were determined as follows:
X ~ Nnxk(on,k; ¥ ® In)7 6* ~ Nk* Xp(ok*,pv Ip X Ik)*)v E* = 61{(1 - 52)Ip + 6211)1;}’

where W is the k x k autoregressive matrix with the correlation 1, i.e., (), = Ple=bland 1,
is a p-dimensional vector of ones. Further, we set ¢ = 0.5, {4 = 0.4 and & = 0.8.

For comparison, we also calculated the probabilities of selecting the true subset and the CPU
times using Adaptive Group Lasso (AGL) proposed by Wang and Leng (2008). The estimator
of ® by AGL is written as

k
e, = argmin f(®|7), f(©]7) = tr{(Y - XO)(Y - X©)'} + 7Y w64l (15)

a=1
where 7 is a turning parameter, w, is the weight for the norm ||8,|| = (0.,0,)/?, and 8, is the a-

th column vector of ®'. Each column vector of Y and X in (15) is centralized and standardized.
To optimize (15), we used a coordinate descent algorithm based on Friedman et al. (2010).
The algorithm is given as follows. Let 100 candidates of 7 be 7 = exp{tlog (Tmax + 1)/(100 —
D} —1(t€{0,1,2,...,99}), where Timax = maxi<q<i w, ' ||Y' X4y ||, Initialize 0, = (:)?_gt =
0,60y = (X'X)1X'Y. For t = 1,...,99,

1. Update (:)Eff — @itf: and (égt), .. .,OA,(:))’ — (:)ifal For each a € {1,...,k},

(1). Calculate ¢, = Y' X4y — ZZ&G(X’X)MBA?).
(2). If 7iw, < ||cal|, then update 8% « {(||call — Twa)/((X'X)qallCal]) }Ca, otherwise
0 o
a p-



2. Update (:)?_tft — (éY), ceey éz(f))l- It

é)aft
|1_f( )|

F(©bf|n)

then define @,, = (:)ift , otherwise go back to step 1.

In our setting, we used & = 0.01, and w, was given by ||@L5E||~!, where OL5E is the least square
estimator (LSE) of 8,, ie., (157, .. .,é,%SE)’ = (X'X)"!X'Y. To choose the best turning
parameter, we used three criteria as follows:

7 —arg min 1CY (),

TQseeey T99

. 1 N .
1C9 () = ];tr{(Y ~X0,)(Y —X6,)S;'} + | Aa; (i =1,2,3),

where |A;| is the number of non-zero row vectors of ém and o = 2, as = 2loglogn and
a3 = logn. We name the AGL using IC% () (i = 1,2,3) as AGL®, AGL® and AGL®),
respectively. Table 1 shows the probabilities of selecting the true subset by the ZKB selection
methods using the HCGC), GCZ(,i) (1 = 1,2,3) denoted by HCGC,, GCZ(,i) (1 = 1,2,3) and
AGL® (¢ = 1,2,3). From Table 1, we observe that the selection method using the HCGC),
criterion always exhibits high probabilities of selecting the true subset for all combinations of
n, p, k and k, in Table 1. Although the probabilities by the method using the GC,gg) criterion
also achieve 100%, the performance by the method using the HCGC), criterion is better than
those when the GC’Z(,3) criterion is used when the sample size is moderate. On the other hand,
the probabilities by AGL(") are low as the sample size increases in many cases. The probabilities
by AGL® reach 100% only when the sample size is large and the dimensions are small. The
probabilities by AGL(®) seem to increase slowly in some cases, but are low when k, is large.
Table 2 shows the CPU times by the ZKB selection method using the HCGC), criterion denoted
by HCGC), and AGL®), and the former is faster than the latter. The difference is particularly
clear when the dimensions are large. In sum, the ZKB selection method using the HCGC,
criterion with o = & exhibits the highest probabilities of selecting the true subset and is faster
than AGLs.



