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Abstract

This paper focuses on the maximum likelihood estimators (MLEs) of the

mean parameter vector and the covariance matrix in a one-sample version

of the growth curve model when the dataset has a monotone missing pat-

tern. First, a closed form is obtained for the MLE of the mean parameter

vector when the covariance matrix is known. Similarly, it is obtained for

the MLE of the covariance matrix when the mean parameter vector is

known. The distributions of these estimators and their basic properties

are also given. Then, considering that these expressions give the likeli-

hood or determining equations, we propose an algorithm that includes an

iterative procedure to obtain the MLEs when all the parameters are un-

known. Further, a conventional estimator for the mean parameter vector

is also proposed. Finally, a numerical example is given to illustrate our

estimation procedure.

Key Words and Phrases: Growth curve model, Maximum likelihood

estimator, Monotone missing data.

1 Introduction

Suppose that a single variable y is measured at p time points (di�erent conditions)

t1, t2, . . . , tp on n subjects chosen at random from a group. We denote the variable y

at time point tj by yj, and let y = (y1, y2, . . . , yp)
′. Let the observations yi1, yi2, . . . , yip of

the ith subject be denoted by

yi = (yi1, yi2, . . . , yip)
′, i = 1, 2, . . . , n.
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Then, in a growth curve model, it is assumed that for i = 1, 2, . . . , n,

E[yi] = µ = Xθ, Var[yi] = Σ, (1)

where X is a given p × q matrix with rank q, θ = (θ1, θ2, . . . , θq)
′ is an unknown pa-

rameter vector, and Σ is an unknown positive de�nite. Further, it is assumed that

yi, i = 1, 2, . . . , n are independent and normally distributed. The matrix X is called a

within-design matrix. The model given by (1) is a one-sample version of the growth curve

model introduced by Pottho� and Roy (1964).

We consider the case where the missing data occur at random. Kleinbaum (1973) gave

some inference methods for the growth curve model. Srivastava (1985) gave the likelihood

equations for some multivariate models including the growth curve model. Liski (1985)

applied the EM-algorithm to the estimation problem. Kanda (1994) considered the case

where the covariance matrix has some special structures. In this paper, we consider the

case where the missing data are of the monotone type, that is, if yij is missing, then

all variables yiℓ, ℓ > j are also missing. Here, j may depend on the subject i. If there

are k types of monotone data, then the data are called k-step monotone missing data.

Such monotone missing data often appear in longitudinal studies. There have been a

considerable number of works on monotone missing data in one and several multivariate

normal populations. For these works, see Anderson and Olkin (1985), Jinadasa and Tracy

(1992), Kanda and Fujikoshi (1998), Yagi and Seo (2017), etc. However, it seems that

more advanced studies have not been conducted on the growth curve model of monotone

missing data, although there are considerable number of works on the general type of

missing data, as mentioned above.

This paper deals with MLEs in a one-sample growth curve model (1). Our aim is to

derive more advanced results for the MLEs by assuming monotone-type missing data. The

remainder of this paper is organized as follows. In Section 2, a closed form is obtained for

the MLE of the mean parameter vector when the covariance matrix is known. In addition,

its distribution and basic properties are given. In Section 3, a closed form is obtained
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for the MLE of the covariance matrix when the mean parameter vector is known, and

its distribution is studied. In Section 4, we show that these results give the likelihood

or determining equations to obtain their MLEs when all the parameters are unknown.

Further, we propose an algorithm with an iterative procedure to obtain the MLEs. A

conventional estimator for the mean parameter is also proposed. A numerical example is

given to illustrate our estimation procedure in Section 5. Finally, we state our conclusion

in Section 6. The proofs of Theorems 1 and 2 are given in the Appendix, focusing on a

three-step monotone case.

2 MLE of θ when Σ is known

In this section, we derive a closed form expression of the MLE of the mean parameter

vector with a known covariance matrix for a growth curve model when the dataset has a

monotone pattern of missing observations. Its distribution and basic properties are also

given.

2.1 Two-step monotone missing data

For simplicity, we �rst consider the case k = 2. Suppose that we have n1 observation

vectors y1,y2, . . . ,yn1
all of whose components have been observed. It is assumed that

y1,y2, . . . ,yn1
are independently distributed as a p-dimensional normal distribution with

the mean vector µ = Xθ and covariance matrixΣ as in (1). Further, suppose that we have

n2 observation vectors y21,y22, . . . ,y2n2
for the �rst p1 components. It is assumed that

y21,y22, . . . ,y2n2
are independently distributed as a p1-dimensional normal distribution

with the mean vector µ1 = X1θ and covariance matrix Σ11, where

µ
p×1

=

(
µ1

µ2

)}
p1}
p2

, X
p×q

=

(
X1

X2

)}
p1}
p2

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.
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Let us write

(y1,y2, . . . ,yn1
)′ = (Y 11Y 12), (y21,y22, . . . ,y2n2

)′ = Y 21,

where Y 11 : n1 × p1, Y 12 : n1 × p2, Y 21 : n2 × p1, and p = p1 + p2. Then, the two-step

monotone missing data are expressed as

Y =

p1︷ ︸︸ ︷ p2︷ ︸︸ ︷(
Y 11 Y 12

Y 21 ∗

)}
n1}
n2

,
(2)

where �∗� indicates a missing part. Here, note that each row of Y is independently normal

with

E[(Y 11 Y 12)] = 1n1θ
′X ′, E[Y 21] = 1n2θ

′X ′
1, (3)

where 1ni
is an ni × 1 vector of 1s.

