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Abstract
In this paper, we obtain the sufficient conditions to determine the consistency of a

variable selection method based on a generalized information criterion in canonical discrim-
inant analysis. To examine the consistency property, we use a high-dimensional asymptotic
framework such that as the sample size n goes to infinity, then the ratio of the length of
the observation vector p to the sample size, p/n, converges to a constant that is less than
one even if the dimension of the observation vector also goes to infinity. Using the derived
conditions, we propose a consistent variable selection method. From numerical simulations,
we show that the probability of selecting the true model by our proposed method is high
even when p is large.

1 Introduction

Canonical discriminant analysis (CDA) is a statistical method for classifying observations in

a p-dimensional random vector x into one of q + 1 populations Πi (i = 1, . . . , q + 1), and to

describe the differences with a reduced number of dimensions. Assume that q ≤ p and each Πi

is a p-dimensional normal population with mean vector µ(i) and the common positive definite

covariance matrix Σ, i.e.,

Πi : Np(µ
(i),Σ) (i = 1, . . . , q + 1).

Suppose that we have ni samples from each Πi, and let the ni × p matrices of the observations

from Πi be denoted by Xi. These matrices can be expressed as follows:

X = (X ′
1, . . . ,X

′
q+1)

′ ∼ Nn×p(GM,Σ⊗ In).

Here, n is the total number of samples, i.e., n =
∑q+1

i=1 ni, and G and M are n × (q + 1) and

(q + 1)× p matrices given by

G =


1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

. . .
...

0nq+1
0nq+1

· · · 1nq+1

 , M = (µ(1), . . . ,µ(q+1))′,
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where 1ni and 0ni are ni-dimensional vectors of ones and zeros, respectively. We also assume

n − p − q − 2 > 0 when proposing our method. Let µ̄ be the population overall mean vector

given by µ̄ = n−1
∑q+1

i=1 niµ
(i), and let Ω be the population between-groups covariance matrix

defined by

Ω =
1

n

q+1∑
i=1

ni(µ
(i) − µ̄)(µ(i) − µ̄)′ =

1

n
M′G′(PG − P1n

)GM,

where PA is the projection matrix to the subspace spanned by the columns of a matrix A, i.e.,

PA = A(A′A)−1A′. In CDA, the linear discriminant functions play an important role. Let the

population linear discriminant functions be denoted by fa(x|β(a)) = β(a)′x (a = 1, . . . , q). Here,

the coefficient vectors β(1), . . . ,β(q) are given as the solutions of

Ωβ(a) = λaΣβ(a), β(a)′Σβ(b) = δab (a = 1, . . . , q; b = 1, . . . , q),

where δab is the Kronecker delta, i.e., if a = b then δab = 1, otherwise δab = 0, and λa is the a-th

maximum eigenvalue of Σ−1Ω satisfying λ1 ≥ · · · ≥ λq > 0.

It is important to specify the factors affecting the classification in CDA. In this paper we

consider variable selection methods for a redundancy model. Suppose that j denotes a subset

of ω = {1, . . . , p} containing pj elements, and xj denotes the pj-dimensional random vector

consisting of the components of x indexed by the elements of j. For example, if j = {1, 2, 4},
then xj consists of the first, second, and fourth elements of x. Without loss of generality, we

express x as x = (x′
j ,x

′
j̄
)′, where xj̄ is the (p − pj)-dimensional random vector and Ā denotes

the compliment of a set A. Similar to x, we define β(a) as β(a) = (β
(a)′

j ,β
(a)′

j̄
)′. Then, for

a candidate model such that xj̄ is redundant, we consider the following model (see, Fujikoshi,

1982):

β
(1)

j̄
= · · · = β

(q)

j̄
= 0p−pj . (1)

We call a candidate model (1) as model j or redundancy model j. Here, for model j, xj̄ does not

contribute to the population linear discriminant functions f1, . . . , fq. Thus, xj̄ is regarded as the

redundant vector in CDA for model j. To select the optimal model among all such candidate

models, some information criteria (IC) have been proposed. Fujikoshi (1983) applied Akaike’s

information criterion (AIC) (Akaike, 1973; 1974), and a modified version was also proposed by

Fujikoshi (1985). Nishii et al. (1988) considered a generalized information criterion (GIC) by

replacing AIC’s penalty, 2, with any positive constant. It is noted that the GIC includes several

well-known ICs, for example, the AIC, Bayesian information criterion (BIC) and Hannan-Quinn

information criterion (HQC), where the BIC and HQC were proposed by Schwarz (1978) and

Hannan and Quinn (1979), respectively. The usual selection method based on an IC regards the

best model as the model that has the minimum IC among all models (1) included in the set of

candidate models J , that is the best model is written as

j̃ = argmin
j∈J

IC(j), (2)

where IC(j) denotes the value of the IC for model j.
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If there is a true model j∗, which is the minimum subset including the true vector xj∗ from

models (1), then xj∗ can be considered as the vector that determines the classification. Consis-

tency is well-known as a desirable property for a variable selection method. A variable selection

method is said to be consistent if the probability of selecting the true model j∗ converges to 1.

In the context of CDA, Fujikoshi (1984) showed that (2) based on the AIC is not consistent, and

Nishii et al. (1988) obtained the sufficient conditions for (2), based on the GIC, to be strongly

consistent, which is a stricter property than standard consistency. However, these results were

obtained under the large-sample (LS) asymptotic framework such that only n goes to infinity.

