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Abstract

We consider the strong consistency of a log-likelihood-based information criterion in
a normality-assumed canonical correlation analysis between q- and p-dimensional random
vectors for a high-dimensional case such that the sample size n and number of dimensions
p are large but p/n is less than 1. In general, strong consistency is a stricter property
than weak consistency; thus, sufficient conditions for the former do not always coincide with
those for the latter. We derive the sufficient conditions for the strong consistency of this
log-likelihood-based information criterion for the high-dimensional case. It is shown that
the sufficient conditions for strong consistency of several criteria are the same as those for
weak consistency obtained by Yanagihara et al. (2017).

1 Introduction

Let x = (x1, . . . , xq)
′ and y = (y1, . . . , yp)

′ be q- and p-dimensional random vectors. Investi-

gating relationships between x and y is central to multivariate analysis. Canonical correlation

analysis (CCA) is one such multivariate method which has been considered widely in the theoret-

ical and applied peer-reviewed literature, as well as textbooks aimed at under- and post-graduate

students (see, e.g., Srivastava, 2002, chap. 14.7; Timm, 2002, chap. 8.7).

In actual empirical contexts, there are cases where some of the variables in a given model

may be redundant. It is important to be able to effectively identify and remove such variables.

This paper focusses on removing redundant variables in x. The problem is regarded as selecting

the best subset of x, and this has hitherto been investigated in many studies (e.g., McKay,

1977; Fujikoshi, 1982, 1985; Ogura, 2010). As one approach to model selection, the method of

minimizing an information criterion is well known. The most widely applied of these criteria is

Akaike’s (1973, 1974) information criterion (AIC). Fujikoshi (1985) applied Akaike’s idea to the

issue of selection in CCA. Nishii et al. (1988) proposed a generalized information criterion (GIC).

Fukui (2015) and Yanagihara et al. (2017) considered a log-likelihood-based information criterion

(LLIC). GIC and LLIC are essentially the same and are defined by adding a penalty term to
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a negative twofold maximum log-likelihood. GIC and LLIC include several information criteria

as special cases: AIC, a bias-corrected AIC (AICc) proposed by Fujikoshi (1985), the Bayesian

information criterion (BIC) proposed by Schwarz (1978), a consistent AIC (CAIC) proposed

by Bozdogan (1987), the Hannan-Quinn information criterion (HQC) proposed by Hannan and

Quinn (1979), and so on.

An important property to consider regarding information criteria is their consistency. In fact,

there are two properties in this respect, that is weak consistency and strong consistency. Let

ĵ and j∗ be the best subset identified by minimizing respectively an information criterion and

the true subset, i.e., the minimum subset including the true model. Weak consistency means

that the asymptotic probability of selecting the true subset approaches one, i.e., P (ĵ = j∗) → 1

(n → ∞), where n is the sample size. In the context of CCA, Yanagihara et al. (2017) obtained

sufficient conditions for weak consistency of LLIC when the sample size n tends to ∞ and the

number of dimensions p may tend to ∞, assuming that the true distribution of the observation

vectors is the multivariate normal distribution. Moreover, they derived sufficient conditions

for several specific criteria. Relaxing the normality assumption, Fukui (2015) derived sufficient

conditions for weak consistency of LLIC when both n and p tend to ∞. On the other hand,

strong consistency means that the probability that the best subset approaches the true subset

is one, i.e., P (ĵ → j∗) = 1. Since each subset is discrete, strong consistency ensures that there

exists n0 ∈ N such that for all n ≥ n0, ĵ = j∗ with probability 1. Hence, strong consistency

is stricter than weak consistency for selecting the true subset. Again in the context of CCA,

Nishii et al. (1988) obtained the sufficient conditions for strong consistency of GIC when only

the sample size n tends to ∞. However, the conditions for strong consistency have not hitherto

been derived for the case where both n and p tend to ∞. Moreover, since strong consistency

is stricter than weak consistency, it is not currently known whether several criteria satisfying

sufficient conditions for weak consistency according to Yanagihara et al. (2017) are strongly

consistent in high-dimensional cases.

