Maximum Likelihood Estimators in Growth Curve

1

Model with Monotone Missing Data

Ayaka Yagi*, Takashi Seo* and Yasunori Fujikoshi**

* Department of Applied Mathematics
Tokyo University of Science
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

“*Department of Mathematics
Hiroshima University
Higashi-Hiroshima, Hiroshima 759-0046, Japan

Abstract

This paper focuses on the maximum likelihood estimators (MLEs) of the
mean parameter vector and the covariance matrix in a one-sample version
of the growth curve model when the dataset has a monotone missing pat-
tern. First, a closed form is obtained for the MLE of the mean parameter
vector when the covariance matrix is known. Similarly, it is obtained for
the MLE of the covariance matrix when the mean parameter vector is
known. The distributions of these estimators and their basic properties
are also given. Then, considering that these expressions give the likeli-
hood or determining equations, we propose an algorithm that includes an
iterative procedure to obtain the MLEs when all the parameters are un-
known. Further, a conventional estimator for the mean parameter vector
is also proposed. Finally, a numerical example is given to illustrate our
estimation procedure.
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Introduction

Suppose that a single variable y is measured at p time points (different conditions)

t17t27'

at time point ¢; by y;, and let y = (y1, %2, ...,¥p)". Let the observations y1, ¥z, - . -

the ith subject be denoted by

yi:<y’i17yi27'--,yip)/, Z.:].,Q,...’TL.

1

..,tp on n subjects chosen at random from a group. We denote the variable y

) yip Of



Then, in a growth curve model, it is assumed that for : = 1,2,...,n,
Ely] =p=X0, Valy]=3%, (1)

where X is a given p X ¢ matrix with rank ¢, @ = (61,6,...,6,)" is an unknown pa-
rameter vector, and X is an unknown positive definite. Further, it is assumed that
y,,t = 1,2,...,n are independent and normally distributed. The matrix X is called a
within-design matrix. The model given by (1) is a one-sample version of the growth curve
model introduced by Potthoff and Roy (1964).

We consider the case where the missing data occur at random. Kleinbaum (1973) gave
some inference methods for the growth curve model. Srivastava (1985) gave the likelihood
equations for some multivariate models including the growth curve model. Liski (1985)
applied the EM-algorithm to the estimation problem. Kanda (1994) considered the case
where the covariance matrix has some special structures. In this paper, we consider the
case where the missing data are of the monotone type, that is, if y;; is missing, then
all variables y;s, ¢ > j are also missing. Here, 7 may depend on the subject i. If there
are k types of monotone data, then the data are called k-step monotone missing data.
Such monotone missing data often appear in longitudinal studies. There have been a
considerable number of works on monotone missing data in one and several multivariate
normal populations. For these works, see Anderson and Olkin (1985), Jinadasa and Tracy
(1992), Kanda and Fujikoshi (1998), Yagi and Seo (2017), etc. However, it seems that
more advanced studies have not been conducted on the growth curve model of monotone
missing data, although there are considerable number of works on the general type of
missing data, as mentioned above.

This paper deals with MLEs in a one-sample growth curve model (1). Our aim is to
derive more advanced results for the MLEs by assuming monotone-type missing data. The
remainder of this paper is organized as follows. In Section 2, a closed form is obtained for
the MLE of the mean parameter vector when the covariance matrix is known. In addition,
its distribution and basic properties are given. In Section 3, a closed form is obtained

2



for the MLE of the covariance matrix when the mean parameter vector is known, and
its distribution is studied. In Section 4, we show that these results give the likelihood
or determining equations to obtain their MLEs when all the parameters are unknown.
Further, we propose an algorithm with an iterative procedure to obtain the MLEs. A
conventional estimator for the mean parameter is also proposed. A numerical example is
given to illustrate our estimation procedure in Section 5. Finally, we state our conclusion
in Section 6. The proofs of Theorems 1 and 2 are given in the Appendix, focusing on a

three-step monotone case.

2 MLE of 6 when X is known

In this section, we derive a closed form expression of the MLE of the mean parameter
vector with a known covariance matrix for a growth curve model when the dataset has a
monotone pattern of missing observations. Its distribution and basic properties are also

given.