In general, the LS asymptotic framework is not suitable for a high-dimensional case such that

not only n but also the dimension p are large, and asymptotic results may cause a non-negligible

bias. Moreover, it is usually considered that the number of candidate models is huge in the high-

dimensional case. Thus, it is not practical to use the selection method (2). To overcome this

problem, we consider the method proposed in Zhao et al. (1986) and Nishii et al. (1988), which

was developed for the LS situation. The method is as follows. Let ℓ be a subset of ω satisfying

#(ℓ) = p − 1, and let the elements of ℓ̄ be denoted as eℓ, that is ℓ and eℓ satisfy ℓ = ω\{eℓ},
where #(A) denotes the number of elements of a set A. Then, the best model under a criterion,

IC, is written as

ĵ = {eℓ ∈ ω | IC(ℓ) > IC(ω)}. (3)

This selection method is useful for the high-dimensional case because the number of calculations

required to compute IC is only p + 1. Nishii et al. (1988) showed under the LS asymptotic

framework that the consistency conditions for the method (2) based on the GIC are the same

as for the method (3). Recently, Fujikoshi and Sakurai (2018) obtained the sufficient conditions

for consistency for the method (3) based on the GIC in two-group discriminant analysis (i.e.,

q = 1) as both n and p go to infinity. Furthermore, such variable selection methods have been

used in multivariate regression, e.g., by Sakurai and Fujikoshi (2017), Bai et al. (2018), and Oda

and Yanagihara (2019). In this paper, following Bai et al. (2018), the method (3) is called the

Kick-One-Out (KOO) method.

The aim of this paper is to obtain sufficient conditions such that the KOO method (3) based on

the GIC is consistent when n goes to infinity and p may go to infinity in canonical discriminant

analysis. To achieve this, the following high-dimensional (HD) asymptotic framework is used:

n → ∞,
ni

n
→ ρi ∈ (0, 1) (i = 1, . . . , q + 1),

p

n
→ c ∈ [0, 1), pj∗ , q: fixed. (4)

Using our consistency conditions, we propose a consistent variable selection method. Since

the HD asymptotic framework includes the LS asymptotic framework, our proposed method is

consistent even when only n is large, so the consistency of the method does not rely on the

divergence order of p as long as c < 1.

The remainder of the paper is organized as follows. In section 2, we present the KOO method

based on the GIC and the necessary assumptions for deriving our results. In section 3, we

obtain the sufficient conditions for the method to be consistent and propose a consistent variable

selection method. In section 4, we present the results of numerical simulations and compare

the performance of our proposed method with that of the KOO method (3) based on existing

criteria. Technical details are relegated to the Appendix.
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2 Preliminaries

In this section, we present the KOO method (3) based on the GIC and the necessary assump-

tions for deriving our results. Hereafter, since we consider (3) not (2), we define ℓ (⊂ ω) as a

model satisfying #(ℓ) = p − 1, and eℓ denotes the elements of ℓ̄. First, we present the KOO

method based on the GIC. Let W and B be the matrices of the sums of squares and products

within groups and between groups given by

W = X ′(In − PG)X, B = X ′(PG − P1n)X.

We express the partitions of µ(i) (i = 1, . . . , q + 1), Σ ,W and T = W + B corresponding to

the division of x = (x′
ℓ, xℓ̄)

′ as follows:

µ(i) =

(
µ

(i)
ℓ

µ
(i)

ℓ̄

)
, Σ =

(
Σℓℓ σℓℓ̄

σ′
ℓℓ̄

σℓ̄ℓ̄

)
, W =

(
Wℓℓ wℓℓ̄

w′
ℓℓ̄

wℓ̄ℓ̄

)
, T =

(
Tℓℓ tℓℓ̄

t′
ℓℓ̄

tℓ̄ℓ̄

)
.

From Fujikoshi (1982), the model ℓ is equivalent to

µ
(1)

ℓ̄·ℓ = · · · = µ
(q+1)

ℓ̄·ℓ , (5)

where µ
(i)

ℓ̄·ℓ = µ
(i)

ℓ̄
− σ′

ℓℓ̄
Σ−1

ℓℓ µ
(i)
ℓ (i = 1, . . . , q + 1), and µ

(i)

ℓ̄·ℓ expresses the value after removing

the random term from the i-th group’s conditional mean of xℓ̄ giving xℓ. The expression (5)

was introduced by Rao (1948; 1973). Let f(X|M,Σ) be the probability density function of

Nn×p(GM,Σ⊗ In). Then, the maximum negative twofold log-likelihood under (5) is expressed

as follows (see e.g., Fujikoshi et al., 2010, chap 9.4.3):

max
µ,Σ

{−2 log f(X|µ,Σ) s.t. µ
(1)

ℓ̄·ℓ = · · · = µ
(q+1)

ℓ̄·ℓ } = np(1 + log 2π)− n log
wℓ̄ℓ̄·ℓ
tℓ̄ℓ̄·ℓ

+ n log |n−1W |,

where wℓ̄ℓ̄·ℓ = wℓ̄ℓ̄ −w′
ℓℓ̄
W−1

ℓℓ wℓℓ̄ and tℓ̄ℓ̄·ℓ = tℓ̄ℓ̄ − t′
ℓℓ̄
T−1
ℓℓ tℓℓ̄. Then, the GIC in the model (5) is

defined by

GIC(ℓ) = np(1 + log 2π)− n log
wℓ̄ℓ̄·ℓ
tℓ̄ℓ̄·ℓ

+ n log |n−1W |+ αhℓ,

where α is a positive constant and hℓ is the number of parameters in (5), i.e., hℓ = −q + p(q +

1) + p(p+ 1)/2. In particular, the GIC in ω is given by

GIC(ω) = np(1 + log 2π) + n log |n−1W |+ αhω,

where hω = p(q + 1) + p(p+ 1)/2. By choosing α, we can express the following specific criteria

as a special case of the GIC:

α =


2 (AIC)

log n (BIC)

2 log log n (HQC)

. (6)

The optimal model ĵ obtained by the KOO method based on the GIC is defined in the same way

as (3), i.e.,

ĵ = {eℓ ∈ ω | GIC(ℓ) > GIC(ω)}. (7)
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Let J+ denote the set of overspecified models, which is defined by

J+ = {j ⊂ ω | β(1)

j̄
= · · · = β

(q+1)

j̄
= 0p−pj

}.

The true model j∗ is expressed as the overspecified model having the smallest number of elements,

i.e., j∗ = argminj∈J+
pj .