The aim of this paper is to obtain sufficient conditions for strong consistency of LLIC and

several other criteria when both the sample size n and the number of dimensions p tend to ∞
but p does not exceed n. We assume that the number of dimensions p is a function of n, that is

we write p = p(n), and use the following high-dimensional (HD) asymptotic framework:

p = p(n), n → ∞,
p

n
→ c ∈ [0, 1).

Based on sufficient conditions for strong consistency of LLIC, we show that the conditions for

strong consistency of AIC, AICc, BIC, CAIC, and HQC are equivalent to those for weak consis-

tency put forward by Yanagihara et al. (2017).

The remainder of the paper is organized as follows. In section 2, we introduce redundancy

models and LLIC. In section 3, we present our key lemmas and main results to derive the sufficient

conditions for strong consistency. Technical details are relegated to the Appendix.

2 Preliminaries

In this section, we introduce redundancy models and LLIC in the context of CCA. Let z =

(x′,y′)′ be a (q+p)-dimensional random vector distributed according to a (q+p)-variate normal

2



distribution with

E[z] = µ = (µ′
x,µ

′
y)

′ , Cov[z] = Σ =

(
Σxx Σxy

Σ′
xy Σyy

)
,

where µx and µy are q- and p-dimensional mean vectors of x and y, Σxx and Σyy are q × q

and p × p covariance matrices of x and y, and Σxy is the q × p covariance matrix of x and

y. Suppose that j denotes a subset of ω = {1, . . . , q} containing qj elements, and xj denotes

the qj-dimensional random vector consisting of x indexed by the elements of j. For example,

if j = {1, 2, 4}, then xj consists of the first, second, and fourth elements of x. Without loss of

generality, we can express x as x = (x′
j ,x

′
j̄
)′, where xj̄ is a (q− qj)-dimensional random vector.

Then, for a subset j, the covariance matrices Σxx and Σxy are expressed as follows:

Σxx =

(
Σjj Σjj̄

Σ′
jj̄

Σj̄j̄

)
, Σxy =

(
Σjy

Σj̄y

)
,

where the sizes of Σjj , Σjj̄ , Σjy, and Σj̄y are qj × qj , qj × (q − qj), qj × p, and (q − qj) × p.

Let z1, . . . , zn be n independent random vectors from z, and let z̄ be the sample mean of

z1, . . . , zn given by z̄ = n−1
∑n

i=1 zi and S be the usual unbiased estimator of Σ given by

S = (n− 1)−1
∑n

i=1(zi − z̄)(zi − z̄)′. In the same way as Σ, we also partition S as follows:

S =

(
Sxx Sxy

S′
xy Syy

)
=

Sjj Sjj̄ Sjy

S′
jj̄

Sj̄j̄ Sj̄y

S′
jy S′

j̄y
Syy

 .

From Fujikoshi (1982), xj̄ is redundant if the following equation holds:

tr(Σ−1
xxΣxyΣ

−1
yy Σyx) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy). (1)

The left-hand side in (1) expresses the sum of squares of the canonical correlation coefficients

between x and y, and the right-hand side expresses the sum of squares of the canonical correlation

coefficients between xj and y. In particular, we note that (1) is equivalent (see, Fujikoshi, 1982)

to

Σj̄y·j = Oq−qj ,p, (2)

where Σab·c = Σab −ΣacΣ
−1
cc Σcb, and Oq−qj ,p is the (q − qj)× p matrix of zeros.

We regard a subset j as the candidate model such that xj̄ is redundant. Following Fujikoshi

(1985), the candidate model j such that xj̄ is redundant is expressed as

j : (n− 1)S ∼ Wp+q(n− 1,Σ) s.t. tr(Σ−1
xxΣxyΣ

−1
yy Σyx) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy). (3)

Let J be a set of candidate models. We then separate J into two sets, one is a set of overspecified

models J+ and the other is a set of underspecified models J−, which are defined by

J+ = {j ∈ J | tr(Σ−1
xxΣxyΣ

−1
yy Σyx) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy)}, J− = J \J+.