Table 1: True subset selection probabilities (%)

n » k k. | HCGC, ccf? acf? acf? AGL®)  AGL®  AGL®)
200 10 10 5 1000 802  99.6  100.0 389 57.9 72.8
500 10 10 5 100.0 838  100.0 100.0  63.9 88.7 92.7
1000 10 10 5 100.0 85.5 100.0 100.0 87.6 89.6 99.3
2000 10 10 5 100.0 85.9 100.0 100.0 87.4 99.5 99.5
3000 10 10 5 100.0  86.6 1000 1000 0.0 100.0  100.0
200 160 10 5 99.9 00 00 02 0.0 0.0 0.4
500 400 10 5 1000 00 00 341 0.0 0.0 20.6
1000 800 10 5 100.0 0.0 0.0 95.7 0.0 0.0 66.4
2000 1600 10 5 100.0 0.0 0.0 100.0 0.0 0.0 86.5
3000 2400 10 5 1000 0.0 00 1000 0.0 0.0 92.6
200 10 160 5 100.0 0.1 201  86.3 1.6 5.6 12.4
500 10 400 5 1000 00 733 999 121 22.6 40.4
1000 10 800 5 100.0 0.0 88.4 100.0 20.5 31.5 52.0
2000 10 1600 5 100.0 0.0 95.0 100.0 27.5 40.8 50.1
3000 10 2400 5 1000 0.0 955 1000  10.4 14.6 52.1
200 10 160 80 99.8 04 358 935 0.0 0.0 0.0
500 10 400 200 | 100.0 0.1 826 100.0 0.0 0.0 10.2
1000 10 800 400 | 100.0 0.0 939 1000 0.0 0.0 0.0
2000 10 1600 800 100.0 0.0 96.8 100.0 0.0 0.0 0.0
3000 10 2400 1200 | 100.0 0.0 982  100.0 0.0 0.0 0.0
200 80 80 5 1000 00 00 344 00 0.1 5.3
500 200 200 5 1000 00 00 997 0.0 5.5 21.9
1000 400 400 5 1000 0.0 03 1000 0.0 922.2 44.3
2000 800 800 5 100.0 0.0 79.6 100.0 0.0 41.7 66.6
3000 1200 1200 5 1000 0.0  99.7 1000 0.0 53.3 78.9
200 80 80 40 | 1000 00 00 527 0.0 0.0 0.3
500 200 200 100 | 100.0 0.0 01  100.0 0.0 0.0 0.0
1000 400 400 200 | 100.0 0.0 3.0 1000 0.0 0.0 2.0
2000 800 800 400 100.0 0.0 89.3 100.0 0.0 0.0 66.5
3000 1200 1200 600 | 100.0 0.0  99.8  100.0 0.0 0.0 95.0
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Table 2: CPU times (s)

n p k k. | HCGC, AGL®
200 10 10 5 0.0012 0.0184
500 10 10 5 0.0028 0.0184
1000 10 10 5 0.0094 0.0233
2000 10 10 5 0.0272 0.0490
3000 10 10 5 0.0635 0.0851
200 160 10 5 0.0036 0.0985
500 400 10 5 0.0476 1.1419
1000 800 10 5 0.3290 6.9375
2000 1600 10 5 2.1253  40.4359
3000 2400 10 5 6.8453  118.6481
200 10 160 5 0.0061 0.5672
500 10 400 5 0.0129 2.9384
1000 10 800 5 0.0562  10.8056
2000 10 1600 5 0.3902  44.1574
3000 10 2400 5 1.0536  103.2526
200 10 160 80 | 0.0026 0.6110
500 10 400 200 | 0.0131 2.8939
1000 10 800 400 | 0.0795  12.2046
2000 10 1600 800 | 0.3588  44.4453
3000 10 2400 1200 | 1.1123  90.9889
200 80 80 5 0.0114 0.3176
500 200 200 5 0.0322 3.1167
1000 400 400 5 0.4416  44.6930
2000 800 800 5 3.9170  560.0503
3000 1200 1200 5 | 11.8998  2256.8923
200 80 80 40 | 0.0101 0.3437
500 200 200 100 | 0.0290 3.3121
1000 400 400 200 | 0.4313  45.2645
2000 800 800 400 | 3.9815  552.0320
3000 1200 1200 600 | 12.1984  2252.4657
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Appendix
A Proof of equation (9)

Without loss of generality, let X = (me,X{g}) for an ¢ € w. Further, let Ry, 7y and r; be

satisfied with
R
( /E rl) — (X/X)—l
rg Ty

Then, using the general formula for the inverse of a block matrix (e.g., Harville, 1997, Theorem
8.5.11), X(X'X) ' X’ and P,

ey can be expressed as follows:

X(X'X)"'X'=X,,,, R X!

w{ey

= X, RiX]

w{ey

wie) +Xw{z}'er~,{£} +X{Z}TQXL{E} +T€X{5}X}L€}v

+7“[1X

/
wiey”

P,

/
wiey T X,

w{e}

From the above equations, we have

/
1
P,—P,, =—X <W> (”) X'
) T T T

Note that 7, is the (¢,£)-th element of (X'X)~!, and X (r},7¢)’ is the {-th column vector of
X (X'X)~L. Therefore, (9) can be derived. O

B Proof of Lemma 3.1
We can express P(j = j.) as follows:
P(j = j.)