2.1 Two-step monotone missing data

For simplicity, we first consider the case k = 2. Suppose that we have n; observation
vectors Yq, Yy, ..., Y,, all of whose components have been observed. It is assumed that
Y1, Y, - - -, Y, are independently distributed as a p-dimensional normal distribution with
the mean vector g = X 0 and covariance matrix ¥ asin (1). Further, suppose that we have
ny observation vectors ¥y, Yoo, - - -, Yoy, for the first p; components. It is assumed that
Yo1, Y22, - - -, Yo, are independently distributed as a p;-dimensional normal distribution

with the mean vector u, = X160 and covariance matrix 3;;, where
pn o= ,ul }Pl 7 X — Xl }Pl
px1 Lo }pz PXq ){2 }m

Y1 Yo
Y= .
( o1 X )

3
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Let us write

(y1»’y2, o ,ym)’ = (Y11Y12), (yzla Yooy - - - ayan)/ =Y,

where Y11 : n1 X p1, Y12 : ny X pa, Yor 1 na X p1, and p = p; + po. Then, the two-step
monotone missing data are expressed as

p1 P2
—— ——
Y = Yiu |Ye }”1 (2)
Y21 * }nz ’
where “x” indicates a missing part. Here, note that each row of Y is independently normal
with

E[(Y11 Y1) =1,0X', EYs]=1,0X], (3)

where 1, is an n; X 1 vector of 1s.

Let L(0,3) be the likelihood of Y in (2). Then, we have

—2log L(6, %)
= (ngl + npo) log(27r) + N2 log |211’ + tr El_ll(Y(IQ)l - 1N20/X/1)/<Y(12)1 — 1N29/X,1)
—~
+ny log ‘222-1\ + tr 22_21.1(Y12 - 1n19/X2 - Y1121_11212)/

—~
X (Y12 — ]_nIOIXz — Y1121_11212),
where

_{ Yu n1
No =mny +ng, Mg = Mg — 22121_11212’ 1;(5)1 B ( Y ) { ’
2Xp1 21 n2

and
~ / I v—1
X, =X, X'S18,.
gXxXp2

Consider the MLE of @ when X is known. Note that there is a one-to-one correspondence
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between ¥ and {11, Bia, X1}, where By = '35, We can write
9(0, 311, Bia, ¥22.1) = —2log L(6,X)
= (Nap1 + nip2) log(2m) + Nolog [E11] + tr X7 (Y (121 — 13,0’ X)) (Y (121 — 1n,0' X))
i log [Soo| +tr 250, (Yio — Y1iBio — 10,0 Xs) (Yis — Y11 Bis — 1,,0'X,)
= —2(a; +ay)'0 + 0 (N, Ay + n1Ay)0 + (terms without 6),
where
ar = X\ Z0Y (1, @ = X, S5 (Y1 — Y1uBi)'L,,.
A = X/\2 X, and Ay = X,550 X,
On solving (0/00)g(0, X411, B1a, 3s.1) = 0, we obtain the MLE of € as
0 = (N2 A1 +1,45) (a1 + a»). (4)
Then, it holds that
E[6] =6, Var[f] = (N2A; +nyAy) . (5)
The mean of 8 is obtained using
By, | By (Y12 — Y1 Bio) 1, ]| = ni X,6.
The covariance matrix of @ is obtained using
Bz [Ezuizn[(Z12 — Z11Bi2) 1, - 1), (Z12 — Z11B1s)]| = 11 X901,
where
(ZH Z12) B (YH Y12) B (17110'_7(’1 lmelX/2>
Zy % ) \Yqy % 1,,0' X *
_ (YH —1,0X, Y- 1n10’X’2>
Yo —1,,0 X *

(6)
and Z @2y = Y (121 — 15,0’ X. Further, the distribution of 6 is normal. These results
are obtained by considering that a; ~ Ny (N2A,0, N2 Ay), ay ~ N,(n1A20,n,A5), and
a; and as are independent. The normality of a; and a, follows from the fact that these
are bilinear forms of Y. The independence of a; and ay follows from the fact that the

conditional distribution of a; for a given Y';; or Y (12); does not depend on a;.
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2.2 k-step monotone missing data (k > 2)

