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Abstract. We consider General Linear Model (GLM) that includes multivariate
analysis of variance (MANOVA) and multiple linear regression as special cases. In
practice, there are several widely used criteria for GLM: Wilks' lambda, Bartlett�
Nanda�Pillai test, Lawley�Hotelling test and Roy maximum root test. Limiting
distributions of statistics for the �rst three mentioned tests are known under di�er-
ent asymptotic settings. In the present paper we get the computable error bounds
for normal approximation of Lawley�Hotelling and Bartlett�Nanda�Pillai statistics
when dimensionality grows proportionally to sample size. This result enables us to
get more precise calculations of the p-values in applications of multivariate analysis.

1. Introduction

In last years we encounter more and more problems in applications when
dimension p of observations is comparable with sample size n or even exceeds
it. Some examples of high-dimensional data include curve data, spectra, images,
DNA microarrays, social networks and �nancial data.

There are many statistical procedures for data of relatively low dimension-
ality that have become classic. But it is often impossible to use an existing
statistical procedure for high-dimensional case just by turning p to in�nity, be-
cause a limiting distribution of a test statistic becomes di�erent (see Section
6.3.4 "High-Dimensional Approximations" in [1]).

In this paper we �nd the uniform computable error bounds for approxima-
tions of Lawley�Hotelling and Bartlett�Nanda�Pillai statistics by normal distri-
bution in MANOVA model for high-dimensional setting, when the ratio p/n of
dimension of observations and sample size tends to constant from the interval
(0, 1) .

Section 2 contains formulation of Theorems 1 and 2 that are main results
of the paper. Theorems 3 and 4 are essential for the proofs of the main results.

The article was prepared within the framework of the HSE University Basic Research
Program.
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They are also of independent interest. Section 4 contains proofs of the theorems
that are based on lemmas from Section 3.

2. Main results

Multivariate analysis of variance (MANOVA) studies the following linear
model:

X = QB + E ,
where X is a random N×p observation matrix, Q is a non-random N×k design
matrix, B is a non-random k × p matrix of regression coe�cients and E is a
N ×p error matrix distributed as NN×p (O, IN ⊗ Σ) . Consider testing the linear
hypothesis:

H0 : CB = O,

where C is a known q × k matrix of rank q. Under a certain group of trans-
formations, the testing problem is invariant, and invariant tests depend on the
non-zero eigenvalues of ShS

−1
e , where

Sh = B̂TCT
(
C
(
QTQ

)−1
CT
)−1

CB̂ and Se =
(
X −QB̂

)T (
X −QB̂

)
,

with B̂ =
(
QTQ

)−1
QTX (see [3], Theorem 10.2.1). Among invariant widely

used tests, we consider Lawley�Hotelling statistic and Bartlett�Nanda�Pillai
statistic:

T 2
0 = n trShS

−1
e ,

VBNP = (n+ q) trSh (Sh + Se)
−1
.

Further we assume that hypothesis H0 is full�lled.
Anderson in [2], Muirhead in [3], Fujikoshi, Ulyanov and Shimizu in [4] and

Lipatiev and Ulyanov in [5] considered large sample case under A1 condition:

A1 : p and q �xed, n→∞

In [4] and in [5] we derived non-asymptotic error bounds for approximations of
distribution functions of Lawley�Hotelling and Bartlett�Nanda�Pillai statistics:

P{T 2
0 < x} = Ga (x) +

a

4n
{(q − p− 1)Ga (x)

−2qGa+2 (x) + (q + p+ 1)Ga+4 (x)}+O
(
n−2

)
,

P{VBNP < x} = Ga (x) +
3a

4n
{Ga (x)

−2Ga+2 (x) +Ga+4 (x)}+O
(
n−2

)
,

where a = pq and Ga is the distribution function of chi-square distribution with
a degrees of freedom. In [4] we give an upper bound for the remainder term of
approximation for Lawley�Hotelling statistic and [5] contains an upper bound
for the remainder term in the case of Bartlett�Nanda�Pillai statistic.
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Wakaki, Fujikoshi and Ulyanov in [6] considered the case of large dimensio-
nional data under A2 condition:

A2 : q �xed, p→∞, n→∞, p
n
→ c ∈ (0, 1)

and derived the following approximation:

P
( 1

σ
TG < z

)
= Φ(z)− φ(z)

[
1
√
p

{
1

σ
b1 +

1

σ3
b3H2 (z)

}
+

1

p

{
1

σ2
b2H1 (z) +

1

σ4
b4H3 (z) +

1

σ6
b6H5 (z)

}]
+O

(
1

p
√
p

)
,

where TG is one of the following statistics:

TLH =
√
p{m
np
T 2
0 − q},

TBNP =
√
p
(

1 +
p

m

){1

p
VBNP − q

}
,

Φ(z) and φ(z) are distribution function and probability density function of the

standard normal law respectively; m = n − p + q; r = p/m;σ =
√

2q(1 + r);
bi = bi(r, q) are some functions of r and q, di�erent for TLH and TBNP ; Hi(z)
are the Hermite polynomials. Yet that result was asymptotic: the upper bounds
for the remainder terms were not derived.

The main results of the present paper are the following theorems which give
the upper bounds for accuracy of approximation for the Lawley�Hotelling and
Bartlett�Nanda�Pillai statistics by normal law in case of large dimension, i.e.
under condition A2 :

Theorem 1. There exists M1 = M1 (r, q) such that for all m > M1 one

has

sup
z

∣∣∣∣∣P( TLH√
2q (1 + r)

< z
)
− Φ (z)

∣∣∣∣∣ 6 K1 (r, q) lnm√
m

,

where K1 (r, q) is a constants depending on r and q only.

Theorem 2. There exists M2 = M2 (r, q) such that for all m > M2 one

has

sup
z

∣∣∣∣∣P( TBNP√
2q (1 + r)

< z
)
− Φ (z)

∣∣∣∣∣ 6 K2 (r, q) lnm√
m

,

where K2 (r, q) is a constants depending on r and q only.

Note that in Theorems 1 and 2 we have a logarithmic factor comparing
with [6], but they are superior in terms of giving computable upper bound for
accuracy of approximation. The proofs are also new.

The next two theorems play the key role in the proofs of the main results.
They are also of independent interest.
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Introduce additional notation. Let random matrices B andW be de�ned on
the same probability space. Assume that B andW are independent and have the
Wishart distributionsWq (p, Iq) andWq (m, Iq) respectively, wherem = n−p−q.
Denote the normed versions of B and W by U and V respectively:

U = (B − pIq)/
√
p, V = (W −mIq)/

√
m, (1)

Theorem 3. If trV 2 < m then∣∣√m (trBW−1 − rq)− (√r trU − r trV
)∣∣

6

√
r |trUV |+ (rq + |

√
r trU − r trV | /

√
m) trV 2

√
m− trV 2/

√
m

. (2)

Theorem 4. If tr (
√
rU + V )

2
< (r + 1)m then∣∣∣√m (r + 1)

(
(r + 1) trB (B +W )

−1 − rq
)
−
(√
r trU − r trV

)∣∣∣
6

(r + 1)
√
r
(
|trUV |+

√
r trU2

)
(r + 1)

√
m− tr (

√
rU + V )

2
/
√
m

(3)

+
(rq (r + 1) + (

√
r trU − r trV )/

√
m) tr (

√
rU + V )

2

(r + 1)
√
m− tr (

√
rU + V )

2
/
√
m

.

Note that the probabilities of complements of both events
{

trV 2 < m
}

and
{

tr (
√
rU + V )

2
< (r + 1)m

}
, mentioned in Theorems 3 and 4, have order

O (1/
√
m). It follows from the results of Section 3 below.