Let L(θ,Σ) be the likelihood of Y in (2). Then, we have

− 2 logL(θ,Σ)

= (N2p1 + n1p2) log(2π) +N2 log |Σ11|+ trΣ−1
11 (Y (12)1 − 1N2θ

′X ′
1)

′(Y (12)1 − 1N2θ
′X ′

1)

+ n1 log |Σ22·1|+ trΣ−1
22·1(Y 12 − 1n1θ

′X̃
′
2 − Y 11Σ

−1
11 Σ12)

′

× (Y 12 − 1n1θ
′X̃

′
2 − Y 11Σ

−1
11 Σ12),

where

N2 = n1 + n2, Σ22·1 = Σ22 −Σ21Σ
−1
11 Σ12,

Y (12)1
N2×p1

=

(
Y 11

Y 21

)}
n1}
n2

,

and

X̃
′
2

q×p2

= X ′
2 −X ′

1Σ
−1
11 Σ12.

Consider the MLE of θ when Σ is known. Note that there is a one-to-one correspondence
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between Σ and {Σ11, B12, Σ22·1}, where B12 = Σ−1
11 Σ12. We can write

g(θ,Σ11,B12,Σ22·1) ≡ −2 logL(θ,Σ)

= (N2p1 + n1p2) log(2π) +N2 log |Σ11|+ trΣ−1
11 (Y (12)1 − 1N2θ

′X ′
1)

′(Y (12)1 − 1N2θ
′X ′

1)

+ n1 log |Σ22·1|+ trΣ−1
22·1(Y 12 − Y 11B12 − 1n1θ

′X̃
′
2)

′(Y 12 − Y 11B12 − 1n1θ
′X̃

′
2)

= −2(a1 + a2)
′θ + θ′(N2A1 + n1A2)θ + (terms without θ),

where

a1 = X ′
1Σ

−1
11 Y

′
(12)11N2 , a2 = X̃

′
2Σ

−1
22·1(Y 12 − Y 11B12)

′1n1 ,

A1 = X ′
1Σ

−1
11 X1, and A2 = X̃

′
2Σ

−1
22·1X̃2.

On solving (∂/∂θ)g(θ,Σ11,B12,Σ22·1) = 0, we obtain the MLE of θ as

θ̂ = (N2A1 + n1A2)
−1(a1 + a2). (4)

Then, it holds that

E[θ̂] = θ, Var[θ̂] = (N2A1 + n1A2)
−1. (5)

The mean of θ̂ is obtained using

EY 11

[
EY 12|Y 11

[(Y 12 − Y 11B12)
′1n1 ]

]
= n1X̃2θ.

The covariance matrix of θ̂ is obtained using

EZ11
[EZ12|Z11

[(Z12 −Z11B12)
′1n1 · 1′

n1
(Z12 −Z11B12)]] = n1Σ22·1,

where (
Z11 Z12

Z21 ∗

)
=

(
Y 11 Y 12

Y 21 ∗

)
−
(
1n1θ

′X ′
1 1n1θ

′X ′
2

1n2θ
′X ′

1 ∗

)
=

(
Y 11 − 1n1θ

′X ′
1 Y 12 − 1n1θ

′X ′
2

Y 21 − 1n2θ
′X ′

1 ∗

)
(6)

and Z(12)1 = Y (12)1 − 1N2θ
′X ′

1. Further, the distribution of θ is normal. These results

are obtained by considering that a1 ∼ Nq(N2A1θ, N2A1), a2 ∼ Nq(n1A2θ, n1A2), and

a1 and a2 are independent. The normality of a1 and a2 follows from the fact that these

are bilinear forms of Y . The independence of a1 and a2 follows from the fact that the

conditional distribution of a2 for a given Y 11 or Y (12)1 does not depend on a1.
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2.2 k-step monotone missing data (k ≥ 2)

We consider a general monotone case. Let

Y =

p1︷ ︸︸ ︷ p2︷ ︸︸ ︷ pk−i+1︷ ︸︸ ︷ pk−1︷ ︸︸ ︷ pk︷︸︸︷

Y 11 Y 12 · · · · · · · · · Y 1,k−1 Y 1k

Y 21 Y 22 · · · · · · · · · Y 2,k−1 ∗
...

...
...

...
Y i1 Y i2 · · · Y i,k−i+1 ∗ · · · ∗
...

...
...

Y k−1,1 Y k−1,2 ∗ · · · · · · · · · ∗
Y k1 ∗ · · · · · · · · · · · · ∗



}
n1}
n2}
ni}
nk−1}
nk

and let

Y i(12...,k−i+1)
ni×p(12...,k−i+1)

= (Y i1 Y i2 · · ·Y i,k−i+1), i = 1, 2, . . . , k.