We consider a general monotone case. Let

p1 P2 Pk—i+1 Pr—1 Pk
— —— —
Y Y cee e o Yip Yy }m
Y, Y 5 e o Yo | * }m
Y = Y Y. o Yk | * s * }m
Yk—l,l Yk:—l,2 * * Ng—1
Ykl k % ng

and let

Y. k—it1) = (Y Y- 'Yi,k—z'+1), i=1,2,... k.

NiXP(12...,k—i+1)

The rows of Yo k—it1) (¢ =1,2,... k) are mutually independent and

VeC(Y;(IQ...,k—i—f—l)) ~ Npm,,,,k,m)m (VeC(H(12.‘.,k7i+1)1;i)> I, ® E(12...,k7i+1)(12...,k7i+1))a

1=1,2,...,k,
where 1, is an n; X 1 vector of 1s,
l’l'l }pl
a2 k—itv1) = H fp2
P(12... k—it+1) X1 ’
Hy_itq Yor-ia
p1 P2 Prk—i+1
— e
X Y2 s M i }Pl
2(12---7k—i+1)(12...,k—i+1) — 221 222 e EZ,k*iJrl }p2
P(12...,k—i+1) XP(12...,k—i+1) .
Yhoit1] Zk—it1,2  Dh—itlk—itl }pk—i+1

In particular, for + = 1, we define Kao. k) = B, Y2, k)(12...k) = 2. Then, the growth curve

model with k-step monotone missing data is expressed as

E[Y 2. k-itn)) = 1n, 10XI Xz gmivyy =120k, g
niXx1 aXP(12... . k—i+1)
where
X
X1 Jon k—i+1
X (2. k—it1) = ’ e

P(2...,k—i+1) Xq

y D2 k—itl) = Z pj, t=1,2,... k.
j=1

Xk—l+l }pk7i+1



We note that po x_i11) = X2 k-i+1)0, @ =1,2,..., k. The joint probability density

function of Y, i.e.,

{Y1(12...k)7 Y2(12_”’]€_1), ce 7Yi(12...,k—i+1)7 sy Ykl} can be written as

f(Y1(12...k)) X f(YQ(IQ...k—1)> X X f(Yi(IQ...,k—i-H)) X o X f(Yi)
= f(Y1)f(Y2|Y11) x -+ % f(Yl,k—i—',-l|Y1(12...,k:—i)) Xoeee X f(Ylk‘Yl(lz..,k:—l))

><f(Y21)f(Y22|Y21) X oo X f(YQ,k—i—l—l|Y2(12...,k:—i)) X X f(Yz,k—1|Y2(12...,k;—2))
Xf(Yil)f(YleYil) X X f(Yij|Yi(12...,j71)) X X f(Yi,k:—i—H|Yi(12...,k7i))

Xf<Yk1)>

where
1 1 ].
f(Yir) = (2m) 2" P B, 72™ etr{_§<Yil — 1,0 X% (Yi — 1m0/X/1)/}’
i=1,2,...,k,
and the conditional density of Y;; for a given Y;(12... j_1) can be written as
F(Y45|Y 2. 5-1))
= (2m) 72| B gy T
1
X etr[—é{Yij — 1,0 (X — X{4o j-1)Baa..j-1);) — Yz‘(lz..-,j—n5(12..-,9‘—1)3‘}

!
X 25;12‘..4_1{17117 —1,,0/(X); — X{(1a. ;j 1yBaz..j-1)) — Yi(12...,j—1)B(l2...,j—1)j} ]7

i=1,2,... . kj=23 ... k—i+],

where

Bji2.1 = B = B2 1B 1. )12, 1) 2 (1251

Elj
_ oyl o
Bs...j-1); = 2(12...,3‘71)(12...,%1)2(12---&—1)]'7 Yo i1 = :ZJ
P(12...,5—1) XPj :
X1



Note that there is a one-to-one correspondence between 3 and {3, Ba... j—1)js Xjj12...j—1
j=2,3,...,k}. Using the above decomposition of the density of Y, the likelihood L(6, X)

can be expressed as

g(0, %1, Basa...j-1)j Xjj12..5-1, J = 2,3,..., k)= —2log L(6,X)

k k

= Z Ni—j+1pjlog(2m) + Ny log [E1| + Z Ni—jt1log[Ej510. 51
=1 =2
+tr 21711(Y(12 w1 — 1n 0 X)) (Y az.6n — 1n,0'XY)

+Ztr2]12 J—1 (8)
—~1 Y/
X {Y(12...,k7j+1)j_Y(12...,k7j+1)(12...,jfl)B(IQ -1 — 1N, HIOIXJ}
—~
X {Y(12...,kfj+1)j_Y(12..A,kfj+1)(12...,]’71)8(12 -1 —1n,_ ]+10,Xj}7

where

—~

X] — X; - /(12,.]71)8(127]_1)], ] — 2, 37 sy 7 and N an, = 7 , . o ,k.