Next, we present the necessary assumptions for deriving our results. Let

δ = tr(ΩΣ−1), δℓ = tr(ΩℓℓΣ
−1
ℓℓ ),

where Ωℓℓ is the (p−1)× (p−1) matrix resulting from deleting the p-th row and column vectors

from Ω. Note that δ is the square of the Mahalanobis distance among multiple groups except for

the case of constant multiplication. For example, if q = 1 then (n1n2/n
2)δ is equivalent to the

square of the Mahalanobis distance between two groups. Note that (1) and (5) are equivalent to

(see, Fujikoshi, 1982)

δ = δℓ. (8)

The above equation means that the value of the Mahalanobis distance does not change even if

redundant variables are removed. Let the minimum eigenvalue of a square matrix A be denoted

by λmin(A). To examine the sufficient conditions for consistency, we introduce the following two

assumptions:

A1. There exists c1 > 0 such that λmin(Σ) > c1.

A2. For all ℓ ⊃ j̄∗ (#(ℓ) = p− 1), there exists c2 > 0 such that δ − δℓ > c2.

Assumption A1 ensures the covariance matrix Σ is positive definite asymptotically. Moreover,

from the general formulas for the determinant of the partitioned matrix (e.g., Lütkepohl, 1997,

4.2.2 (6); 9.12.2 (5)), if Assumption A1 is true then the following equation holds:

σℓ̄ℓ̄·ℓ =
|Σ|
|Σℓℓ|

≥
∏p

a=1 λa(Σ)∏p−1
a=1 λa(Σ)

= λmin(Σ) > c1 (∀ℓ ⊂ ω (#(ℓ) = p− 1)), (9)

where σℓ̄ℓ̄·ℓ = σℓ̄ℓ̄ − σ′
ℓℓ̄
Σ−1

ℓℓ σℓℓ̄ and λa(Σ) is the a-th maximum eigenvalue of Σ satisfying

λ1(Σ) ≥ · · · ≥ λp(Σ). Assumption A2 is related to the behavior of the difference between two

Mahalanobis distances. From the definition of the true model and (8), we note that δ − δℓ > 0

holds under the finite case. Assumption A2 keeps δ − δℓ positive asymptotically.

3 Main Results

In this section, we obtain sufficient conditions for the consistency of the KOO method (7) based

on the GIC and propose a consistent variable selection method. To obtain these conditions, we

first introduce some notations. Let Γℓ be a p× p non-singular matrix given by

Γℓ =

(
Σ

−1/2
ℓℓ 0p−1

−σ
−1/2

ℓ̄ℓ̄·ℓ σ′
ℓℓ̄
Σ−1

ℓℓ σ
−1/2

ℓ̄ℓ̄·ℓ

)
,
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and let a p×p transformation of the population between-groups covariance matrix Ω be denoted

by

Ψℓ = nΓℓΩΓ′
ℓ, (10)

which is called the non-centrality matrix. To examine the consistency conditions, it is important

to understand the behavior of the non-centrality matrix Ψℓ. To better understand the character-

istics of Ψℓ, we present another expression for Ψℓ. Let d and D be a (q+1)-dimensional vector

and (q + 1)× (q + 1) diagonal matrix consisting of (n1/n)
1/2, . . . , (nq+1/n)

1/2, respectively, i.e.,

d = (d1, . . . , dq+1)
′, D = diag(d1, . . . , dq+1), di =

√
ni

n
(i = 1, . . . , q + 1).

From d and D, we can derive the following expression for Ψℓ:

Ψℓ = nΓℓM′D(Iq+1 − Pd)DMΓ′
ℓ. (11)

Note that Iq+1 − Pd is symmetric and idempotent, and its rank is rank(Iq+1 − Pd) = q. These

facts imply rank(Ψℓ) ≤ min(p, q) = q. Hence, Ψℓ can be decomposed into

Ψℓ = Θ′
ℓΘℓ, (12)

where Θℓ is a q × p matrix. The result rank(Ψℓ) ≤ q can also be seen from

rank(Ψℓ) = rank(Ω) ≤ rank(PG − P1n
) = tr(PG − P1n

) = q.

Let us split Θℓ into a sub-matrix and a sub-vector of Θℓ = (Θℓ,1,θℓ,2), where Θℓ,1 is a q×(p−1)

matrix and θℓ,2 is a q-dimensional vector. Then, we can obtain some properties of the non-

centrality matrix (the proof is given in Appendix A).

Lemma 3.1. Let ℓ be a subset of ω satisfying #(ℓ) = p − 1. The non-centrality matrix Ψℓ

defined in (10) and θℓ,2, which is the p-th column vector of Θℓ given by (12), has the following

properties:

(i) For all ℓ ⊃ j∗, θℓ,2 = 0q.

(ii) For all ℓ ⊃ j̄∗, infn>p,p≥1 n
−1θ′

ℓ,2θℓ,2 > 0 under the HD asymptotic framework (4) when

Assumptions A1 and A2 hold.

(iii) There is a (q + 1)× (q + 1) positive semi-definite matrix ∆ such that for all ℓ ⊃ j̄∗,

1

n
tr(Ψℓ) → tr(∆),

in the HD asymptotic framework (4).

To obtain sufficient conditions for consistency, we rewrite α as

α =
n

q
log (1 + β), β > 0. (13)

Using Lemma 3.1 and (13), the conditions of β for (7) based on the GIC in the HD asymptotic

framework can be derived from Theorem 3.1 (the proof is given in Appendix B).
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Theorem 3.1. Suppose that Assumptions A1 and A2 hold. Then the KOO method (7) based

on the GIC is consistent in the HD asymptotic framework, if the following conditions C1 and C2

are satisfied :

C1. p−1/2rnβ → ∞ for some r ∈ N,

C2. β → 0,

where β is defined by α = (n/q) log (1 + β) in (13).

Although the conditions in Theorem 3.1 are expressed in terms of β, they can also be written

in terms of α. Alternate expressions for the conditions are given by Corollary 3.1:

Corollary 3.1. The conditions C1 and C2 in Theorem 3.1 are equivalent to the following con-

ditions C1′ and C2′:

C1′. p−1/2rα → ∞ for some r ∈ N,

C2′.
α

n
→ 0.

