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Abstract

This paper is concerned with computable error bounds for asymp-

totic approximations of the expected probabilities of misclassification

(EPMC) of the quadratic discriminant function Q. A location and

scale mixture expression for Q is given as a special case of a general

discriminant function including the linear and quadratic discriminant

functions. Using the result, we provide computable error bounds for

asymptotic approximations of the EPMC of Q when both the sample

size and the dimensionality are large. The bounds are numerically ex-

plored. Similar results are given for a quadratic discriminant function

Q0 when the covariance matrix is known.
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1 Introduction

An important concern in discriminant analysis is the classification of a p× 1

observation vector x as coming from one of two populations Π1 and Π2.

Let Πi be p-variate normal populations Np(µi,Σ), where µ1 ̸= µ2 and Σ is

positive definite. Suppose that all the parameters are unknown. However,

Ni-samples are available from Πi, i = 1, 2. It is assumed that n = N − 2 > 0,

whereN = N1+N2. Then, there are two well known discriminant procedures.

One is based on the linear discriminant function W , and the other is based

on the quadratic discriminant function Q. The usual linear discriminant rule

is to classify x as Π1 or Π2 according to W ≥ 0 or W < 0. Similarly the

quadratic discriminant rule is defined by using Q.

These expected probabilities of misclassification (EPMC) have been ob-

tained under two asymptotic frameworks; one is a large-sample asymptotic

framework, and the other is a high-dimensional and large-sample framework.

Asymptotic results under a large-sample framework were reviewed by Siotani

(1982) and by McLachlan (1992). Fujikoshi and Seo (1998) derived asymp-

totic approximations of EPMC of a general discriminant function Tg includ-

ing W and Z under a high-dimension and large-sample framework. Their

extensions to asymptotic expansions were given in Fujikoshi (2000) for W .

Matsumoto (2004) extended Fujikoshi and Seo’s (1998) result to an asymp-

totic expansion. For further results, see Hyodo and Kubokawa (2014), Tonda

et al. (2017), and Yamada et al. (2017).

This paper is concerned with computable error bounds for asymptotic

approximations. These are based on a location and scale mixture of W ,

and use a general result on error bounds by Fujikoshi (2000) and Fujikoshi

and Ulyanov (2006). We note that a location and scale mixture can be

obtained for a general discriminant function. These result will be useful for

approximating Tg and its error bound. However, such general problems will

be discussed in a future paper. Herein, we focus on the quadratic discriminant
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function Q.

The remainder of the paper is organized as follows. In Section 2, we

provide preliminary results on a location and scale mixture of a normal dis-

tribution and its error bound, taking the linear discriminant function W as

an example. In Section 3, we derive a location and scale mixture expression

of a general discriminant function Tg includingW and Q. It is noted that this

may be applied for approximations of a general discriminant function Tg and

its error bounds. However, in Section 4, details are discussed with respect for

the quadratic discriminant function Q. We provide computable error bounds

for high-dimensional and large-sample approximations for EPMC of Q, in-

cluding details of their numerical accuracy. As a special case, we providegive

similar results for a quadratic discriminant function Q0 when the covariance

matrix is known.

2 Preliminaries

2.1 Discriminant Functions

Suppose that we are interested in classifying a p × 1 observation vector x

as coming from one of two populations Π1 and Π2. Let Πi : Np(µi,Σ) be

the two p- variate normal, where µ1 ̸= µ2 and Σ is positive definite. When

the values of the parameters are unknown, we assume that random samples

of sizes N1 and N2 are available from Π1 and Π2, respectively. Let x̄1, x̄2

and S be the sample mean vectors and the sample covariance matrix. It is

assumed that n = N − 2 > p, where N = N1 + N2. Then, a well known

linear discriminant function is defined by

W = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
. (2.1)

The observation x may be classified as Π1 or Π2 according to W ≥ 0 or

W < 0.
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In this paper, we consider classification of x using a quadratic discrimi-

nant function Q defined by

Q =
1

2

{
(1 +N−1

2 )−1(x− x̄2)
′S−1(x− x̄2)

−(1 +N−1
1 )−1(x− x̄1)

′S−1(x− x̄1)
}
. (2.2)

The observation x may be classified to Π1 or Π2 according to Q ≥ 0 or Q < 0.