Using the above notations, we get the following results for the MLE of 8 and its distri-

bution when 3 is given:

Theorem 1 Suppose that we have the growth curve model (7) with a k-step monotone

pattern of missing observations. Then, the MLE of @ when X is known s given by
R k
0= ]\4_1 Z a;, (9)
j=1
where

k
M :ZNk—j+1Aja a; = XllellY/(12...k)11Nk7 A= Xllzfllxla

j=1

and for j =2,... )k,

— _ !
XJEJJ 12...,5—1 (Y(12---7k—j+1)j - Y(lﬂ---yk—jJrl)(l---,j—l)8(12---73'—1)]') 1Nk—j+17
/ _ —~
Aj =X 'Ejﬁlz...,j—lxj-

J



Further, it holds that 0 is normal with

E[6] =6 and Var[6) = M.

Note that we use the suffix (1) = 1. For example, Buy, = B2, X1y = X, and
Z1y2 = Z13. The proof of Theorem 1, which is given in Appendix, is based on the

following Lemma.

Lemma 1 Let a;, j =1,2,...,k be the random vector defined in (9). Then,
(1) a; ~ Nq(NkfjJrlAje? Nk*j%*lAj); ] = 17 27 R k;
(2) ay,...,ax are independent,
where
— — —
A= X/121_11X17 Aj = ijj_ﬁu_..,quj, Xj=X;— BEIQ...,j—1)jX(12~--»j*1)’

i=2,3,....k

The proof of Lemma 1 is given in Appendix 1.

3 MLE of X when 0 is known

In this section, we consider the MLE of ¥ when 6 is known, with monotone missing data

in the growth curve model. The notation in Section 2 is used.

3.1 Two-step monotone missing data

Here, we consider the minimization of ¢(0, X1, By, 399.1) with respect to X1, B2, and

3i99.1. Note that (6,311, Bia, ¥9g.1) is expressed in terms of Z in (6) as
9(0,%11, Bia, ¥25.1) =(Nap1 + nipz) log(27m) + Ny log || + tr 2f112212)12(12)1
+nylog | Zoo1| +tr 5 (Z 12 — Z11B12) (Z15 — Z11B1y).
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The derivative of g(0, 311, Bi2, X90.1) with respect to 3 is

0
0%

Solving (0/0311)g(0, %11, Bi2, X92.1) = O, we obtain the MLE of ¥y, as

9(0, 211, Biz, Bog1) = NoBi)' = B9 Z15), Z 1o 27y

1

Y= N, /(12)1Z(12)1'

As for Big, note that (0, X1, Big, X90.1) is expressed as
g(0, 211, 812, 222.1) =tr 22_21.1(Z12 — leBlg)/(Zm — ZnBlg) + (terms without 812>.

Then, from [A.2.11] of Fujikoshi et al. (2010), we have

rg'ntr Y001(Z12 — Z118B1s) (Z1s — Z11Bio) = tr 85,1 (Z 15 — Z11l§12)/(z12 - 211[5;12),
12

where

Bio = (Z,,Z1) ' Z,, Z5.

Therefore, 1/3\12 is the MLE of Bjs. Finally, in the same way as that in the derivation of
211, the MLE of 399 is given as

. 1 R .
222.1 :n_(ZIQ - Z11612)/(Zl2 - Z11812)
1
1
:_ZIIQ(Inl - PZII)Z127
ni

where Py, = Z11(Z},Z11) "' Z},. We can easily see that Ny31; and 1y 3901 are indepen-
dently distributed as Wishart distributions W, (N2 — 1, ¥1;) and W, (nq1 —p1 — 1, Xoa.1),

respectively.