From Corollary 3.1, we observe that the divergence of α should be expressible as a polynomial

in order to satisfy the conditions C1′ and C2′ when both n and p go to infinity. Hence, we derive

the following two properties for the specific criteria (6):

• When p is fixed, the AIC satisfies C2′ but not C1′, and the BIC and HQC satisfy both C1′

and C2′ as n → ∞.

• When p goes to ∞, the AIC, BIC and HQC satisfy C2′ but not C1′ as (n, p) → ∞.

These facts imply that the KOO methods (7) based on the AIC, BIC and HQC may not be

consistent in the HD asymptotic framework. Therefore, we propose the KOO method based on

an example criterion that is always consistent in the HD asymptotic framework. We define the

criterion, named the high-dimensionality-adjusted consistent information criterion (HCIC), as

follows:

HCIC(ℓ) = np(1 + log 2π)− n log
wℓ̄ℓ̄·ℓ
tℓ̄ℓ̄·ℓ

+ n log |n−1W |+ n

q
log

(
1 +

log n√
n

)
hℓ. (14)

It is straightforward to check that the HCIC satisfies conditions C1 and C2 in Theorem 3.1.

Therefore, the KOO method (7) based on the HCIC is consistent in the HD asymptotic frame-

work. For the two group case, our derived sufficient conditions are essentially the same as those

obtained by Fujikoshi and Sakurai (2018) although the assumptions are different. Note that the

GIC where α = n1/2 satisfies conditions C1′ and C2′. Fujikoshi and Sakurai (2018) mentioned

that the KOO method (7) based on the criterion where α = n1/2 performed well in numerical

studies for the two group case. The penalty of the HCIC is larger than n1/2 because the penalty

of the HCIC is α = O(n1/2 log n). However, the HCIC also performed well in the numerical

studies in section 4.
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4 Numerical studies

In this section, we numerically compare the probabilities of selecting the true model by the

KOO methods (7) based on the HCIC in (14) and the AIC, BIC and HQC in (6). The probabil-

ities of selecting the true model j∗ were evaluated by Monte Carlo simulations with 10, 000 iter-

ations. In this numerical experiment, we set pj∗ = 4, q = 3 and ni = n/(q+1) (i = 1, . . . , q+1),

and the exchangeable matrix was used as the covariance matrix, i.e., Σ = (1− ξ)Ip+ ξ1p1
′
p with

ξ = 0.8. The mean vectors µ(i) (i = 1, . . . , 4) were constructed as follows. Sub-vectors of µ(i) are

expressed as µ(i) = (µ
(i)′

1 ,µ
(i)′

2 )′, where µ
(i)
1 and µ

(i)
2 are pj∗ - and (p− pj∗)-dimensional vectors,

respectively. The elements of µ
(i)
1 (i = 1, . . . , 4) were defined as follows:

µ
(1)
1 =


1

1

1

1

 , µ
(2)
1 =


1

−1

1

−1

 , µ
(3)
1 =


1

1

−1

−1

 , µ
(4)
1 = −

3∑
i=1

µ
(i)
1 .

We set µ
(2)
2 = µ

(3)
2 = 0p−pj∗

. Then, based on µ
(i)
1 (i = 1, . . . , 4), µ

(1)
2 and µ

(4)
2 were constructed

as

µ
(1)
2 =

ξpj∗
1 + ξ(pj∗ − 1)

1p−pj∗
, µ

(4)
2 = − 5ξ

1 + ξ(pj∗ − 1)
1p−pj∗

.

The model that has the above mean vectors and exchangeable matrix satisfies β
(1)

j̄∗
= · · · = β

(3)

j̄∗
=

0p−pj∗
and the definition of the true model. Under these settings, the data X were generated

from Nn×p(GM,Σ⊗ In). Table 1 shows the probabilities of selecting the true model j∗ by the

KOO methods (7) based on each of the four criteria. In this table, the left column shows the

results when p is fixed, and the right column shows the results when p increases with n keeping

p/n constant. From the Table, we observe that the method based on the HCIC has the highest

probabilities among the methods based on the four criteria in all cases. However, it seems that

the probabilities increase slowly when p approaches n because we used an asymptotic framework

such that p/n converges to a constant that is less than 1. On the other hand, the probabilities

obtained with the method based on the AIC are low even when p is small. The reason is that

the AIC does not satisfy the conditions C1 and C2. The probabilities for the methods based on

the BIC and HQC increase as only n increases, but they do not tend to 100.00 % as n and p

increase except in the BIC’s case for p/n = 0.1. The results also suggest that the BIC and HQC

satisfy the conditions C1 and C2 as n → ∞ but do not satisfy them as (n, p) → ∞.

5 Conclusions

In this paper, we consider the variable selection problem in canonical discriminant analysis,

and provide sufficient conditions to determine the consistency of the KOO method (7) based on

the GIC in the HD asymptotic framework such that n goes to ∞ and p may also go to ∞ but p/n

converges to a constant that is less than 1. From Corollary 3.1, we observe that the AIC, BIC

and HQC do not satisfy the sufficient conditions for consistency in the HD asymptotic framework

and so the KOO methods based on them may not be consistent. Therefore, we proposed the
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Table 1: Probabilities of selecting the true model j∗ with each of the four criteria; the left column

shows the results when p is fixed, and the right column shows the results when p increases with

n keeping p/n some constants, which are 0.1, 0.3, 0.5, 0.8

Selection Probability (%) Selection Probability (%)

