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Abstract

We study the asymptotic optimality of Cp-type criteria from the perspective of prediction in high-

dimensional multivariate linear regression models, where the dimension of a response matrix is large but

does not exceed the sample size. We derive conditions in order that the generalized Cp (GCp) exhibits

asymptotic loss efficiency (ALE) and asymptotic mean efficiency (AME) in such high-dimensional data.

Moreover, we clarify that one of the conditions is necessary for GCp to exhibit both ALE and AME. As a

result, it is shown that the modified Cp can claim both ALE and AME but the original Cp cannot in high-

dimensional data. The finite sample performance of GCp with several tuning parameters is compared

through a simulation study.

Key words: Asymptotic theory; High-dimensional statistical inference; Model selection/variable selection.

1 Introduction

Variable selection problems are crucial in statistical fields to improve prediction accuracy and/or in-

terpretability of a resultant model. There is a burgeoning literature which has attempted to solve the

variable selection problem, and many selection procedures and their theoretical properties have been

studied.

For example, Mallows’ Cp criterion (Mallows 1973) and Akaike information criterion (AIC) (Akaike

1974) are known as useful selection methods from a predictive point of view because these procedures

are optimal in some predictive sense (see Shibata 1981, 1983, Li 1987, Shao 1997). On the other hand,

Bayesian information criterion (BIC) proposed by Schwarz (1978) is consistent (Nishii 1984) under ap-

propriate conditions; that is, the probability that a model selected by BIC coincides with the true model

converges to 1 as the sample size n tends to infinity. In this sense, BIC would be a feasible method from

the perspective of interpretability. However, Cp and AIC are inconsistent (Nishii 1984) under the same
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condition. Details of properties of selection procedures are well studied in Shao (1997) in the context of

univariate linear regression models. However, here, our target is multivariate linear regression models.

Recently, high-dimensional data are often encountered where the dimension of a response matrix

in multivariate linear regression models pn is large, whereas pn does not exceed the sample size n.

Considering such high-dimensional multivariate linear regression models, one may presume that the

properties of selection methods such as optimality and consistency are inherited from univariate models.

However, interestingly, properties derived when pn is fixed can be altered in high-dimensional situations.

For example, Yanagihara, Wakaki and Fujikoshi (2015) showed that AIC acquires the consistency property

and that BIC loses its consistency in high-dimensional data. Similar results for Cp-type criteria were

reported by Fujikoshi, Sakurai and Yanagihara (2014). The reason why this inversion arises may be that

a difference in risks between two over-specified models (i.e., models including the true model) diverges

with n and pn tending to infinity, and thus penalty terms of Cp and AIC are moderate but that of BIC

is too strong. In addition to these studies, model selection criteria in high-dimensional data contexts

and their consistency properties have been vigorously studied in various models and situations (e.g.,

Katayama and Imori 2014, Imori and von Rosen 2015, Yanagihara 2015, Fujikoshi and Sakurai 2016, Bai,

Choi and Fujikoshi 2018).

Compared with the consistency property, asymptotic optimality for prediction in high-dimensional

data contexts is under-researched. Conventional results derived from univariate models are no longer

reliable in high-dimensional data contexts, and extension to such cases is not mathematically trivial. In

the present paper, we focus on asymptotic loss efficiency (ALE) (Li 1987, Shao 1997) and asymptotic

mean efficiency (AME) (Shibata 1983) as criteria for the asymptotic optimality of variable selection. We

derive sufficient conditions in order that a generalization of Cp (GCp) exhibits ALE and AME in high-

dimensional data. We also show that one of the sufficient conditions is necessary for GCp to exhibit both

of these efficiencies. As a result, we can observe that the modified Cp (MCp) introduced by Fujikoshi

and Satoh (1997) exhibits ALE and AME assuming moderate conditions although the original Cp does

not under the same conditions.

Recently, Yanagihara (2020) also studied ALE and AME of GCp in high-dimensional multivariate

linear regression models although its conditions and results are based on the consistency property. For

example, Yanagihara (2020) supposes that the true model is included in a set of candidate models, which

is not assumed in the present paper. It is worth mentioning that previous studies of variable selection

in multivariate linear regression models use a common regression model among response variables. We

mitigate this limitation and allow each response variable to have different models in order to consider

more practical situations such as response variables have a group structure.

The remainder of this paper is composed as follows. In Section 2, we clarify the variable selection
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framework used in this paper. In Section 3, the sufficient conditions for ALE and AME of GCp are

given. In Section 4, we study the asymptotic inefficiency of GCp. Section 5 illustrates the finite sample

performances of some Cp-type criteria. Finally, conclusions are offered in Section 6.

2 Model selection framework

2.1 True and candidate models

Let Y be an n × pn response variable matrix and X be an n × kn explanatory variable matrix, where

n is the sample size, pn is the dimension of response and kn is the number of explanatory variables. We

assume X to be of full rank and non-stochastic. We allow kn and pn to diverge to infinity with n tending

to infinity, although neither kn nor pn exceeds n. Specific conditions for n, kn, and pn are given later.

The true distribution of Y = (y1, . . . ,ypn) is given by

Y = Γ∗ + EΣ1/2
∗ ,

where Γ∗ = (γ∗
1 , . . . ,γ

∗
pn
) = E(Y ), E is an n× pn error matrix, of which all entries are independent and

identically distributed as the standard normal distribution N(0, 1) and Σ∗ is the true covariance matrix

of each row of Y . The relationship between Y and X is represented by a multivariate linear regression

model as follows:

Y = XB + EΣ1/2,

where B is a kn × pn matrix of unknown regression coefficients and Σ is a pn × pn unknown covariance

matrix. Here, we distinguish the covariance parameter Σ from the true one Σ∗. Let M = (M1, . . . ,Mpn),

where ∅ ̸= Mj ⊂ MF = {1, . . . , kn} is a candidate model for the jth response variable yj , that is, we

assume yj is relevant to XMj
that is an n× kMj

sub-matrix of X corresponding to Mj , and kMj
is the

cardinality of Mj . This setting can take account of a group structure of response variables. For example,

if we have two groups {1, . . . ,m} and {m+1, . . . , pn} with some integer m, a restriction M1 = . . . = Mm

and Mm+1 = . . . = Mpn
will be imposed. Using only one regression model for response variables, i.e.,

M1 = . . . = Mpn , we have a simple variable selection problem often considered in previous studies. Then,

a candidate model M implies a multivariate linear regression model defined as follows:

yj = XMj
βMj

+ εj , j = 1, . . . , pn,

where βMj
is a kMj

-dimensional vector of unknown regression coefficients and εj is the jth column of

3



EΣ1/2
∗ , i.e., EΣ1/2

∗ = (ε1, . . . , εpn). Thus, a set of candidate models is denoted by Mn that is a subset

of a comprehensive set {M = (M1, . . . ,Mpn
)|Mj ⊂ MF , j = 1, . . . , pn}. Note that Mn does not have to

include the full model, i.e., M = (MF , . . . ,MF ).

2.2 Loss and risk functions

Herein, the goodness of fit of a candidate model M is measured by a quadratic loss function Ln given by

Ln(M) = tr{(Γ∗ − Γ̂(M))Σ−1
∗ (Γ∗ − Γ̂(M))⊤}, (1)

where each column of Γ̂(M) is obtained based on a least squares estimator, i.e.,

Γ̂(M) = (PM1
y1, . . . ,PMpn

ypn
), (2)

and PMj
= XMj

(X⊤
Mj

XMj
)−1X⊤

Mj
. By substituting (2) into (1), we have

Ln(M) = tr{∆(M)} − 2tr{Σ−1
∗ (Γ∗ − Γ∗(M))⊤E(M)}+ tr{Σ−1

∗ E(M)⊤E(M)} (3)

where ∆(M) = Σ
−1/2
∗ (Γ∗−Γ∗(M))⊤(Γ∗−Γ∗(M))Σ

−1/2
∗ , Γ∗(M) = (PM1γ

∗
1 , . . . ,PMpn

γ∗
pn
) and E(M) =

(PM1
ε1, . . . ,PMpn

εpn
). Then, a risk function Rn is obtained as

Rn(M) = E(Ln(M)) = tr{∆(M)}+ tr{A(M)⊤A(M)}, (4)

where A(M) = (Σ
−1/2
∗ ⊗ In)P (M)(Σ

1/2
∗ ⊗ In), a symbol ⊗ denotes a Kronecker product and P (M) =

diag{PM1 , . . . ,PMpn
}. It is worth mentioning that A(M) is an idempotent matrix. Thus, from House-

holder and Carpenter (1963), σj(A(M)) ≤ σj(A(M))2 for all j = 1, . . . , pn, where σj(·) denotes the jth

largest singular value. This and Theorem 3.3.13 in Horn and Jornson (1994) indicate that

tr{A(M)⊤A(M)} =

pn∑
j=1

σj(A(M))2 ≥
pn∑
j=1

σj(A(M)) ≥ tr{A(M)}.

This implies that Rn(M) ≥ pn because tr{A(M)} =
∑pn

j=1 kMj
.

The best models with respect to the loss and risk functions are denoted by M∗
L and M∗

R, which

minimize (1) and (4) among Mn, respectively, i.e.,

M∗
L = arg min

M∈Mn

Ln(M), M∗
R = arg min

M∈Mn

Rn(M).
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Note that M∗
L is a random variable, M∗

R is non-stochastic, and both of them depend on n although they

are suppressed for brevity.

