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Abstract

We put forward a variable selection method for selecting explanatory variables in a
normality-assumed multivariate linear regression. It is cumbersome to calculate variable
selection criteria for all subsets of explanatory variables when the number of explanatory
variables is large. Therefore, we propose a fast and consistent variable selection method
based on Zhao et al. (1986) and Nishii et al. (1988). The consistency of the method is
provided by a high-dimensional asymptotic framework such that the dimensions of response
vectors and explanatory vectors p and k may tend to infinity with sample size n but (p+k)/n
converges to a constant within [0, 1). Through numerical simulations, it is shown that the
proposed method has a high probability of selecting the true subset of explanatory variables
and is fast under a moderate sample size even when the number of dimensions is large.

1 Introduction

Multivariate linear regression is a widely known method of inferential analysis. It features in

many theoretical and applied textbooks (see, e.g., Srivastava, 2002, chap 9; Timm, 2002, chap 4)

and it is used by researchers in many fields. Let Y be an n× p observation matrix of p response

variables and X be an n×k observation matrix of k non-stochastic explanatory variables, where

n is the sample size, and p and k are the numbers of response variables and explanatory variables,

respectively. Let N = n− p− k + 1 and D = {(n, p, k) ∈ N3 | N − 4 > 0}. Further, we assume

that rank(X) = k and (n, p, k) ∈ D in proposing our method.

In actual empirical contexts, it is important to specify the factors affecting response variables.

In multivariate linear regression, this is regarded as the problem of selecting a subset of explana-

tory variables. Suppose that j denotes a subset of ω = {1, . . . , k} containing kj elements, and

Xj denotes the n × kj matrix consisting of columns of X indexed by the elements of j, where

kA denotes the number of elements in a set A, i.e., kA = #(A). Next, j expresses the subset

of explanatory variables. For example, if j = {1, 2, 4}, then Xj consists of the first, second and
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fourth column vectors of X. Using the notation j, the candidate model with kj explanatory

variables is expressed as follows:

Y ∼ Nn×p(XjΘj ,Σj ⊗ In), (1)

whereΘj is a kj×p unknown matrix of regression coefficients andΣj is a p×p unknown covariance

matrix. In particular, the total number of explanatory variables kω and the explanatory matrix

Xω in the full model ω express k and X, respectively. Herein, we assume that the data are

generated from the following true model with kj∗ explanatory variables:

Y ∼ Nn×p(Xj∗Θ∗,Σ∗ ⊗ In),

where Θ∗ is a kj∗ × p true unknown matrix of regression coefficients and Σ∗ is a p × p true

unknown covariance matrix assuming that Σ∗ is positive definite. For expository purposes, we

represent kj∗ and Xj∗ as k∗ and X∗, respectively.

To systematize and optimize the configuration of models, variable selection criteria have been

widely used. Mallows (1973; 1995) proposed the Cp criterion. In this paper, we focus on

a generalized variable selection criterion based on the Cp criterion, termed the Generalized Cp

(GCp) criterion. The GCp criterion for a linear regression with a single response was proposed by

Atkinson (1980), and the counterpart for a multivariate linear regression with multiple responses

was proposed by Nagai et al. (2012). The GCp criterion can express a wide variety of variable

selection criteria, e.g., the Cp criterion for multivariate contexts proposed by Sparks et al. (1983),

and the modified Cp (MCp) criterion proposed by Fujikoshi and Satoh (1997).

The best subset chosen by a variable selection criterion is usually defined as the subset of

explanatory variables which minimizes the value of that criterion among all candidate subsets.

The basic approach to identifying the best subset involves searching over all candidate subsets.

We call this method the ”full search method”. To elaborate, assuming a full search method is

used, variable selection criteria for 2k − 1 subsets need to be calculated. Recently, increasing

attention has been paid to investigating statistical methods for high-dimensional data, in which

the dimension of response vectors p or the number of explanatory variables k is large. However,

in high-dimensional data contexts, particularly where k is large, it may be impossible to apply

the full search method because the total number of subsets of explanatory variables exponentially

increases when k becomes large. For example, if k = 40 and the time taken to calculate a variable

selection criterion for a subset is 0.01 seconds, then the time required to implement the full search

method will be (240−1)×0.01 seconds, i.e., about 35 years. Thus, for practical reasons, we need

another search method when k is large. Zhao et al. (1986) and Nishii et al. (1988) proposed a

practicable selection method when k is large. This method is based on the behavior of variable

selection criteria for the subset where a variable is removed from the full set ω. In that selection

method, the best subset ĵ is determined as follows. For each explanatory variable, if the criterion

for the subset where a variable is removed from ω is greater than the criterion for the full set

ω, then the removed variable is regarded as the element of the best subset. Since this method

is needed to calculate variable selection criteria for only k subsets and ω for searching the best

subset ĵ, we expect that the method is faster than the full search method, and it is practical for

high-dimensional data contexts. We call this method the ”ZKB selection method” and consider

it using a class of the GCp criterion.
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An important property of a variable selection criterion is its consistency. Consistency is

achieved where the probability of selecting the true subset j∗ converges to 1, i.e., P (ĵ = j∗)→ 1.

However, since we do not know the true subset j∗, we often hope to specify j∗ by variable se-

lection. Then, we should use a variable selection criterion that maximizes the probability of

selecting the true subset. It is expected that a consistent variable selection criterion has a high-

probability of selecting the true subset j∗. Hence, it is important to ensure the consistency of the

selection method using a variable selection criterion. To this end, Zhao et al. (1986), Nishii et al.

(1988), Rao and Wu (1989), and Nishii (1988) used the large-sample (LS) asymptotic framework

such that only n tends to infinity. However, it is not appropriate to use the LS asymptotic

framework for high-dimensional data because approximate accuracy using the LS asymptotic

framework deteriorates as p or k become large.

The aim of this paper is to propose the ZKB selection method using a class of the GCp

criterion, which is consistent even in high-dimensional contexts. To achieve this, we use the

following high-dimensional (HD) asymptotic framework:

n→∞, p+ k

n
→ c ∈ [0, 1).

Importantly, the HD asymptotic framework includes the following six asymptotic frameworks:

• n→∞, p, k: fixed,

• (n, p)→∞, p/n→ c ∈ [0, 1), k: fixed,

• (n, k)→∞, k/n→ c ∈ [0, 1), p, k∗: fixed,

• (n, k, k∗)→∞, k/n→ c ∈ [0, 1), p: fixed,

• (n, p, k)→∞, (p+ k)/n→ c ∈ [0, 1), k∗: fixed,

• (n, p, k, k∗)→∞, (p+ k)/n→ c ∈ [0, 1).

Hence, our proposed method is consistent under all the above situations. Thus it is expected

that our proposed method will have a high probability of selecting the true subset where n is

large regardless of the sizes of p, k and k∗.