3.2 k-step monotone missing data

Let L(60,%) be the likelihood of Y with k-step monotone missing. Then, —2log L(6, %)

is expressed as (8). We use the following notation:
Z 2.1 =Y (1201 — 15,0 X7,

Z 2. kji2..5-1) =Y (2. k—jr1)(2..5-1) — v 00 X (1o i1y (10)

Z(12..‘,k—j+1)j :Y(12...,k—j+1)j - 1Nk,j+1 9lX;'7 j = 27 37 ] k.
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Using the expression given by (8), we can obtain the MLE of ¥ when 6 is known by using

the following theorem.

Theorem 2 Suppose that we have a k-step monotone pattern of missing observations.
Then, for the growth curve model given by (7) with a known parameter 8, the MLEs

of X11, Baa...j—1)j, Xjji2..5-1, J = 2,3,...,k are given by

and for j =2,... k,

~

B(lQ...,j—l)j :(Z/(12...,k;—j+1)(12...,j—1)Z(12---7k—j+1)(12~-~7j_1))_1

X Z/(12...,kfj+1)(12...,j71)Z(12---7/€—j+1)j7
1

Ni—ji1

~ ~ /
Y2, -1 = (Z(12...,k—j+1)j - Z(12...,k—j+1)(12...,j—1)B(12...,j—1)j)

X (Z(12...,kfj+1)j - Z(12...,kfj+1)(12...,j71)l§(12...,j71)j)

1
- N, Z(l?...,k—j+1)j ([Nj PZ(12...,k—j+1)(12.,.,j71)) Z(12~~-J€*J+1)J’
k—j+1

where
PZ(12...,k—j+1)(12...,j—1) :Z(12~~~:k*j+1)(12~~:j*1)(ZI(IQ...,k—j+1)(12...,j—1)Z(12--'7k*j+1)(12"~7j*1))_1
X Zl(l?,k—]-‘rl)(l?,]—l)’ j — 27 3, ey k.
Further,
Nkin ~ Wpl(Nk -1, E11>,
Ni—j1Xjja2. j-1~ ij(Nk—j+1 — paz-j-1) — 1, 2jj~12...,j—1)7 J=23,...k,

and they are independent.

The proof of Theorem 2 is given in Appendix 2.
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4 MLEs of 8 and X

In this section, we consider the MLEs of 8 and X when all the parameters are unknown.
In Theorems 1 and 2, we obtain closed forms h(X) and h2(€) such that (i) 0= hi (%)
is the MLE of @ when ¥ is known, and (ii) £ = hs(0) is the MLE of ¥ when 6 is
known. From our derivation, the likelihood equations of @ and X are equivalent to the

simultaneous equations given by
0 = h,(X) and X = hy(0). (11)

Therefore, the solutions of the simultaneous equations given by (11) for @ and X are the
MLEs. It seems difficult to obtain an explicit solution of (11). Therefore, we consider

numerical solutions based on the following iterative method.

(0) As a starting matrix £ for 3., we use the MLE of ¥ when g is an unknown
parameter vector, which is obtained from Jinadasa and Tracy (1992) and

Kanda and Fujikoshi (1998).

(1) Using 2(0), compute Eg?, BY (0 Jj = 2,...,k, and then

(L.j=1)j0 “jjl..j-1
~(1 (0 ~(1 ~(1
compute 0" — hl(E( )) and 8 = h2(0( )). Set i = 1.

(2) For j = 2,...,k, compute Eﬁ), Bg)..,,j—l)ja and Eg?‘lefl. Then, compute
8" = hy(29) and £ = hy(9 D),
L aG+]) G , NG NG _—
3) Let d? = 8"V — 8" and DO = 87 _ 8 11 d@'d® < 106 and

N ~ o (i+1
tr DYD® < 1075, then we regard 0 : and E( v as the solutions, and

stop.

(4) Otherwise repeat steps (2) through (3).