2.3 Selection method and asymptotic efficiency

To select the best model among Mn, we use GCp defined by

GCp(M ;αn) = nαntr{Σ̂(M)S−1}+ 2

pn∑
j=1

kMj . (5)

where αn is a positive sequence, Σ̂(M) = (Y − Γ̂(M))⊤(Y − Γ̂(M))/n, S = Y ⊤P⊥
MF

Y /(n − kn) and

P⊥
MF

= In − PMF
. For theoretical purposes, we use αn satisfying

lim
n→∞

αn = a ∈ [0,∞).

When αn = 1 and pn = 1, GCp indicates Cp proposed by Mallows (1973). When αn = 1−(pn+1)/(n−kn)

and M1 = · · · = Mpn
, selection results by GCp coincide with the modified Cp (called MCp) by Fujikoshi

and Satoh (1997). If the full model includes the true model and we set M1 = · · · = Mpn
, then MCp

is an unbiased estimator (Fujikoshi and Satoh 1997). Note that Atkinson (1980) introduced a criterion

equivalent to GCp for univariate data, and Nagai, Yanagihara and Satoh (2012) proposed for multivariate

generalized ridge regression models although they assumed M1 = · · · = Mpn .

The best model selected by minimizing GCp among Mn is denoted by M̂n, i.e.,

M̂n = arg min
M∈Mn

GCp(M ;αn).

Then, we state that GCp exhibits ALE (Li 1987, Shao 1997) if

Ln(M̂n)

Ln(M∗
L)

p→ 1, n → ∞, (6)

and exhibits AME (Shibata 1983) if

lim
n→∞

E(Ln(M̂n))

Rn(M∗
R)

= 1. (7)

Note that Ln(M̂n) and E(Ln(M̂n)) are respectively referred to as loss and risk functions of the best

model selected by GCp.
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3 Asymptotic efficiency of GCp

In this section, we present ALE and AME of GCp(M ;αn). Hereafter, we may omit symbol “n → ∞” for

simplifying expressions.

Firstly, we assume the following conditions for ALE:

(C1) limn→∞ kn/n = ck ∈ [0, 1), limn→∞ pn/n = cp ∈ [0, 1), 1− ck − cp > 0 and n− kn − pn > 0.

(C2) σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ ) = o(n).

(C3) There exists a constant CA ≥ 1 such that for all M ∈ Mn, σ1(A(M)) ≤ CA.

(C4) For all δ ∈ (0, 1), limn→∞
∑

M∈Mn
δRn(M) = 0.

(C5) Let #(Mn) be the cardinality of Mn, i.e., the number of candidate models. Then, log#(Mn) =

o(n).

The first part of condition (C1) is weaker than a condition assumed in Shibata (1981, 1983) if the full

model (MF , . . . ,MF ) is included in the set of candidate models Mn. The second part of (C1) constructs

our high-dimensional framework, which is also considered in previous studies (see e.g., Fujikoshi, Sakurai

and Yanagihara 2014, Yanagihara, Wakaki and Fujikoshi 2015). The third part is used for evaluating

the lowest singular values of a high-dimensional Gaussian random matrix. The final part of (C1) is

required to guarantee regularity of S, which can be satisfied asymptotically from the previous three

conditions. Condition (C2) is used to ignore an effect of σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ ), which is satisfied

when Γ∗ is well approximated by a linear regression model XB although a set of candidate models does

not need to include the true model. When pn = 1, (C2) corresponds to an assumption in Shao (1997).

Condition (C3) is only considered when we do not use a common model for response variables. Actually,

M = (M1, . . . ,M1) with some M1 ⊂ MF indicates that A(M) = Ipn ⊗ PM1 , and thus (C3) holds. If

there exists λ ≥ 1 such that λ−1 ≤ λmin(Σ∗) ≤ λmax(Σ∗) ≤ λ, where λmin(·) and λmax(·) denote the

minimum and maximum eigenvalues, then (C3) holds for any Mn because for all x ∈ Rnpn ,

x⊤A(M)⊤A(M)x ≤ λmax(Σ∗)

λmin(Σ∗)
x⊤x.

On the other hand, conditions (C4) and (C5) control the number of candidate models. When pn = 1,

(C4) corresponds to a condition in Shibata (1981, 1983). Let G be a positive constant integer. Suppose

that response variables has G groups and each group consists of at least gn response variables, where gn

satisfies pn = O(gn). Then, when pn → ∞, log kn = o(pn) is a sufficient condition for (C4) because this
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indicates that log kn = o(gn) and

∑
M∈Mn

δRn(M) ≤


kn∑
j=1

(
kn
j

)
δjgn


G

≤


kn∑
j=1

(knδ
gn)j


G

≤
(

knδ
gn

1− knδgn

)G

.

Hence, this may suggest that as pn grows, the upper bound the number of candidate models (or the

number of explanatory variables) for satisfying (C4) becomes large. Note that when cp > 0, (C4) always

holds due to (C5). Condition (C5) would be satisfied in actual use because violation of (C5) induces a

huge computational burden.

Then, we can derive sufficient conditions for ALE of GCp as the following theorem, of which a proof

is given in Supplementary Materials.

Theorem 3.1. Suppose that conditions (C1)–(C5) hold. If αn → a = 1 − cp/(1 − ck) as n → ∞, then

GCp(M ;αn) exhibits ALE, i.e.,

Ln(M̂n)

Ln(M∗
L)

p→ 1, n → ∞.

Next, we show AME of GCp. Besides conditions (C1)–(C5), we assume the following condition:

(C6) There exists γ0 ∈ (0, 1) such that

max
M∈Mn

Rn(M)

Rn(M∗
R)

= O(exp(nγ0)).

Condition (C6) sets an upper bound of the risk ratio Rn(M)/Rn(M
∗
R), which prevents the maximum

risk from being too large. Let us show that if there exist constants C ≥ 1 and γ ∈ [0, 1) such that

λmin(Σ∗) ≥ C exp(−nγ) > 0 and (Γ∗)
2
ij ≤ C for all 1 ≤ i ≤ n and 1 ≤ j ≤ pn, then (C6) holds under

(C1) and (C3). Conditions (C1) and (C3) indicates that

Rn(M) = tr{∆(M)}+ tr{A(M)⊤A(M)}

≤ vec(Γ∗)
⊤(Inpn

− P (M))(Σ−1
∗ ⊗ In)(Inpn

− P (M))vec(Γ∗) + C2
Anpn

≤ npn{λmin(Σ∗)
−1 max{(Γ∗)

2
ij |1 ≤ i ≤ n, 1 ≤ j ≤ pn}+ C2

A}

= O(n2 exp(nγ)).

We have shown that for all M ∈ Mn, Rn(M) ≥ pn and especially, Rn(M
∗
R) ≥ pn. Thus, by setting

γ0 = (1 + γ)/2, (C6) is satisfied.

Assuming (C1)–(C6), we have the following theorem:
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Theorem 3.2. Suppose that conditions (C1)–(C6) hold. If αn → a = 1 − cp/(1 − ck) as n → ∞, then

GCp(M ;αn) exhibits AME, i.e.,

lim
n→∞

E(Ln(M̂n))

Rn(M∗
R)

= 1.

A proof of this theorem is provided in Supplementary Materials. For both ALE and AME of GCp,

we assume αn → a = 1 − cp/(1 − ck). Unless cp = 0, this condition does not hold when αn = 1 (i.e.,

the original Cp). On the other hand, this condition is satisfied for all ck ∈ [0, 1) and cp ∈ [0, 1) as long

as 1 − ck − cp > 0, when αn = 1 − (pn + 1)/(n − kn) (i.e., MCp). Hence, MCp is more reasonable for

variable selection in high-dimensional data contexts from the perspective of prediction.

4 Asymptotic inefficiency of GCp

As noted in the previous section, αn → a = 1−cp/(1−ck) is a key condition for GCp to acquire ALE and

AME. In this section, we show that this is a necessary condition. Namely, when αn → a ̸= 1−cp/(1−ck),

there is a situation such that

lim
n→∞

Pr

(
Ln(M̂n)

Ln(M∗
L)

> 1

)
= 1, lim

n→∞

E(Ln(M̂n))

Rn(M∗
R)

> 1

even under conditions (C1)–(C6).

For expository purposes, let X = (x1,x2), i.e., kn = 2 such that X⊤X = I2, Γ∗ =
√
nx2β

⊤, where

β ∈ Rpn , Σ∗ = Ipn
, and Mn = {{1}pn , {1, 2}pn}. Note that M = {1}pn means M1 = · · ·Mpn

= {1}

and M = {1, 2}pn is similarly defined. For brevity, we write {1} and {1, 2} instead of {1}pn and {1, 2}pn ,

respectively. Suppose that cp ∈ (0, 1) and β satisfies ∥β∥2 → b ∈ (0,∞), where ∥ · ∥ is the Euclidean

norm. Then, because σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ ) = 0, Rn({1}) = n∥β∥2 + pn, and Rn({1, 2}) = 2pn,

conditions (C1)–(C6) are satisfied for sufficiently large n. Note that ck = 0 in this situation because kn

is fixed.

From the definition of GCp,

GCp({1, 2};αn)−GCp({1};αn)

= nαntr{(Σ̂({1, 2})− Σ̂({1}))S−1}+ 2pn

= −(n− 2)αnx
⊤
2 Y Y ⊤x2

x⊤
2 Y {Y ⊤(In − x1x

⊤
1 − x2x

⊤
2 )Y }−1Y ⊤x2

x⊤
2 Y Y ⊤x2

+ 2pn.
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It follows from Theorem 3.2.12 in Muirhead (1982) that

(
x⊤
2 Y {Y ⊤(In − x1x

⊤
1 − x2x

⊤
2 )Y }−1Y ⊤x2

x⊤
2 Y Y ⊤x2

)−1

∼ χ2
n−pn−1.