The rows of Y i(12...,k−i+1) (i = 1, 2, . . . , k) are mutually independent and

vec(Y ′
i(12...,k−i+1)) ∼ Np(12...,k−i+1)ni

(vec(µ(12...,k−i+1)1
′
ni
), Ini

⊗Σ(12...,k−i+1)(12...,k−i+1)),

i = 1, 2, . . . , k,

where 1ni
is an ni × 1 vector of 1s,

µ(12...,k−i+1)
p(12...,k−i+1)×1

=


µ1

µ2
...

µk−i+1


}p1
}p2

}pk−i+1

,

Σ(12...,k−i+1)(12...,k−i+1)
p(12...,k−i+1)×p(12...,k−i+1)

=

p1︷ ︸︸ ︷ p2︷ ︸︸ ︷ pk−i+1︷ ︸︸ ︷
Σ11 Σ12 · · · Σ1,k−i+1

Σ21 Σ22 · · · Σ2,k−i+1
...

...
Σk−i+1,1 Σk−i+1,2 · · · Σk−i+1,k−i+1


}
p1}
p2 .

}
pk−i+1

In particular, for i = 1, we de�ne µ(12...k) = µ, Σ(12...k)(12...k) = Σ. Then, the growth curve

model with k-step monotone missing data is expressed as

E[Y i(12...,k−i+1)] = 1ni
ni×1

θ′
1×q

X ′
(12...,k−i+1)

q×p(12...,k−i+1)

, i = 1, 2, . . . , k, (7)

where

X(12...,k−i+1)
p(12...,k−i+1)×q

=


X1

X2
...

Xk−i+1


}p1
}p2

}pk−i+1

, p(12...,k−i+1) =
k−i+1∑
j=1

pj, i = 1, 2, . . . , k.
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We note that µ(12...,k−i+1) = X(12...,k−i+1)θ, i = 1, 2, . . . , k. The joint probability density

function of Y , i.e.,{
Y 1(12...k),Y 2(12...,k−1), . . . ,Y i(12...,k−i+1), . . . ,Y k1

}
can be written as

f(Y 1(12...k))× f(Y 2(12...k−1))× · · · × f(Y i(12...,k−i+1))× · · · × f(Y k1)

= f(Y 11)f(Y 12|Y 11)× · · · × f(Y 1,k−i+1|Y 1(12...,k−i))× · · · × f(Y 1k|Y 1(12...,k−1))

×f(Y 21)f(Y 22|Y 21)× · · · × f(Y 2,k−i+1|Y 2(12...,k−i))× · · · × f(Y 2,k−1|Y 2(12...,k−2))
...

×f(Y i1)f(Y i2|Y i1)× · · · × f(Y ij|Y i(12...,j−1))× · · · × f(Y i,k−i+1|Y i(12...,k−i))
...

×f(Y k1),

where

f(Y i1) = (2π)−
1
2
nip1 |Σ11|−

1
2
ni etr

{
−1

2
(Y i1 − 1ni

θ′X ′
1)Σ

−1
11 (Y i1 − 1ni

θ′X ′
1)

′
}
,

i = 1, 2, . . . , k,

and the conditional density of Y ij for a given Y i(12··· ,j−1) can be written as

f(Y ij|Y i(12...,j−1))

= (2π)−
1
2
nipj |Σjj·12...,j−1|−

1
2
ni

× etr
[
−1

2

{
Y ij − 1ni

θ′(X ′
j −X ′

(12...,j−1)B(12...,j−1)j)− Y i(12...,j−1)B(12...,j−1)j

}
×Σ−1

jj·12...,j−1

{
Y ij − 1ni

θ′(X ′
j −X ′

(12...,j−1)B(12...,j−1)j)− Y i(12...,j−1)B(12...,j−1)j

}′]
,

i = 1, 2, . . . , k; j = 2, 3, . . . , k − i+ 1,

where

Σjj·12...,j−1 = Σjj −Σ(12...,j−1)jΣ
−1
(12...,j−1)(12...,j−1)Σ(12...,j−1)j,

B(12...,j−1)j = Σ−1
(12...,j−1)(12...,j−1)Σ(12...,j−1)j, Σ(12...,j−1)j

p(12...,j−1)×pj

=

 Σ1j

Σ2j...
Σj−1,j

 .
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Note that there is a one-to-one correspondence betweenΣ and {Σ11,B(12...,j−1)j,Σjj·12...,j−1,

j = 2, 3, . . . , k}. Using the above decomposition of the density of Y , the likelihood L(θ,Σ)

can be expressed as

g(θ,Σ11,B(12...,j−1)j,Σjj·12...,j−1, j = 2, 3, . . . , k) ≡ −2 logL(θ,Σ)

=
k∑

j=1

Nk−j+1pj log(2π) +Nk log |Σ11|+
k∑

j=2

Nk−j+1 log |Σjj·12...,j−1|

+ trΣ−1
11 (Y (12...k)1 − 1Nk

θ′X ′
1)

′(Y (12...k)1 − 1Nk
θ′X ′

1)

+
k∑

j=2

trΣ−1
jj·12...,j−1 (8)

×
{
Y (12...,k−j+1)j−Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j−1Nk−j+1

θ′X̃
′
j

}′

×
{
Y (12...,k−j+1)j−Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j−1Nk−j+1

θ′X̃
′
j

}
,

where

X̃
′
j = X ′

j −X ′
(12...,j−1)B(12...,j−1)j, j = 2, 3, . . . , k, and Ni =

i∑
j=1

nj, i = 1, 2, . . . , k.