3. Lemmas

This section contains auxiliary lemmas used in the proofs of theorems.
Let

Z1 = trUV ,

Z2 = trV 2,

Z3 = trU −
√
r trV,

Z4 = trU2,

(4)

where random matrices U and V are de�ned in (1).
Put

B = B(q, r,m) = 4 (q2 +
√
r)(
√

lnm+
√

ln p)2. (5)

We de�ne the random events Ai,m as Ai,m = {ω : |Zi(ω)| 6 B} for i =
1, 2, 3, 4 and positive integers m.
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Let

ZLH =

√
r |trUV |+ (rq + |

√
r trU − r trV | /

√
m) trV 2

√
m− trV 2/

√
m

,

ZBNP =

(r + 1)
√
r
(
|trUV |+

√
r trU2

)
+

(
rq (r + 1) +

√
r
|trU−√r trV |√

m

)
SZ

(r + 1)
√
m− SZ/

√
m

,

where SZ =
(
r trU2 + 2

√
r |trUV |+ trV 2

)
.

It is clear that there exist the positive integer numbers M1 = M1(r, q) and
M2 = M2(r, q) such that if m >M1 and ω ∈ ∩3i=1Ai,m then

ZLH(ω) 6

√
r B + (rq +

√
r B/
√
m) B√

m−B/
√
m

6 48 (2
√
r + rq) (q2 +

√
r)

(lnm+ ln
√
r)√

m
.

(6)

Moreover, if m >M2 and ω ∈ ∩4i=1Ai,m, then

ZBNP (ω) 6
(r + 1)

√
r(1 +

√
r)B +

(
rq(r + 1) +

√
r B√

m

)
B(1 +

√
r)2

(r + 1)
√
m−B(1 +

√
r)2/
√
m

6 16
(1 +

√
r)2 (2

√
r + r (rq + q + 1))(q2 +

√
r)

r + 1

(lnm+ ln
√
r)√

m
.

(7)

In the next two lemmas we estimate probabilities P(Aci,m) for i = 1, 2, 3, 4.

Lemma 1. Let Z1 and B be de�ned in (4) and (5) respectively. Then

P(|Z1| > B) 6 6.45 q2
1 + 1/

√
r√

m
. (8)

Proof of Lemma 1. Since B has the Wishart distribution Wq (p, Iq), we can
represent B as XTX, where

X =

X11 . . . X1q

...
. . .

...
Xp1 . . . Xpq


and {Xij} are independent standard normal variables.

Therefore, matrix B can be written as:

B =

{
p∑
k=1

XkiXkj

}
ij

.

Similarly, we can write matrix W as:

W =

{
m∑
l=1

YliYlj

}
ij

,

where {Yij} are independent standard normal variables.
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Further, we have

Z1 = trUV =

q∑
a=1

(UV )aa =

q∑
a=1

UaaVaa +
∑
a 6=b

UabVab, (9)

where r.v. Uaa =
(∑p

k=1X
2
ka − p

)
/
√
p has zero mean and variance VarUaa = 2.

If a 6= b, r.v. Uab =
∑p
k=1XkaXkb/

√
p has zero mean and varianceVarUab =

1.
Analogous results take place for the matrix V .
Lemma 6 and (9) imply

P(|Z1| > B) 6 q
(
P(|U11| >

√
B/(2q)) + P(|V11| >

√
B/(2q))

)
+(q2 − q)P(|U12| >

√
B/(2(q2 − q)))

+(q2 − q)P(|V12| >
√
B/(2(q2 − q))). (10)

For Uaa Lemma 5 implies the following inequality:

sup
x

∣∣∣P(Uaa/
√

2 < x)− Φ (x)
∣∣∣ 6 6.22/

√
p = 6.22/

√
rm. (11)

Analogous inequality takes place for Vaa:

sup
x

∣∣∣P(Vaa/
√

2 < x)− Φ (x)
∣∣∣ 6 6.22/

√
m. (12)

Next consider Uab, a 6= b. From Lemma 4 we get

sup
x
|P(Uab < x)− Φ (x)| 6 CBE ·E |X1aX1b|3/

√
p 6 2.55/

√
rm, (13)

as E |X1aX1b|3 = 8/π and constant CBE in Berry�Esseen inequality in Lemma 4
is less then 1.