Then, the true model (or subset) j∗ can be regarded as the smallest overspecified model, i.e.,

j∗ = argminj∈J+ qj . For simplicity, we write qj∗ as q∗. An estimator of Σ in (3) is given by

Σ̂j = argmin
Σ

F (S,Σ) subject to tr(Σ−1
xxΣxyΣ

−1
yy Σyx) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy),
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where F (S,Σ) is the discrepancy function based on Stein’s loss function given by

F (S,Σ) = (n− 1){tr(Σ−1S)− log |Σ−1S| − (p+ q)}.

By using F (S, Σ̂j), LLIC in (3) is defined as

LLIC(j) = F (S, Σ̂j) +m(j) = (n− 1) log
|Syy·j |
|Syy·ω|

+m(j),

where Syy·j = Syy − S′
jyS

−1
jj Sjy, and m(j) is the penalty term in (3). For simplicity, we write

Syy·ω as Syy·x. By choosing m(j) in various quantities, we can express the following criteria as

special cases of LLIC:

m(j) =



p2 + q2 + p+ q + 2pqj (AIC)

(n− 1)2
(

p+ qj
n− p− qj − 2

+
q

n− q − 2
− qj

n− qj − 2
− p+ q

n− 1

)
(AICc){

(p+ q)(p+ q + 1)

2
− p(q − qj)

}
log n (BIC){

(p+ q)(p+ q + 1)

2
− p(q − qj)

}
(1 + log n) (CAIC)

2

{
(p+ q)(p+ q + 1)

2
− p(q − qj)

}
log log n (HQC)

.

Note that LLIC is the same as GIC when m(j) is expressed as the number of parameters in (3)

multiplied by the strength of the penalty. The best subset ĵ selected by LLIC is given by

ĵ = argmin
j∈J

LLIC(j).

3 Main results

In this section, we give the sufficient conditions for strong consistency of LLIC under the HD

asymptotic framework. First, we present some lemmas which are required for deriving the strong

consistency conditions, with proofs provided in the Appendix.

Lemma 3.1 Suppose that p is fixed or p = p(n). Let ĵ = argminj∈J LLIC(j), and let hj,ℓ be

some positive constant not converging to 0 for j, ℓ ∈ J . Then, we have

∀ℓ ∈ J \{j}, 1

hj,ℓ
{LLIC(ℓ)− LLIC(j)} → τj,ℓ > 0, a.s. ⇒ P (ĵ → j) = 1.

From Lemma 3.1, to obtain sufficient conditions such that LLIC is strongly consistent, we may

derive the almost sure convergence of h−1
j,ℓ {LLIC(j) − LLIC(j∗)} for all j ∈ J \{j∗}. Hence, we

derive the convergence by using the following lemma.

Lemma 3.2 Let p = p(n) and let r be a natural number not relying on n. Suppose that t1 and

T2 are a random variable and an r × r matrix satisfying

E
[
(t1 − E[t1])

2k
]
= O(pkn−2k) (∀k ∈ N), E

[
||T2 − E[T2]||4

]
= O(n2),

where ||A|| is the Frobenius norm for a matrix A. Then for all ε > 0, we have

np−1/2−ε(t1 − E[t1]) = o(1), a.s., (4)

n−3/4−ε(T2 − E[T2]) = o(1), a.s. (5)
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Before giving the strong consistency conditions, let us prepare some notation. For a subset

j ∈ J , let a non-centrality parameter and a p× (q − qj) matrix be denoted by

δj = log |Ip + ΓjΓ
′
j |, Γj = Σ

−1/2
yy·ω Σ′

j̄y·jΣ
−1/2

j̄j̄·j . (6)

As well as Syy·x, we write Σyy·ω as Σyy·x. From (2), we observe that δj = 0 and Γj = Oq−qj ,p

hold if and only if j ∈ J+. Hence, we derive the sufficient conditions in each case of j ∈ J+\{j∗}
and j ∈ J−. By using this notation and these lemmas, we derive the sufficient conditions for

strong consistency of LLIC (the proof is given in Appendix C).