Using the above notations, we get the following results for the MLE of θ and its distri-

bution when Σ is given:

Theorem 1 Suppose that we have the growth curve model (7) with a k-step monotone

pattern of missing observations. Then, the MLE of θ when Σ is known is given by

θ̂ = M−1
k∑

j=1

aj, (9)

where

M =
k∑

j=1

Nk−j+1Aj, a1 = X ′
1Σ

−1
11 Y

′
(12...k)11Nk

, A1 = X ′
1Σ

−1
11 X1,

and for j = 2, . . . , k,

aj =X̃
′
jΣ

−1
jj·12...,j−1

(
Y (12...,k−j+1)j − Y (12...,k−j+1)(1...,j−1)B(12...,j−1)j

)′
1Nk−j+1

,

Aj =X̃
′
jΣ

−1
jj·12...,j−1X̃j.
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Further, it holds that θ̂ is normal with

E[θ̂] = θ and Var[θ̂] = M−1.

Note that we use the su�x (1) = 1. For example, B(1)2 = B12, X(1) = X1, and

Z(1)2 = Z12. The proof of Theorem 1, which is given in Appendix, is based on the

following Lemma.

Lemma 1 Let aj, j = 1, 2, . . . , k be the random vector de�ned in (9). Then,

(1) aj ∼ Nq(Nk−j+1Ajθ, Nk−j+1Aj), j = 1, 2, . . . , k,

(2) a1, . . . ,ak are independent,

where

A1 = X ′
1Σ

−1
11 X1, Aj = X̃

′
jΣ

−1
jj·12...,j−1X̃j, X̃j = Xj − B′

(12...,j−1)jX(12...,j−1),

j = 2, 3, . . . , k.

The proof of Lemma 1 is given in Appendix 1.

3 MLE of Σ when θ is known

In this section, we consider the MLE of Σ when θ is known, with monotone missing data

in the growth curve model. The notation in Section 2 is used.

3.1 Two-step monotone missing data

Here, we consider the minimization of g(θ,Σ11,B12,Σ22·1) with respect to Σ11,B12, and

Σ22·1. Note that g(θ,Σ11,B12,Σ22·1) is expressed in terms of Z in (6) as

g(θ,Σ11,B12,Σ22·1) =(N2p1 + n1p2) log(2π) +N2 log |Σ11|+ trΣ−1
11 Z

′
(12)1Z(12)1

+ n1 log |Σ22·1|+ trΣ−1
22·1(Z12 −Z11B12)

′(Z12 −Z11B12).
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The derivative of g(θ,Σ11,B12,Σ22·1) with respect to Σ11 is

∂

∂Σ11

g(θ,Σ11,B12,Σ22·1) = N2Σ
−1
11 −Σ−1

11 Z
′
(12)1Z(12)1Σ

−1
11 .

Solving (∂/∂Σ11)g(θ,Σ11,B12,Σ22·1) = O, we obtain the MLE of Σ11 as

Σ̂11 =
1

N2

Z ′
(12)1Z(12)1.

As for B12, note that g(θ,Σ11,B12,Σ22·1) is expressed as

g(θ,Σ11,B12,Σ22·1) = trΣ−1
22·1(Z12 −Z11B12)

′(Z12 −Z11B12) + (terms without B12).

Then, from [A.2.11] of Fujikoshi et al. (2010), we have

min
B12

trΣ−1
22·1(Z12 −Z11B12)

′(Z12 −Z11B12) = trΣ−1
22·1(Z12 −Z11B̂12)

′(Z12 −Z11B̂12),

where

B̂12 = (Z ′
11Z11)

−1Z ′
11Z12.

Therefore, B̂12 is the MLE of B12. Finally, in the same way as that in the derivation of

Σ̂11, the MLE of Σ22·1 is given as

Σ̂22·1 =
1

n1

(Z12 −Z11B̂12)
′(Z12 −Z11B̂12)

=
1

n1

Z ′
12(In1 − P Z11

)Z12,

where PZ11
= Z11(Z

′
11Z11)

−1Z ′
11．We can easily see that N2Σ̂11 and n1Σ̂22·1 are indepen-

dently distributed as Wishart distributions Wp1(N2 − 1,Σ11) and Wp2(n1 − p1 − 1,Σ22·1),

respectively.

3.2 k-step monotone missing data

Let L(θ,Σ) be the likelihood of Y with k-step monotone missing. Then, −2 logL(θ,Σ)

is expressed as (8). We use the following notation:

Z(12...k)1 =Y (12...k)1 − 1Nk
θ′X ′

1,

Z(12...,k−j+1)(12...,j−1) =Y (12...,k−j+1)(12...,j−1) − 1Nk−j+1
θ′X ′

(12...,j−1), (10)

Z(12...,k−j+1)j =Y (12...,k−j+1)j − 1Nk−j+1
θ′X ′

j, j = 2, 3, . . . , k.
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Using the expression given by (8), we can obtain the MLE of Σ when θ is known by using

the following theorem.