Similar inequality takes place for Vab:

sup
x
|P(Vab < x)− Φ (x)| 6 2.55/

√
m. (14)

Further, for all x > 0 one has (see for example 7.1.13. in [7])

1− Φ (x) 6
2

π

e−x
2/2

x+
√
x2 + 8/π

In particular, for x > 1 we get

1− Φ (x) 6 0.23 e−x
2/2 (15)

Combining (10)�(15) we conclude the proof of Lemma 1. �

Lemma 2. For Z2, Z3 and Z4 from (4) and B from (5) the following

inequality holds:

P(Z2 > B) + P(|Z3| > B) + P(Z4 > B) 6 19.35 q2
1 + 1/

√
r√

m
. (16)
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Proof of Lemma 2. Analogous to (9) and (10) we deduce

P(Z2 > B) 6 qP(|V11| >
√
B/(2q))

+(q2 − q)P(|V12| >
√
B/(2(q2 − q))) (17)

and

P(|Z3| > B) 6 q
(
P(|U11| > B/(2q))

)
+ qP

(
|V11| > B/(2q

√
r)
)

(18)

and also

P(Z4 > B) 6 qP(|U11| >
√
B/(2q))

+(q2 − q)P(|U12| >
√
B/(2(q2 − q))). (19)

Combining (11), (12), (15), (17), (18) and (19) we get Lemma 2. �

Lemma 3. Let random variables T, Y and Z be de�ned on the same prob-

ability space (Ω,A,P), and the distribution of Y is absolutely continuous with a

bounded density fY (z). Suppose for some event A ∈ A and for all ω ∈ A the

following inequality holds:

|T (ω)− Y (ω)| 6 Z(ω) 6 a

with some positive constant a. Then one has:

sup
x
|P(T < x)−P(Y < x)| 6 P(Ac) + a sup

x
fY (x). (20)

Proof of Lemma 3. Note that

sup
x
|P(T < x)−P(Y < x)| 6

6 P(Ac) + sup
x
|P((T < x) ∩A)−P((Y < x) ∩A)| .

Hence, Lemma follows from the relations:

{T < x} = {T − Y + Y < x} = {Y < x− (T − Y )} ,

and

{Y < x− Z} ∩A ⊂ {Y < x− (T − Y )} ∩A ⊂ {Y < x+ Z} ∩A.

�
The following two lemmas contain two known results on convergence rate

in the central limit theorem for independent identically distributed random vari-
ables. The �rst result is about the case with moment restrictions on the dis-
tribution of the summands. The second result is about the chi-square random
variable, that is represented as a sum of independent identically distributed ran-
dom variables with a known distribution.

Lemma 4. Let the random variables ξ1, ξ2, . . . be independent and identi-

cally distributed with Varξ1 = σ2 > 0 and E |ξ1|3 <∞. Put Sn = ξ1 + . . .+ ξn.
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Then there exists a constant CBE such that for distribution function FTn
(x) of

r.v. Tn = (Sn −ESn)/
√
VarSn one has:

sup
x
|FTn

(x)− Φ (x)| 6 CBE
E |ξ1 −Eξ1|3

σ3
√
n

.

The following inequalities are known for CBE (see for example [8]):
√

10 + 3

6
√

2π
6 CBE 6 0.4748.