=P || [ {HCGC,y(wiyy) — HCGCy(w) > 0} | (| [ {HCGC,(wiey) — HCGC,(w) < 0}
LE] L&

Then, the following lower bound of P(j = j,) can be derived:

P(j = J*)
>1- Y P(HCGCy(wyy) — HCGCy(w) < 0) = > P (HCGCy(wiey) — HCGCy(w) > 0).
LE] &7
This completes the proof of Lemma 3.1. O

C Proof of Theorem 3.1

We first describe two lemmas. The first lemma gives another expression of GCp(w;) — GCp(w)

for j Cw (j # w) (the proof is given in Appendix F):

12



Lemma C.1. For j C w (j # w), suppose that §;; (1 < i < m;) are constants satisfying
tr(A;) =31, 854 and 65, > m;l)\maX(Aj), where A; and m; are defined by (3) and (4), and
Amax (A ;) is the mazimum eigenvalue of A;. Let u;, uj,;, and v; be random variables distributed
according to u; ~ x*(p), uji ~ x*(p;0;:) and v; ~ x*(n—p—k+1) (1 <i < my), where u; and

uj,; are independent of v; for each i. Then, under Assumption Al, we have

m 'LL,L'
(n—k)Y_ ——mpa (j CjS)

GCy(w)) — GCy(w) = il uf | : (C.1)
(n—k)D>_ 2 —mpor (j Cje)

i=1 "

The following lemma is needed to evaluate the divergence orders of the moments of GCp(w;) —

GCp(w) (the proof is given in Appendix G).

Lemma C.2. Let D = {(n,p,k) € N* | N—4 > 0}, where N =n—p—k+1. Suppose that § is a
constant satisfying inf ,, , 1yep n=' >0 and N —4r > 0 for r € N. Let uy, up and v be random
variables distributed according to x*(p), x*(p; ) and x*(N), where uy and uy are independent of

up _ p 48\
v N -2

v. Then, we have

2r
ul p
E[(v N2>

asn—p—k — oo.

=0(p'n"?), E =0(6"n %),

Applying the results of Lemma C.1 for m; = 1 to HCGC)p(wysy) — HCGCy(w), we have

HOGC,(wiey) — HOGC,(w) = (n=h)y=pe (E£5) : (C.2)

(n—k)——pa (L€ )

where u and uy are independent of v, and u ~ x*(p), ug ~ x*(p;d;¢y) and v ~ x*(N). From
(C.2), we have

3" P(HCGC,(wyy) > HCGCy(w)) = (k — k)P (“ > L ka)
0¢;. voon
u p
= (k mp(v N_2>p)
u p
< (k— - — >
< mp(v N_Q‘—f’)’ (C3)
Uy 'Y
Z P(HCGCy(wiey) < HOGCy(w)) = Z P (v < — ka)
LE G Jasy ™
-y p w  Ptopy J0!
L v N-2 N -2
LEj
u Pty Ogey
< — >
_eejp<v N -2 “N-2)’ (C4)




where p = {p/(n — k)}8. Applying Markov’s inequality to (C.3) and (C.4), the following upper

bounds can be derived:

27,
u p —2r U p
— kP | |- — > < — k. tE - — ,
(k= k) (v N—Q‘_p>_(k k) (v N—Q)
—2rg 279
Up D oy oy u  p+oy
P2 — ol > < E|(%_— -
Z%: (v N -2 p’—NQ)—%:(N2 v N-2 P

where r1 and ro are natural numbers defined by (6). From the above equations and Lemma C.2,

the following equations can be derived:

S P(HCGC,(wiyy) > HOGC,(w)) = O(kp™™ 52,

0.
ZZ P(HCGCy(wiey) > HCGCp(w)) = ZZ O(max{p®™ 8725, 32, 6,2 }).
E€Jx €7«

Note that #(j.) < k.. Hence, if (*%/kp/n)B — 0 then *%/k.pB/d;n = o(1) holds, and if
ro € N\{1} then k./ 5?2} — 0 holds from Assumption A2. This gives the following equations for
ro € N\{1}:

Z P(HCGC,(wyey) > HCGCp(w)) = o(1), Z P(HCGCy(wggy) > HCGCp(w)) = o(1).
LE g 0€]

These equations and Lemma 3.1 complete the proof of Theorem 3.1. g

D Proof of Lemma 3.2

We can express P(j7 = j.) as follows:

P(jj :J*)
=P () {HCGCy(wj) — HCGCy(w) > 0} | ()| [| {HCGCy(w;) — HCGCy(w) <0} | |
JETy JjeT-
Then, the following lower bound of P(}'J = j«) can be derived:
P(}J = J*)
>1- > P(HCGC,(w;) — HCGCy(w) < 0) = Y P(HCGCy(w;) — HCGCy(w) > 0).
JjeET+ JjeEIT-
Therefore, Lemma 3.2 can be derived. ]

E Proof of Theorem 3.2

We can apply the results of Lemma C.1 to this proof, i.e., we can express the following
distribution forms of HCGCp(w;) — HCGCp(w):

mj u; .
(n=k)Y ——mpa  (j€I)

HCGCy(w;) — HCGOy(w) = =1 : (E.1)

B mgpa (j € T4)

14



where u; and u;; are independent of v;, and
ui ~ X*(p), uji ~ X3 (0:65,), vi ~x(N) (1 <i < my).

Here, d;,; (1 < i < mj) are constants satisfying Z?;’l 0 = tr(A;) and 6;,; > mj_l)\max(Aj),
where A; is given by (3). When j € Jy, let £ be an element of j, ie., £ € j. Then, since
I, — P, and P,

wiey w (e} ij are semi-positive definite, the following equation can be derived:

tr(A)) = 6y + tr{E PO XL(P,,,, — P.)) X057} > 6.

In addition, let d; = rank(A ;) be defined by (4). From (5), we observe that d; is bounded. Since
djAmax(A;) > tr(A;) holds, the following equation is obtained:

Gj.i = my Amax(Ay) = (mydy) " tr(Ag) = (myd;) oy (E.2)

Now, we derive the divergence orders of }°,. ; P(HCGCp(w;) > HCGCy(w)) and 3¢ 7,
P(HCGCy(w;) < HCGCp(w)). From (E.1), we have

3" P(HCGC,(w)) > HCGCy(w) = > P (; % - nm_jpka>

J€T- jeT- i=1
-2 i)
<y r([E-5yle0). 9
jeJ- i=1 -2
S P(HCGC(w;) < HCGCy(w) = S P (Z i _ m_jpka>
J€T+ JET+ i=1 vi n
< Z ZP (u]Z a)
jeTy i=1 i —k
— Uji p+ 5‘,1’ 5'72'
—gjgp(;—]v_z—w—m)
< ZZ (u”— +_6J;— ’Z]\f”_2> (E.4)
jeEITy i=1

where p = {p/(n — k)}B. Then, by applying Markov’s inequality to (E.3) and (E.4), their

following upper bounds can be derived:

S 3r (i wtalze) < Z o | (5 5)

jeJ- i=1
< Uji P+ 0 9j,i o [ 0 \ 7" Uji P05 2
P 2t v > Js < Js E VI ot .
S r ([ 2 ) < 23 (7 .
jeT4 =1 JETy i=1
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Note that inf(, , x)ep n~16;; > 0 from (E.2). Hence, from the above equations and Lemma C.2,

the following equations can be derived:

27"1
) 72T1E ﬂ _ p
Z m;p <’U1 N —2

JjeET-

m; 5'i —27ry . +5‘,i 2ry m; v 221 s—2r3  s—1
> Z(N]L2> El(li:_];v_jg—p> ]_ Y D Olmax{p™ 25,2 5701,

jedy i=1 JETy i=1

=O(kp~ " p~%m),

Note that m; is bounded and #(J+) < k., and it follows from (E.2) that 5;3 < mjdjé{_é.