Theorem 2 Suppose that we have a k-step monotone pattern of missing observations.

Then, for the growth curve model given by (7) with a known parameter θ, the MLEs

of Σ11,B(12...,j−1)j,Σjj·12...,j−1, j = 2, 3, . . . , k are given by

Σ̂11 =
1

Nk

Z ′
(12...k)1Z(12...k)1

and for j = 2, . . . , k,

B̂(12...,j−1)j =(Z ′
(12...,k−j+1)(12...,j−1)Z(12...,k−j+1)(12...,j−1))

−1

×Z ′
(12...,k−j+1)(12...,j−1)Z(12...,k−j+1)j,

Σ̂jj·12...,j−1 =
1

Nk−j+1

(
Z(12...,k−j+1)j −Z(12...,k−j+1)(12...,j−1)B̂(12...,j−1)j

)′
×
(
Z(12...,k−j+1)j −Z(12...,k−j+1)(12...,j−1)B̂(12...,j−1)j

)
=

1

Nk−j+1

Z ′
(12...,k−j+1)j

(
INj

− PZ(12...,k−j+1)(12...,j−1)

)
Z(12...,k−j+1)j,

where

PZ(12...,k−j+1)(12...,j−1)
=Z(12...,k−j+1)(12...,j−1)(Z

′
(12...,k−j+1)(12...,j−1)Z(12...,k−j+1)(12...,j−1))

−1

×Z ′
(12...,k−j+1)(12...,j−1), j = 2, 3, . . . , k.

Further,

NkΣ̂11 ∼ Wp1(Nk − 1,Σ11),

Nk−j+1Σ̂jj·12...,j−1 ∼ Wpj(Nk−j+1 − p(12··· ,j−1) − 1,Σjj·12...,j−1), j = 2, 3, . . . , k,

and they are independent.

The proof of Theorem 2 is given in Appendix 2.
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4 MLEs of θ and Σ

In this section, we consider the MLEs of θ and Σ when all the parameters are unknown.

In Theorems 1 and 2, we obtain closed forms h1(Σ) and h2(θ) such that (i) θ̂ = h1(Σ)

is the MLE of θ when Σ is known, and (ii) Σ̂ = h2(θ) is the MLE of Σ when θ is

known. From our derivation, the likelihood equations of θ and Σ are equivalent to the

simultaneous equations given by

θ = h1(Σ) and Σ = h2(θ). (11)

Therefore, the solutions of the simultaneous equations given by (11) for θ and Σ are the

MLEs. It seems di�cult to obtain an explicit solution of (11). Therefore, we consider

numerical solutions based on the following iterative method.

(0) As a starting matrix Σ̂
(0)

forΣ, we use the MLE ofΣ when µ is an unknown

parameter vector, which is obtained from Jinadasa and Tracy (1992) and

Kanda and Fujikoshi (1998).

(1) Using Σ̂
(0)
, compute Σ

(0)
11 , B(0)

(1...,j−1)j, Σ
(0)
jj·1...,j−1, j = 2, . . . , k, and then

compute θ̂
(1)

= h1(Σ̂
(0)
) and Σ̂

(1)
= h2(θ̂

(1)
). Set i = 1.

(2) For j = 2, . . . , k, compute Σ
(i)
11 , B

(i)
(1...,j−1)j, and Σ

(i)
jj·1...,j−1. Then, compute

θ̂
(i+1)

= h1(Σ
(i)) and Σ̂

(i+1)
= h2(θ

(i+1)).

(3) Let d(i) = θ̂
(i+1)

− θ̂
(i)

and D(i) = Σ̂
(i+1)

− Σ̂
(i)
. If d(i)′d(i) < 10−6 and

trD(i)D(i) < 10−6, then we regard θ̂
(i+1)

and Σ̂
(i+1)

as the solutions, and

stop．

(4) Otherwise repeat steps (2) through (3).

As an alternative starting matrix Σ, we may use the MLE based on the complete dataset,

Y 1(12···k), if n− n1 is small. Then, Y 1(12···k) has a growth curve model

E[Y 1(12···k)] = 1n1θ
′X ′. (12)
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The MLE of Σ based on (12) is given as follows. Consider the transformation from Y to

(U V ):

(U V ) = Y G = Y (G1 G2),

where G1 = X(X ′X)−1 and G2 = X̃; X̃ is a p × (p − q) matrix such that X̃
′
X = O

and X̃
′
X̃ = Ip−q. Let Ψ be the covariance matrix of each row of (U V ). Then, Σ̂ is

obtained using the relation Σ̂ = (G′)−1Ψ̂G. Here, the MLE Ψ̂ of Ψ based on Y 1(12···k)

can be expressed as follows (see, e.g. Fujikoshi et al. (2010, (12.4.6), Theorem 12.4.2)):

Ψ̂11·2 =
n1 − 1

n1

(X ′S−1X)−1, Ψ̂22 =
1

n1

G′
2Y

′
1(12···k)Y 1(12···k)G2, (13)

Γ̂ = (G′
2SG2)

−1G′
2SG1,

where Γ = Ψ−1
22 Ψ21 and S is the usual unbiased sample covariance matrix based on

Y 1(12···k).