Theorem 3.1 GIC is strongly consistent as p = p(n), n → ∞, p/n → c ∈ [0, 1), if the following

two conditions are satisfied simultaneously:

C1 : lim
n→∞, p/n→c

p1/2−ε

{
(qj − q∗)

n

p
log
(
1− p

n

)
+m(j)−m(j∗)

}
> 0 for some ε (0 < ε ≤ 1/2),

C2 : ∀j ∈ J−, lim
n→∞, p/n→c

[
δj + (qj − q∗) log

(
1− p

n

)
+

1

n
{m(j)−m(j∗)}

]
> 0,

where δj is defined in (6).

We note that the sufficient conditions for strong consistency by Theorem 3.1 are similar to those

for weak consistency according to Yanagihara et al. (2017) under the HD asymptotic framework.

By using Theorem 3.1, we derive the sufficient conditions for strong consistency of several criteria.

The proof is omitted because it can be found in Yanagihara et al. (2017).

Corollary 3.1 As p = p(n), n → ∞, p/n → c ∈ [0, 1), the sufficient conditions for strong

consistency of several criteria are giving as follows:

(1) When c = 0, AIC, AICc, BIC, CAIC, and HQC are strongly consistent.

(2) When c > 0,

(i) AIC is strongly consistent, if c < ca and

q∗ − qj <
1

2

{
1

c

(
lim

n→∞, p/n→c
δj

)
+ (qj − q∗)

1

c
log (1− c)

}
(∀j ∈ J−), (7)

where ca (≈ 0.797) is the solution of x−1 log (1− x) + 2 = 0. Especially, if δj → ∞,

(7) holds.

(ii) AICc is strongly consistent if

q∗ − qj <
(1− c)2

(2− c)

{
1

c

(
lim

n→∞, p/n→c
δj

)
+ (qj − q∗)

1

c
log (1− c)

}
(∀j ∈ J−). (8)

Especially, if δj → ∞, (8) holds.

(iii) BIC and CAIC are strongly consistent if

q∗ − qj <
1

c

(
lim

n→∞, p/n→c

δj
log n

)
(∀j ∈ J−). (9)

Especially, if δj/ log n → ∞, (9) holds.
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(iv) HQC is strongly consistent if

q∗ − qj <
1

2c

(
lim

(n→∞, p/n→c

δj
log log n

)
(∀j ∈ J−). (10)

Especially, if δj/ log log n → ∞, (10) holds.

From Corollary 3.1, under the HD asymptotic framework we observe that the conditions for

strong consistency of AIC, AICc, BIC, CAIC, and HQC are equivalent to those for weak consis-

tency derived by Yanagihara et al. (2017).
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Appendix

A Proof of Lemma 3.1

From the assumption of Lemma 3.1, the following reductions can be derived:

1 = P

( ∞∩
k=1

∞∪
m=1

∞∩
n=m

{∣∣∣∣ 1

hj,ℓ
(LLIC(ℓ)− LLIC(j))− τj,ℓ

∣∣∣∣ < 1

k

})

= P

( ∞∩
k=1

∞∪
m=1

∞∩
n=m

{
−1

k
+ τj,ℓ <

1

hj,ℓ
(LLIC(ℓ)− LLIC(j)) <

1

k
+ τj,ℓ

})

≤ P

( ∞∩
k=1

∞∪
m=1

∞∩
n=m

{
−1

k
+ τj,ℓ <

1

hj,ℓ
(LLIC(ℓ)− LLIC(j))