The remainder of the paper is organized as follows. In section 2, we present the necessary

notation and assumptions to ensure consistency of our method. In section 3, we put forward the

proposed method, explicate its consistency, and present a fast algorithm. We also propose an

extended ZKB selection method. In section 4, we conduct numerical experiments for verification

purposes. Technical details are relegated to the Appendix.

2 Preliminaries

First, we present the GCp criterion. Let Sj be the unbiased estimator of Σj in model (1),

which is defined by

Sj =
1

n− kj
Y ′(In − Pj)Y ,
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where Pj is the projection matrix to the subspace spanned by the columns of Xj , i.e., Pj =

Xj(X
′
jXj)

−1X ′
j . Then, the GCp criterion in model (1) is defined by

GCp(j) = (n− kj)tr(SjS−1
ω ) + αpkj , (2)

where α is a positive constant. The first and second terms in (2) express the residual sum of

squares with the weighted matrix S−1
ω and α times the strength of the penalty for the number

of elements of Θj in model (1), respectively.

Next, we present notation and assumptions to ensure consistency of our method. For a subset

j ⊂ ω, let a p× p non-centrality matrix and parameter be denoted by

∆j = Σ
−1/2
∗ Θ′

∗X
′
∗(In − Pωj

)X∗Θ∗Σ
−1/2
∗ , δj = tr(∆j). (3)

where ωj = jc and jc denotes as ω\j. It should be emphasized that ∆j = Op,p and δj = 0 hold

if and only if j ⊂ jc∗, where Op,p is a p × p matrix of zeros. To ensure the consistency of our

method, the following two assumptions are prepared:

Assumption A1. j∗ ⊂ ω.
Assumption A2. ∀ℓ ∈ j∗, inf

(n,p,k)∈D

1

n
δ{ℓ} > 0.

Assumption A1 is needed to consider consistency because the probability of selecting the true

subset becomes 0 if it does not hold. Assumption A2 restricts the divergence order of the

non-centrality parameter δ{ℓ}. If k is fixed, Assumption A2 is as per what was put forward in

Yanagihara (2016).

Finally, we identify the upper bound of the rank of the non-centrality parameter matrix ∆j ,

which is used to ensure consistency. For a subset j ⊂ ω (j ̸= ω), let mj and dj be the number

of elements of j and the rank of ∆j as follows:

mj = #(j), dj = rank(∆j). (4)

In accordance with Yanagihara et al. (2015), it follows from Assumption A1 that the rank of

X ′
∗(Pω − Pωj )X∗ is calculated as

rank(X ′
∗(Pω − Pωj )X∗) =

{
0 (j ⊂ jc∗)
mj (j ⊂ j∗)

.

It is straightforward that rank(Θ∗Σ
−1
∗ Θ′

∗) ≤ min{p, k∗}. Since mj ≤ k∗ holds when j ⊂ j∗, the
following equation can be derived:

dj ≤ min{rank(X ′
∗(Pω − Pωj )X∗), rank(Θ∗Σ

−1
∗ Θ′

∗)} ≤

{
0 (j ⊂ jc∗)
min{mj , p} (j ⊂ j∗)

. (5)

3 Main Results

3.1 Proposed Selection Method

We define a class of the GCp criterion, denoted as the high-dimensionality-adjusted consistent

generalized Cp (HCGCp) criterion:
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Definition 3.1. The HCGCp criterion is defined by the GCp criterion (2) satisfying

α =
n− k
N − 2

+ β, β > 0 s.t.

√
p

2r1
√
k
β →∞,

2r2
√
kp

n
β → 0, (6)

as n→∞, (p+ k)/n→ c ∈ [0, 1), for some r1 ∈ N and r2 ∈ N\{1}.

We now introduce the ZKB selection method using a variable selection criterion (SC). Let ℓ

be an element of ω. The best subset chosen by the ZKB selection method using an SC is written

as

{ℓ ∈ ω | SC(ω{ℓ}) > SC(ω)},

where ω{ℓ} expresses {ℓ}c or ω\{ℓ}. The ZKB selection method is based on the idea that the

value of the SC for the subset where a true variable is removed from ω will be greater than that

for ω asymptotically. We define the following best subset chosen by the ZKB selection method

using the HCGCp criterion:

Definition 3.2. The best subset chosen by the ZKB selection method using the HCGCp criterion

is defined by

ĵ = {ℓ ∈ ω | HCGCp(ω{ℓ}) > HCGCp(ω)}. (7)

Next, to use this method in actual empirical contexts we have to decide the value of α because

the HCGCp criterion is expressed as the class of criteria. Hence, we show the following value of

α:

α̃ =
n− k
N − 2

+ β̃, β̃ =
(n− k)

√
N + p− 4

(N − 2)
√
N − 4

·
4
√
k log n
√
p

. (8)

This α̃ is based on Yanagihara (2016). It is straightforward to observe that β̃ is satisfied with

(
√
p/ 6
√
k)β̃ → ∞ and ( 6

√
kp/n)β̃ → 0 as n → ∞, (p + k)/n → c ∈ [0, 1). Therefore, the GCp

criterion with α = α̃ is included in the class of the HCGCp criterion. In practice, regardless of

whether there is the constant value {(n− k)
√
N + p− 4}/{(N − 2)

√
N − 4} in β̃, the criterion

belongs to the class of the HCGCp criterion. However, the constant value plays a role in terms

of stabilizing the behavior of p−1/2{HCGCp(ω{ℓ})−HCGCp(ω)} for ℓ ∈ jc∗.
Since the ZKB selection method using the GCp criterion only necessitates calculating the

differences GCp(ω{ℓ}) − GCp(ω) for ℓ = 1, . . . , k, it can be expected that the calculation time

associated with this method will be shorter than that for the full search method. However, it is

important that GCp(ω{ℓ}) consists of the projection matrix Pω{ℓ} = Xω{ℓ}(X
′
ω{ℓ}

Xω{ℓ})
−1X ′

ω{ℓ}

and the calculation time of an inverse matrix costs about the cube of the size of the matrix.

Hence, it is not advisable to calculate (X ′
ω{ℓ}

Xω{ℓ})
−1 for each ℓ when k is large. To overcome

this problem, we offer an efficient calculation of GCp(ω{ℓ}) − GCp(ω). Let rℓ and zℓ be the

(ℓ, ℓ)-th element of (X ′X)−1 and the ℓ-th column vector of X(X ′X)−1, respectively. Then,

using rℓ and zℓ, we can express Pω −Pω{ℓ} as follows (the proof of (9) is given in Appendix A):

Pω − Pω{ℓ} =
1

rℓ
zℓz

′
ℓ. (9)
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Using the above equation, GCp(ω{ℓ})−GCp(ω) can be expressed as

GCp(ω{ℓ})−GCp(ω) =
1

rℓ
z′
ℓY S−1

ω Y ′zℓ − pα. (10)

Note that (10) does not need to calculate (X ′
ω{ℓ}

Xω{ℓ})
−1 if only (X ′X)−1 can be calculated.