On the other hand, because Y ⊤x2 =
√
nβ + E⊤x2 ∼ Npn

(
√
nβ, Ipn

), x⊤
2 Y Y ⊤x2 ∼ χ2

pn
(n∥β∥2),

which denotes a non-central chi-square distribution with non-centrality parameter n∥β∥2. Note that

χ2
n−pn−1/n = 1− cp + op(1) and χ2

pn
(n∥β∥2)/n = cp + b+ op(1). Hence, it holds that

GCp({1, 2};αn)−GCp({1};αn)

n
= −a(cp + b)

1− cp
+ 2cp + op(1). (8)

Meanwhile, loss functions of models {1} and {1, 2} are given as

Ln({1}) = n∥β∥2 + x⊤
1 EE

⊤x1,

Ln({1, 2}) = x⊤
1 EE

⊤x1 + x⊤
2 EE

⊤x2.

Because x⊤
i EE

⊤xi ∼ χ2
pn

(i = 1, 2), it follows that

Ln({1})
Ln({1, 2})

p→ cp + b

2cp
∈ (0,∞), (9)

lim
n→∞

Rn({1})
Rn({1, 2})

=
cp + b

2cp
∈ (0,∞). (10)

First, we consider a situation where a > 0. Let b = cp(1− cp)/a. It follows from (8) and (9) that

GCp({1, 2};αn)−GCp({1};αn)

n

p→ cp(1− cp − a)

1− cp
,

Ln({1})
Ln({1, 2})

p→ a+ 1− cp
2a

= 1 +
1− cp − a

2a
.

Hence, we have

Ln(M̂n)

Ln(M∗
L)

p→

 (a+ 1− cp)/(2a) > 1, a < 1− cp,

(2a)/(a+ 1− cp) > 1, a > 1− cp.

This implies that GCp does not exhibit ALE when 0 < a < 1− cp or a > 1− cp.

On the other hand, (10) yields M∗
R = {1, 2} (resp. {1}) for sufficiently large n when a < 1− cp (resp.
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a > 1− cp). Thus, by using M∗∗
R = Mn \M∗

R, we can see that

E(Ln(M̂n))

Rn(M∗
R)

=
E(Ln(M

∗
R)I(M̂n = M∗

R))

Rn(M∗
R)

+
E(Ln(M

∗∗
R )I(M̂n = M∗∗

R ))

Rn(M∗
R)

=
Rn(M

∗∗
R )

Rn(M∗
R)

− E({Ln(M
∗∗
R )− Ln(M

∗
R)}I(M̂n = M∗

R))

Rn(M∗
R)

≥ Rn(M
∗∗
R )

Rn(M∗
R)

−
√
E({Ln({1})− Ln({1, 2})}2)

Rn(M∗
R)

√
Pr(M̂n = M∗

R),

where I(·) is an indicator function and the last inequality follows from the Cauchy-Schwarz inequality.

Note that

√
E({Ln({1, 2})− Ln({1})}2)

Rn(M∗
R)

=
√
E((χ2

pn
− n∥β∥2)2)max

{
1

2pn
,

1

pn + n∥β∥2

}
=
√
2pn + (pn − n∥β∥2)2 max

{
1

2pn
,

1

pn + n∥β∥2

}
→ |a− (1− cp)|max

{
1

2a
,

1

a+ 1− cp

}
< ∞.

Because limn→∞ Pr(M̂n = M∗
R) = 0 and Rn(M

∗∗
R )/Rn(M

∗
R) > 1, GCp does not exhibit AME when

0 < a < 1− cp or 1− cp < a.

Next, we consider a situation where a = 0. Then, (8) implies that Pr(M̂n = {1}) → 1. However, when

b > cp, (9) and (10) yield Pr(M∗
L = {1, 2}) → 1 and M∗

R = {1, 2} for sufficiently large n, respectively.

Hence, in the same manner as the argument when a > 0, we can appreciate that GCp does not exhibit

ALE or AME when a = 0.

Therefore, αn → a = 1− cp/(1− ck) is a necessary and sufficient condition for ALE and AME of GCp

under conditions (C1)–(C6).

5 Simulation study

This section provides details of a simulation study to compare GCp among several αn, where the goodness

of criteria is measured by the loss function of the best model selected by each criterion. We prepare three

parameters for αn, that is, αn = 1 (i.e., Cp), αn = 1 − (pn + 1)/(n − kn) (i.e., MCp) and αn = 2/ log n

(i.e., BIC-type Cp, say BCp). Because 2/ log n ≤ 1 − (pn + 1)/(n − kn) ≤ 1 in our settings described

below, the number of dimensions of the model selected by Cp (resp. BCp) is larger (resp. smaller) than

or equal to that by MCp. Generally speaking, this inequality always holds for sufficiently large n.

Hereafter, we explain the simulation settings. Let the first column of X be a vector of ones in Rn

and the other entries be independently generated from a uniform distribution U(0, 1). For all 1 ≤ i ≤

kn and 1 ≤ j ≤ pn, let (B∗)ij = uijdi, where uij are independently generated from U(0, 1/2) and
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Table 1: Average values of Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R) of Cp, MCp and BCp among

1,000 repetitions for each (n, pn, kn). Standard deviations are shown in parentheses. Best values for
Ln(M̂n)/Ln(M

∗
L) and Ln(M̂n)/Rn(M

∗
R) are emboldened for each (n, pn, kn). All values are rounded to

3 decimal places.

Ln(M̂n)/Ln(M
∗
L) Ln(M̂n)/Rn(M

∗
R)

n pn kn Cp MCp BCp Cp MCp BCp

100 20 10 1.262 1.143 1.115 1.198 1.085 1.056
(0.185) (0.108) (0.069) (0.193) (0.116) (0.056)

200 40 20 1.139 1.065 1.169 1.125 1.052 1.153
(0.079) (0.048) (0.046) (0.089) (0.059) (0.016)

400 80 40 1.129 1.027 1.191 1.125 1.023 1.187
(0.057) (0.020) (0.025) (0.060) (0.028) (0.006)

800 160 80 1.117 1.010 1.182 1.114 1.007 1.178
(0.033) (0.007) (0.012) (0.035) (0.012) (0.002)

100 10 10 1.290 1.229 1.153 1.219 1.160 1.085
(0.259) (0.220) (0.094) (0.272) (0.225) (0.091)

200 10 20 1.167 1.163 1.191 1.110 1.106 1.127
(0.116) (0.110) (0.088) (0.131) (0.119) (0.033)

400 10 40 1.107 1.107 1.174 1.060 1.060 1.121
(0.063) (0.061) (0.069) (0.074) (0.070) (0.017)

800 10 80 1.065 1.064 1.233 1.049 1.048 1.213
(0.045) (0.043) (0.050) (0.057) (0.054) (0.009)

di = 5
√
kn − i+ 1/kn. For comparative purposes, we examine a situation where Γ∗ = XB∗, which

implies that the full model is the true model. Suppose that Σ∗ = (0.7|i−j|)ij for 1 ≤ i, j ≤ pn. We

also suppose that there are two subsets M (1),M (2) ⊂ {1, . . . , pn} such that M1 = · · · = Mpn/2 = M (1)

and Mpn/2+1 = · · · = Mpn
= M (2), which implies that there are two groups of response variables.

To reduce computational burden, we adopt a nested model set, i.e., we select M (1) and M (2) among

{{1}, . . . , {1, . . . , kn}}. It should be noted that the true (full) model is not always the best model from

the perspective of prediction in our simulation study, because some coefficients are very small, so variable

selection makes sense in this situation. This supposition is confirmed below.

We prepared two cases for pn as high- and fixed-dimensional cases, where pn = n/5 for the high-

dimensional case, whereas pn = 10 for the fixed case. The sample size n varies from 100 to 800, and we

set kn = n/10. Then, we generate Y and select the best subset of explanatory variables by each Cp-type

criterion. After variable selection, we calculate the loss functions for each best model.

Table 1 provides average values of Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R) of Cp, MCp and BCp

based on 1,000 repetitions for each (n, pn, kn). Note that Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R) are

criteria for ALE and AME, respectively, and smaller is better. From this table, we can confirm that MCp

exhibits good performance regardless of pn, and Cp works well when pn = 10 but it does not work well

when pn is large. On the other hand, BCp has higher values of Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R)
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Table 2: Average dimensions of selected models by Cp, MCp, and BCp and loss minimizing models
among 1,000 repetitions for each (n, pn, kn). Standard deviations are shown in parentheses. All values
are rounded to 3 decimal places.

n pn kn Cp MCp BCp Loss

100 20 10 5.754 3.154 1.127 3.277
(1.848) (1.507) (0.314) (1.145)

200 40 20 13.015 7.545 1.010 7.590
(2.066) (2.161) (0.083) (1.222)

400 80 40 24.146 13.617 1.000 13.505
(2.803) (2.185) (0.000) (1.171)

800 160 80 50.018 27.035 1.000 27.188
(3.448) (2.811) (0.000) (1.930)

100 10 10 3.756 2.857 1.107 2.804
(1.959) (1.562) (0.289) (0.900)

200 10 20 8.650 7.396 1.011 7.849
(3.499) (3.444) (0.097) (2.430)

400 10 40 17.203 15.505 1.005 16.927
(6.020) (6.064) (0.071) (5.135)

800 10 80 26.427 25.322 1.010 25.910
(8.229) (8.077) (0.093) (5.655)

except when the sample size is small. These results concur with our theoretical exposition regarding

efficiency and inefficiency.