As an alternative starting matrix 3, we may use the MLE based on the complete dataset,
Y 112.%), if n —ny is small. Then, Y (12..4) has a growth curve model
E[Y1(12k)] - 1n10/X/- (12)
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The MLE of X based on (12) is given as follows. Consider the transformation from Y to

(U V):
where Gy = X(X'X)! and G, = X; X is a p x (p — ¢) matrix such that Xx=o0
and X X = I, ,. Let W be the covariance matrix of each row of (U V). Then, % is

obtained using the relation S = (G/)’I\i’G. Here, the MLE ¥ of ¥ based on Y i (12.k)

can be expressed as follows (see, e.g. Fujikoshi et al. (2010, (12.4.6), Theorem 12.4.2)):

nl—l

~ ~ 1
W9 = (XlSilX)_l, Woy = n_GIQY/1(12...k)Y1(12~--k)G27 (13)
1

ny

I =(G,SG,)'G,SG,,

where I' = W)W, and S is the usual unbiased sample covariance matrix based on
Y1(12~~k)-
Let ic be the MLE of 3 based on the complete data Y. = Y 1(12..,). Then, we have

S = (&)'U.G,

where W, is the U given by (13). Let 6. be the estimator of 8, which is obtained from the

6 in (9) by substituting 3. to 3. Then, it is expected that such a conventional estimator

)

0. is useful, especially when n — n; is small.

5 Example

In this section, we consider the data on the ramus heights of 20 boys, which is given in

Table 2 of Elston and Grizzle (1962), to illustrate the results of this paper. The ramus

1

55 9, and 9% years of age. Let us

height has been measured in mm for each boy at 8, 8
assume that by discarding some data, the data will be missing completely at random and

have a three-step monotone pattern as follows:
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Let

47.8 48.8 49.0 49.7
46.4 47.3 477 484
46.3 46.8 47.8 48.5

51.2 514 51.6 20.7 51.7

i?é jgg jgé igg 48.5 49.2 53.0 472 477

Yl 123) — ' ' ' ' y Y2 12) — 521 528 537 5 Y31: 533 546
(123) (12)

52.5 53.2 53.3 53.7 482 489 493 16.2 AT 5

°1.253.0 543 od.5 49.6 50.4 51.2 46.3 47.6

49.8 50.0 50.3 52.7
48.1 50.8 52.3 544
45.0 47.0 473 48.3

Suppose that the growth or change is linear with respect to time. Then, ¢ = 2 and we

have
VeC(Y/1(123)) ~ Nyp(vec(ulyy), I ®@ ),
vec(Yy9)) ~ Nis(vec(p9)15), Is ® Eaz)az),
vec(Y'yy) ~ Nig(vec(p15), Is @ X11),
where
X, }2 1 8
1 8.5
_ X = _
M—gfmgla pXxq X2 }1 11 9
X3/t \1 95
We set the starting matrix as
2(0) ~ (6.0135 5.8796 B0 _ —0.1951
= \5.8796 6.1269/)° ~'2 — \ 1.1953 )~
. (0) R —0.0394 —(0)
1.2259

Then, using the algorithm described in Section 4, we get

50 _ (33:3995) 5 _ (335022
“\1o092) 7 T 1.8962)

Finally, we obtain the MLEs of p and 3 as follows.

48.6715 6.0137 5.8795 5.8612 5.6552
~5) _ | 49.6196 2(5)_ 5.8795 6.1269 6.1846 6.0114
K= | 505677 | ~ | 5.8612 6.1846 7.0515 6.9962
51.5158 5.6552 6.0114 6.9962 7.4318
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Throughout these steps, the values of —2log L(0, X) are

) a0 1) & 50 a0

9(0 7211 7B§2)7 222-173\((1%)37 E33-12) = 18982627 )
~6) a6 56 O 56) SO

907 511, B, 5001, By Sy n) = 189.8231.

In this example, we can also obtain the MLEs of 6, p, and 3 by using the partially

complete data (10 x 4) as follows:

47.9844 5.6796 5.7109 5.6780 5.5135
7 :<36.0103) ~ 487328 S 5.7109 6.4678 6.5778 6.5367
pe 1.4968 ) > e 49.4811 | * e 5.6780 6.5778 6.9179 6.9024

50.2295 5.5135 6.5367 6.9024 7.4161

Here, f]pc is obtained from (13) by substituting the partially complete data Y y(193) for
Yia2.x)-
In this example, we can derive the MLEs based on the complete data (20 x 4), which

is given as follows:

48.6534 6.0137 5.8795 5.4881 5.2718
9. — (33.7605) ~ 49.5842 S _ 5.8795 6.1269 5.8458 5.6269
¢ 1.8616 )7 ¢ 50.5150 | © —F 5.4881 5.8458 6.5721 6.5988
51.4458 2.2718 5.6269 6.5988 7.0958

~0(B) &b . .. ~
It may be noted that the estimators 0( ), ;1,(5), and E( ) are considerably similar to 6.,
W, and f]c, respectively. On the other hand, we can see that the estimators 5pc, ., and

~

> e obtained by deleting the missing data are not good.