Let Σ̂c be the MLE of Σ based on the complete data Y c = Y 1(12···k). Then, we have

Σ̂c = (G′)−1Ψ̂cG,

where Ψ̂c is the Ψ̂ given by (13). Let θ̂c be the estimator of θ, which is obtained from the

θ̂ in (9) by substituting Σ̂c to Σ̂. Then, it is expected that such a conventional estimator

θ̂c is useful, especially when n− n1 is small.

5 Example

In this section, we consider the data on the ramus heights of 20 boys, which is given in

Table 2 of Elston and Grizzle (1962), to illustrate the results of this paper. The ramus

height has been measured in mm for each boy at 8, 81
2
, 9, and 91

2
years of age. Let us

assume that by discarding some data, the data will be missing completely at random and

have a three-step monotone pattern as follows:

13



Let

Y 1(123)=



47.8 48.8 49.0 49.7
46.4 47.3 47.7 48.4
46.3 46.8 47.8 48.5
45.1 45.3 46.1 47.2
47.6 48.5 48.9 49.3
52.5 53.2 53.3 53.7
51.2 53.0 54.3 54.5
49.8 50.0 50.3 52.7
48.1 50.8 52.3 54.4
45.0 47.0 47.3 48.3


, Y 2(12)=


51.2 51.4 51.6
48.5 49.2 53.0
52.1 52.8 53.7
48.2 48.9 49.3
49.6 50.4 51.2

 , Y 31=


50.7 51.7
47.2 47.7
53.3 54.6
46.2 47.5
46.3 47.6

 .

Suppose that the growth or change is linear with respect to time. Then, q = 2 and we

have

vec(Y ′
1(123)) ∼ N40(vec(µ1

′
10), I10 ⊗Σ),

vec(Y ′
2(12)) ∼ N15(vec(µ(12)1

′
5), I5 ⊗Σ(12)(12)),

vec(Y ′
31) ∼ N10(vec(µ11

′
5), I5 ⊗Σ11),

where

µ = X
4×2

θ
2×1

, X
p×q

=

 X1

X2

X3


}
2}
1}
1

=


1 8
1 8.5
1 9
1 9.5

 .

We set the starting matrix as

Σ̂
(0)

11 =

(
6.0135 5.8796
5.8796 6.1269

)
, B̂(0)

12 =

(
−0.1951
1.1953

)
,

Σ̂
(0)

22·1 =
(
0.7800

)
, B̂(0)

(12)3 =

−0.0394
−0.2141
1.2259

 , Σ̂
(0)

33·12 =
(
0.4633

)
.

Then, using the algorithm described in Section 4, we get

θ̂
(1)

=

(
33.3995
1.9092

)
, · · · , θ̂

(5)
=

(
33.5022
1.8962

)
.

Finally, we obtain the MLEs of µ̂ and Σ̂ as follows.

µ̂(5) =


48.6715
49.6196
50.5677
51.5158

 , Σ̂
(5)

=


6.0137 5.8795 5.8612 5.6552
5.8795 6.1269 6.1846 6.0114
5.8612 6.1846 7.0515 6.9962
5.6552 6.0114 6.9962 7.4318

 .
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Throughout these steps, the values of −2 logL(θ,Σ) are

g(θ̂
(1)
, Σ̂

(1)

11 , B̂
(1)
12 , Σ̂

(1)

22·1, B̂
(1)
(12)3, Σ̂

(1)

33·12) = 189.8262, · · · ,

g(θ̂
(5)
, Σ̂

(5)

11 , B̂
(5)
12 , Σ̂

(5)

22·1, B̂
(5)
(12)3, Σ̂

(5)

33·12) = 189.8231.

In this example, we can also obtain the MLEs of θ, µ, and Σ by using the partially

complete data (10× 4) as follows:

θ̂pc =

(
36.0103
1.4968

)
, µ̂pc =


47.9844
48.7328
49.4811
50.2295

 , Σ̂pc =


5.6796 5.7109 5.6780 5.5135
5.7109 6.4678 6.5778 6.5367
5.6780 6.5778 6.9179 6.9024
5.5135 6.5367 6.9024 7.4161

 .

Here, Σ̂pc is obtained from (13) by substituting the partially complete data Y 1(123) for

Y 1(12...k).

In this example, we can derive the MLEs based on the complete data (20 × 4), which

is given as follows:

θ̂c =

(
33.7605
1.8616

)
, µ̂c =


48.6534
49.5842
50.5150
51.4458

 , Σ̂c =


6.0137 5.8795 5.4881 5.2718
5.8795 6.1269 5.8458 5.6269
5.4881 5.8458 6.5721 6.5988
5.2718 5.6269 6.5988 7.0958

 .

It may be noted that the estimators θ̂
(5)
, µ̂(5), and Σ̂

(5)
are considerably similar to θ̂c,

µ̂c, and Σ̂c, respectively. On the other hand, we can see that the estimators θ̂pc, µ̂pc, and

Σ̂pc obtained by deleting the missing data are not good.