Table 2 shows the average dimensions of models, i.e., #(M (1))/2 + #(M (2))/2 selected by each GCp

and loss minimizing models. This indicates that the number of dimensions of loss minimizing models

varies depending on the sample size, and the full model is not (always) the best model in spite of the fact

that the full model is true. Based on our simulation settings, BCp tends to select much smaller models

in comparison with models that have the smallest loss function while Cp often selects larger models when

pn is large. The average number of dimensions of models selected by MCp is close to that of the loss

minimizing models in both high- and fixed-dimensional situations. This implies that αn substantially

affects the dimensions of selected models as well as efficiency.

Hence, these results indicate that MCp is a useful variable selection method regardless of pn, and

thus we recommend its use from the perspective of robust prediction.

6 Conclusions

We have derived sufficient conditions for ALE and AME of GCp in high-dimensional multivariate linear

regression models. It is shown that MCp exhibits ALE and AME in high-dimensional data, while the

original Cp, known as an asymptotically efficient criterion in univariate cases, does not exhibit ALE or

AME under the same conditions. This is because a non-trivial bias term is omitted in the original Cp as

12



an estimator of the risk function; this term plays an important role for adaptation to high-dimensional

frameworks. Indeed, if the tuning parameter of GCp, αn, converges to a ̸= 1 − cp/(1 − ck) like in the

case of Cp and BCp, we showed that GCp is asymptotically inefficient. Through a simulation study, the

finite sample performances of Cp-type criteria are compared, and MCp is better than Cp and BCp in

high-dimensional data.

Note that when pn is large, MCp works well even under the parametric scenario, where the true model

is included in a set of candidate models. Unlike a univariate case, the risk of the true model always goes

to infinity with pn → ∞. Thus, under the parametric scenario, it is possible that conditions (C1)–(C6)

are satisfied, and then, the asymptotic efficiencies of MCp hold. Moreover, assuming response variables to

have a common model, i.e., M1 = · · · = Mpn
, MCp has the consistency property as well under moderate

conditions (Fujikoshi, Sakurai and Yanagihara 2014). Hence, MCp can be regarded as a feasible method

for variable selection from the perspective of both prediction and interpretability when pn is large. This

attractive property is only seen in high-dimensional situations, i.e., pn → ∞.

When pn is greater than n, we cannot directly calculate S−1 and thus GCp. Therefore, we need

different approaches to estimate a covariance matrixΣ such as sparse or ridge estimation (e.g., Yamamura,

Yanagihara and Srivastava 2010, Katayama and Imori 2014, Fujikoshi and Sakurai 2016). If we can

estimate Σ accurately via these procedures, ALE and AME can be established by using it in place of

S. It should also be noted that our proof depends on the assumption that the response matrix follows

a Gaussian distribution. Because we use some properties of the Gaussian distribution, this is not a

trivial limitation from the perspective of generalizing the results. Another extension of this paper is to

relax condition (C4) (see, Yang 1999). In Section 3, we gave a sufficient condition for (C4), that is,

log kn = o(pn) assuming some group structure of response variables. Under this condition, even when

the number of candidate models are exponentially large, i.e., #(Mn) = 2kn , (C4) holds. Although

this condition is not restricted, when considering a situation where each response variable uses different

models, it is still important to mitigate (C4). Yang (1999) proposed a criterion by using an additional

penalty term, which can be used for model selection without the constraint on the number of candidate

models. It may be possible to apply this idea to our setting. How best to navigate these issues represent

fruitful terrain for future research.
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A Supplementary materials

In this supplementary materials, we show ALE and AME of GCp. Section A.1 provides four lemmas that

are used for showing ALE and AME. Section A.2 gives a proof of Theorem 1, whereas a proof of Theorem

2 is obtained in Section A.3. An outline of the proofs of Theorems is based on Li (1987) and Shibata

(1983) although some techniques are used to overcome the difficulties imposed by high-dimensionality.

A.1 Preliminaries

We introduce four lemmas that are used for showing ALE and AME.

Lemma A.1. Let X be a random variable distributed as N(0, 1). Then, for all t > 0,

Pr(X ≥ t) ≤ exp

(
− t2

2

)
.

Lemma A.2. Let X ∼ Nn,p(O, In, Ip) and n > p. It holds that for all t > 0,

n1/2 − p1/2 − t ≤ σp(X) ≤ σ1(X) ≤ n1/2 + p1/2 + t

with probability at least 1− 2 exp(−Ct2), where C is a positive constant that does not depend on n and

p.

Because Lemmas A.1 and A.2 can be found elsewhere (see e.g., Wainwright 2019: Example 2.1,

Example 6.2), we omit their proofs for brevity.

Lemma A.3. Let Z ∼ Nn(0n, In) and A ∈ Rn×n be a symmetric matrix. If there exists constants

A1, A2 > 0 such that A1 ≥ tr(A2) and A2 ≥ σ1(A), then for all t ≥ 0,

Pr(|Z⊤AZ − tr(A)| ≥ t) ≤ 2 exp

(
− t

8
min

{
t

A1
,
1

A2

})
.

Proof. When A = On,n, the assertion is trivial. Thus, we assume A ̸= On,n, which implies that

tr(A2) > 0 and σ1(A) > 0.

For a proof, we refer to Example 2.8 and Proposition 2.9 in Wainwright (2019). Let X = Z⊤AZ.

Note that E(X) = tr(A). At first, we attempt to show X is sub-exponentional, i.e., for all |θ| < 1/(4A2),

E(exp{θ(X − E(X))}) ≤ exp(2A1θ
2).

Because A is symmetric, there exists an orthogonal matrix Q such that A = QDQ⊤, where D =

diag{λ1(A), . . . , λn(A)} and λi(·) denotes the ith eigenvalue. Let Y = Q⊤Z = (Y1, . . . , Yn)
⊤ that
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follows Nn(0n, In). Then,

X = Y ⊤DY =

n∑
i=1

λi(A)Y 2
i .

For all |θ| < 1/(2σ1(A)), E(exp{θλi(A)Y 2
i }) exists because 2θλi(A) ≤ 2|θ|σ1(A) < 1. Then, indepen-

dence of Y1, . . . , Yn indicates that

E(exp{θ(X − E(X))}) = E

(
exp

{
n∑

i=1

θλi(A)(Y 2
i − 1)

})

=

n∏
i=1

E(exp{θλi(A)(Y 2
i − 1)})

=

n∏
i=1

exp{−θλi(A)}{1− 2θλi(A)}−1/2

= exp

{
n∑

i=1

{
−θλi(A)− 1

2
log(1− 2θλi(A))

}}
.

Note that 2x2 ≥ −x − log(1 − 2x)/2 for all |x| ≤ 1/4. Hence, for all |θ| < 1/(4A2), which implies that

θ < 1/(2σ1(A)) and |θλi(A)| < 1/4, we have

E(exp{θ(X − E(X))}) ≤ exp

{
2

n∑
i=1

θ2λi(A)2

}

= exp{2θ2tr(A2)}

≤ exp(2A1θ
2).

From Proposition 2.9 in Wainwright (2019), it follows that for all t ≥ 0,

Pr(|Z⊤AZ − tr(A)| ≥ t) ≤

 2 exp{−t2/(8A1)} 0 ≤ t ≤ A1/A2

2 exp{−t/(8A2)} t > A1/A2

The right-hand side of the above inequality is bounded by 2 exp{−tmin{t/A1, 1/A2}/8}. Hence, the

proof is completed.

Lemma A.3 yields the following lemma for chi-square distribution.

Lemma A.4. Let Xn follow chi-square distribution with n degrees of freedom and an be a sequence

such that an/n → 1. Then, for all t > 0 and for sufficiently large n,

Pr

(∣∣∣∣∣
(
Xn

an

)−1

− 1

∣∣∣∣∣ > t

)
≤ 4 exp

(
−nmin{4t2, 1}

128

)
.
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Proof. Because an/n → 1, for sufficiently large n, |an/n− 1| ≤ t/4. Thus, we see that

Pr

(∣∣∣∣∣
(
Xn

an

)−1

− 1

∣∣∣∣∣ > t

)
= Pr

(
|Xn − an|

Xn
> t

)
≤ Pr

({
|Xn − n|+ |an − n|

n− |Xn − n|
> t

}
∩
{
|Xn − n| ≤ n

4

})
+ Pr

(
|Xn − n| > n

4

)
≤ Pr

(
|Xn − n| > nt

2

)
+ Pr

(
|Xn − n| > n

4

)
≤ 2Pr

(
|Xn − n| > nmin{2t, 1}

4

)
.

Applying Lemma A.3 with A = In, A1 = n and A2 = 1, we have

Pr

(
|Xn − n| > nmin{2t, 1}

4

)
≤ 2 exp

(
−nmin{4t2, 1}

128

)
.

Thus, the proof is completed.

