TR-No. 20-03, Hiroshima Statistical Research Group, 1-22

High-dimensionality-adjusted Asymptotically
Loss and Mean Efficient GC,, Criterion
for Normal Multivariate Linear Regression Models

Hirokazu Yanagihara®

Department of Mathematics, Graduate School of Science, Hiroshima University
1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

(Last Modified: February 15, 2020)
Abstract

A variable selection method is put forward for multivariate linear regression models which obey
normality. This method hinges on minimizing a generalized C,, (GC)) criterion which is defined
by adding a positive constant value (the product of @ and the number of parameters in the mean
structure) to the minimum value of the multivariate residual sum of squares. The paper seeks to
clarify the sufficient condition for a to simultaneously satisfy asymptotically loss and mean efficient
properties in an asymptotic framework such that the sample size always goes to oo, but the dimen-
sion of the vector of response variables can be either fixed or infinite. Based on this, we propose
an asymptotically loss and mean efficient GC,, criterion by using @ which satisfies the obtained
sufficient condition even under high dimensionality of the vector of response variables.
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1. Introduction

The multivariate linear regression model is central to theoretical and applied inferential analysis.
This model is introduced in many statistical textbooks (see, e.g., Srivastava, 2002, chap. 9; Timm,
2002, chap. 4), and is widely used in chemometrics, engineering, econometrics, psychometrics, and
many other fields, for the prediction of response variables to a set of explanatory variables. Let
Y = (yi,....y,)’ be an n X p matrix of p response variables, and let X = (x,...,x,) beann X k
matrix of non-stochastic k explanatory variables, where n is the sample size. To ensure both the
possibility of estimating the model and the existence of variable selection criteria, we assume that
rank(X) = k(< n)andn—-p—-k—1> 0. Let j denote a subset of w = {1,...,k} containing k;
elements and X ; denote the n x k; matrix consisting of the columns of X indexed by the elements of
J» where k4 denotes the number of elements of a set A, i.e., k4 = #(A). For example, if j = {1,2,4},
then X ; consists of the first, second, and fourth columns of X. For convenience, elements of j are
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arranged in ascending order. We then consider the following multivariate linear regression model
with k; explanatory variables as the candidate model:

Y ~ Npp(X©, 3 ® 1), ey

where ©; is a k; X p unknown matrix of regression coefficients, and 3; is a p X p unknown covari-
ance matrix with rank(X;) = p. We identify the candidate model by set j and denote the candidate
model in (1) as model j. Importantly, the model with X, (namely X)) is called the full model. We
will assume that the data are generated from the following true model:

Y ~ Nnxp(Xj*G*, 3.® In)a (2)

where j, is a set of integers indicating the subset of explanatory variables in the true model, .
is a k;, X p matrix of true regression coefficients, and X, is a p X p true covariance matrix with
rank(X,) = p. We denote the model in (2) as the true model j.. Henceforth, for expository pur-
poses, we simply represent X ; and k;, as X, and k,, respectively.

In what follows, we focus on a variable selection method by minimizing a generalized C, (GC),)
criterion, when p may be large but still smaller than n. The GC, criterion is defined by adding
a positive constant value to the minimum value of the multivariate residual sum of squares. This
positive value is the product of @ and the number of parameters in the mean structure, where «
expresses a penalty for the complexity of the candidate model. The GC,, criterion in univariate and
multivariate linear regression model contexts was proposed by Atkinson (1980) and Nagai et al.
(2012), respectively. The family of GC,, criteria contains many widely known variable selection
criteria, e.g., Mallows C,, criterion proposed by Sparks et al. (1983) (the original C,, was proposed
by Mallows, 1973, under the univariate linear regression model) and the modified C,, (MC),) crite-
rion proposed by Fujikoshi and Satoh (1997), which is a completely bias-corrected version of the
C,, criterion. Given that our focus is on multivariate linear regression models where the dimension
p may be large, the following asymptotic framework is used for assessing the asymptotic property

of the variable-selection method:
n — ooand p/n — ¢y € [0, 1). 3)

For simplicity, we will use “n — oo, p/n — ¢¢” to refer to this asymptotic framework. It should be
emphasized that we are not concerned whether p goes to co or not in this asymptotic framework.
If p increases, the columns of ®, and the rows and columns of ¥, increase, so it is necessary to
clarify how true parameters increase. We assume that as p increases by 1, a new column is added to
the right of the current ®,,, and a new column and row are added to the right of and the bottom of
the current 3., respectively.

There are two important properties of variable selection criteria. One is a consistency property
whereby the selection probability of the true model by a variable selection criterion converges to 1
asymptotically. The second is an efficiency property which can be divided into two sub-properties.