The discriminant functions W and Q may be considered as special cases of

a general discriminant function defined by

Tg =
1

2

{
(x− x̄2)

′S−1(x− x̄2)− g(x− x̄1)
′S−1(x− x̄1)

}
, (2.3)

where g is a positive number. The observation x may be classified to Π1 or

Π2 according to Tg ≥ 0 or Tg < 0. Then, it holds that

T1 = W, Ta = (1 +N−1
2 )Q, (2.4)

where a = (1 +N−1
2 )/(1 +N−1

1 ).

2.2 Error Bounds for Location and Scale Mixture Vari-
able

Error estimates for asymptotic approximations of W have been studied by

using its location and scale mixture of the standardized normal distribution.

In general, a random variable Y is called a location and scale mixture of the

standardized normal distribution, if Y is expressed as

Y = V 1/2Z − U, (2.5)

where Z ∼ N(0, 1), Z and (U, V ) are independent, and V > 0. It is known

(see Fujikoshi (2000)) that the linear discriminant function W can be ex-

pressed as a location and scal mixture of the standardized normal distribu-

tion. In fact, when x comes from Π1, the variables (Z,U, V ) may be defined
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as

V = (x̄1 − x̄2)
′S−1ΣS−1(x̄1 − x̄2),

Z = V − 1
2 (x̄1 − x̄2)

′S−1(x− µ1), (2.6)

U = (x̄1 − x̄2)
′S−1(x̄1 − µ1)−

1

2
D2,

where D =
{
(x̄1 − x̄2)

′S−1(x̄1 − x̄2)
}1/2

is the sample Mahalanobis distance

between two populations. Since Z ∼ N(0, 1) and is independent of (U, V ),

we have

Pr{Y ≤ y} = E(U,V )

[
Φ
{
V − 1

2 (y + U)
}]

. (2.7)

From (2.7), we have an approximation Φ
{
v
− 1

2
0 (y + u0)

}
for the distribution

function of Y , where (u0, v0) is a given point in the range space of (U, V ).

Then the following bound was given by Fujikoshi (2000),

Theorem 2.1. Let Y be a location and scale mixture of Z in (2.5). Let

(u0, v0) be any given point in the range space of (U, V ). Assume that E(U2) <

∞ and E(V 2) < ∞. Then∣∣Pr{Y ≤ y} − Φ(ỹ)
∣∣ ≤ B0 +B1, (2.8)

where ỹ = v
−1/2
0 (y + u0), and

B0 =
1

2
√
2πe

v−1
0 E[(U − u0)

2] +
1

2
v−2
0 E[(V − v0)

2]

+
1

2
√
2π

v
−3/2
0

{
E[(U − u0)

2]E[(V − v0)
2]
}1/2

,

B1 =
1√
2π

v
−1/2
0 |E(U − u0)|+

1

2
√
2πe

v−1
0 |E(V − v0)|.

Corollary 2.1. Under Theorem 2.1, assume that u0 = E(U), and

v0 = E(V ). Then ∣∣Pr{Y ≤ y} − Φ(ỹ)
∣∣ ≤ B0, (2.9)

where ỹ = v
−1/2
0 (y + u0), and

B0 =
1

2
√
2πe

v−1
0 Var(U) +

1

2
v−2
0 Var(V )

+
1

2
√
2π

v
−3/2
0 {Var(U)Var(V )}1/2 .
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3 Location and Scale Mixture for a General

Discriminant Function

In this section we express a general discriminant function Tg as a location

and scale mixture. Note that Tg can be expressed as

Tg =
1

2
{−√

g(x− x̄1) + x− x̄2}′ S−1 {√g(x− x̄1) + x− x̄2} (3.1)

=
1

2
b1b2t

′
1B

−1t2.

Here

t1 = b−1
1 Σ−1/2 {(1−√

g)x+
√
gx̄1 − x̄2} ,

t2 = b−1
2 Σ−1/2 {(1 +√

g)x−√
gx̄1 − x̄2} , (3.2)

B = Σ−1/2SΣ−1/2,

and

b1 =
{
1 +N−1

2 − 2
√
g + g(1 +N−1

1 )
}1/2

,

b2 =
{
1 +N−1

2 + 2
√
g + g(1 +N−1

1 )
}1/2

.