6 Conclusion

This paper provided closed forms for the MLE of the mean parameter vector when the

covariance matrix is known, and the MLE of the covariance matrix when the mean pa-

rameter vector is known, based on general monotone missing data. The distributions of

these MLEs were derived. Using the results, we proposed an algorithm that includes an

iterative procedure to obtain the MLEs when all the parameters are unknown. These

results may also be useful for considering a hypothesis testing on a growth curve model
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with monotone missing data, which is left as a future work. Further, the results can be

extended to the multi-sample case, and we are currently investigating this problem.

7 Appendix

7.1 Proofs of Theorem 1 and Lemma 1

Since an extension to a general k-step monotone missing data is straightforward, in the

following, we give proofs of Theorem 1 and Lemma 1 in the case of k = 3. Then, the

growth curve model with three-step monotone missing data is expressed as

E[Y 1(123)
n1×p

] = 1n1
n1×1

θ′
1×q

X ′
q×p

, E[Y 2(12)
n2×p(12)

] = 1n2
n2×1

θ′
1×q

X ′
(12)

q×p(12)

,

(14)
E[Y 31

n3×p1

] = 1n3
n3×1

θ′
1×q

X ′
1

q×p1

,

where

Y 1(123) =
(
Y 11 Y 12 Y 13

)
, Y 2(12) =

(
Y 21 Y 22

)
,

X
p×q

=

 X1

X2

X3


}
p1}
p2}
p3

=

(
X(12)

X3

)}
p(12)}
p3

, p(12) = p1 + p2.

It is assumed that the rows of Y 1(123) Y 2(12) and Y 31 are mutually independent and

vec(Y ′
1(123)) ∼ Nn1p(vec(µ1

′
n1
), In1 ⊗Σ),

vec(Y ′
2(12)) ∼ Nn2p(12)(vec(µ(12)1

′
n2
), In2 ⊗Σ(12)(12)),

vec(Y ′
31) ∼ Nn3p1(vec(µ11

′
n3
), In3 ⊗Σ11),

where 1ni
is an ni × 1 vector of 1s,

µ =

 µ1

µ2

µ3


}
p1}
p2}
p3

=

 µ(12)

µ3

 ,

and

Σ =

p1︷ ︸︸ ︷ p2︷ ︸︸ ︷ p3︷ ︸︸ ︷ Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


}
p1}
p2}
p3

=

 Σ13Σ(12)(12) Σ23

Σ31 Σ32 Σ33

 .
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Let L(θ,Σ) be the likelihood under (14). Then, we have

− 2 logL(θ,Σ)

= (N3p1 +N2p2 +N1p3) log(2π) +N3 log |Σ11|+N2 log |Σ22·1|+N1 log |Σ33·12|

+ trΣ−1
11 (Y (123)1 − 1N3θ

′X ′
1)

′(Y (123)1 − 1N3θ
′X ′

1)

+ trΣ−1
22·1

(
Y (12)2 − Y (12)1B12 − 1N2θ

′X̃
′
2

)′(
Y (12)2 − Y (12)1B12 − 1N2θ

′X̃
′
2

)
+ trΣ−1

33·12

(
Y 13 − Y 1(12)B(12)3 − 1N1θ

′X̃
′
3

)′(
Y 13 − Y 1(12)B(12)3 − 1N1θ

′X̃
′
3

)
,

where

Y (123)1 =

 Y 11

Y 21

Y 31

 , Y (12)2 =

(
Y 12

Y 22

)
, Y 1(12) =

(
Y 11 Y 12

)
,

Σ33·12 = Σ33 −
(
Σ31 Σ32

)
Σ−1

(12)(12)

(
Σ13

Σ23

)
, X̃

′
3 = X ′

3 −X ′
(12)B(12)3,

B(12)3 =Σ−1
(12)(12)

(
Σ13

Σ23

)
, Ni =

i∑
j=1

nj, i = 1, 2, 3.

We derive the MLE of θ when Σ is known. Since there is a one-to-one correspondence

between Σ and {Σ11,B12,Σ22·1,B(12)3,Σ33·12},

g(θ,Σ11,B12,Σ22·1,B(12)3,Σ33·12)

≡ −2 logL(θ,Σ)

= (N3p1 +N2p2 +N1p3) log(2π) +N3 log |Σ11|+N2 log |Σ22·1|+N1 log |Σ33·12|

+ trΣ−1
11 (Y (123)1 − 1N3θ

′X ′
1)

′(Y (123)1 − 1N3θ
′X ′

1)

+ trΣ−1
22·1

(
Y (12)2 − Y (12)1B12 − 1N2θ

′X̃
′
2

)′(
Y (12)2 − Y (12)1B12 − 1N2θ

′X̃
′
2

)
+ trΣ−1

33·12

(
Y 13 − Y 1(12)B(12)3 − 1N1θ

′X̃
′
3

)′(
Y 13 − Y 1(12)B(12)3 − 1N1θ

′X̃
′
3

)
= −2(a1 + a2 + a3)

′θ + θ′(N3A1 +N2A2 +N1A3)θ + (terms without θ),
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where

a1 = X ′
1Σ

−1
11 Y

′
(123)11N3 , a2 = X̃

′
2Σ

−1
22·1(Y (12)2 − Y (12)1B12)

′1N2 ,

a3 = X̃
′
3Σ

−1
33·12(Y 13 − Y 1(12)B(12)3)

′1N1 , A1 = X ′
1Σ

−1
11 X1,

A2 = X̃
′
2Σ

−1
22·1X̃2, A3 = X̃

′
3Σ

−1
33·12X̃3.