A.2 Proof of Theorem 1

From the definition of Ln(M) and GCp(M ;αn), these difference can be separated as

GCp(M ;αn)− Ln(M) = αntr(Y
⊤P⊥

MF
Y S−1) + tr(E⊤PMF

E)− tr(Γ⊤
∗ P

⊥
MF

Γ∗Σ
−1
∗ )

+ tr{Σ1/2
∗ E⊤PMF

EΣ1/2
∗ (αnS

−1 −Σ−1
∗ )}

+ 2tr{(PMF
Γ∗ − Γ∗(M))⊤EΣ−1/2

∗ }

− 2

tr{E⊤PMF
E(M)Σ

−1/2
∗ } −

pn∑
j=1

kMj


+ tr{(PMF

Γ∗ − Γ∗(M))⊤(PMF
Γ∗ − Γ∗(M))(αnS

−1 −Σ−1
∗ )}

+ 2tr{(PMF
Γ∗ − Γ∗(M))⊤(PMF

EΣ1/2
∗ − E(M))(αnS

−1 −Σ−1
∗ )}

− 2tr{Σ1/2
∗ E⊤PMF

E(M)(αnS
−1 −Σ−1

∗ )}

+ tr{E(M)⊤E(M)(αnS
−1 −Σ−1

∗ )}.
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Let T1(M) = (PMF
Γ∗ − Γ∗(M))Σ

−1/2
∗ and T2 = αnΣ

1/2
∗ S−1Σ

1/2
∗ − Ipn . Then, we only consider the

terms that depend on M defined as follows:

Bn(M) = 2tr{T1(M)⊤E} − 2

tr{E⊤PMF
E(M)Σ

−1/2
∗ } −

pn∑
j=1

kMj


+ tr{T1(M)⊤T1(M)T2}+ 2tr{T1(M)⊤(PMF

E − E(M)Σ
−1/2
∗ )T2}

− 2tr{E⊤PMF
E(M)Σ

−1/2
∗ T2}+ tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ T2}.

We can discern from the definition of M̂n that

Ln(M̂n) +GCp(M̂n;αn)− Ln(M̂n) ≤ Ln(M
∗
L) +GCp(M

∗
L;αn)− Ln(M

∗
L),

and thus

Ln(M̂n)

{
1 +

Bn(M̂n)

Ln(M̂n)

}
≤ Ln(M

∗
L)

{
1 +

Bn(M
∗
L)

Ln(M∗
L)

}
.

This implies that GCp exhibits ALE if we can show that maxM∈Mn |Bn(M)|/Ln(M) converges to zero

in probability.

Let G ∈ Rn×kn and H ∈ Rn×(n−kn) be matrices such that PMF
= GG⊤, P⊥

MF
= HH⊤ and (G,H)

is orthogonal. It is worth mentioning that G⊤E and H⊤E are independent and normally distributed.

Here, we define the following event:

En,γ : (n− kn)
1/2 − p1/2n − nγ/2 ≤ σpn

(H⊤E) ≤ σ1(H
⊤E) ≤ (n− kn)

1/2 + p1/2n + nγ/2,

where γ ∈ (0, 1) is a constant. Note that it follows from Lemma A.2 that there exists a positive constant

C > 0 such that

Pr(Ec
n,γ) ≤ 2 exp(−Cnγ), (11)

where Ec
n,γ means a complement set of En,γ . This implies En,γ occurs with high probability. On En,γ ,

we have the following lemma:

Lemma A.5. Let γ ∈ (0, 1) be a constant. Suppose that conditions (C1) and (C2) hold. Then, on En,γ

σ1(Σ
1/2
∗ S−1Σ

1/2
∗ − (n− kn)(E⊤P⊥

MF
E)−1) = o(1), σ1(T2) = O(1).
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Proof. From basic linear algebra, it follows that

(Σ
−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ )−1 − (E⊤P⊥

MF
E)−1

= −(Σ
−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ )−1(Σ

−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ − E⊤P⊥

MF
E)(E⊤P⊥

MF
E)−1.

This equation implies that

σ1((Σ
−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ )−1 − (E⊤P⊥

MF
E)−1) ≤

σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ )

σpn(Σ
−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ )σpn(E

⊤P⊥
MF

E)

+
2σ1(Σ

−1/2
∗ Γ⊤

∗ P
⊥
MF

E)
σpn(Σ

−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ )σpn(E

⊤P⊥
MF

E)
.

(12)

Note that {(n − kn)
1/2 ± p

1/2
n ± nγ/2}/n1/2 converges to (1 − ck)

1/2 ± c
1/2
p ∈ (0,∞) under (C1). Thus,

there exists a positive constant C1 ≥ 1 such that for sufficiently large n, on En,γ ,

1

C1
≤

σpn
(E⊤P⊥

MF
E)

n
≤

σ1(E⊤P⊥
MF

E)
n

≤ C1. (13)

On the other hand, due to (C2) and (13), we have

σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

E) ≤ σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ )1/2σ1(E⊤P⊥

MF
E)1/2

≤ C
1/2
1 n1/2σ1(Σ

−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ )1/2

= o(n). (14)

Furthermore, on the event En,γ , it follows from (C2), (13) and (14) that

σpn
(Σ

−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ ) ≥ σpn

(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ )

+ σpn
(E⊤P⊥

MF
E)− 2σ1(Σ

−1/2
∗ Γ⊤

∗ P
⊥
MF

E)

≥ n

C1
+ o(n). (15)

Hence, by substituting (13), (14) and (15) into (12), the first assertion is obtained.

Next, we show the second assertion. It follows from (15) that there exists a positive constant C2 > 0
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such that for sufficiently large n,

σ1(T2) ≤ 1 + αnσ1(Σ
1/2
∗ S−1Σ

1/2
∗ )

= 1 + αn(n− kn)σpn
(Σ

−1/2
∗ Y ⊤P⊥

MF
Y Σ

−1/2
∗ )−1

≤ 1 +
C2αn(n− kn)

n
.

Note that αn → a ∈ [0,∞). Hence, the proof is completed.

On En,γ , we can derive a convergence rate of |Bn(M)|/Rn(M) as follows:

Lemma A.6. Let γ ∈ (0, 1) be a constant. Suppose that conditions (C1)–(C3) hold. If αn → a =

1 − cp/(1 − ck) as n → ∞, then there exist positive constants Cj > 0 (j = 1, 2, 3) and positive non-

decreasing functions g1, g2 such that for all ε > 0, for sufficiently large n, for all M ∈ Mn,

Pr

({
|Bn(M)|
Rn(M)

> ε

}
∩ En,γ

)
≤ C1 exp{−C2g1(ε)n}+ C1 exp{−C3g2(ε)εRn(M)}.

The following lemma enables us to consider |Bn(M)|/Rn(M) instead of |Bn(M)|/Ln(M).

Lemma A.7. Suppose that condition (C3) holds. Then, for all ε > 0 and M ∈ Mn,

Pr

(∣∣∣∣Ln(M)

Rn(M)
− 1

∣∣∣∣ > ε

)
≤ 4 exp

{
−min{ε, 2}εRn(M)

32C2
A

}
.

Proof. Let

ξ(M) =
Ln(M)−Rn(M)

Rn(M)

=
−2tr{Σ−1/2

∗ (Γ∗ − Γ∗(M))⊤E(M)Σ
−1/2
∗ }

Rn(M)

+
tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ } − tr{A(M)⊤A(M)}

Rn(M)
.

Note that Γ∗ − Γ∗(M) = (P⊥
M1

γ∗
1 , . . . ,P

⊥
Mpn

γ∗
pn
) and E(M) = (PM1ε1, . . . ,PMpn

εpn). This implies that

vec((Γ∗ − Γ∗(M))Σ
−1/2
∗ ) = (Σ

−1/2
∗ ⊗ In)(Inpn

− P (M))vec(Γ∗),

vec(E(M)Σ
−1/2
∗ ) = A(M)vec(E),
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where P (M) = diag{PM1 , . . . ,PMpn
} and A(M) = (Σ

−1/2
∗ ⊗In)P (M)(Σ

1/2
∗ ⊗In). Thus, it follows that

tr{Σ−1/2
∗ (Γ∗ − Γ∗(M))⊤E(M)Σ

−1/2
∗ } = vec((Γ∗ − Γ∗(M))Σ

−1/2
∗ )⊤vec(E(M)Σ

−1/2
∗ )

= vec(Γ∗)
⊤(Inpn

− P (M))(Σ
−1/2
∗ ⊗ In)A(M)vec(E).

Hence, tr{Σ−1/2
∗ (Γ∗ − Γ∗(M))⊤E(M)Σ

−1/2
∗ } follows Gaussian distribution with mean 0 and variance

v(M)2, where

v(M)2 = ∥A(M)⊤(Σ
−1/2
∗ ⊗ In)(Inpn − P (M))vec(Γ∗)∥22

≤ σ1(A(M))2∥(Σ−1/2
∗ ⊗ In)(Inpn

− P (M))vec(Γ∗)∥22

= σ1(A(M))2tr{∆(M)}

≤ C2
ARn(M),

where the last inequality follows from (C3) and tr{∆(M)} ≤ Rn(M). Let Z be a random variable that

follows N(0, 1). Then, from Lemma A.1, we can see that

Pr

(
|2tr{Σ−1/2

∗ (Γ∗ − Γ∗(M))⊤E(M)Σ
−1/2
∗ }|

Rn(M)
> ε

)
≤ Pr

(
|Z| > εRn(M)1/2

2CA

)
≤ 2 exp

{
−ε2Rn(M)

8C2
A

}
. (16)

On the other hand, it follows that

tr{Σ−1/2
∗ E(M)⊤E(M)Σ

−1/2
∗ } = vec(E(M)Σ

−1/2
∗ )⊤vec(E(M)Σ

−1/2
∗ )

= vec(E)⊤A(M)⊤A(M)vec(E).

Under (C3), σ1(A(M)⊤A(M)) ≤ C2
A and tr{(A(M)⊤A(M))2} ≤ C2

Atr{A(M)⊤A(M)} ≤ C2
ARn(M).