Note that B obeys a Wishart distribution Wp(n, Ip), and is independent of

t1 and t2. Suppose that x belongs to Π1. Then, it holds that

ti ∼ Np(b
−1
i δ, Ip), i = 1, 2, (3.3)

where δ = Σ−1/2(µ1 − µ2). In general, t1 and t2 are not independent and

their covariance matrix is computed as

Cov(t1, t2) = b0(b1b2)
−1Ip,

where b0 = 1+N−1
2 −g(1+N−1

1 ). Therefor, t1 and t2 are independent if and

only if

g = (1 +N−1
1 )−1(1 +N−1

2 ) ≡ a, (3.4)
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i.e., Ta = (1 +N−1
2 )Q.

To express Tg as a location and scale mixture, let us consider a trans-

formed variate t̃2 of t2,

t̃2 = t2 −
b0
b1b2

(
t1 −

1

b1
δ

)
. (3.5)

Then, t̃2 is independent of t1, since t1 and t̃2 are normal and Cov(t1, t̃2) = O.

We can write Tg in terms of t1, t̃2 and B as

Tg =
1

2
b1b2t

′
1B

−1t2

=
1

2
b1b2t

′
1B

−1

{
t̃2 +

b0
b1b2

(
t1 −

1

b1
δ

)}
(3.6)

=
1

2
b1b2

{
V 1/2Z − U

}
,

where

Z = (t′1B
−2t1)

−1/2(t̃2 − b−1
2 δ),

U = − b0
b1b2

t′1B
−1t1 +

1

b2

(
b0
b21

− 1

)
t′1B

−1δ, (3.7)

V = t′1B
−2t1.

It is observed that Z ∼ N(0, 1), and is independent of (U, V ). These imply

the following Lemma.

Lemma 3.1. Let Tg be a general discriminant function defined by (2.3) based

on Ni samples from Πi : Np(µi,Σ), i = 1, 2. Then, Tg can be expressed as

a location and scale mixture. More precisely, when x belongs to Π1, we can

express as

Tg =
1

2
b1b2

{
V 1/2Z − U

}
, (3.8)

where Z, U and V are given by (3.7).

As a special case of Lemma 3.1, we have a location and scale expression

of W . Note that the expression is different from that in (2.6). Similarly,
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we have a location and scale expression of Q as a special case of g = (1 +

N−1
1 )−1(1 + N−1

2 ) whose result is the same as that obtained by Yamada et

al. (2017).

Using Theorem 2.1 and Lemma 3.1, approximations for a general discrim-

inant function Tg and its error bound can be obtained. It is interesting to

study how the error bound depends on g. However, such results are beyond

the scope of the current paper. In the next section, we focus on results for

the quadratic discriminant function Q.

4 Approximations for EPMC of Q and Error

Bounds

In this section we discuss approximations for the quadratic discriminant func-

tion Q which is given as a general discriminant function with g = a =

(1 +N−1
1 )−1(1 +N−1

2 ). From Section 3, we have

Q = (1 +N−1
2 )−1Ta =

1

2
(1 +N−1

2 )−1b1b2t
′
1B

−1t2, (4.1)

where

t1 = b−1
1 Σ−1/2

{
(−

√
a+ 1)x+

√
ax̄1 − x̄2

}
,

t2 = b−1
2 Σ−1/2

{
(
√
a+ 1)x−

√
ax̄1 − x̄2

}
, (4.2)

B = Σ−1/2SΣ−1/2,

and

b1 =
√
2
{
1 +N−1

2 −
√
a
}1/2

, b2 =
√
2
{
1 +N−1

2 +
√
a
}1/2

. (4.3)

Suppose that x belongs to Π1, i.e., x ∼ N(µ1,Σ). Then, ti ∼ N(b−1
i δ, Ip),

i = 1, 2, nB ∼ Wp(n, Ip), and t1, t2 and B are independent. Further, using

Lemma 3.1, we have

Q = b
{
V 1/2Z − U

}
, (4.4)
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where

Z = (t1B
−2t1)

−1/2t′1B
−1(t2 − b−1

2 δ),

U = c1γ
′B−1t1, V = c2t

′
1B

−2t1. (4.5)

Here,

c1 = −{N/(N1N2)}1/2b1b−1
2 , c2 = {N/(N1N2)}1/2,

b =
[
(1 +N−1)/{(1 +N−1

1 )(1 +N−1
2 )}

]1/2
, (4.6)

γ = b−1
1 δ, τ 2 = γ ′γ = b−2

1 ∆2.

Note that (U, V )’s in (4.5) and in (3.8) with g = a are the same, except for

the constant multiple.