Therefore, from Lemma 3.2, Theorem 3.2 can be shown. O

F Proof of Lemma C.1

First, we derive results for the case of j C ji. Let the elements of j be ai,...,am; (as #
as (s #t)), ie, j={a1,...,am,}. Further,let j_o=wjand j_; =j_ ;1 U{a;} (1 <i <my).
Then, it holds that j_ ,,, = w, and we can express GC)(w;) — GCp(w) as follows:

GCy(wy) — GOyw) = S HGCy(s-1) — GCyli 1)}
=1
(=B BB B Y IY (L~ BYY T g, (F1)

Y22 and W = 2. 2Y/(I, — P,)YS, /2. Note that
P,_, - P;_, , and I, — P, are symmetric idempotent matrices, and it holds that (ij,i —
P, )I,-P,)=0,,and (P,_, —P;_, )X, = (I,— P,)X, = Ony,. Then, from a
property of the Wishart distribution and Cochran’s Theorem (e.g. Fujikoshi et al., 2010, chap
2), we can state that W, ; and W' are independent, and W, ; ~ W, (1, I,) and W ~ W, (n—k, I,,).
Thus, (F.1) is expressed as

Let W,, ==, '’Y'(P,_ - P

i J—,i-1

m;
GCp(wj) — GCp(w) = (n— k) Y tr(W;; W) — mjpa. (F.2)
i=1
From a property of the Wishart distribution, W} ; can be expressed as W, ; = z;z;, where z; is
independent of W, and z; ~ N,(0,, I,). Then, we express 2ZIW =1z as

/
Z; %

(i) =W () Py

/ -1
ZW™ 'z, =

Let u; = zlz; and v; = {(2}2;) "/ ?22/W~12,(2/2;)~/?} 1. Then, from a property of the Wishart

distribution, we can state that u; and v; are independent, and u; ~ x?(p) and v; ~ x?(n—p—k+1).

Therefore, tr(W; ;W 1) is expressed as
tr(Wj,iW”) = &

V4

From the above equation and (F.2), we can derive (C.1) for the case of j C j¢.

Next, we derive results for the case of j C j.. Then, GCp(w;) — GCp(w) is expressed as

GCp(wj) — GCp(w) = (n— k)tr[Y'(P, — P, )Y{Y'(I, — P,)Y} '] — m;po. (F.3)
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Let W; = E;UZY’(P‘U — Pw].)YE*fl/Q. Note that P, — P, is symmetric and idempotent,
and it holds that (P, — P,,)(I, — P,) = Oy,. Then, from a property of the non-central
Wishart distribution and Cochran’s Theorem, we can state that W; and W are independent,
and W; ~ W,(m;, I,; A;) and W ~ Wy(n — k, I,). Thus, (F.3) is expressed as

GCy(w;) — GCH(w) = (n — k)tr(W; W) — m,pa. (F.4)

Let the spectral decomposition of A; be A; = QjAjQ;», where @; is the p x p orthogonal
matrix and A; is the p x p diagonal matrix whose a-th diagonal element is an eigenvalue \; 4,
e, Aj = diag(Aj1,-- -, Njp) (Nj1 > --- > Ajp). Let Bj1 = Q;W;Q; and Bj» = Q;WQ;.
Then, from a property of the non-central Wishart distribution, we can state that B;; and B2
are independent and B ~ Wy(m;, Ip; A;) and Bjo ~ Wy(n — k,I,). Let d; = rank(A;) be
defined in (4). It is obvious that ;4,41 = --- = \;, = 0. Since it holds that d; < my from (5),

let T'; be as follows:

A2 O4 »u. ,
Fj = 4,0 3P s A]"o = dlag()\j’l, RN >\j,dj)~
Omj —dj,d; Omj —d;,p—d;

By using T';, we can express Bj; as Bj1 = (£;+T)'(€;+T;), where £ ~ Ny, 5p(Om, p, Ip ®

I,,) and &; is independent of Bjo. Let H = (hi,...,hy,,) be a m; x m; orthogonal matrix

satisfying hy = ml-_l/ 2

i "Ly, and let (n1,...,mm;)" = HT';. Then, we have

/ AJI/OQ Odj ,p—d; /
(’r'17"'7lrlmj) :H ’ :( )\j,lh17"') )\j,djhdjaom‘j,pfdj)'
Om;—d;.d;  Om;—d;.p—d;
Now, we put 6;; = |[m:||> (1 < i < m;). Then, from the above equation, it is straightforward
that ¢;,; > mj_lx\jJ (1 <i<my)and tr(A;) = 31" 655 Let (251,...,2jm,) = HE;. Since
Zj1,- -5 Zjm; ~ Np(0p, Ip), Bj1 can be expressed as
By = (& +T,)H'H(E;+T;) = (HE; + HT;) (HE; + HT)) = > (2 +m) (25 +m:) -
i=1

Then, we can express (z;,; + m)’ijzl(zj_j +m;) as

(2i5 + 1) Bl (20 + mi) = 1250 +mil?