Thus, from Lemma A.3, we have

Pr

(
|tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ } − tr{A(M)⊤A(M)}|

Rn(M)
> ε

)
≤ 2 exp

{
−min{ε, 1}εRn(M)

8C2
A

}
. (17)
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By combining (16) and (17), it holds that

Pr(|ξ(M)| > ε) ≤ Pr

(
|2tr{Σ−1/2

∗ (Γ∗ − Γ∗(M))⊤E(M)Σ
−1/2
∗ }|

Rn(M)
>

ε

2

)

+ Pr

(
|tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ } − tr{A(M)⊤A(M)}|

Rn(M)
>

ε

2

)

≤ 4 exp

{
−min{ε, 2}εRn(M)

32C2
A

}
.

Thus, the proof is completed.

By combining Lemmas A.6 and A.7 with (11), for all ε > 0, there exist positive constants Cj > 0

(j = 1, . . . , 4) such that for sufficiently large n,

Pr

(
max

M∈Mn

|Bn(M)|
Ln(M)

> ε

)
≤ Pr

({
max

M∈Mn

|Bn(M)|
Ln(M)

> ε

}
∩
{

max
M∈Mn

∣∣∣∣Ln(M)

Rn(M)
− 1

∣∣∣∣ ≤ 1

2

}
∩ En,γ

)
+ Pr

(
max

M∈Mn

∣∣∣∣Ln(M)

Rn(M)
− 1

∣∣∣∣ > 1

2

)
+ Pr(Ec

n,γ)

= Pr

({
max

M∈Mn

|Bn(M)|
Rn(M)

>
ε

2

}
∩ En,γ

)
+ Pr

(
max

M∈Mn

∣∣∣∣Ln(M)

Rn(M)
− 1

∣∣∣∣ > 1

2

)
+ Pr(Ec

n,γ)

≤ C1#(Mn) exp(−C2n) + C1

∑
M∈Mn

exp{−C3Rn(M)}+ C1 exp(−C4n
γ),

which goes to zero under condition (C4) and (C5). Because Ln(M
∗
L) ≤ Ln(M) for all M ∈ Mn, this

yields Theorem 1. Hence, hereafter, we attempt to show Lemma A.6. At first, we evaluate the first term

of Bn(M).

Lemma A.8. For all ε > 0 and M ∈ Mn,

Pr

(
|tr{T1(M)⊤E}|

Rn(M)
> ε

)
≤ 2 exp

{
−ε2Rn(M)

2

}
.

Proof. It is seen that tr{T1(M)⊤E} followsN(0, τ(M)2), where τ(M)2 = tr{T1(M)⊤T1(M)} ≤ tr{∆(M)} ≤

Rn(M). Lemma A.1 yields that

Pr

(
|tr{T1(M)⊤E}|

Rn(M)
> ε

)
≤ Pr

(
|tr{T1(M)⊤E}|

τ(M)
> εRn(M)1/2

)
≤ 2 exp

{
−ε2Rn(M)

2

}
.

The proof is completed.
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The next lemma provides an evaluation of the second term of Bn(M).

Lemma A.9. Suppose that condition (C3) holds. For all ε > 0 and for all M ∈ Mn

Pr

(
|tr{E⊤PMF

E(M)Σ
−1/2
∗ } −

∑pn

j=1 kMj |
Rn(M)

> ε

)
≤ 2 exp

{
−εRn(M)

8CA
min{εCA, 1}

}
.

Proof. It is easy to see that

tr{E⊤PMF
E(M)Σ

−1/2
∗ } = vec(E)⊤A(M)vec(E)

=
vec(E)⊤(A(M) +A(M)⊤)vec(E)

2
.

Note that tr{A(M)} = tr{A(M)+A(M)⊤}/2 =
∑pn

j=1 kMj
. In order to apply Lemma A.3, we check the

conditions. From (C3), σ1(A(M) +A(M)⊤)/2 ≤ σ1(A(M)) ≤ CA. Recall that

tr{A(M)} ≤
npn∑
j=1

σj(A(M)) ≤ tr{A(M)⊤A(M)}. (18)

Hence, considering tr{A(M)⊤A(M)} ≤ Rn(M), Lemma A.3 implies that

Pr

(
|tr{E⊤PMF

E(M)Σ
−1/2
∗ } −

∑pn

j=1 kMj
|

Rn(M)
> ε

)
≤ 2 exp

{
−εRn(M)

8CA
min{εCA, 1}

}
.

Next, the third term of Bn(M) is evaluated as follows:

Lemma A.10. Let γ ∈ (0, 1) be a constant. Suppose that conditions (C1) and (C2) hold. If αn → a =

1− cp/(1− ck), then for all ε > 0, for sufficiently large n, for all M ∈ Mn,

Pr

({
|tr{T1(M)⊤T1(M)T2}|

Rn(M)
> ε

}
∩ En,γ

)
≤ 4n exp

{
− (n− kn − pn + 1)min{ε2, 1}

128

}
.

Proof. Let Ω = (n− kn)(E⊤P⊥
MF

E)−1. For all M ∈ Mn, it follows from a triangle inequality that

|tr{T1(M)⊤T1(M)T2}| ≤ αn|tr{T1(M)⊤T1(M)(Σ
1/2
∗ S−1Σ

1/2
∗ −Ω)}|

+ |tr{T1(M)⊤T1(M)(αnΩ− Ipn
)}|.
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Hence,

Pr

({
|tr{T1(M)⊤T1(M)T2}|

Rn(M)
> ε

}
∩ En,γ

)
≤ Pr

({
αn|tr{T1(M)⊤T1(M)(Σ

1/2
∗ S−1Σ

1/2
∗ −Ω)}|

Rn(M)
>

ε

2

}
∩ En,γ

)

+ Pr

(
|tr{T1(M)⊤T1(M)(αnΩ− Ipn

)}|
Rn(M)

>
ε

2

)
.

Because tr{T1(M)⊤T1(M)} ≤ Rn(M),

|tr{T1(M)⊤T1(M)(Σ
1/2
∗ S−1Σ

1/2
∗ −Ω)}|

Rn(M)
≤ σ1(Σ

1/2
∗ S−1Σ

1/2
∗ −Ω).

Lemma A.5 yields that on En,γ , σ1(Σ
1/2
∗ S−1Σ

1/2
∗ −Ω) converges to zero. Note that αn → 1−cp/(1−ck) >

0. These results indicate that

Pr

({
αn|tr{T1(M)⊤T1(M)(Σ

1/2
∗ S−1Σ

1/2
∗ −Ω)}|

Rn(M)
>

ε

2

}
∩ En,γ

)
= 0,

for sufficiently large n.

On the other hand, let ei is the ith column of In and if T1(M)⊤ei ̸= 0pn ,

ai(M) = (e⊤i T1(M)T1(M)⊤ei)
−1/2T1(M)⊤ei, otherwise ai(M) = 0pn

. Then, it can be seen that

|tr{T1(M)⊤T1(M)(αnΩ− In)}| ≤
n∑

i=1

|e⊤i T1(M)(αnΩ− In)T1(M)⊤ei|

≤
n∑

i=1

e⊤i T1(M)T1(M)⊤ei max
1≤i≤n

|ai(M)⊤(αnΩ− Ipn
)ai(M)|

= tr{T1(M)⊤T1(M)} max
1≤i≤n

|ai(M)⊤(αnΩ− Ipn)ai(M)|.

It is worth mentioning that when ai(M) ̸= 0pn , (ai(M)⊤(E⊤P⊥
MF

E)−1ai(M))−1 follows chi-square dis-

tribution with n − kn − pn + 1 degrees of freedom (see, Theorem 3.2.11, Muirhead 1982). Because

(n− kn)αn/(n− kn − pn + 1) → 1, Lemma A.4 yields that for sufficiently large n, for all M ∈ Mn

Pr

(
|tr{T1(M)⊤T1(M)(αnΩ− In)}|

Rn(M)
>

ε

2

)
≤ Pr

(
max
1≤i≤n

|ai(M)⊤(αnΩ− Ipn)ai(M)| > ε

2

)

≤ nPr

∣∣∣∣∣∣
(
χ2
n−kn−pn+1

(n− kn)αn

)−1

− 1

∣∣∣∣∣∣ > ε

2


≤ 4n exp

{
− (n− kn − pn + 1)min{ε2, 1}

128

}
.

Hence, the proof is completed.
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An evaluation of the sixth term of Bn(M) is obtained in a similar manner to Lemma A.10.

Lemma A.11. Let γ ∈ (0, 1) be a constant. Suppose that conditions (C1)–(C3) hold. If αn → a =

1− cp/(1− ck), for all ε > 0, for sufficiently large n, for all M ∈ Mn

Pr

({
|tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ T2}|

Rn(M)
> ε

}
∩ En,γ

)

≤ 2 exp

{
−min{ε, 1}εRn(M)

8C2
A

}
+ 4n exp

{
− (n− kn − pn + 1)ε2

128(1 + ε)2

}
.

Proof. Let bi(M) = (e⊤i E(M)Σ−1
∗ E(M)⊤ei)

−1/2Σ
−1/2
∗ E(M)⊤ei if E(M)⊤ei ̸= 0pn

, and bi(M) = 0pn

otherwise. Note that E(M)⊤ei = 0pn
if and only if e⊤i PMj

ei = 0 for all j = 1, . . . , pn. Then, it can be

seen that

|tr{Σ−1/2
∗ E(M)⊤E(M)Σ

−1/2
∗ T2}| ≤ max

1≤i≤n
|bi(M)⊤T2bi(M)|tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ }.