Moreover, the calculation cost of the product of each Y ′zℓ relies on n. Hence, we also present

an efficient calculation of z′
ℓY S−1

ω Y ′zℓ when p is small. Let tℓ be the ℓ-th column vector of

S
−1/2
ω Y ′X(X ′X)−1. Then, the following equation can be derived:

z′
ℓY S−1

ω Y ′zℓ = t′ℓtℓ. (11)

Since tℓ is a p-dimensional vector, the calculation cost of t′ℓtℓ does not rely on n. Therefore, we

propose to use (10) (and also use (11) when p is small) to perform the ZKB selection method

using the GCp criterion.

3.2 Consistency of Proposed Selection Method

We ensure the consistency of the ZKB selection method using the HCGCp criterion (7). To

do so, we present a lemma for the sufficient conditions for consistency (the proof is given in

Appendix B). Importantly, Lemma 3.1 does not rely on a specific asymptotic framework, indeed

any such framework could be applied here.

Lemma 3.1. Suppose that Assumption A1 and the following equations hold:∑
ℓ/∈j∗

P (HCGCp(ω{ℓ}) > HCGCp(ω))→ 0,
∑
ℓ∈j∗

P (HCGCp(ω{ℓ}) < HCGCp(ω))→ 0. (12)

Then, the ZKB selection method using the HCGCp criterion (7) is consistent, that is P (ĵ =

j∗)→ 1 holds.

By showing that the sufficient conditions (12) in Lemma 3.1 hold, the consistency of the ZKB

selection method using the HCGCp criterion (7) can be obtained as follows (the proof is given

in Appendix C):

Theorem 3.1. Suppose that Assumptions A1 and A2 hold. Then, the ZKB selection method

using the HCGCp criterion (7) is consistent as n→∞, (p+ k)/n→ c ∈ [0, 1).

From Theorem 3.1, the ZKB selection method using the HCGCp criterion with α = α̃ given

by (8) is also consistent under Assumptions A1 and A2.

3.3 Extension of the ZKB selection method

In the previous sub sections, we proposed the ZKB selection method using the HCGCp crite-

rion (7). However, when the full model ω includes several explanatory variables such as multi-

nomial variables, it will be not appropriate to use the ZKB selection method because whether

such explanatory variables should be chosen or not should be decided simultaneously. To over-

come this problem, we extend the ZKB selection method. Let J be a family of sets of some
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explanatory variables denoted by J = {j1, . . . , jq}, where q is the number of these sets. Since

we suppose dummy variables or non-dummy variables as explanatory variables, we assume that

mja is finite, ja is satisfied with ja ⊂ j∗ or ja ⊂ jc∗ and ja ∩ jb = ∅ (a ̸= b) for ja, jb ∈ J , where
mja is defined by (4). Then, it is clear that ∪qa=1ja = ω holds. For example, if k = 7 and the sets

of explanatory variables are {1}, {2}, {3, 5} and {4, 6, 7} then J = {{1}, {2}, {3, 5}, {4, 6, 7}},
q = 4, and the subsets {3, 5} and {4, 6, 7} express the subsets of binomial and trinomial dummy

variables, respectively. Using this notation, we consider the following best subset chosen by the

extended ZKB (EZKB) selection method using an SC:

{j ∈ J | SC(ωj) > SC(ω)}.

We observe that the EZKB selection method is equivalent to the ZKB selection method (7) when

mj = 1 (∀j ∈ J ) or q = k. Moreover, since the EZKB selection method can accommodate the

selection of grouped explanatory variables, the method is similar to Group Lasso as proposed by

Yuan and Lin (2006). We define the following best subset chosen by the EZKB selection method

using the HCGCp criterion:

Definition 3.3. The best subset chosen by the EZKB selection method using the HCGCp crite-

rion is defined by

ĵJ = {j ∈ J | HCGCp(ωj) > HCGCp(ω)}. (13)

Next, we ensure the consistency of the EZKB selection method using the HCGCp criterion

(13). Let J+ = {j ∈ J | j ⊂ j∗} and J− = {j ∈ J | j ⊂ jc∗}. Then, as with Lemma 3.1, we

present the following lemma for the sufficient conditions for consistency (the proof is given in

Appendix D).

Lemma 3.2. Suppose that Assumption A1 and the following equations hold:∑
j∈J+

P (HCGCp(ωj) < HCGCp(ω))→ 0,
∑
j∈J−

P (HCGCp(ωj) > HCGCp(ω))→ 0.

Then, the EZKB selection method using the HCGCp criterion (13) is consistent.

Using Lemma 3.2, the consistency of the EZKB selection method using the HCGCp criterion

(13) can be obtained as follows (the proof is given in Appendix E):

Theorem 3.2. Suppose that Assumptions A1 and A2 hold. Then, the EZKB selection method

using the HCGCp criterion (13) is consistent as n→∞, (p+ k)/n→ c ∈ [0, 1).

From Theorem 3.2, we can observe that the EZKB selection method using theHCGCp criterion

is also consistent as with the ZKB selection method (7). Hence, as an example of the consistent

EZKB selection method, we can use the method using the HCGCp criterion with α = α̃ in (8).

Finally, we provide an efficient calculation of GCp(ωj)−GCp(ω). LetRj and Zj be themj×mj

and n × mj matrices consisting of the row and column elements of (X ′X)−1 and the column

vectors of X(X ′X)−1 indexed by the elements of j, respectively. For example, if j = {2, 5},
then Rj and Zj are expressed as

Rj =

(
x̃22 x̃25

x̃52 x̃55

)
, Zj = (z̃2, z̃5),
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where x̃ab is the (a, b)-element of (X ′X)−1 and z̃a is the a-th column vector of X(X ′X)−1.

Then, using Rj and Zj , GCp(ωj)−GCp(ω) can be expressed as

GCp(ωj)−GCp(ω) = tr(R−1
j Z ′

jY S−1
ω Y ′Zj)−mjpα. (14)

The proof of the above equation is omitted because it essentially mimics (9). Although (14)

requires the calculation of the inverse matrix of Rj , it will not be computationally onerous

because the size is finite.

4 Numerical studies

We present numerical results to explore the validity of our claim based on Monte Carlo simu-

lations with 1, 000 iterations executed in MATLAB 9.3.0 on a Panasonic CF-SV7UFKVS with

an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz and 16 GB of RAM. The prob-

abilities of selecting the true subset and the CPU times are presented for the ZKB selection

methods using the HCGCp criterion with α = α̃ given in (8) and the three GCp criteria

with α = 2, 2 log log n and log n (named GC
(1)
p , GC

(2)
p and GC

(3)
p ). The calculations were

performed using (10) (and (11) if p < 100 and k ≥ p). We constructed the true model:

Y ∼ Nn×k(X(Θ′
∗,O

′
k−k∗,p)

′,Σ∗ ⊗ In). The explanatory matrix X, the true coefficient ma-

trix Θ∗ and the true covariance matrix Σ∗ were determined as follows:

X ∼ Nn×k(On,k,Ψ⊗ In), Θ∗ ∼ Nk∗×p(Ok∗,p, Ip ⊗ Ik∗), Σ∗ = ξ1{(1− ξ2)Ip + ξ21p1
′
p},

where Ψ is the k × k autoregressive matrix with the correlation ψ, i.e., (Ψ)ab = ψ|a−b|, and 1p

is a p-dimensional vector of ones. Further, we set ψ = 0.5, ξ1 = 0.4 and ξ2 = 0.8.