A random variable with distribution function Gp(x), having the chi-square
distribution with p degrees of freedom, can be represented as a sum of p indepen-
dent identically distributed random variables with chi-square distribution with
1 degree of freedom. This fact makes it possible to �nd more precise normal
approximation error bounds than those that followed from the Berry�Esseen
inequality. Namely, the following lemma is true (see [9]):

Lemma 5. For all λ ∈
(
0;
√

3− 1
)
and integer p > 1 the following inequal-

ity holds:

sup
x

∣∣∣Gp (p+ x
√

2p
)
− Φ (x)

∣∣∣ 6 minλ D̃ (λ, p)
√
p

,

where

D̃ (λ, p) =
2

π

(√
π

6
+

2 (1− λ)
√
p (2− 2λ− λ2)

2

+

(
1 + λ2

)
λ2
√
p

(
1 + λ2

)−p/4
+

1

λ2
√
p

exp

(
−λ

2p

4

))
.

Taking λ = 0.5, and using monotonicity of the function D̃ (λ, p) with respect
to p we get

min
λ
D̃ (λ, p) 6 D̃ (0.5, 1) 6 6.22. (21)

Lemma 6. For any random variables X and Y and any real a > 0 the

following inequalities hold:

P(|X + Y | > 2a) 6 P(|X| > a) + P(|Y | > a)

and

P(|X · Y | > a2) 6 P(|X| > a) + P(|Y | > a).

Proof of Lemma 6 is obvious. �

Lemma 7. Let the random variables X1, . . . , Xk be independent and the

inequalities |P(Xj 6 x)− Φ(x)| 6 Dj hold for all x and j = 1, . . . , k with some

constants D1, . . . , Dk. Then

|P(

k∑
j=1

cj Xj 6 x)− Φ(x)| 6
k∑
j=1

Dj ,
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where c1, . . . , ck are any constants such that c21 + · · ·+ c2k = 1.

Proof of Lemma 7 see for example in Theorem 3.1 in [10]. �

4. Proofs of theorems

We will prove the theorems in the reverse order. The inequalities (2) and (3)
are key components in the proofs of Theorems 1 and 2.

Proof of Theorem 4. Matrix equality

(I +A)
−1 − (I −A) = A2 (I +A)

−1
,

and de�nition (1) give

(B +W )
−1

=
(√
pU + pIq +

√
mV +mIq

)−1
=

1

p+m

(
Iq −

1

p+m

(√
pU +

√
mV

)
+

(√
pU +

√
mV

)2
p+m

(B +W )
−1

)
Therefore,

√
m (r + 1)

(
(r + 1)B (B +W )

−1 − rIq
)
−
(√
rU − rV

)
=

√
r√
m
U
(√
rU + V

)
+

1√
m
B
(√
rU + V

)2
(B +W )

−1
.

Hence, for the traces of the matrices one has:∣∣∣√m (r + 1)
(

(r + 1) trB (B +W )
−1 − rq

)
−
(√
r trU − r trV

)∣∣∣
6

1√
m

√
r
(
|trUV |+

√
r trU2

)
+

1√
m

∣∣∣tr [B (√rU + V
)2

(B +W )
−1
]∣∣∣

6
1√
m

√
r
(
|trUV |+

√
r trU2

)
+

1√
m

tr
(√
rU + V

)2
trB (B +W )

−1
. (22)

Here we have used the fact that both randommatrices (
√
rU + V )

2
andB (B +W )

−1

are symmetric and positive semi-de�nite, as for symmetric and positive semi-
de�nite matrices X and Y the following inequality holds (see [11]): trXY 6
trX trY.

Since trB (B +W )
−1

is involved in both sides of (22), after proper trans-

formations we get (3) provided that condition tr (
√
rU + V )

2
< (r + 1)m is met.