Because tr{A(M)⊤A(M)} ≤ Rn(M), it follows from (17) that

Pr

(
tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ }

Rn(M)
> 1 + ε

)

≤ Pr

(
|tr{Σ−1/2

∗ E(M)⊤E(M)Σ
−1/2
∗ } − tr{A(M)⊤A(M)}|

Rn(M)
> ε

)

≤ 2 exp

{
−min{ε, 1}εRn(M)

8C2
A

}
.

Next, (1 + ε)max1≤i≤n |bi(M)⊤T2bi(M)| is evaluated. We see that

|bi(M)⊤T2bi(M)| ≤ αnσ1(Σ
1/2
∗ S−1Σ

1/2
∗ −Ω) + max

1≤i≤n
|bi(M)⊤(αnΩ− Ipn

)bi(M)|.

Lemma A.5 and αn → 1− cp/(1− ck) > 0 under (C1) imply that

αnσ1(Σ
1/2
∗ S−1Σ

1/2
∗ −Ω) = o(1),

on En,γ . Moreover, becauseG⊤E and E⊤P⊥
MF

E are independent, when bi(M) ̸= 0pn , (n−kn){bi(M)⊤Ωbi(M)}−1

follows chi-square distribution with n− kn − pn + 1 degrees of freedom (see, Theorem 3.2.12, Muirhead

1982). Hence, a similar argument of the proof of Lemma A.10 yields that for sufficiently large n, for all

M ∈ Mn, it holds that

Pr

(
max
1≤i≤n

|bi(M)⊤(αnΩ− Ipn
)bi(M)| > ε

2(1 + ε)

)
≤ 4n exp

{
− (n− kn − pn + 1)ε2

128(1 + ε)2

}
.
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By combining these results, we complete the proof.

Next, we give an evaluation of the fourth term of Bn(M).

Lemma A.12. Let γ ∈ (0, 1) be a constant. Suppose that conditions (C1)–(C3) hold. There exists a

constant CT > 0 such that for sufficiently large n, for all ε > 0 and M ∈ Mn,

Pr

({
|tr{T1(M)⊤(PMF

E − E(M)Σ
−1/2
∗ )T2}|

Rn(M)
> ε

}
∩ En,γ

)
≤ 2 exp

{
− ε2Rn(M)

2C2
T (1 + CA)2

}
.

Proof. From a simple matrix transformation, we obtain

tr{T1(M)⊤(PMF
E − E(M)Σ

−1/2
∗ )T2} = vec(T1(M))⊤(T2 ⊗ In)vec(PMF

E − E(M)Σ
−1/2
∗ )

= vec(T1(M))⊤(T2 ⊗ In)(Inpn
−A(M))(Ipn

⊗G)vec(G⊤E).

Because G⊤E and H⊤E are independent, given H⊤E,

vec(T1(M))⊤(T2 ⊗ In)(Inpn
−A(M))(Ipn

⊗G)vec(G⊤E) ∼ N(0, κ(M)2),

where κ(M) = ∥(Ipn
⊗G⊤)(Inpn

−A(M)⊤)(T2 ⊗ In)vec(T1(M))∥2. Note that

κ(M) ≤ {1 + σ1(A(M))}σ1(T2)tr{T1(M)⊤T1(M)}1/2

≤ (1 + CA)Rn(M)1/2σ1(T2).

We use condition (C3) and tr{T1(M)⊤T1(M)} ≤ Rn(M) in the last inequality. Lemma A.5 indicates

that on En,γ , there exists a positive constant CT > 0 such that for sufficiently large n, σ1(T2) ≤ CT ,

which yields that

κ(M)2

Rn(M)
≤ C2

T (1 + CA)
2.

Therefore, Lemma A.1 completes the proof.

Finally, the fifth term is evaluated.

Lemma A.13. Let γ ∈ (0, 1) be a constant. Suppose that conditions (C1)–(C3) hold. There exists a

27



constant CT > 0 such that for all ε > 0, for sufficiently large n, for all M ∈ Mn

Pr

({
|tr{E⊤PMF

E(M)Σ
−1/2
∗ T2}|

Rn(M)
> ε

}
∩ En,γ

)

≤ 2 exp

{
−εRn(M)

32CT
min

{
ε

CT
,
2

CA

}}
+ 4nknpn exp

{
− (n− kn − pn + 1)min{ε2, 4}

512

}
.

Proof. Let T3(M) = (Ipn
⊗ G⊤){(T2 ⊗ In)A(M) + A(M)⊤(T2 ⊗ In)}(Ipn

⊗ G)/2. Then, because

PMF
= GG⊤,

tr{E⊤PMF
E(M)Σ

−1/2
∗ T2}

= vec(PMF
E)⊤(T2 ⊗ In)vec(E(M)Σ

−1/2
∗ )

= vec(PMF
E)⊤(T2 ⊗ In)A(M)vec(PMF

E)

= vec(G⊤E)⊤(Ipn
⊗G⊤)(T2 ⊗ In)A(M)(Ipn

⊗G)vec(G⊤E)

= vec(G⊤E)⊤T3(M)vec(G⊤E).

Because G⊤E and H⊤E are independent, a conditional expectation of vec(G⊤E)⊤T3(M)vec(G⊤E) given

H⊤E is tr{T3(M)}. Taking account of this point, we divide the probability into two parts as follows:

Pr

({
|tr{E⊤PMF

E(M)Σ
−1/2
∗ T2}|

Rn(M)
> ε

}
∩ En,γ

)

≤ Pr

({
|vec(G⊤E)⊤T3(M)vec(G⊤E)− tr{T3(M)}|

Rn(M)
>

ε

2

}
∩ En,γ

)
+ Pr

({
|tr{T3(M)}|

Rn(M)
>

ε

2

}
∩ En,γ

)
.

Here, from Lemma A.5, on En,γ , there exists a positive constant CT > 0 such that for sufficiently large
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n, σ1(T2) ≤ CT . Then,

σ1(T3(M)) ≤ σ1(T2)σ1(A(M)) ≤ CTCA,

tr{T3(M)2} ≤ 1

4
tr{{(T2 ⊗ In)A(M) +A(M)⊤(T2 ⊗ In)}2}

=
1

2
tr{A(M)(T2 ⊗ In)A(M)(T2 ⊗ In)}

+
1

2
tr{A(M)⊤(T 2

2 ⊗ In)A(M)}

=
1

2
vec(A(M)⊤)⊤{(T2 ⊗ In)⊗ (T2 ⊗ In)}vec(A(M))

+
1

2
vec(A(M))⊤{Inpn

⊗ (T 2
2 ⊗ In)}vec(A(M))

≤ C2
T

2

√
vec(A(M)⊤)⊤vec(A(M)⊤)

√
vec(A(M))⊤vec(A(M))

+
C2

T

2
tr{A(M)⊤A(M)}}

=
C2

T

2
{tr{A(M)}+ tr{A(M)⊤A(M)}}

≤ C2
TRn(M),

where the last inequality follows from (18) and tr{A(M)⊤A(M)} ≤ Rn(M). Thus, by considering a

conditional probability given H⊤E, Lemma A.3 yields

Pr

({
|vec(G⊤E)⊤T3(M)vec(G⊤E)− tr{T3(M)}|

Rn(M)
>

ε

2

}
∩ En,γ

)
≤ 2 exp

{
−εRn(M)

32CT
min

{
ε

CT
,
2

CA

}}
. (19)

On the other hand,

tr{T3(M)} =
1

2
tr{(Ipn

⊗G)(T2 ⊗ Ikn
)(Ipn

⊗G⊤)(A(M) +A(M)⊤)}

=
1

2

npn∑
i=1

di(M)vi(M)⊤(Ipn ⊗G)(T2 ⊗ Ikn)(Ipn ⊗G⊤)vi(M),

where di(M) is the ith eigenvalue ofA(M)+A(M)⊤ and vi(M) is its eigenvector with vi(M)⊤vi(M) = 1.

By using a commutation matrix Kpnkn
, we can express T2 ⊗ Ikn

= Kpnkn
(Ikn

⊗ T2)K
⊤
pnkn

, where

KpnknK
⊤
pnkn

= Inpn (see, e.g., sections 1.3.2 and 1.3.3, Kollo and von Rosen 2005). Let ui(M) =

K⊤
pnkn

(Ipn
⊗G⊤)vi(M) = (ui1(M)⊤, . . . ,uikn

(M)⊤)⊤, where uij(M) ∈ Rpn . Define zij(M) = (uij(M)⊤uij(M))−1/2uij(M)
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if uij(M) ̸= 0pn
and zij(M) = 0 otherwise. Then,

tr{T3(M)} =
1

2

npn∑
i=1

di(M)

kn∑
j=1

uij(M)⊤T2uij(M)

=
1

2

npn∑
i=1

di(M)

kn∑
j=1

uij(M)⊤uij(M)zij(M)⊤T2zij(M).

Note that from Corollary 3.4.3 in Horn and Jornson (1994), the following is established:

1

2

npn∑
i=1

|di(M)| = 1

2

npn∑
i=1

σi(A(M) +A(M)⊤) ≤
npn∑
i=1

σi(A(M)).

Because ui(M)⊤ui(M) =
∑kn

j=1 uij(M)⊤uij(M) ≤ 1, we see that

|tr{T3(M)}| ≤ 1

2

npn∑
i=1

|di(M)|
kn∑
j=1

uij(M)⊤uij(M) max
1≤i≤npn
1≤j≤kn

|zij(M)⊤T2zij(M)|

≤
npn∑
i=1

σi(A(M)) max
1≤i≤npn
1≤j≤kn

|zij(M)⊤T2zij(M)|

≤ Rn(M) max
1≤i≤npn
1≤j≤kn

|zij(M)⊤T2zij(M)|,

where for the last inequality, we use (18) and tr{A(M)⊤A(M)} ≤ Rn(M). As seen in the proof of

Lemma A.10, we obtain for sufficiently large n, for all M ∈ Mn,

Pr

({
|tr{T3(M)}|

Rn(M)
>

ε

2

}
∩ En,γ

)
≤ Pr

 max
1≤i≤npn
1≤j≤kn

|zij(M)⊤T2zij(M)| > ε

2

 ∩ En,γ


≤ 4nknpn exp

{
− (n− kn − pn + 1)min{ε2, 4}

512

}
. (20)

From (19) and (20), the proof is completed.