For comparison, we also calculated the probabilities of selecting the true subset and the CPU

times using Adaptive Group Lasso (AGL) proposed by Wang and Leng (2008). The estimator

of Θ by AGL is written as

Θ̂τ = argmin
Θ

f(Θ|τ), f(Θ|τ) = tr{(Y −XΘ)(Y −XΘ)′}+ τ
k∑
a=1

wa||θa||, (15)

where τ is a turning parameter, wa is the weight for the norm ||θa|| = (θ′
aθa)

1/2, and θa is the a-

th column vector of Θ′. Each column vector of Y and X in (15) is centralized and standardized.

To optimize (15), we used a coordinate descent algorithm based on Friedman et al. (2010).

The algorithm is given as follows. Let 100 candidates of τ be τt = exp{t log (τmax + 1)/(100 −
1)} − 1 (t ∈ {0, 1, 2, . . . , 99}), where τmax = max1≤a≤k w

−1
a ||Y ′X{a}||. Initialize Θ̂τ0 = Θ̂aft

τ0 =

(θ̂
(0)
1 , . . . , θ̂

(0)
k )′ = (X ′X)−1X ′Y . For t = 1, . . . , 99,

1. Update Θ̂bef
τt ← Θ̂aft

τt−1
and (θ̂

(t)
1 , . . . , θ̂

(t)
k )′ ← Θ̂aft

τt−1
. For each a ∈ {1, . . . , k},

(1). Calculate ca = Y ′X{a} −
∑k
i ̸=a(X

′X)aiθ̂
(t)
i .

(2). If τtwa ≤ ||ca||, then update θ̂
(t)
a ← {(||ca|| − τtwa)/((X ′X)aa||ca||)}ca, otherwise

θ̂
(t)
a ← 0p.
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2. Update Θ̂aft
τt ← (θ̂

(t)
1 , . . . , θ̂

(t)
k )′. If ∣∣∣∣∣1− f(Θ̂aft

τt |τt)
f(Θ̂bef

τt |τt)

∣∣∣∣∣ < ε,

then define Θ̂τt = Θ̂aft
τt , otherwise go back to step 1.

In our setting, we used ε = 0.01, and wa was given by ||θ̂LSE
a ||−1, where θ̂LSE

a is the least square

estimator (LSE) of θa, i.e., (θ̂LSE
1 , . . . , θ̂LSE

k )′ = (X ′X)−1X ′Y . To choose the best turning

parameter, we used three criteria as follows:

τ̂ (i) = arg min
τ0,...,τ99

IC(i)(τt),

IC(i)(τt) =
1

p
tr{(Y −XΘ̂τt)

′(Y −XΘ̂τt)S
−1
ω }+ |At|αi (i = 1, 2, 3),

where |At| is the number of non-zero row vectors of Θ̂τt , and α1 = 2, α2 = 2 log log n and

α3 = log n. We name the AGL using IC(i)(τt) (i = 1, 2, 3) as AGL(1), AGL(2) and AGL(3),

respectively. Table 1 shows the probabilities of selecting the true subset by the ZKB selection

methods using the HCGCp, GC
(i)
p (i = 1, 2, 3) denoted by HCGCp, GC

(i)
p (i = 1, 2, 3) and

AGL(i) (i = 1, 2, 3). From Table 1, we observe that the selection method using the HCGCp

criterion always exhibits high probabilities of selecting the true subset for all combinations of

n, p, k and k∗ in Table 1. Although the probabilities by the method using the GC
(3)
p criterion

also achieve 100%, the performance by the method using the HCGCp criterion is better than

those when the GC
(3)
p criterion is used when the sample size is moderate. On the other hand,

the probabilities by AGL(1) are low as the sample size increases in many cases. The probabilities

by AGL(2) reach 100% only when the sample size is large and the dimensions are small. The

probabilities by AGL(3) seem to increase slowly in some cases, but are low when k∗ is large.

Table 2 shows the CPU times by the ZKB selection method using the HCGCp criterion denoted

by HCGCp and AGL(3), and the former is faster than the latter. The difference is particularly

clear when the dimensions are large. In sum, the ZKB selection method using the HCGCp

criterion with α = α̃ exhibits the highest probabilities of selecting the true subset and is faster

than AGLs.
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Table 1: True subset selection probabilities (%)

n p k k∗ HCGCp GC
(1)
p GC

(2)
p GC

(3)
p AGL(1) AGL(2) AGL(3)

200 10 10 5 100.0 80.2 99.6 100.0 38.9 57.9 72.8

500 10 10 5 100.0 83.8 100.0 100.0 63.9 88.7 92.7

1000 10 10 5 100.0 85.5 100.0 100.0 87.6 89.6 99.3

2000 10 10 5 100.0 85.9 100.0 100.0 87.4 99.5 99.5

3000 10 10 5 100.0 86.6 100.0 100.0 0.0 100.0 100.0

200 160 10 5 99.9 0.0 0.0 0.2 0.0 0.0 0.4

500 400 10 5 100.0 0.0 0.0 34.1 0.0 0.0 29.6

1000 800 10 5 100.0 0.0 0.0 95.7 0.0 0.0 66.4

2000 1600 10 5 100.0 0.0 0.0 100.0 0.0 0.0 86.5

3000 2400 10 5 100.0 0.0 0.0 100.0 0.0 0.0 92.6

200 10 160 5 100.0 0.1 20.1 86.3 1.6 5.6 12.4

500 10 400 5 100.0 0.0 73.3 99.9 12.1 22.6 40.4

1000 10 800 5 100.0 0.0 88.4 100.0 20.5 31.5 52.0

2000 10 1600 5 100.0 0.0 95.0 100.0 27.5 40.8 50.1

3000 10 2400 5 100.0 0.0 95.5 100.0 10.4 14.6 52.1

200 10 160 80 99.8 0.4 35.8 93.5 0.0 0.0 0.0

500 10 400 200 100.0 0.1 82.6 100.0 0.0 0.0 10.2

1000 10 800 400 100.0 0.0 93.9 100.0 0.0 0.0 0.0

2000 10 1600 800 100.0 0.0 96.8 100.0 0.0 0.0 0.0

3000 10 2400 1200 100.0 0.0 98.2 100.0 0.0 0.0 0.0

200 80 80 5 100.0 0.0 0.0 34.4 0.0 0.1 5.3

500 200 200 5 100.0 0.0 0.0 99.7 0.0 5.5 21.9

1000 400 400 5 100.0 0.0 0.3 100.0 0.0 22.2 44.3

2000 800 800 5 100.0 0.0 79.6 100.0 0.0 41.7 66.6

3000 1200 1200 5 100.0 0.0 99.7 100.0 0.0 53.3 78.9

200 80 80 40 100.0 0.0 0.0 52.7 0.0 0.0 0.3

500 200 200 100 100.0 0.0 0.1 100.0 0.0 0.0 0.0

1000 400 400 200 100.0 0.0 3.0 100.0 0.0 0.0 2.0

2000 800 800 400 100.0 0.0 89.3 100.0 0.0 0.0 66.5

3000 1200 1200 600 100.0 0.0 99.8 100.0 0.0 0.0 95.0
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Table 2: CPU times (s)

n p k k∗ HCGCp AGL(3)