Thus, Theorem 4 is proved. �

Proof of Theorem 3. Similarly to the proof of Theorem 4, we can write
√
m
(
BW−1 − rIq

)
−
(√
rU − rV

)
= −

√
r

m
UV +

√
m

(
rIq +

1√
m

√
rU

)[(
Iq +

1√
m
V

)−1
−
(
Iq −

1√
m
V

)]
= −

√
r

m
UV +

1√
m

(
rIq +

1√
m

√
rU

)
V 2

(
Iq +

1√
m
V

)−1
.
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Therefore, for the traces of matrices we get:∣∣√m (trBW−1 − rq)− (√r trU − r trV
)∣∣

6
1√
m

√
r |trUV |+ 1√

m

∣∣∣∣∣tr
[(

rIq +
1√
m

√
rU

)
V 2

(
Iq +

1√
m
V

)−1]∣∣∣∣∣
6

1√
m

√
r |trUV |+ 1√

m
trV 2 tr

[(
rIq +

1√
m

√
rU

)(
Iq +

1√
m
V

)−1]

=
1√
m

√
r |trUV |+ 1√

m
trV 2 trBW−1. (23)

Again we have used the fact that both random matrices V 2 and[(
rIq +

1√
m

√
rU

)(
Iq +

1√
m
V

)−1]
= BW−1

are symmetric and positive semi-de�nite.
We see that r.v. trBW−1 is involved in both sides of the inequality (23).

Transforming the inequality under condition trV 2 < m, we get (2). Thus,
Theorem 3 is proved. �

Proof of Theorem 2. By Lemma 1 from [6] we can represent Bartlett�
Nanda�Pillai statistic

TBNP =
√
p
(

1 +
p

m

){(
1 +

m

p

)
tr
[
Sh (Sh + Se)

−1
]
− q
}

in terms of matrices B andW of size q×q rather than matrices Sh and Se of size
p×p, where Sh and Se are de�ned in (1). Recall that B and W are independent
and have Wishart distributions Wq (p, Iq) and Wq (m, Iq) with m = n − p + q
respectively. We shall employ below the following equality (see [6]):

trSh (Sh + Se)
−1

= trB (B +W )
−1
.

According to (3), for Z1, Z2, Z3 and Z4 (see de�nition in (4)) under condition
(rZ4 + 2

√
r |Z1|+ Z2) < (r + 1)m we obtain the following relations

|
√
r TBNP −

(√
r trU − r trV

)
|

=
∣∣∣√m (r + 1)

(
(r + 1) trB (B +W )

−1 − rq
)
−
(√
r trU − r trV

)∣∣∣
6

(r + 1)
√
r (|Z1|+

√
rZ4) + (rq (r + 1) +

√
r |Z3| /

√
m)SZ

(r + 1)
√
m− SZ/

√
m

,

where SZ =
(
r trU2 + 2

√
r |trUV |+ trV 2

)
.
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Therefore, for m >M2 the inequalities (7) and (20) imply

sup
z

∣∣∣∣∣P( TBNP√
2q (1 + r)

< z
)
−P

( trU −
√
r trV√

2q (1 + r)
< z
)∣∣∣∣∣

6
4∑
i=1

P(|Zi| > B) +K4(r, q)
lnm√
m
· sup
x
f(x), (24)

where f(x) is probability density function of random variable (trU−
√
r trV )√

2q(1+r)
and

K4 (r, q) is some computable constant depending on r and q.
Note that since B and W are independent then U and V are also inde-

pendent. It is known (see for example Ch. 2 in [1]), that trB and trW have
chi-square distributions with pq and mq degrees of freedom respectively. More-
over, probability density function of chi-square distribution with k > 3 degrees
of freedom is bounded above by 1/(2

√
π (k − 2)). Hence, probability density

function f(x) admits the following uniform bound:

f(x) 6 min

( √
p√

(pq − 2)
,

√
m√

r (mq − 2)

)
·
√
q(1 + r)√

2π
. (25)

Combining Lemmas 5 and 7 and relations (1), (8), (16), (21), (24) and (25) we
get Theorem 2. �

Proof of Theorem 1. Arguing similarly to the proof of Theorem 2 we repre-
sent Lawley�Hotelling statistic

TLH =
√
p

(
m

p
trShS

−1
e − q

)
in terms of independent matrices B ∼Wq (p, Iq) and W ∼Wq(m, Iq) satisfying

trShS
−1
e = trBW−1.