})

≤ P

( ∞∪
m=1

∞∩
n=m

{
1

hj,ℓ
(LLIC(ℓ)− LLIC(j)) > τj,ℓ

})

≤ P

( ∞∪
m=1

∞∩
n=m

{
1

hj,ℓ
(LLIC(ℓ)− LLIC(j)) > 0

})
.
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Hence, we have

P (ĵ → j) = P

( ∞∩
k=1

∞∪
m=1

∞∩
n=m

{
|ĵ − j| < 1

k

})

= 1− P

( ∞∪
k=1

∞∩
m=1

∞∪
n=m

{
|ĵ − j| ≥ 1

k

})

= 1− P

( ∞∩
m=1

∞∪
n=m

{ĵ ̸= j}

)

= 1− P

 ∪
ℓ∈J\{j}

∞∩
m=1

∞∪
n=m

{LLIC(ℓ) < LLIC(j)}


≥ 1−

∑
ℓ∈J\{j}

P

( ∞∩
m=1

∞∪
n=m

{LLIC(ℓ)− LLIC(j) < 0}

)

= 1.

This completes the proof of Lemma 3.1.

B Proof of Lemma 3.2

Let us take an arbitrary ε > 0, and let k be a natural number such that k > (2ε)−1. By using

Markov’s inequality, for all δ > 0, we have

P (np−1/2−ε|t1 − E[t1]| > δ) ≤ 1

(n−1p1/2+εδ)2k
E[(t1 − E[t1])

2k]

= O(p−2kε),

P (n−3/4−ε||T − E[T ]|| > δ) ≤ 1

(n3/4+εδ)4
E[(||T − E[T ]||4]

= O(n−1−ε).

Then, since p = p(n) and k > (2ε)−1, it holds that
∑∞

n=1 p
−2kε < ∞ and

∑∞
n=1 n

−1−ε < ∞.

These equations and the Borel-Cantelli lemma complete the proof of Lemma 3.2.

C Proof of Theorem 3.1

To prove Theorem 3.1, we use three lemmas from Yanagihara et al. (2017) and Oda &

Yanagihara (2019). Before Lemma C.1 is introduced, let Q be an n× (n− 1) matrix satisfying

In − n−11n1
′
n = QQ′ and Q′Q = In−1, where 1n is the n-dimensional vector of ones. Further,

let X = (x1, . . . ,xn)
′, where xi is the i-th individual from x. The following lemma is Lemma

C.1 by Yanagihara et al. (2017).

Lemma C.1 For a subset j ∈ J , let E, Aj, and Bj be mutually independent random matrices,

which are distributed according to

E ∼ N(n−1)×p(On−1,p, Ip ⊗ In−1), Aj ∼ N(n−1)×(q−qj)(On−1,q−qj , Iq−qj ⊗ In−1),

B = Q′X = (Bj ,Bj̄) ∼ N(n−1)×q(On−1,q,Σxx ⊗ In−1),
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where E and B are independent and do not rely on j, and Bj : (n− 1)× qj. Then, we have

(n− 1)Syy·x = Σ
1/2
yy·xE ′(In−1 − P )EΣ1/2

yy·x,

(n− 1)Syy·j = Σ
1/2
yy·x(AjΓ

′
j + E)′(In−1 − Pj)(AjΓ

′
j + E)Σ1/2

yy·x,

where P = B(B′B)−1B′, Pj = Bj(B
′
jBj)

−1B′
j, and Γj is defined in (6).

The following lemma is given by using (23) and (B.6) in Yanagihara et al. (2017).

Lemma C.2 For a subset j ∈ J , let U1 and U2 be independent random matrices distributed

according to

U1 ∼ N(n−q−1)×p(O(n−q−1)×p, Ip ⊗ In−q−1), U2 ∼ N(q−qj)×p(O(q−qj)×p, Ip ⊗ Iq−qj ).