6 Conclusion

This paper provided closed forms for the MLE of the mean parameter vector when the
covariance matrix is known, and the MLE of the covariance matrix when the mean pa-
rameter vector is known, based on general monotone missing data. The distributions of
these MLEs were derived. Using the results, we proposed an algorithm that includes an
iterative procedure to obtain the MLEs when all the parameters are unknown. These

results may also be useful for considering a hypothesis testing on a growth curve model
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with monotone missing data, which is left as a future work. Further, the results can be

extended to the multi-sample case, and we are currently investigating this problem.

7 Appendix

7.1 Proofs of Theorem 1 and Lemma 1

Since an extension to a general k-step monotone missing data is straightforward, in
following, we give proofs of Theorem 1 and Lemma 1 in the case of £ = 3. Then,

growth curve model with three-step monotone missing data is expressed as

E[Y1(123)} =1, 0" X', E[Y2(12)] =1, 19X/ /(12)7

1xqgx
niXp n1 X1 79xp ’Vl2><p(12) n2x1 q><p(12)

E[Ys|=1,, 6 X,

n3Xxp1 ngx11Xq gxp,

where

Y23 = (Yn Y Y13), Y2 = (Y21 Y22),

Xl }pl
X '
)X( = X }pz = 1) }p( ! » P2y = P1+ pa.
pxd X3 }p3
X3 }PB

It is assumed that the rows of Y1123y Yo12) and Y'3; are mutually independent and

VeC(Y/1(123)) ~ Nmp(VeC(u'l;n)» I, ® E)v
vec(Yy19)) ~ Nogpay (Vec(taa)1y,), In, @ Xa2)a2)),

vec(Y ;) ~ Nogp, (Vec(/hl;zg)a I,,®%,),

where 1, is an n; X 1 vector of 1s,

Ky }pl
o= Mo }pz = “(12) )
Hs3 }Ps M3
and
p1 b2 p3
X Y| X3 }pl > 191 i3
2: 221 222 223 p2 = (12)(12) 223
T Xy | U Ps Y51 Xy | Xag
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Let L(0,%) be the likelihood under (14). Then, we have

—2log L(6, %)

= (N3p1 + Naps + Nipg) log(2m) + N3log |X11] + Nolog [Xosa| + Nilog | Xss.40]
+tr 21 (Y (231 — a0 X7) (Y (1231 — 1n,0' X))
+ tr 3oy, (Y(12)2 — Y (12)1B12 — 1N29,3(//2>/(Y(12)2 =Y (121812 — 1N29,/X/,2>

PPN —~
+tr 35 (Y13 — Y 112 Baz)s — 1N10/X3> <Y13 — Y 12 Baz)s — 1N10/X3>7
where

Yu
Yo
Y (1231 = Yo |, Yupe= ( ) , Yo = (Yu Y12) )

—

_ >
Yigg12 = Mgz — (231 232) E(112)(12) (E;z) , X3 = Xé - X/(12)5(12)37

_ > ,
B12)s = 23(112)(12) (le) ., Ni= an, 1=1,2,3.

We derive the MLE of 8 when ¥ is known. Since there is a one-to-one correspondence

between X and {211, Bia, X221, B12)3, X33.12},

9(0, 311, Bz, X221, B12)3, X33.12)
= —2log L(0,%)
= (N3p1 + Nops + Nip3)log(2m) + N3log |X11| + Nalog [Zag.1| + N1 log | X33.10]
bt (Y s — 10 X0) (Y (1231 — 13,0 X7)
+ tr Xy (Y(12)2 =Y (12)1812 — 1N29,3(//2)/(Y(12)2 =Y (12)1812 — 1N20,3(//2)
+tr 253, <Y13 — Y 112)Baz)s — 1N19/}Z;>/<Y13 — Y 112)Baz)s — 1N19/3{/;>
= —2(a, +ay+a3)0+ 60 (N3A, + NyAy + Ny A3)0 + (terms without 6),
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where