n p AIC BIC HQC HCIC p AIC BIC HQC HCIC

100 10 38.55 95.72 76.34 95.31 10 37.25 95.98 75.81 95.20

200 10 44.13 98.85 86.61 99.95 20 8.78 95.76 62.33 99.69

500 10 47.43 99.79 92.03 100.00 50 0.11 96.24 40.87 100.00

1000 10 48.61 99.91 94.62 100.00 100 0.00 96.81 23.08 100.00

100 30 0.25 55.03 9.62 83.78 30 0.22 56.25 9.68 83.88

200 30 1.56 90.15 38.15 99.35 60 0.00 54.01 2.55 98.52

500 30 2.99 98.69 65.76 100.00 150 0.00 51.01 0.11 100.00

1000 30 3.54 99.47 75.68 100.00 300 0.00 50.63 0.00 100.00

100 50 0.00 5.37 0.08 73.79 50 0.00 5.94 0.04 73.99

200 50 0.01 70.05 7.86 98.93 100 0.00 2.40 0.00 95.96

500 50 0.10 96.10 39.84 100.00 250 0.00 0.56 0.00 100.00

1000 50 0.27 99.00 58.75 100.00 500 0.00 0.12 0.00 100.00

100 80 0.00 0.00 0.00 3.83 80 0.00 0.00 0.00 3.63

200 80 0.00 19.09 0.07 97.71 160 0.00 0.00 0.00 39.84

500 80 0.00 89.75 13.43 100.00 400 0.00 0.00 0.00 98.57

1000 80 0.00 98.04 35.71 100.00 800 0.00 0.00 0.00 99.99
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KOO method (7) based on the high-dimensionality-adjusted consistent information criterion

(HCIC), which always has consistency under the HD asymptotic framework. The simulation

results showed the validity of the sufficient conditions and the high-probability of selecting the

true model by the method based on the HCIC.

In order to obtain the sufficient conditions for consistency, we used only two simple assumptions

under the HD asymptotic framework. However, it is also important to consider the case such

that q and pj∗ may go to infinity in order to improve the accuracy of the approximations when

q and pj∗ are not small. In such situations, more complex assumptions are required, but we

leave this as a future work. For the high-dimensional case such that p is larger than n, the

GIC is not defined because the inverse matrix of W does not exist. However, some papers deal

with such high-dimensional cases by applying regularization methods (e.g., Hastie et al., 1995;

Clemmensen et al., 2011) and screening methods (e.g., Cheng et al., 2017). We can extend our

method to the high-dimensional case by using such methods, but this is left as a future work.
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Appendix

A Proof of Lemma 3.1

We calculate Ψℓ in (11) to show (i) and (ii). From the definitions of M and Γℓ, we can

calculate MΓ′
ℓ as follows:

MΓ′
ℓ =


µ

(1)′

ℓ Σ
−1/2
ℓℓ −σ

−1/2

ℓ̄ℓ̄·ℓ µ
(1)

ℓ̄·ℓ
...

...

µ
(q+1)′

ℓ Σ
−1/2
ℓℓ −σ

−1/2

ℓ̄ℓ̄·ℓ µ
(q+1)

ℓ̄·ℓ

 .

Since θ′
ℓ,2θℓ,2 is the (p, p)-th element of Ψℓ, θ

′
ℓ,2θℓ,2 is expressed as

θ′
ℓ,2θℓ,2 = nσ−1

ℓ̄ℓ̄·ℓ(µ
(1)

ℓ̄·ℓ , . . . , µ
(q+1)

ℓ̄·ℓ )D(Iq+1 − Pd)D(µ
(1)

ℓ̄·ℓ , . . . , µ
(q+1)

ℓ̄·ℓ )′. (A.1)

It should be noted that equation (Iq+1 − Pd)a = 0q+1 holds if and only if a = a0D1q+1 for

some a0 ∈ R. First, we show (i). When ℓ ⊃ j∗, it follows from the equivalence of (1) and (5)

that µ
(1)

ℓ̄·ℓ = · · · = µ
(q+1)

ℓ̄·ℓ holds. Then, the following equation can be derived:

θ′
ℓ,2θℓ,2 = nσ−1

ℓ̄ℓ̄·ℓ(µ
(1)

ℓ̄·ℓ )
21′

q+1D(Iq+1 − Pd)D1q+1 = 0.

The above equation implies that θℓ,2 = 0q.
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Next, we show (ii). By applying the general formula for the inverse of a partitioned matrix

(e.g., Harville, 1997, Theorem 8.5.11) to Σ−1, we can obtain the following equation:

σℓ̄ℓ̄·ℓ(δ − δℓ) =
1

n

q+1∑
i=1

ni

(
µ
(i)

ℓ̄·ℓ −
1

n

q+1∑
k=1

nkµ
(k)

ℓ̄·ℓ

)2

.

From the above equation, Assumption A2 and (9), we can observe that maxi1 ̸=i2 |µ
(i1)

ℓ̄·ℓ − µ
(i2)

ℓ̄·ℓ |
does not converge to 0 under the HD asymptotic framework. On the other hand, in the HD

asymptotic framework, the following equations hold:

Iq+1 − Pd → R, D → L,

where R is a symmetric and idempotent matrix satisfying rank(R) = q, and L is a diagonal

matrix whose diagonal elements are positive. Moreover, Ra = 0q+1 holds if and only if a =

a0L1q+1 for some a0 ∈ R. These facts lead to the following equation:

inf
n>p,p≥1

(µ
(1)

ℓ̄·ℓ , . . . , µ
(q+1)

ℓ̄·ℓ )D(Iq+1 − Pd)D(µ
(1)

ℓ̄·ℓ , . . . , µ
(q+1)

ℓ̄·ℓ )′ > 0.

Therefore, using (A.1) and equation σ−1
ℓ̄ℓ̄·ℓ ≥ σ−1

ℓ̄ℓ̄
, we can derive the following equation:

inf
n>p,p≥1

1

n
θ′
ℓ,2θℓ,2 ≥ σ−1

ℓ̄ℓ̄
inf

n>p,p≥1
(µ

(1)

ℓ̄·ℓ , . . . , µ
(q+1)

ℓ̄·ℓ )D(Iq+1 − Pd)D(µ
(1)

ℓ̄·ℓ , . . . , µ
(q+1)

ℓ̄·ℓ )′ > 0.

This completes the proof of (ii).

Finally, we show (iii). When we consider the case of ℓ ⊃ j̄∗, we can express x as x =

(x′
j̄∗
,x′

j∗
)′ = (x′

j̄∗
,x′

j∗∩ℓ, xℓ̄)
′ without loss of generality. We give the expressions for M and Σ

corresponding to the partition of x = (x′
j̄∗
,x′

j∗
)′ as follows:

M = (Mj̄∗ ,Mj∗), Σ =

(
Σj̄∗ j̄∗ Σj̄∗j∗

Σ′
j̄∗j∗

Σj∗j∗

)
.