Thus, by combining there results, Lemma A.6 is obtained.

A.3 Proof of Theorem 2

To show AME, the following lemma plays an important role.

Lemma A.14. Let Xn and Yn be random variables such that Yn ≥ 1. If E((Xn/Yn − 1)2) → 0 and

E(Y 2
n ) → 1, then

lim
n→∞

E(Xn) = 1.
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Proof. Because Xn−1 can be decomposed as Xn−1 = (Xn/Yn−1)Yn+(Yn−1), by applying a triangle

inequality and Cauchy-Schwarz inequality, it follows that

|E(Xn − 1)| ≤
∣∣∣∣E ((Xn

Yn
− 1

)
Yn

)∣∣∣∣+ |E(Yn − 1)|

≤ E

((
Xn

Yn
− 1

)2
)1/2

E(Y 2
n )

1/2 + E((Yn − 1)2)1/2.

Because Yn ≥ 1 from the assumption, we can see that 1 ≤ E(Yn) ≤ E(Y 2
n ) → 1. Hence, the right-hand

side of the above inequality goes to 0.

Showing the conditions of Lemma A.14 with

Xn =
Ln(M̂n)

Rn(M∗
R)

, Yn =
Rn(M̂n)

Rn(M∗
R)

,

i.e., E(Y 2
n ) → 1 and E((Xn/Yn − 1)2) → 0, then we can show that GCp has AME.

Lemma A.15. Under conditions (C1)–(C6), if αn → a = 1− cp/(1− ck), then

lim
n→∞

E(Rn(M̂n)
2)

Rn(M∗
R)

2
= 1.

Proof. As seen in Shibata (1983), for all η > 0, a set of candidate models Mn is separated into M(1)
n and

M(2)
n such that

M(1)
n =

{
M ∈ Mn

∣∣∣∣ Rn(M)

Rn(M∗
R)

≤ (1 + η)

}
,

M(2)
n =

{
M ∈ Mn

∣∣∣∣ Rn(M)

Rn(M∗
R)

> (1 + η)

}
.

Then, E(Rn(M̂n)
2)/Rn(M

∗
R)

2 − 1 can be decomposed as follows:

E(Rn(M̂n)
2)

Rn(M∗
R)

2
− 1 =

∑
M∈M(1)

n

Rn(M)2

Rn(M∗
R)

2
Pr(M̂n = M)− 1

+
∑

M∈M(2)
n

Rn(M)2

Rn(M∗
R)

2
Pr(M̂n = M).

If the last term of the right-hand side of the above equation converges to zero, it holds that Pr(M̂n ∈

M(2)
n ) → 0 because Rn(M)2/Rn(M

∗
R)

2 > (1 + η)2 for all M ∈ M(2)
n . This then leads to Pr(M̂n ∈

M(1)
n ) → 1. On the other hand, 1 ≤ Rn(M)2/Rn(M

∗
R)

2 ≤ (1 + η)2 for all M ∈ M(1)
n . Hence, for
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sufficiently large n,

∣∣∣∣∣∣
∑

M∈M(1)
n

Rn(M)2

Rn(M∗
R)

2
Pr(M̂n = M)− 1

∣∣∣∣∣∣ ≤ (1 + η)2Pr(M̂n ∈ M(1)
n )− 1

≤ (1 + η)2 − 1.

Because η is an arbitrary positive constant, it follows that

lim
n→∞

E(Rn(M̂n)
2)

Rn(M∗
R)

2
= 1

if it holds that

lim
n→∞

∑
M∈M(2)

n

Rn(M)2

Rn(M∗
R)

2
Pr(M̂n = M) = 0.

We can see that

∑
M∈M(2)

n

Rn(M)2

Rn(M∗
R)

2
Pr(M̂n = M)

≤
∑

M∈M(2)
n

Rn(M)2

Rn(M∗
R)

2
Pr({M̂n = M} ∩ En,γ)

+ max
M∈Mn

Rn(M)2

Rn(M∗
R)

2

∑
M∈M(2)

n

Pr({M̂n = M} ∩ Ec
n,γ)

≤
∑

M∈M(2)
n

Rn(M)2

Rn(M∗
R)

2
Pr({M̂n = M} ∩ En,γ) + max

M∈Mn

Rn(M)2

Rn(M∗
R)

2
Pr(Ec

n,γ).

Hence, it is shown from (11) that there exists a positive constant C > 0 such that

max
M∈Mn

Rn(M)2

Rn(M∗
R)

2
Pr(Ec

n,γ) ≤ 2 max
M∈Mn

Rn(M)2

Rn(M∗
R)

2
exp(−Cnγ).

From condition (C6), there exists γ ∈ (0, 1) such that this goes to zero with n tending to infinity.
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On the other hand, for all M ∈ M(2)
n ,

M̂n = M ⇒ GCp(M
∗
R;αn)−GCp(M ;αn) ≥ 0

⇔ GCp(M
∗
R;αn)−GCp(M ;αn)

Rn(M)
− Rn(M

∗
R)−Rn(M)

Rn(M)
≥ 1− Rn(M

∗
R)

Rn(M)

⇒ Rn(M)−GCp(M ;αn)

Rn(M)
− Rn(M

∗
R)−GCp(M

∗
R;αn)

Rn(M)
≥ η

1 + η

⇒
∣∣∣∣Ln(M)

Rn(M)
− 1

∣∣∣∣+ ∣∣∣∣Ln(M
∗
R)−Rn(M

∗
R)

Rn(M)

∣∣∣∣+ |Bn(M)|
Rn(M)

+
|Bn(M

∗
R)|

Rn(M)
≥ η

1 + η
.

Hence, we have

Pr({M̂n = M} ∩ En,γ) ≤ Pr

(∣∣∣∣Ln(M)

Rn(M)
− 1

∣∣∣∣ ≥ η

4(1 + η)

)
+ Pr

(∣∣∣∣Ln(M
∗
R)

Rn(M∗
R)

− 1

∣∣∣∣ ≥ ηRn(M)

4(1 + η)Rn(M∗
R)

)
+ Pr

({
|Bn(M)|
Rn(M)

≥ η

4(1 + η)

}
∩ En,γ

)
+ Pr

({
|Bn(M

∗
R)|

Rn(M∗
R)

≥ ηRn(M)

4(1 + η)Rn(M∗
R)

}
∩ En,γ

)
.

It follows from Lemmas A.6 and A.7 that under conditions (C1)–(C6), for all ε > 0, for sufficiently large

n,

∑
M∈M(2)

n

Rn(M)2

Rn(M∗
R)

2
Pr({M̂n = M} ∩ En,γ) < ε.

Therefore, the proof is completed.

Lemma A.16. Under condition (C3), it can be seen that

lim
n→∞

E

(Ln(M̂n)

Rn(M̂n)
− 1

)2
 = 0.

Proof. Like in the case of Lemma A.7, define

ξ(M) =
Ln(M)−Rn(M)

Rn(M)
.

33



For all ε > 0,

E(ξ(M̂n)
2) = E(ξ(M̂n)

2I(|ξ(M̂n)| > ε)) + E(ξ(M̂n)
2I(|ξ(M̂n)| ≤ ε))

≤ E(ξ(M̂n)
2I(|ξ(M̂n)| > ε)) + ε2

≤
∑

M∈Mn

E(ξ(M)2I(|ξ(M)| > ε)I(M̂n = M)) + ε2

≤
∑

M∈Mn

E(ξ(M)2I(|ξ(M)| > ε)) + ε2

≤
∑

M∈Mn

E(ξ(M)4)1/2Pr(|ξ(M)| > ε)1/2 + ε2.

The last inequality follows from Cauchy-Schwarz inequality. From the proof of Lemma A.7, for all

M ∈ Mn,

ξ(M) =
2v(M)Z

Rn(M)
+

npn∑
i=1

λi(A(M)⊤A(M))

Rn(M)
(Z2

i − 1),

where v(M) is defined in Lemma A.7, which satisfies v(M)2 ≤ C2
ARn(M), and Z,Z1, . . . , Znpn

are

independent and identically distributed as N(0, 1). Because it holds with a constant C > 0 that for

sufficiently large n, for all M ∈ Mn

E

{npn∑
i=1

λi(A(M)⊤A(M))

Rn(M)
(Z2

i − 1)

}4
 ≤ C

Rn(M)2
,

maxM∈Mn
E[|ξ(M)|4] is bounded. Thus, there exists a positive constant Cξ such that

max
M∈Mn

E(ξ(M)4) ≤ C2
ξ .

From Lemma A.7, we can see that there exists a positive constant Cε such that for sufficiently large n,

∑
M∈Mn

E(ξ(M)4)1/2Pr(|ξ(M)| > ε)1/2 ≤ 2Cξ

∑
M∈Mn

exp(−CεRn(M))

≤ ε.

Hence, we have

E(ξ(M̂n)
2) ≤ ε+ ε2.

Because ε can be arbitrary small, the proof is completed.
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By combining Lemmas A.15 and A.16 with A.14, Theorem 2 is established.
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