200 10 10 5 0.0012 0.0184

500 10 10 5 0.0028 0.0184

1000 10 10 5 0.0094 0.0233

2000 10 10 5 0.0272 0.0490

3000 10 10 5 0.0635 0.0851

200 160 10 5 0.0036 0.0985

500 400 10 5 0.0476 1.1419

1000 800 10 5 0.3290 6.9375

2000 1600 10 5 2.1253 40.4359

3000 2400 10 5 6.8453 118.6481

200 10 160 5 0.0061 0.5672

500 10 400 5 0.0129 2.9384

1000 10 800 5 0.0562 10.8056

2000 10 1600 5 0.3902 44.1574

3000 10 2400 5 1.0536 103.2526

200 10 160 80 0.0026 0.6110

500 10 400 200 0.0131 2.8939

1000 10 800 400 0.0795 12.2046

2000 10 1600 800 0.3588 44.4453

3000 10 2400 1200 1.1123 90.9889

200 80 80 5 0.0114 0.3176

500 200 200 5 0.0322 3.1167

1000 400 400 5 0.4416 44.6930

2000 800 800 5 3.9170 560.0503

3000 1200 1200 5 11.8998 2256.8923

200 80 80 40 0.0101 0.3437

500 200 200 100 0.0290 3.3121

1000 400 400 200 0.4313 45.2645

2000 800 800 400 3.9815 552.0320

3000 1200 1200 600 12.1984 2252.4657
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Appendix

A Proof of equation (9)

Without loss of generality, let X = (Xω{ℓ} ,X{ℓ}) for an ℓ ∈ ω. Further, let Rℓ, rℓ and rℓ be

satisfied with (
Rℓ rℓ

r′ℓ rℓ

)
= (X ′X)−1.

Then, using the general formula for the inverse of a block matrix (e.g., Harville, 1997, Theorem

8.5.11), X(X ′X)−1X ′ and Pω{ℓ} can be expressed as follows:

X(X ′X)−1X ′ = Xω{ℓ}RℓX
′
ω{ℓ}

+Xω{ℓ}rℓX
′
{ℓ} +X{ℓ}r

′
ℓX

′
ω{ℓ}

+ rℓX{ℓ}X
′
{ℓ},

Pω{ℓ} = Xω{ℓ}RℓX
′
ω{ℓ}

+ r−1
ℓ Xω{ℓ}rℓr

′
ℓX

′
ω{ℓ}

.

From the above equations, we have

Pω − Pω{ℓ} =
1

rℓ
X

(
rℓ

rℓ

)(
rℓ

rℓ

)′

X ′.

Note that rℓ is the (ℓ, ℓ)-th element of (X ′X)−1, and X(r′ℓ, rℓ)
′ is the ℓ-th column vector of

X(X ′X)−1. Therefore, (9) can be derived. □

B Proof of Lemma 3.1

We can express P (ĵ = j∗) as follows:

P (ĵ = j∗)

= P

∩
ℓ∈j∗

{
HCGCp(ω{ℓ})−HCGCp(ω) > 0

}∩∩
ℓ/∈j∗

{
HCGCp(ω{ℓ})−HCGCp(ω) ≤ 0

} .

Then, the following lower bound of P (ĵ = j∗) can be derived:

P (ĵ = j∗)

≥ 1−
∑
ℓ∈j∗

P
(
HCGCp(ω{ℓ})−HCGCp(ω) < 0

)
−
∑
ℓ/∈j∗

P
(
HCGCp(ω{ℓ})−HCGCp(ω) > 0

)
.

This completes the proof of Lemma 3.1. □

C Proof of Theorem 3.1

We first describe two lemmas. The first lemma gives another expression of GCp(ωj)−GCp(ω)
for j ⊂ ω (j ̸= ω) (the proof is given in Appendix F):
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Lemma C.1. For j ⊂ ω (j ̸= ω), suppose that δj,i (1 ≤ i ≤ mj) are constants satisfying

tr(∆j) =
∑mj

i=1 δj,i and δj,i ≥ m−1
j λmax(∆j), where ∆j and mj are defined by (3) and (4), and

λmax(∆j) is the maximum eigenvalue of ∆j. Let ui, uj,i, and vi be random variables distributed

according to ui ∼ χ2(p), uj,i ∼ χ2(p; δj,i) and vi ∼ χ2(n− p− k+1) (1 ≤ i ≤ mj), where ui and

uj,i are independent of vi for each i. Then, under Assumption A1, we have

GCp(ωj)−GCp(ω) =


(n− k)

mj∑
i=1

ui

vi
−mjpα (j ⊂ jc∗)

(n− k)
mj∑
i=1

uj,i
vi
−mjpα (j ⊂ j∗)

. (C.1)

The following lemma is needed to evaluate the divergence orders of the moments of GCp(ωj)−
GCp(ω) (the proof is given in Appendix G).

Lemma C.2. Let D = {(n, p, k) ∈ N3 | N−4 > 0}, where N = n−p−k+1. Suppose that δ is a

constant satisfying inf(n,p,k)∈D n
−1δ > 0 and N − 4r > 0 for r ∈ N. Let u1, u2 and v be random

variables distributed according to χ2(p), χ2(p; δ) and χ2(N), where u1 and u2 are independent of

v. Then, we have

E

[(
u1
v
− p

N − 2

)2r
]
= O(prn−2r), E

[(
u2
v
− p+ δ

N − 2

)2r
]
= O(δrn−2r),

as n− p− k →∞.