In general, the Q-rule with a cutoff point 0 classifies x as Π1 if Q > 0 and

Π2 ifQ < 0. Then, there are two types of probability of misclassification. One

is the probability of allocating x into Π2 even though it actually belongs to

Π1. The other is the probability that x is classified as Π1 although it actually

belongs to Π2. These two types of expected probabilities of misclassification

(EPMC) for the Q- rule are expressed as

eQ(2|1) = Pr(Q < 0 | x ∈ Π1) and eQ(1|2) = Pr(Q > 0 | x ∈ Π2).

As is well known, the distribution of Q when x ∈ Π1 is the same as that of

−Q when x ∈ Π2 by interchanging N1 and N2. This indicates that eQ(1|2)
(or eQ(1|2)) is obtained from eQ(2|1) (or eQ(2|1)) by replacing (N1, N2) with

(N2, N1). Thus, in this paper, we only deal with eQ(2|1). Then, we have the
following expression:

eQ(2|1) = Pr
{
b(V 1/2Z − U) < 0

}
= E(U,V )

{
Φ(V −1/2U)

}
. (4.7)

Next the following we choose the range point (u0, v0) of (U, V ) as

u0 = E(U), v0 = E(V ). (4.8)
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Consider approximating eQ(2|1) by Φ(v
−1/2
0 u0). For use of Theorem 2.1, the

means and variances of U and V in (4.10) are required, and are given in the

following Lemma:

Lemma 4.1. Let U and V be random variables defined by (4.5). Then their

means and variances are given as follows:

E(U) =
nc1τ

2

m− 1
, m > 1,

Var(U) =
(nc1)

2τ 2

(m− 1)(m− 3)

(
n− 1

m
+

2τ 2

m− 1

)
, m > 3,

E(V ) =
n2c2(n− 1)(p+ τ 2)

m(m− 1)(m− 3)
, m > 3, (4.9)

Var(V ) =
(n2c2)

2(n− 1)

m(m− 1)(m− 3)

[
2(n− 3)(p+ 2τ 2)

(m− 2)(m− 5)(m− 7)

+ (p+ τ 2)2
{

n− 3

(m− 2)(m− 5)(m− 7)
− n− 1

m(m− 1)(m− 3)

]
,

m > 7,

where c1 and c2 are given by (4.6), m = n− p, and τ 2 = b−2
1 ∆2.

Proof. The random variables U and V are expressed as

U = nc1γ
′A−1t1, V = n2c2t

′
1A

−2t1, (4.10)

where A = nB, Note that t1 ∼ Np(γ, Ip), A ∼ Wp(n, Ip), and t1 and A are

independent. The results are obtained by using the following distributional

expressions (see, e.g., Fujikoshi (2002)):

γ ′A−1t1 = τY −1
1

{
Z1 + τ − (Y2/Y3)

1/2Z2

}
,

t′1A
−2t1 = Y −2

1

(
1 + Y2Y

−1
3

) {
(Z1 + τ)2 + Z2

2 + Y4

}
.

Here, Yi ∼ χ2
fi
, i = 1, . . . 4; Zi ∼ N(0, 1), i = 1, 2; and

f1 = m+ 1, f2 = p− 1, f3 = m+ 2, f4 = p− 2.

Further, all the variables Y1, Y2, Y3, Y4, Z1 and Z2 are independent.
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Let us consider an approximation

eQ(2|1) ∼ Φ(y0), y0 = v
−1/2
0 u0, (4.11)

where u0 = E(U) and v0 = E(V ). Applying Corroraly 2.1 to this approxi-

mation, we have the following result.

Theorem 4.1. Let u0 and v0 be defined as u0 = E(U) and v0 = E(V ), which

are given in (4.9), and y0 = v
−1/2
0 u0. Then, if m = N1 +N2 − p− 2 > 7,

|eQ(2|1)− Φ(y0)| ≤ B0, (4.12)

where

B0 =
1

2
√
2πe

v−1
0 VU +

1

2
v−2
0 VV +

1

2
√
2π

v
−3/2
0 {VUVV }1/2. (4.13)

where VU = Var(U) and VV = Var(V ) are given by (4.9).

Now, let us consider a high-dimensional and large-sample asymptotic

framework given by

(AF) : p/Ni → hi > 0, i = 1, 2, ∆2 = O(1). (4.14)

Then, under (AF), from Theorem 4.1 we have

B0 = O1, and eQ(2|1) = Φ(y0) + O1, (4.15)

where Oj denotes the term of the jth order with respect to (N−1
1 , N−1

2 , p−1).