According to (2) for Z1, Z2 and Z3 (see de�nition in (4)) under condition
Z2 < m we obtain

|
√
r TLH −

(√
r trU − r trV

)
| =

∣∣√m (trBW−1 − rq)− (√r trU − r trV
)∣∣

6

√
r |Z1|+ (rq +

√
r |Z3| /

√
m)Z2√

m− Z2/
√
m

.

Therefore, for m >M1 the inequalities (6) and (20) imply that

sup
z

∣∣∣∣∣P( TLH√
2q (1 + r)

< z
)
−P

( trU −
√
r trV√

2q (1 + r)
< z
)∣∣∣∣∣

6
3∑
i=1

P(|Zi| > B) +K3(r, q)
lnm√
m
· sup
x
f(x), (26)
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where f(x) is the probability density function of random variable

(trU −
√
r trV )/

√
2q (1 + r) and K3 (r, q) is some computable constant depend-

ing on r and q.
Combining Lemmas 5 and 7 and relations (1), (8), (16), (21), (26) and (25),

we conclude the proof of Theorem 1. �

References

[1] Y. Fujikoshi, V. V. Ulyanov and R. Shimizu, Multivariate Statistics: High-dimensional
and large-sample approximations, John Wiley & Sons, Hoboken, NJ, 2010.

[2] T. W. Anderson, An introduction to multivariate analysis (3rd ed.), John Wiley & Sons,
Hoboken, NJ, 2003.

[3] R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley & Sons, Hoboken,
NJ, 1982.

[4] Y. Fujikoshi, V. V. Ulyanov and R. Shimizu, L1-norm error bounds for asymptotic ex-
pansions of multivariate scale mixtures and their applications to Hotelling's generalized
T 2
0 , J. of Multivariate Analysis, 96 (2005), No. 1, 1�19.

[5] A. A. Lipatiev and V. V. Ulyanov, On Computable Estimates for Accuracy of Approx-
imation for the Bartlett�Nanda�Pillai Statistic, Siberian Adv. Math., 27 (2017), No. 3,
153�159.

[6] H. Wakaki, Y. Fujikoshi and V. V. Ulyanov, Asymptotic expansions of the distributions
of MANOVA test statistics when the dimension is large, Hiroshima Math. J., 44 (2014),
No. 3, 247�259.

[7] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied Mathematics
Series, No. 55, U.S. Government Printing O�ce, Washington, DC, 1964.

[8] I. G. Shevtsova, On the absolute constants in the Berry�Esseen type inequalities for
identically distributed summands, Available at:https://arxiv.org/pdf/1111.6554 (accessed
November 28, 2011).

[9] Y. Kawaguchi, V. V. Ulyanov and Y. Fujikoshi, Asymptotic distributions of basic statistics
in geometric representation for high-dimensional data and their error bounds, Informatics
and Applications, 4 (2010), No. 1, 22�27.

[10] V. V. Ulyanov, H. Wakaki and Y. Fujikoshi, Berry�Esseen bound for high dimensional
asymptotic approximation of Wilks' Lambda distribution, Statistics and Probability Let-
ters, 76 (2006), No. 12, 1191�1200.

[11] I. D. Coope, On matrix trace inequalities and related topics for products of Hermitian
matrices, J. of Mathematical Analysis and Applications, 188 (1949), No. 3, 999�1001.



Error bounds in high-dimensional settings 13

Alexander A. Lipatiev

Department of Mathematical Statistics

Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, 119991, Russia

E-mail : allipatev@cs.msu.ru

Vladimir V. Ulyanov

Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, 119991, Russia

National Research University Higher School of Economics, Russia

E-mail : vulyanov@cs.msu.ru