Let Γj̄∗ be a p× p non-singular matrix given by

Γj̄∗ =

(
Σ

−1/2

j̄∗ j̄∗·j∗
−Σ

−1/2

j̄∗ j̄∗·j∗
Σj̄∗j∗Σ

−1
j∗j∗

Op∗,p−pj∗
Σ

−1/2
j∗j∗

)
,

where Σj̄∗ j̄∗·j∗ = Σj̄∗ j̄∗ −Σj̄∗j∗Σ
−1
j∗j∗

Σ′
j̄∗j∗

. And let Ψj̄∗ be a p× p matrix denoted by

Ψj̄∗ = nΓj̄∗M
′D(Iq+1 − Pd)DMΓ′

j̄∗
.

From the definition of the true model j∗ and the equivalence between (1) and (5), we observe

that equation Mj̄∗ −Mj∗Σ
−1
j∗j∗

Σ′
j̄∗j∗

= Oq+1,p−pj∗
holds. Then, n−1tr(Ψj̄∗) can be calculated

as

1

n
tr(Ψj̄∗) = tr

{
(Oq+1,p−pj∗

,Mj∗Σ
−1/2
j∗j∗

)′D(Iq+1 − Pd)D(Oq+1,p−pj∗
,Mj∗Σ

−1/2
j∗j∗

)
}

= tr
{
Σ

−1/2
j∗j∗

M′
j∗D(Iq+1 − Pd)DMj∗Σ

−1/2
j∗j∗

}
→ tr

(
Σ

−1/2
j∗j∗

M′
j∗LRLMj∗Σ

−1/2
j∗j∗

)
. (A.2)
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Using Ψj̄∗ , tr(Ψℓ) can be written as

tr(Ψℓ) = tr
{
ΓℓΓ

−1
j̄∗

Ψj̄∗(Γ
′
j̄∗
)−1Γ′

ℓ

}
.

From the definitions of Γℓ and Γj̄∗ , it is straightforward to observe that ΓℓΣΓ′
ℓ = Γj̄∗ΣΓ′

j̄∗
= Ip.

Therefore, this fact and (A.2) lead to the following results:

1

n
tr(Ψℓ) =

1

n
tr
{
Ψj̄∗(Γ

′
j̄∗
)−1Γ′

ℓΓℓΓ
−1
j̄∗

}
=

1

n
tr(Ψj̄∗)

→ tr
(
Σ

−1/2
j∗j∗

M′
j∗LRLMj∗Σ

−1/2
j∗j∗

)
.

This completes the proof of (iii). □

B Proof of Theorem 3.1

The probability P (ĵ = j∗) can be expressed as

P (ĵ = j∗) = P

 ⋂
ℓ⊃j̄∗

{GIC(ℓ)−GIC(ω) > 0}

⋂⋂
ℓ⊃j∗

{GIC(ℓ)−GIC(ω) ≤ 0}

 .

From basic probability theories, we obtain

P (ĵ = j∗) ≥ 1−
∑
ℓ⊃j̄∗

P (GIC(ℓ)−GIC(ω) < 0)−
∑
ℓ⊃j∗

P (GIC(ℓ)−GIC(ω) > 0) . (B.1)

From the basic properties of a multivariate normal distribution and Cochran’s Theorem (e.g.,

Fujikoshi et al., 2010, Theorem 2.4.2), W andB are independent andW ∼ Wp(n−q−1,Σ), B ∼
Wp(q,Σ;nΩ). Hence, from Lemma C.1 in Appendix C, we can express the distributions of W

and B as W ∼ Wp(n − q − 1, Ip) and B ∼ Wp(q, Ip;Ψℓ) when wℓ̄ℓ̄·ℓ/tℓ̄ℓ̄·ℓ. Moreover, from

expression (12), we can apply Lemma C.2 in Appendix C to wℓ̄ℓ̄·ℓ/tℓ̄ℓ̄·ℓ, that is we can express

wℓ̄ℓ̄·ℓ/tℓ̄ℓ̄·ℓ as follows:

wℓ̄ℓ̄·ℓ
tℓ̄ℓ̄·ℓ

=
wℓ̄ℓ̄·ℓ

wℓ̄ℓ̄·ℓ + (tℓ̄ℓ̄·ℓ − wℓ̄ℓ̄·ℓ)
=

se
se + sh

, (B.2)

where se and sh are conditionally independent given U1 and Z1, and

se ∼ χ2(n− p− q), sh|U1,Z1 ∼ χ2(q; γℓ), γℓ = θ′
ℓ,2{Iq +Z1(U

′
1U1)

−1Z ′
1}−1θℓ,2.

Here, U1 and Z1 are independent random matrices distributed according to

U1 ∼ N(n−q−1)×(p−1)(On−q−1,p−1, Ip−1 ⊗ In−q−1), Z1 ∼ Nq×(p−1)(Θℓ,1, Ip−1 ⊗ Iq),

where Θℓ,1 and θℓ,2 are the partitioned matrix and vector, respectively, of Θℓ defined in (12).

From (B.2), GIC(ℓ)−GIC(ω) can be expressed as

GIC(ℓ)−GIC(ω) = −n log
wℓ̄ℓ̄·ℓ
tℓ̄ℓ̄·ℓ

− αq = −n log
se

se + sh
− αq. (B.3)
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First, we consider the case of ℓ ⊃ j∗. Then, θℓ,2 = 0q holds from Lemma 3.1-(i). Hence, we

observe that sh is distributed according to χ2(q) from Lemma C.2. From expression (B.3), for

all r ∈ N the following equation can be derived:∑
ℓ⊃j∗

P (GIC(ℓ)−GIC(ω) > 0) = (p− p∗)P

(
sh
se

> eqα/n − 1

)

= (p− p∗)P

(
sh
se

> β

)
≤ (p− p∗)β

−2rE

[(
sh
se

)2r
]
.