Applying the results of Lemma C.1 for mj = 1 to HCGCp(ω{ℓ})−HCGCp(ω), we have

HCGCp(ω{ℓ})−HCGCp(ω) =


(n− k)

u

v
− pα (ℓ /∈ j∗)

(n− k)
uℓ

v
− pα (ℓ ∈ j∗)

, (C.2)

where u and uℓ are independent of v, and u ∼ χ2(p), uℓ ∼ χ2(p; δ{ℓ}) and v ∼ χ2(N). From

(C.2), we have∑
ℓ/∈j∗

P (HCGCp(ω{ℓ}) > HCGCp(ω)) = (k − k∗)P
(
u

v
>

p

n− k
α

)

= (k − k∗)P
(
u

v
− p

N − 2
> ρ

)
≤ (k − k∗)P

(∣∣∣∣uv − p

N − 2

∣∣∣∣ ≥ ρ) , (C.3)∑
ℓ∈j∗

P (HCGCp(ω{ℓ}) < HCGCp(ω)) =
∑
ℓ∈j∗

P

(
uℓ
v
<

p

n− k
α

)

=
∑
ℓ∈j∗

P

(
uℓ
v
−
p+ δ{ℓ}

N − 2
− ρ < −

δ{ℓ}

N − 2

)

≤
∑
ℓ∈j∗

P

(∣∣∣∣uℓv − p+ δ{ℓ}

N − 2
− ρ
∣∣∣∣ ≥ δ{ℓ}

N − 2

)
, (C.4)
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where ρ = {p/(n− k)}β. Applying Markov’s inequality to (C.3) and (C.4), the following upper

bounds can be derived:

(k − k∗)P
(∣∣∣∣uv − p

N − 2

∣∣∣∣ ≥ ρ) ≤ (k − k∗)ρ−2r1E

[(
u

v
− p

N − 2

)2r1
]
,

∑
ℓ∈j∗

P

(∣∣∣∣uℓv − p

N − 2
− ρ
∣∣∣∣ ≥ δ{ℓ}

N − 2

)
≤
∑
ℓ∈j∗

(
δ{ℓ}

N − 2

)−2r2

E

[(
uℓ
v
−
p+ δ{ℓ}

N − 2
− ρ
)2r2

]
,

where r1 and r2 are natural numbers defined by (6). From the above equations and Lemma C.2,

the following equations can be derived:∑
ℓ/∈j∗

P (HCGCp(ω{ℓ}) > HCGCp(ω)) = O(kp−r1β−2r1),

∑
ℓ∈j∗

P (HCGCp(ω{ℓ}) > HCGCp(ω)) =
∑
ℓ∈j∗

O(max{p2r2β2r2δ−2r2
{ℓ} , δ−r2{ℓ} }).

Note that #(j∗) ≤ k∗. Hence, if ( 2r2
√
kp/n)β → 0 then 2r2

√
k∗pβ/δ{ℓ} = o(1) holds, and if

r2 ∈ N\{1} then k∗/δr2{ℓ} → 0 holds from Assumption A2. This gives the following equations for

r2 ∈ N\{1}:∑
ℓ/∈j∗

P (HCGCp(ω{ℓ}) > HCGCp(ω)) = o(1),
∑
ℓ∈j∗

P (HCGCp(ω{ℓ}) > HCGCp(ω)) = o(1).

These equations and Lemma 3.1 complete the proof of Theorem 3.1. □

D Proof of Lemma 3.2

We can express P (ĵJ = j∗) as follows:

P (ĵJ = j∗)

= P

 ∩
j∈J+

{HCGCp(ωj)−HCGCp(ω) > 0}

∩ ∩
j∈J−

{HCGCp(ωj)−HCGCp(ω) ≤ 0}

 .

Then, the following lower bound of P (ĵJ = j∗) can be derived:

P (ĵJ = j∗)

≥ 1−
∑
j∈J+

P (HCGCp(ωj)−HCGCp(ω) < 0)−
∑
j∈J−

P (HCGCp(ωj)−HCGCp(ω) > 0) .

Therefore, Lemma 3.2 can be derived. □

E Proof of Theorem 3.2

We can apply the results of Lemma C.1 to this proof, i.e., we can express the following

distribution forms of HCGCp(ωj)−HCGCp(ω):

HCGCp(ωj)−HCGCp(ω) =


(n− k)

mj∑
i=1

ui

vi
−mjpα (j ∈ J−)

(n− k)
mj∑
i=1

uj,i
vi
−mjpα (j ∈ J+)

, (E.1)
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where ui and uj,i are independent of vi, and

ui ∼ χ2(p), uj,i ∼ χ2(p; δj,i), vi ∼ χ2(N) (1 ≤ i ≤ mj).

Here, δj,i (1 ≤ i ≤ mj) are constants satisfying
∑mj

i=1 δj,i = tr(∆j) and δj,i ≥ m−1
j λmax(∆j),

where ∆j is given by (3). When j ∈ J+, let ℓ be an element of j, i.e., ℓ ∈ j. Then, since

In − Pω{ℓ} and Pω{ℓ} − Pωj are semi-positive definite, the following equation can be derived:

tr(∆j) = δ{ℓ} + tr{Σ−1/2
∗ Θ′

∗X
′
∗(Pω{ℓ} − Pωj )X∗Θ∗Σ

−1/2
∗ } ≥ δ{ℓ}.

In addition, let dj = rank(∆j) be defined by (4). From (5), we observe that dj is bounded. Since

djλmax(∆j) ≥ tr(∆j) holds, the following equation is obtained:

δj,i ≥ m−1
j λmax(∆j) ≥ (mjdj)

−1tr(∆j) ≥ (mjdj)
−1δ{ℓ}. (E.2)

Now, we derive the divergence orders of
∑
j∈J−

P (HCGCp(ωj) > HCGCp(ω)) and
∑
j∈J+

P (HCGCp(ωj) < HCGCp(ω)). From (E.1), we have

∑
j∈J−

P (HCGCp(ωj) > HCGCp(ω)) =
∑
j∈J−

P

(
mj∑
i=1

ui

vi
>

mjp

n− k
α

)

≤
∑
j∈J−

mj∑
i=1

P

(
ui

vi
>

p

n− k
α

)

=
∑
j∈J−

mj∑
i=1

P

(
ui

vi
− p

N − 2
> ρ

)

≤
∑
j∈J−

mj∑
i=1

P

(∣∣∣∣uivi − p

N − 2

∣∣∣∣ ≥ ρ) , (E.3)

∑
j∈J+

P (HCGCp(ωj) < HCGCp(ω)) =
∑
j∈J+

P

(
mj∑
i=1

uj,i
vi

<
mjp

n− k
α

)

≤
∑
j∈J+

mj∑
i=1

P

(
uj,i
vi

<
p

n− k
α

)

=
∑
j∈J+

mj∑
i=1

P

(
uj,i
vi
− p+ δj,i

N − 2
− ρ < − δj,i

N − 2

)

≤
∑
j∈J+

mj∑
i=1

P

(∣∣∣∣uj,ivi − p+ δj,i
N − 2

− ρ
∣∣∣∣ ≥ δj,i

N − 2

)
, (E.4)

where ρ = {p/(n − k)}β. Then, by applying Markov’s inequality to (E.3) and (E.4), their

following upper bounds can be derived:

∑
j∈J−

mj∑
i=1

P

(∣∣∣∣uivi − p

N − 2

∣∣∣∣ ≥ ρ) ≤ ∑
j∈J−

mjρ
−2r1E

[(
u1
v1
− p

N − 2

)2r1
]
,

∑
j∈J+

mj∑
i=1

P

(∣∣∣∣uj,ivi − p+ δj,i
N − 2

− ρ
∣∣∣∣ ≥ δj,i

N − 2

)
≤
∑
j∈J+

mj∑
i=1

(
δj,i
N − 2

)−2r2

E

[(
uj,i
vi
− p+ δj,i

N − 2
− ρ
)2r2

]
.
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Note that inf(n,p,k)∈D n
−1δj,i > 0 from (E.2). Hence, from the above equations and Lemma C.2,

the following equations can be derived:

∑
j∈J−

mjρ
−2r1E

[(
u1
v1
− p

N − 2

)2r1
]
= O(kp−r1β−2r1),

∑
j∈J+

mj∑
i=1

(
δj,i
N − 2

)−2r2

E

[(
uj,i
vi
− p+ δj,i

N − 2
− ρ
)2r2

]
=
∑
j∈J+

mj∑
i=1

O(max{p2r2β2r2δ−2r2
j,i , δ−r2j,i }).

Note that mj is bounded and #(J+) ≤ k∗, and it follows from (E.2) that δ−1
j,i ≤ mjdjδ

−1
{ℓ}.

Therefore, from Lemma 3.2, Theorem 3.2 can be shown. □

F Proof of Lemma C.1

First, we derive results for the case of j ⊂ jc∗. Let the elements of j be a1, . . . , amj (as ̸=
at (s ̸= t)), i.e., j = {a1, . . . , amj}. Further, let j−,0 = ωj and j−,i = j−,i−1 ∪ {ai} (1 ≤ i ≤ mj).

Then, it holds that j−,mj = ω, and we can express GCp(ωj)−GCp(ω) as follows:

GCp(ωj)−GCp(ω) =
mj∑
i=1

{GCp(j−,i−1)−GCp(j−,i)}

= (n− k)
mj∑
i=1

tr[Y ′(Pj−,i − Pj−,i−1)Y {Y ′(In − Pω)Y }−1]−mjpα. (F.1)

Let Wj,i = Σ
−1/2
∗ Y ′(Pj−,i − Pj−,i−1)Y Σ

−1/2
∗ and W = Σ

−1/2
∗ Y ′(In − Pω)Y Σ

−1/2
∗ . Note that

Pj−,i − Pj−,i−1 and In − Pω are symmetric idempotent matrices, and it holds that (Pj−,i −
Pj−,i−1)(In − Pω) = On,n and (Pj−,i − Pj−,i−1)X∗ = (In − Pω)X∗ = On,k∗ . Then, from a

property of the Wishart distribution and Cochran’s Theorem (e.g. Fujikoshi et al., 2010, chap

2), we can state thatWj,i andW are independent, andWj,i ∼Wp(1, Ip) andW ∼Wp(n−k, Ip).
Thus, (F.1) is expressed as

GCp(ωj)−GCp(ω) = (n− k)
mj∑
i=1

tr(Wj,iW
−1)−mjpα. (F.2)

From a property of the Wishart distribution, Wj,i can be expressed as Wj,i = ziz
′
i, where zi is

independent of W , and zi ∼ Np(0p, Ip). Then, we express z′
iW

−1zi as

z′
iW

−1zi =
z′
izi

{(z′
izi)

−1/2z′
iW

−1zi(z′
izi)

−1/2}−1
.

Let ui = z′
izi and vi = {(z′

izi)
−1/2z′

iW
−1zi(z

′
izi)

−1/2}−1. Then, from a property of the Wishart

distribution, we can state that ui and vi are independent, and ui ∼ χ2(p) and vi ∼ χ2(n−p−k+1).

Therefore, tr(Wj,iW
−1) is expressed as

tr(Wj,iW
−1) =

ui
vi
.

From the above equation and (F.2), we can derive (C.1) for the case of j ⊂ jc∗.
Next, we derive results for the case of j ⊂ j∗. Then, GCp(ωj)−GCp(ω) is expressed as

GCp(ωj)−GCp(ω) = (n− k)tr[Y ′(Pω − Pωj )Y {Y ′(In − Pω)Y }−1]−mjpα. (F.3)

16



Let Wj = Σ
−1/2
∗ Y ′(Pω − Pωj )Y Σ

−1/2
∗ . Note that Pω − Pωj is symmetric and idempotent,

and it holds that (Pω − Pωj )(In − Pω) = On,n. Then, from a property of the non-central

Wishart distribution and Cochran’s Theorem, we can state that Wj and W are independent,

and Wj ∼Wp(mj , Ip;∆j) and W ∼Wp(n− k, Ip). Thus, (F.3) is expressed as

GCp(ωj)−GCp(ω) = (n− k)tr(WjW
−1)−mjpα. (F.4)

Let the spectral decomposition of ∆j be ∆j = QjΛjQ
′
j , where Qj is the p × p orthogonal

matrix and Λj is the p × p diagonal matrix whose a-th diagonal element is an eigenvalue λj,a,

i.e., Λj = diag(λj,1, . . . , λj,p) (λj,1 ≥ · · · ≥ λj,p). Let Bj,1 = Q′
jWjQj and Bj,2 = Q′

jWQj .

Then, from a property of the non-central Wishart distribution, we can state that Bj,1 and Bj,2

are independent and Bj,1 ∼ Wp(mj , Ip;Λj) and Bj,2 ∼ Wp(n − k, Ip). Let dj = rank(∆j) be

defined in (4). It is obvious that λj,dj+1 = · · · = λj,p = 0. Since it holds that dj ≤ mj from (5),

let Γj be as follows:

Γj =

(
Λ

1/2
j,0 Odj ,p−dj

Omj−dj ,dj Omj−dj ,p−dj

)
, Λj,0 = diag(λj,1, . . . , λj,dj ).

By using Γj , we can express Bj,1 as Bj,1 = (Ej +Γj)
′(Ej +Γj), where Ej ∼ Nmj×p(Omj ,p, Ip⊗

Imj ) and Ej is independent of Bj,2. Let H = (h1, . . . ,hmj ) be a mj ×mj orthogonal matrix

satisfying h1 = m
−1/2
j 1mj , and let (η1, . . . ,ηmj )

′ = HΓj . Then, we have

(η1, . . . ,ηmj )
′ = H

(
Λ

1/2
j,0 Odj ,p−dj

Omj−dj ,dj Omj−dj ,p−dj

)
= (
√
λj,1h1, . . . ,

√
λj,djhdj ,Omj ,p−dj ).