—~

ay = X/121_11Y/(123)11N3> az = X551 (Y 122 = ¥ (121B812) 1w,
—~

a3 = X;335315(Y 13 — YiaoBaop) 1y, A= X137 X,

—~/ — — —~
Ay = X222_21-1X27 Az = X32§31-12X3-

Solving (0/00)g(0, 11, Bi2, X92.1, B12)3, X33.12) = 0, we obtain the MLE of @ when X is

known as

b\ = M_l(al + as —+ ag),

where M = N3A; + NyAs + N1 As. The distributional results in Theorem 1 are a
direct consequence of Lemma 1. Therefore, we show Lemma 1 in the case of £ = 3.
The conditional distribution of as for a given Y19y is N,(N1A30, N1 As), which is not
dependent on Y'(12). Therefore, the distribution of as is N,(N;A36, N1 As), and it is
independent of @; and a,. Similarly, considering the conditional distribution of a, for a
given Y (12y1, we have that as ~ Ny (N, A260, N, A,) and a; is independent of a;. It is easy

to see that the marginal distribution of a; is N,(N3 A0, N3A;).

7.2 Proof of Theorem 2

Next, we consider the minimization of g(8, 311, Bi2, ¥22.1, B12)3, X33.12) with respect to

311, Bia, 3oz, B12)s, and X33.10. We define

Zw Ziy Zy Yiu Yo Yis 10X} 1,0X, 1,0X;
Z21 Z22 * = Ygl Y22 % — 1n29/X/1 1n20/X/2 *
Zq % * Yy o % * 1,,0' X/ * *
Yiu-1,0X, Yio—1,0X, Yi5—1,60X,
= Y21 — 1n20/X,1 Y22 — 1n29/X/2 *k ,
Y31 - 1n30/X/1 * *

and
Z 931 =Y (1231 — In,0' X, Z (122 = Y (12)2 — 13,0’ X5,
Z1(12) = Y1(12) - 1N10/X,(12).

18



Then, we can reduce 9(0, 211, Blg, 222.1, 6(12)3, 233.12) as follows:

9(0, %11, Bi2, ¥22.1, B12)3, X33.12)
= (N3p1 + Napy + Nips)log(2m) + N3log |X11] + Ny log [Xao.1| + N1 log [Xss.1]
/
+ tr 2;11Z/(123)IZ(123)1 + tr 22721.1 (Z(lg)g - Z(12)1812> (Z(12)2 - Z(lg)llglg)

/
+tr X5 <Z13 — Z1(12)B(12)3> <Z13 — Z1(12)B(12)3>-

As with k = 2, calculating the derivative of g(6, 211, Bia, X921, B(12)3, X33.12) with respect
to 311, Bia, X221, B(i2)3, and X33.12, respectively, and solving the likelihood equation, we

obtain the following MLEs with the known parameter 6.

_Z,(123)1Z(123)1’ By = (Z’(12)1Z(12)1)*1Z’(12)1Z(12)2,

/
(Z(u)z - Z(12)1B12> (Z(12)2 - Z(12)1312)

1
= _Z,(12)2 <IN2 - PZ(12)1>Z(12)27

Ny
g(12)3 = (Z/1(12)Z1(12))7IZQ(12)Z13’

~ 1 /
Y3310 = A (Z13 — Z1(12)B(12)3> <Z13 — Z1(12)B(12)3)
1

1

N, Z/13 (INl - PZ1(12))Z137

where Py, = Z21(Z12pZ o) Lz and Pr, = Z102)(Z102Z102) ™ Zi)-

Consider the conditional distribution of Nligg.lg for a given Z(12). Then,
E(Z5|Z1(12)) = Z1(12)Bha.

We can see that N1§33.12|Z1(12) ~ Wy, (N1 — paz)y — 1,33342), and hence lelgg.lg ~
Wpy (N1 — paaz2y — 1, X33.12). Further, N1§333.12 is independent of Z;(19). Similarly, con-
sidering the conditional distribution of Ngf)gg.l for a given Z(19), we get Ngf]gg.l ~
Wy, (Ny — p1 — 1,390.1). It is easy to see that Ngin ~ Wy, (N3 — 1,%41), and Ngin,
szlgg.l, and N1§]33.12 are independent.
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