K 7 i2 K i) — — = 11 —1°

! n2 {lz5i +mill =" (2.6 + 1) Bj 3 (253 + m)||z5 +mal |71}

Let ;i = ||z +mil? and v; = {||zj5 +ml |7 (250 + 1) By 5 (z55 + m0)l| 2.6 + mil | 7'} 1. Then,
from a property of the Wishart distribution, we can state that u;; and v; are independent, and

wji ~ x%(p;9;:) and v; ~ x*(n — p — k + 1). Therefore, tr(W;W 1) is expressed as

m;
tr(W, W) = tr(Q;W;Q,;Q;W 'Q;) = tx(Bj1B;3) = > (2 +mi) B;3 (2 + mi)
_ S Uy,i -
=1 Vi
From the above equation and (F.4), we can derive (C.1) for the case of j C j.. O
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G Proof of Lemma C.2

We first describe a lemma concerning the central moments of chi-square and non-central chi-

square random variables; this is required for proving Lemma C.2 (the proof is given in Appendix

Lemma G.1. Let X| ~ x2(t) and Xo ~ x2%(t;1), where 1 is a constant satisfying t/1» = O(1).

Then, we have

1 (h=0)
El(X, -t =< 0 (h=1) , (G.1)
ott/2y (h>2)
1 (h=0
E{Xo—(t+9)}" =4 0 (h= (G-2)

Moreover, when t — 2h > 0, we have

1
11 ’L]
———)1={o (n
(X1 t— 2) O(t=2n+1h/2y  (h > 2)

E

I
—
—
Q
N

where |h] is the floor function defined by |h| = max{m € Z | m < h}.

Let £ =1/(N —2) and {s = p+ J. Then, we have

% - pr 5 = (m=p) (v = +p™ =& +E(wm —p),
)
L P (=)0 -+ &0 — ) + € — &),

Hence, from the multinomial theorem, we have

i 27] 21
pl(2-55) |- X Elsenw-peset -0l @
L J a+b+c=2r
0<a,b,c<2r
i 5 2r7] 21
el (-v) |- > Sl — )BT - 97 (@)
L . a+b+c=2r
0<a,b,c<2r

From the assumption inf(, j r)ep n=d > 0, it follows that p/§ = O(1). Therefore, from (G.1),
(G.2), and (G.3), the divergence orders in (G.4) and (G.5) are maximized when a = b = 0, ¢ = 2.
Therefore, we can derive the divergence orders as follows:
pl(m__p \” up _ poNY
v N -2 v N -2

=0 %), B = O(6™n2").
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H Proof of Lemma G.1

We elaborate only on the case of h > 2 because it is straightforward when h = 0,1. First,
we derive (G.1) and (G.2). Let hq,...,hq be natural numbers satisfying 2?21 h; = h and
2 < hy,...,hg. From Stuart and Ord (1994), we can state that h-th central moments can be
expressed as the linear combination of the products of hq, ..., hg-th cumulants. From Lancaster
(1982) and Tiku (1985), h-th cumulants of X; —¢ and X5 — (t+1)) can, respectively, be expressed

as follows:
kg =2""N(h = 1)lt, ko =2""1(h— DI+ h).

Then, it follows from t/¢ = O(1) that kj 2 = O(%). Therefore, we observe that the maximum
order term of each h-th central moment is /@Z’/iz if h is even and /ﬁgbfl)/zflngﬂ if hisodd (i = 1,2).
This completes (G.1) and (G.2).

Next, we derive (G.3). From the multinomial theorem, we have

:g;i!(hhi ! (‘ti2)h_iE l();)]

<

1 h h 1 h—1 Bl 'h—i
- 1-2) Ht_Qd[{_(t—2)}h+zM{—(t—2)}’H{t—2h+2(d—1)} :
d=1 =0 d=1

Let T ~ x2(t — 2h), then it is known that

E[Th—i] _ { 1 ‘ (7’ = h)
Pt —2h4+2d-1)} ((i<h-1)

Hence, by letting s = {—(t — 2)} " [T}_,(t — 2d)~", we have

1=

E

= sE[{T — (t - 2)}"]

h
= sZi!(,fi,.)!{—%h— DY BT - (t —2h)}" 7). (H.1)
i=0
Note that s = O(t~2") and it follows from (G.1) that
1 (i =h)
BT —(t—2m)}""]=4 0 (i=h-1) . (H.2)

h—1
O(tlh=0/21y (i < h —2)

The equations (H.1) and (H.2) complete (G.3). O
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