Now, we put δj,i = ||ηi||2 (1 ≤ i ≤ mj). Then, from the above equation, it is straightforward

that δj,i ≥ m−1
j λj,1 (1 ≤ i ≤ mj) and tr(∆j) =

∑mj

i=1 δj,i. Let (zj,1, . . . , zj,mj )
′ = HEj . Since

zj,1, . . . , zj,mj ∼ Np(0p, Ip), Bj,1 can be expressed as

Bj,1 = (Ej + Γj)
′H ′H(Ej + Γj) = (HEj +HΓj)

′(HEj +HΓj) =

mj∑
i=1

(zj,i + ηi)(zj,i + ηi)
′.

Then, we can express (zj,i + ηi)
′B−1

j,2 (zj,i + ηi) as

(zj,i + ηi)
′B−1

j,2 (zj,i + ηi) =
||zj,i + ηi||2

{||zj,i + ηi||−1(zj,i + ηi)′B
−1
j,2 (zj,i + ηi)||zj,i + ηi||−1}−1

.

Let uj,i = ||zj,i + ηi||2 and vi = {||zj,i + ηi||−1(zj,i + ηi)
′B−1

j,2 (zj,i + ηi)||zj,i + ηi||−1}−1. Then,

from a property of the Wishart distribution, we can state that uj,i and vi are independent, and

uj,i ∼ χ2(p; δj,i) and vi ∼ χ2(n− p− k + 1). Therefore, tr(WjW
−1) is expressed as

tr(WjW
−1) = tr(Q′

jWjQjQ
′
jW

−1Qj) = tr(Bj,1B
−1
j,2 ) =

mj∑
i=1

(zj,i + ηi)
′B−1

j,2 (zj,i + ηi)

=

mj∑
i=1

uj,i
vi
.

From the above equation and (F.4), we can derive (C.1) for the case of j ⊂ j∗. □
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G Proof of Lemma C.2

We first describe a lemma concerning the central moments of chi-square and non-central chi-

square random variables; this is required for proving Lemma C.2 (the proof is given in Appendix

H).

Lemma G.1. Let X1 ∼ χ2(t) and X2 ∼ χ2(t;ψ), where ψ is a constant satisfying t/ψ = O(1).

Then, we have

E[(X1 − t)h] =


1 (h = 0)

0 (h = 1)

O(t⌊h/2⌋) (h ≥ 2)

, (G.1)

E[{X2 − (t+ ψ)}h] =


1 (h = 0)

0 (h = 1)

O(t⌊ψ/2⌋) (h ≥ 2)

. (G.2)

Moreover, when t− 2h > 0, we have

E

[(
1

X1
− 1

t− 2

)h]
=


1 (h = 0)

0 (h = 1)

O(t−2h+⌊h/2⌋) (h ≥ 2)

, (G.3)

where ⌊h⌋ is the floor function defined by ⌊h⌋ = max{m ∈ Z | m ≤ h}.

Let ξ = 1/(N − 2) and ξδ = p+ δ. Then, we have

u1
v
− p

N − 2
= (u1 − p)(v−1 − ξ) + p(v−1 − ξ) + ξ(u1 − p),

u2
v
− p+ δ

N − 2
= (u2 − ξδ)(v−1 − ξ) + ξδ(v

−1 − ξ) + ξ(u2 − ξδ).

Hence, from the multinomial theorem, we have

E

[(
u1
v
− p

N − 2

)2r
]
=

∑
a+b+c=2r
0≤a,b,c≤2r

(2r)!

a!b!c!
pbξcE[(u1 − p)a+c]E[(v−1 − ξ)a+b], (G.4)

E

[(
u2
v
− p+ δ

N − 2

)2r
]
=

∑
a+b+c=2r
0≤a,b,c≤2r

(2r)!

a!b!c!
ξbδξ

cE[(u2 − ξδ)a+c]E[(v−1 − ξ)a+b]. (G.5)

From the assumption inf(n,p,k)∈D n
−1δ > 0, it follows that p/δ = O(1). Therefore, from (G.1),

(G.2), and (G.3), the divergence orders in (G.4) and (G.5) are maximized when a = b = 0, c = 2r.

Therefore, we can derive the divergence orders as follows:

E

[(
u1
v
− p

N − 2

)2r
]
= O(prn−2r), E

[(
u2
v
− p+ δ

N − 2

)2r
]
= O(δrn−2r).

□
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H Proof of Lemma G.1

We elaborate only on the case of h ≥ 2 because it is straightforward when h = 0, 1. First,

we derive (G.1) and (G.2). Let h1, . . . , hd be natural numbers satisfying
∑d
i=1 hi = h and

2 ≤ h1, . . . , hd. From Stuart and Ord (1994), we can state that h-th central moments can be

expressed as the linear combination of the products of h1, . . . , hd-th cumulants. From Lancaster

(1982) and Tiku (1985), h-th cumulants of X1−t and X2−(t+ψ) can, respectively, be expressed

as follows:

κh,1 = 2h−1(h− 1)!t, κh,2 = 2h−1(h− 1)!(t+ hψ).

Then, it follows from t/ψ = O(1) that κh,2 = O(ψ). Therefore, we observe that the maximum

order term of each h-th central moment is κ
h/2
2,i if h is even and κ

(h−1)/2−1
2,i κ3,i if h is odd (i = 1, 2).

This completes (G.1) and (G.2).

Next, we derive (G.3). From the multinomial theorem, we have

E

[(
1

X1
− 1

t− 2

)h]

=
h∑
i=0

h!

i!(h− i)!

(
− 1

t− 2

)h−i
E

[(
1

X1

)i]

=

(
− 1

t− 2

)h
+

h∑
i=1

h!

i!(h− i)!

(
− 1

t− 2

)h−i i∏
d=1

1

t− 2d

=

(
− 1

t− 2

)h h∏
d=1

1

t− 2d

[
{−(t− 2)}h +

h−1∑
i=0

h!

i!(h− i)!
{−(t− 2)}i

h−i∏
d=1

{t− 2h+ 2(d− 1)}

]
.

Let T ∼ χ2(t− 2h), then it is known that

E[Th−i] =

{
1 (i = h)∏h−i
d=1{t− 2h+ 2(d− 1)} (i ≤ h− 1)

.

Hence, by letting s = {−(t− 2)}−h
∏h
d=1(t− 2d)−1, we have

E

[(
1

X1
− 1

t− 2

)h]
=

(
− 1

t− 2

)h h∏
d=1

1

t− 2d

{
h∑
i=0

h!

i!(h− i)!
{−(t− 2)}iE[Th−i]

}
= sE[{T − (t− 2)}h]

= s
h∑
i=0

h!

i!(h− i)!
{−2(h− 1)}iE[{T − (t− 2h)}h−i]. (H.1)

Note that s = O(t−2h) and it follows from (G.1) that

E[{T − (t− 2h)}h−i] =


1 (i = h)

0 (i = h− 1)

O(t⌊(h−i)/2⌋) (i ≤ h− 2)

. (H.2)

The equations (H.1) and (H.2) complete (G.3). □
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