Hitherto, various approximation errors have been formally stated without

rigorous proofs. However, by virture of Theorem 4.1, our result (4.15) is

based on a rigorous proof.

When Σ is known, we use the quadratic discriminant function Q0 defined

by

Q0 =
1

2

{
(1 +N−1

2 )−1(x− x̄2)
′Σ−1(x− x̄2)

−(1 +N−1
1 )−1(x− x̄1)

′Σ−1(x− x̄1)
}
. (4.16)
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Assume that x belongs to Π1, i.e., x ∼ N(µ1,Σ). Then, we can write Q0 as

Q0 = b
{
V

1/2
0 Z0 − U0

}
. (4.17)

Here, (Z0, U0, V0) is defined from (Z,U, V ) by putting B = Ip, that is,

Z0 = (t1t1)
−1/2t′1(t2 − b−1

2 δ),

U0 = c1γ
′t1, V0 = c2t

′
1t1,

c1 = −db1b
−1
2 n−1/2, c2 = d2n−1.

The conditional distribution of Z0 given t1 is N(0, 1). Therefore, Z0 ∼
N(0, 1), and Z0 is independent of t1. This implies that Q0/b is a location

and scale mixture of N(0, 1). Note that the marginal distributions of (U0, V0)

may be expressed as

U0 = c1(τX + τ 2), V0 = c2χ
2
p(τ

2),

where X is the N(0, 1) variable. Using these distributional results, the means

and variances of U0 and V0 are obtained as follows:

E(U0) = c1τ
2 = u0, Var(U0) = c21τ

2,

E(V0) = c2(p+ τ 2) = v0, Var(V0) = 2c2(p+ 2τ 2). (4.18)

Theorem 4.2. Let u0 and v0 be defined as u0 = E(U0) and v0 = E(V0),

which are given in (4.18). Consider the error probability eQ0(2|1) = Pr(Q0 <

0|x ∈ Π1). Then, we have

|eQ0(2|1)− Φ(ỹ0)| ≤ B̃0, (4.19)

where ỹ0 = ṽ
−1/2
0 ũ0, and

B̃0 =
1

2
√
2πe

ṽ−1
0 VU0 +

1

2
ṽ−2
0 VV0 +

1

2
√
2π

ṽ
−3/2
0 {VU0VV0}1/2. (4.20)

Here, VU0 = Var(U0), VV0 = Var(V0), and they are given by (4.18).
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We provide numerical values for the upper bounds B0 in (4.13) and B̃0 in

(4.20) in Tables 4.1 and 4.2. Table 4.1 pertains to the case where ∆ = 1.68,

and Table 4.2 to the case where ∆ = 2.56. As a matter of course, the

bounds will be smaller as ∆ becomes larger. Similarly, the bounds when

the covariance matrix is known are smaller in comparison to those when

the covariance matrix is unknown. The bounds will be useful for moderate

values as well as large values of p and for large values of N1 and N2 except

for the case where m = N1 +N2 − p− 2 is small and the covariance matrix

is unknown.
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Table 4.1. Values of B0 in (4.13) and B̃0 in (4.20); ∆ = 1.68

p N1 N2 B0 B̃0

5 10 10 1.1430 0.1112

20 20 0.2762 0.0678

30 10 0.2978 0.0855

75 75 0.0581 0.0214

10 10 10 7.4916 0.0812

20 20 0.3143 0.0558

30 10 0.3280 0.0669

75 75 0.0582 0.0201

30 30 30 0.2833 0.0272

60 60 0.0809 0.0186

90 60 0.0616 0.0165

100 100 0.0438 0.0130
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Table 4.2. Values of B0 in (4.13) and B̃0 in (4.20); ∆ = 2.56

p N1 N2 B0 B̃0

5 10 10 1.0846 0.0672

20 20 0.2541 0.0371

30 10 0.2671 0.0486

75 75 0.0509 0.0107

10 10 10 7.2841 0.0567

20 20 0.3032 0.0338

30 10 0.3133 0.0429

75 75 0.0521 0.0104

30 30 30 0.2867 0.0190

60 60 0.0786 0.0113

90 60 0.0587 0.0097

100 100 0.0410 0.0073
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