Further, let W1 and W2 be random matrices distributed according to

W1 ∼ Wq−qj (n− p+ q − 2qj − 1, Iq−qj ), W2 ∼ Wq−qj (n− p+ q − 2qj − 1, Iq−qj ).

Then, we have

log
|Syy·j |
|Syy·x|

= δj + log
|U ′

1U1 +U ′
2U2|

|U ′
1U1|

+ log
|W1|
|W2|

,

where δj is defined in (6).

The following lemma is Lemma C.2 in Oda & Yanagihara (2019).

Lemma C.3 Suppose that N − 4k > 0 for k ∈ N. Let u and v be independent random variables

distributed according to u ∼ χ2(N) and v ∼ χ2(p). Then, we have

E

[(
v

u
− p

N − 2

)2k
]
= O(pkN−2k).

First, we consider the case of j ∈ J+\{j∗}. The distinct elements of j\j∗ denote a1, . . . , aqj−q∗ .

Let j0 = j, ji = ji−1\{ai} (1 ≤ i ≤ qj − q∗). Then, jqj−q∗ = j holds, and we can express

LLIC(j)− LLIC(j∗) as follows:

LLIC(j)− LLIC(j∗) = (n− 1) log
|Syy·j |
|Syy·j∗ |

+m(j)−m(j∗)

= (n− 1)

qj−q∗∑
i=1

log
|Syy·ji−1 |
|Syy·ji |

+m(j)−m(j∗). (C.1)

Then, from Lemma C.1, Syy·ji−1 can be expressed as follows:

(n− 1)Syy·ji−1 = Σ
1/2
yy·xE ′(In−1 − Pji−1)EΣ

1/2
yy·x, (C.2)

where E ∼ N(n−1)×p(On−1,p, Ip ⊗ In−1), Pji−1 = Bji−1(B
′
ji−1

Bji−1)
−1B′

ji−1
,

Bji−1 ∼ N(n−1)×(qj−i+1)(On−1,qj−i+1,Σji−1ji−1 ⊗ In−1), and E is independent of Bji−1 . More-

over, by applying Lemma C.1 to Syy·ji , we have

(n− 1)Syy·ji = Σ
1/2
yy·xE ′(In−1 − Pji)EΣ

1/2
yy·x, (C.3)
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where Pji = Bji(B
′
ji
Bji)

−1B′
ji
, and Bji is the (n−1)×(qj− i) sub matrix of Bji−1 = (Bji , bji).

Let

Vi,1 = E ′(In−1 − Pji−1)E , Vi,2 = E ′(Pji−1 − Pji)E . (C.4)

Since (In−1 − Pji−1)(Pji−1 − Pji) = On−1,n−1 holds, we observe that Vi,1 and Vi,2 are inde-

pendent, and Vi,1 ∼ Wp(n − qj + i − 2, Ip), Vi,2 ∼ Wp(1, Ip) from a property of the Wishart

distribution and Cochran’s Theorem (see, e.g., Fujikoshi et al., 2010, Theorem 2.4.2). By using

(C.2), (C.3), and (C.4), we have

|Syy·ji |
|Syy·ji−1 |

=
|E ′(In−1 − Pji)E|
|E ′(In−1 − Pji−1)E|

=
|E ′(In−1 − Pji−1)E + E ′(Pji−1 − Pji)E|

|E ′(In−1 − Pji−1)E|

=
|Vi,1 + Vi,2|

|Vi,1|
. (C.5)

Since Vi,2 ∼ Wp(1, Ip), we can express Vi,2 = viv
′
i, where vi ∼ Np(0p, Ip) and vi is independent

of Vi,1. Then, (C.5) is calculated as

|Syy·ji |
|Syy·ji−1 |

= |Ip + V −1
i,1 Vi,2|

= 1 + v′
iV

−1
i,1 vi

= 1 +
||vi||2(

||vi||−1v′
iV

−1
i,1 vi||vi||−1

)−1 . (C.6)

Let ṽi = ||vi||2 and ũi =
(
||vi||−1v′

iV
−1
i,1 vi||vi||−1

)−1
. Then, from a property of the Wishart dis-

tribution (see, e.g., Fujikoshi et al., 2010, Theorem 2.3.3), we see that ṽi and ũi are independent,

and ṽi ∼ χ2(p) and ũi ∼ χ2(n− p− qj + i− 1). Then, (C.6) is expressed as

|Syy·ji |
|Syy·ji−1

|
=

ṽi
ũi

.