The last inequality is derived by Markov’s inequality when n−p is sufficiently large. From the r-th

moments of the chi-squared distribution and inverse-chi-squared distribution, it is straightforward

to observe that the divergence order of the expectation in the last of the above equations is

O(n−2r). Therefore, from condition C1, we have∑
ℓ⊃j∗

P (GIC(ℓ)−GIC(ω) > 0) = O(pn−2rβ−2r) → 0. (B.4)

Next, we consider the case of ℓ ⊃ j̄∗. Since sh is conditionally distributed according to χ2(q; γℓ)

given U1 and Z1, we can express sh as follows:

sh = γℓ + t+ 2ε
√
γℓ,

where t and ε are random variables satisfying t|U1,Z1 ∼ χ2(q) and ε|U1,Z1 ∼ N(0, 1), respec-

tively. Then, the following equation is easily verified:

se
n− p− q

= 1 + op(1),
t

n
= op(1). (B.5)

From Lemma 3.1-(iii), the following equation can be derived:

γℓ
n

≤
θ′
ℓ,2θℓ,2

n
≤ 1

n
tr(Ψℓ) = O(1). (B.6)

Hence, from the Cauchy-Schwarz inequality, we derive

E

[∣∣∣∣ 1nε√γℓ

∣∣∣∣] ≤
√
E

[
1

n
ε2
]
·

√
E

[
1

n
γℓ

]
=

1√
n

√
E

[
1

n
γℓ

]
= O(n−1/2).

This leads to the following equation:

ε
√
γℓ

n
= op(1). (B.7)

Let us examine the lower bound of γℓ/n. It is straightforward to observe that

γℓ
n

≥
θ′
ℓ,2θℓ,2

n
· 1

1 + tr{Z1(U ′
1U1)−1Z ′

1}
.

Then, applying Lemma C.3 to the above equation gives

γℓ
n

≥
θ′
ℓ,2θℓ,2

n

{
n− p

n− p+ qp+ tr(Θℓ,1Θ′
ℓ,1)

+Op(n
−1/2)

}
.
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From Lemma 3.1-(ii), (iii) and (B.6), the above equation can be expressed as

γℓ
n

≥

{
n− p

n− p+ qp+ tr(Θℓ,1Θ′
ℓ,1)

}(
inf

n>p,p≥1

θ′
ℓ,2θℓ,2

n

)
+Op(n

−1/2). (B.8)

Therefore, by using (B.5)-(B.8), the following equation can be derived:

sh
se

=
n

n− p− q
· n− p− q

se
·
(
γℓ
n

+
t

n
+

2ε
√
γℓ

n

)
=

n

n− p− q
{1 + op(1)}

{γℓ
n

+ op(1)
}

≥

{
n

n− p+ qp+ tr(Θℓ,1Θ′
ℓ,1)

}(
inf

n>p,p≥1

θ′
ℓ,2θℓ,2

n

)
+ op(1). (B.9)

Since pj∗ is finite, the condition C2 and (B.9) lead to∑
ℓ⊃j∗

P (GIC(ℓ)−GIC(ω) > 0) =
∑
ℓ⊃j∗

P

(
sh
se

< β

)
→ 0. (B.10)

The equations (B.1), (B.4) and (B.10) complete the proof of Theorem 3.1. □

C Lemma C.1, C.2, C.3 and their proofs

C.1 Lemma C.1 and it’s proof

Lemma C.1. Suppose that n − p − 1 > 0. Let W and B be independent random matrices

satisfying W ∼ Wp(n,Σ) and B ∼ Wp(q,Σ;Ω), where Ω is a p× p symmetric matrix and Σ is

a p× p positive definite matrix. Let Γ and the partition of Σ be denoted by

Γ =

(
Σ

−1/2
11 0p−1

−σ
−1/2
22·1 σ′

12Σ
−1
11 σ

−1/2
22·1

)
, Σ =

(
Σ11 σ12

σ′
12 σ22

)
,

where the size of Σ11 is (p− 1)× (p− 1) and σ22·1 = σ22 − σ′
12Σ

−1
11 σ12. Also, let T = W +B

and the partitions of W and T corresponding to the division of Σ be as follows:

W =

(
W11 w12

w′
12 w22

)
, T =

(
T11 t12

t′12 t22

)
.

Then, we can regard the distributions of W and B as W ∼ Wp(n, Ip) and B ∼ Wp(q, Ip;ΓΩΓ′)

when we consider the distribution of w22·1/t22·1, where w22·1 = w22 −w′
12W

−1
11 w12 and t22·1 =

t22 − t′12T
−1
11 t12.

Proof. Let

W̃ = ΓWΓ′, B̃ = ΓBΓ′, T̃ = W̃ + B̃.

Then, W̃ and B̃ are independent, and it follows from ΓΣΓ′ = Ip that W̃ ∼ Wp(n, Ip), B̃ ∼
Wp(q, Ip;ΓΩΓ′). Also, let the partitions of W̃ and T̃ corresponding to the divisions of W and

T be written follows:

W̃ =

(
W̃11 w̃12

w̃′
12 w̃22

)
, T̃ =

(
T̃11 t̃12

t̃′12 t̃22

)
.
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Note that W̃11 = Σ
−1/2
11 W11Σ

−1/2
11 and T̃11 = Σ

−1/2
11 T11Σ

−1/2
11 . Then, by using the general

formula for the determinant of a partitioned matrix (e.g., Harville, 1997, Theorem 13.3.8), we

have

w22·1

t22·1
=

|W |
|W11|

· |T11|
|T |

=
|ΓWΓ′|

|Σ−1/2
11 W11Σ

−1/2
11 |

· |Σ
−1/2
11 T11Σ

−1/2
11 |

|ΓTΓ′|
=

w̃22·1

t̃22·1
.