Solving (∂/∂θ)g(θ,Σ11,B12,Σ22·1,B(12)3,Σ33·12) = 0, we obtain the MLE of θ when Σ is

known as

θ̂ = M−1(a1 + a2 + a3),

where M = N3A1 + N2A2 + N1A3. The distributional results in Theorem 1 are a

direct consequence of Lemma 1. Therefore, we show Lemma 1 in the case of k = 3.

The conditional distribution of a3 for a given Y 1(12) is Nq(N1A3θ, N1A3), which is not

dependent on Y 1(12). Therefore, the distribution of a3 is Nq(N1A3θ, N1A3), and it is

independent of a1 and a2. Similarly, considering the conditional distribution of a2 for a

given Y (12)1, we have that a2 ∼ Nq(N2A2θ, N2A2) and a2 is independent of a1. It is easy

to see that the marginal distribution of a1 is Nq(N3A1θ, N3A1).

7.2 Proof of Theorem 2

Next, we consider the minimization of g(θ,Σ11,B12,Σ22·1,B(12)3,Σ33·12) with respect to

Σ11,B12, Σ22·1,B(12)3, and Σ33·12. We de�neZ11 Z12 Z13

Z21 Z22 ∗
Z31 ∗ ∗

 =

Y 11 Y 12 Y 13

Y 21 Y 22 ∗
Y 31 ∗ ∗

−

1n1θ
′X ′

1 1n1θ
′X ′

2 1n1θ
′X ′

3

1n2θ
′X ′

1 1n2θ
′X ′

2 ∗
1n3θ

′X ′
1 ∗ ∗


=

Y 11 − 1n1θ
′X ′

1 Y 12 − 1n1θ
′X ′

2 Y 13 − 1n1θ
′X ′

3

Y 21 − 1n2θ
′X ′

1 Y 22 − 1n2θ
′X ′

2 ∗
Y 31 − 1n3θ

′X ′
1 ∗ ∗

 ,

and

Z(123)1 = Y (123)1 − 1N3θ
′X ′

1, Z(12)2 = Y (12)2 − 1N2θ
′X ′

2,

Z1(12) = Y 1(12) − 1N1θ
′X ′

(12).
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Then, we can reduce g(θ,Σ11,B12,Σ22·1,B(12)3,Σ33·12) as follows:

g(θ,Σ11,B12,Σ22·1,B(12)3,Σ33·12)

= (N3p1 +N2p2 +N1p3) log(2π) +N3 log |Σ11|+N2 log |Σ22·1|+N1 log |Σ33·12|

+ trΣ−1
11 Z

′
(123)1Z(123)1 + trΣ−1

22·1

(
Z(12)2 −Z(12)1B12

)′(
Z(12)2 −Z(12)1B12

)
+ trΣ−1

33·12

(
Z13 −Z1(12)B(12)3

)′(
Z13 −Z1(12)B(12)3

)
.

As with k = 2, calculating the derivative of g(θ,Σ11,B12,Σ22·1,B(12)3,Σ33·12) with respect

to Σ11,B12,Σ22·1, B(12)3, and Σ33·12, respectively, and solving the likelihood equation, we

obtain the following MLEs with the known parameter θ.

Σ̂11 =
1

N3

Z ′
(123)1Z(123)1, B̂12 = (Z ′

(12)1Z(12)1)
−1Z ′

(12)1Z(12)2,

Σ̂22·1 =
1

N2

(
Z(12)2 −Z(12)1B12

)′(
Z(12)2 −Z(12)1B12

)
=

1

N2

Z ′
(12)2

(
IN2 − P Z(12)1

)
Z(12)2,

B̂(12)3 = (Z ′
1(12)Z1(12))

−1Z ′
1(12)Z13,

Σ̂33·12 =
1

N1

(
Z13 −Z1(12)B(12)3

)′(
Z13 −Z1(12)B(12)3

)
=

1

N1

Z ′
13

(
IN1 − P Z1(12)

)
Z13,

where PZ(12)1
= Z(12)1(Z

′
(12)1Z(12)1)

−1Z ′
(12)1 and PZ1(12)

= Z1(12)(Z
′
1(12)Z1(12))

−1 Z ′
1(12).

Consider the conditional distribution of N1Σ̂33·12 for a given Z1(12). Then,

E[Z13|Z1(12)] = Z1(12)B12.

We can see that N1Σ̂33·12|Z1(12) ∼ Wp3(N1 − p(12) − 1,Σ33·12), and hence N1Σ̂33·12 ∼

Wp3(N1 − p(12) − 1,Σ33·12). Further, N1Σ̂33·12 is independent of Z1(12). Similarly, con-

sidering the conditional distribution of N2Σ̂22·1 for a given Z(12)1, we get N2Σ̂22·1 ∼

Wp2(N2 − p1 − 1,Σ22·1). It is easy to see that N3Σ̂11 ∼ Wp1(N3 − 1,Σ11), and N3Σ̂11,

N2Σ̂22·1, and N1Σ̂33·12 are independent.
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