From Lemma C.3, by applying (4) in Lemma 3.2 to the above equation, for all ε > 0 (0 < ε ≤
1/2), the following equation can be derived:

log
|Syy·ji |
|Syy·ji−1 |

= log

(
1 +

p

n− p− qj + i− 3
+ o(p1/2+ϵn−1)

)
= log

n

n− p
+ o(p1/2+εn−1), a.s.

From the above equation, we have

log
|Syy·j |
|Syy·j∗ |

= −
qj−q∗∑
i=1

log
|Syy·ji |
|Syy·ji−1 |

= (qj − q∗) log
(
1− p

n

)
+ o(p1/2+εn−1), a.s. (C.7)

Therefore, from (C.1) and (C.7), we can expand p−1{LLIC(j)− LLIC(j∗)} as follows:

1

p
{LLIC(j)− LLIC(j∗)}

= (qj − q∗)
n

p
log
(
1− p

n

)
+m(j)−m(j∗) + o(p−1/2+ε), a.s. (C.8)
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Next, we consider the case of j ∈ J−. By using Lemma C.2, we have

log
|Syy·j |
|Syy·x|

= δj + log
|U ′

1U1 +U ′
2U2|

|U ′
1U1|

+ log
|W1|
|W2|

, (C.9)

where U1, U2, W1, and W2 are defined in Lemma C.2. Let

Ũ = (U2U
′
2)

1/2{U2(U
′
1U1)

−1U ′
2}−1(U2U

′
2)

1/2.

From a property of the Wishart distribution, we observe that Ũ and U2 are independent and

Ũ ∼ Wq−qj (n− p− qj − 1, Iq−qj ). Then, (C.9) is expressed as

log
|Syy·j |
|Syy·x|

= δj + log |Iq−qj + Ũ−1U2U
′
2|+ log

|W1|
|W2|

. (C.10)

By a simple calculation, we can note that E[||Ũ −E[Ũ ]||4] = O(n2), E[||U2U
′
2 −E[U2U

′
2]||4] =

O(p2), and E[||W1 − E[W1]||4] = O(n2). Hence, we can apply (5) in Lemma 3.2 to Ũ , U2U
′
2,

W1, and W2. From Taylor expansion, for all δ > 0 (0 < δ < 1/4) the following equations can

be derived:

log |Iq−qj + Ũ−1U2U
′
2| = (q − qj) log

n

n− p
+ o

(
p3/4+δn−1

)
+ o

(
pn−5/4+δ

)
, a.s., (C.11)

log
|W1|
|W2|

= o(n−1/4+δ), a.s. (C.12)

From (C.10)-(C.12), we have

log
|Syy·j |
|Syy·x|

= δj + (q − qj) log
n

n− p
+ o(1), a.s. (C.13)

Therefore, from (C.7) and (C.13), we can expand n−1{LLIC(j)− LLIC(j∗)} as follows:

1

n
{LLIC(j)− LLIC(j∗)}

=
1

n

{
(n− 1) log

|Syy·j |
|Syy·x|

+ (n− 1) log
|Syy·x|
|Syy·j∗ |

+m(j)−m(j∗)

}
=

(
1− 1

n

)
δj + (qj − q∗) log

(
1− p

n

)
+

1

n
{m(j)−m(j∗)}+ o(1), a.s. (C.14)

Lemma 3.1, (C.8), and (C.14) complete the proof of Theorem 3.1.
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