This completes the proof of Lemma C.1. □

C.2 Lemma C.2 and it’s proof

Lemma C.2. Suppose that n−p−q−2 > 0. Let W and B be independent random matrices satis-

fying W = U ′U , B = Z ′Z, U ∼ N(n−q−1)×p(On−q−1,p, Ip⊗In−q−1) and Z ∼ Nq×p(Θ, Ip⊗Iq),

where Θ is a q × p matrix. Let T = W +B then the partitions of U , Z, Θ, W and T are as

follows:

U = (U1,u2), Z = (Z1, z2), Θ = (Θ1,θ2), W =

(
W11 w12

w′
12 w22

)
, T =

(
T11 t12

t′12 t22

)
,

where the sizes of U1, Z1, Θ1, W11, and T11 are (n− q − 1)× (p− 1), q × (p− 1), q × (p− 1),

(p − 1) × (p − 1), and (p − 1) × (p − 1), respectively. Also, let w22·1 = w22 − w′
12W

−1
11 w12

and t22·1 = t22 − t′12T
−1
11 t12. Then, given U1 and Z1, w22·1 and t22·1 − w22·1 are conditionally

independent, and

w22·1 ∼ χ2(n− p− q), t22·1 − w22·1|U1,Z1 ∼ χ2(q; γ),

where γ = θ′
2{Iq +Z1(U

′
1U1)

−1Z ′
1}−1θ2. Moreover, if θ2 = 0q, then t22·1 − w22·1 is distributed

according to χ2(q).

Proof. From the definitions of w22·1 and t22·1, we can express w22·1 and t22·1 as follows:

w22·1 = u′
2(In−q−1 − PU1

)u2, (C.1)

t22·1 = u′
2u2 + z′

2z2 − (U ′
1u2 +Z ′

1z2)
′(U ′

1U1 +Z ′
1Z1)

−1(U ′
1u2 +Z ′

1z2). (C.2)

Since U1 and u2 are independent, we observe that w22·1 ∼ χ2(n−p−q) from Cochran’s Theorem.

On the other hand, by the general formula for the inverse of the sum of matrices (e.g., Lütkepohl,

1997, 3.5.2 (2)), the following equation holds:

(U ′
1U1 +Z ′

1Z1)
−1 = (U ′

1U1)
−1 − (U ′

1U1)
−1Z ′

1{Iq +Z1(U
′
1U1)

−1Z ′
1}−1Z1(U

′
1U1)

−1.

By using the above equation and (C.1) and (C.2), t22·1 − w22·1 is calculated as

t22·1 − w22·1

= {z2 −Z1(U
′
1U1)

−1U ′
1u2}′{Iq +Z1(U

′
1U1)

−1Z ′
1}−1{z2 −Z1(U

′
1U1)

−1U ′
1u2}. (C.3)

From the above equation, given U1 and Z1, we can observe that t22·1 − w22·1 is distributed

according to χ2(q; γ). In particular, t22·1 − w22·1 ∼ χ2(q) holds when θ2 = 0q.
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To show the conditional independence of w22·1 and t22·1 − w22·1, we express (C.1) and (C.3)

as follows:

w22·1 = (z′
2,u

′
2)E(z′

2,u
′
2)

′, t22·1 − w22·1 = (z′
2,u

′
2)F (z′

2,u
′
2)

′,

where E and F are given by

E =

(
Oq,q Oq,n−q−1

On−q−1,q In−q−1 − PU1

)
,

F =
(
Iq,−Z1(U

′
1U1)

−1U ′
1

)′ {Iq +Z1(U
′
1U1)

−1Z ′
1}−1

(
Iq,−Z1(U

′
1U1)

−1U ′
1

)
.

It is straightforward to observe that E and F are symmetric and idempotent matrices satisfying

EF = On−1,n−1. These imply that w22·1 and t22·1 − w22·1 are conditionally independent given

U1 and Z1 from Cochran’s Theorem. □

C.3 Lemma C.3 and it’s proof

Lemma C.3. Suppose that n− p− q− 1 > 0 and q ≤ p. Let Θ be a q× (p− 1) matrix satisfying

tr(ΘΘ′) = O(n). And let W and Z be independent random matrices distributed according to

W ∼ Wp−1(n− q − 1, Ip) and Z ∼ Nq×(p−1)(Θ, Ip−1 ⊗ Iq). Then, we have

1

1 + tr(ZW−1Z ′)
=

n− p

n− p+ qp+ tr(ΘΘ′)
+Op(n

−1/2),

as n → ∞, p/n → c ∈ [0, 1).

Proof. Let

V = (ZZ ′)1/2(ZW−1Z ′)−1(ZZ ′)1/2.

From a property of the Wishart distribution (e.g., Fujikoshi et al., 2010, Theorem 2.3.3), we

observe that V is independent of Z and V ∼ Wq(n− p, Iq). Then, we have

1

1 + tr(ZW−1Z ′)
=

1

1 + tr(V −1ZZ ′)
.

We expand V −1 and n−1ZZ ′. Let

T =
1√
n− p

{V − (n− p)Iq}.

Then, it is straightforward to observe that T = Op(1), so V −1 is expanded as follows:

V −1 =
1

n− p

(
Iq +

1√
n− p

T

)−1

=
1

n− p
Iq +Op(n

−3/2). (C.4)

From basic properties of a matrix normal distribution, we have

E[ZZ ′] = (p− 1)Iq +ΘΘ′,

E[||ZZ ′ − E[ZZ ′]||2] = 2(q + 1)tr(ΘΘ′) + q(q + 1)(p− 1) = O(n),
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where ||A|| is the Frobenius norm for a matrix A defined by ||A|| =
√
tr(A′A). Hence, n−1ZZ ′

is expanded as follows:

1

n
ZZ ′ =

p

n
Iq +

1

n
ΘΘ′ +Op(n

−1/2). (C.5)

From (C.4) and (C.5), tr(V −1ZZ ′) can be expanded as

tr(V −1ZZ ′) =
qp

n− p
+

1

n− p
tr(ΘΘ′) +Op(n

−1/2).

Note that

qp

n− p
+

1

n− p
tr(ΘΘ′) ≥ 0.

Therefore, we can expand {1 + tr(ZW−1Z ′)}−1 as follows:

1

1 + tr(ZW−1Z ′)
=

n− p

n− p+ qp+ tr(ΘΘ′)
+Op(n

−1/2).

□
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