The first is asymptotic loss efficiency whereby the ratio of the minimum loss function to the loss
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function of the model selected by a variable selection criterion goes to 1 asymptotically. The second
is asymptotic mean efficiency whereby the ratio of the minimum expected loss function to the ex-
pected loss function of the model selected by a variable selection criterion goes to 1 asymptotically
(see, e.g., Shibata, 1980, 1981; Shao, 1997).

Yanagihara (2016a) clarified the sufficient condition for « in GC,, criterion to satisfy a consistency
property under the asymptotic framework in (3), and proposed the high-dimensionality-adjusted
consistent GC, (HCGC,) by using the sufficient condition. Recently An aim of this paper is to
derive the sufficient condition for @ in the GC), criterion to simultaneously satisfy loss and mean
efficiency properties under the asymptotic framework in (3). Then, we propose the asymptotically
loss and mean efficient GC, criterion by using o which satisfies the obtained sufficient condition
even under high-dimensionality of the vector of response variables. In our setting, the true model
is included in the set of all possible candidate models. For asymptotic loss efficiency under settings
different from ours, see Imori (2020).

The remainder of the paper is organized as follows. In Section 2, we present the necessary no-
tation and assumptions for assessing the loss and mean efficient properties of the GC,, criterion in
model j (1). The main results are shown in Section 3. In Section 4, we present the results of numer-
ical experiments and compare the variable selection performance of the proposed criterion with that
of an existing variable selection criterion. Technical details are provided in the Appendix.

2. Formulation of Loss and Mean Efficiency Properties

First, we describe several classes of j which express subsets of X in the candidate model. Let
be a set of all possible candidate models denoted by J = p(w), where p(A) is the powerset of set A.
We assume the following regarding 7

Al. The true model is included in the set of candidate models, i.e., j. € J.

Moreover, we separate J into two sets, one a set of overspecified models wherein the explanatory
variables contain all the explanatory variables of the true model j. in (2) and the other a set of
underspecified models, i.e.,

Je={jeJdlj.<cjt J-=I9:nJ, “

where A¢ denotes the compliment of a set A. We use the terminology “overspecified model” and
“underspecified model” in the same sense as Fujikoshi and Satoh (1997).
Let S be the unbiased estimator of 3; in model j (1), i.e.,

I o
Sj=——Y - P)Y, &)

where P; is the projection matrix to the subspace spanned by the columns of X, ie., P; =
XX j’.X j)‘lX ]’ Let d(A, B) and d(A, B) be the squared Mahalanobis’ distances between two
n X p matrices A and B as
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d(A,B)=tr{(A- B (A-B)| = I=/'*(A - B)I,
d(A,B) = tr{(A -B)S;'(A- B)’} =18;'*(A - B)|I%.

The matrix of regression coefficients ® ; in model j (1) is estimated using the least squares approach;
i.e., ®; is estimated by minimizing the multivariate RSS, and then, the estimator of @ is given by
A ’ At ’ _ . ] . .
ej - (XJXJ) XJY = arg @,’?M%(Ilzj,p) d(Y9 XJG)J)’
where M(k, p) denotes a set of k X p real matrices.
Let a p X p noncentrality matrix be denoted by

1
A =-2'?@. XTI, - P)X.0.%;'?,
n

where ©,, 3., and X, are the matrix of the true regression coefficients, the true covariance matrix,
and the matrix of the true explanatory variables, respectively, given by (2). It is straightforward to
discern from the definition of J, that A; = O, , if and only if j € J,, where O, , is an n X p matrix
of zeros. For the noncentrality matrix, we assume that

1
A2. Ry = lim — X’'X exists and is positive definite.

n—oo n
Let
§; = tr(A)). (6)
If Assumption A2 holds, then we have
Yjeg., inf §;>0.
n>p+k,p>1

Even though §; diverges, we do not assume a specific order of the divergence. Instead, we use the
following assumption:
3 Vo : 1 -1y
A3. “eeN st Tjedg., lim —0.3 0, =0;.
n—oo,p/n—cy ne
If Assumptions A2 and A3 hold, then we have
JeeN st "jeg., lim -L=0.

n—oo,p/n—co NE

We determine the best subset of w by minimizing a GC,, criterion. The GC,, criterion under model
Jj is defined by
GC,(jla) = (n — k)u(S;S,") + apk;, )

where « is a positive value expressing a penalty for the complexity of the candidate model. A vari-
able selection criterion included in the family of GC, criteria is specified by an individual . This
family contains the C,,, MC,, and HCGC,, criteria as special cases, i.e.,

2 (Cp)
a=1 2  (MC,)
ac(B) (HCGC))
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where cy is a positive value given by

-2 +1
em=——2-1-2 m=n—k-p+1), ®)
n—k n—k
ac(B) is a positive value expressed as a function of 8 and defined by
n
ac(B) = +, ©))
n-p
and S is a positive value satisfying
lim  /pB = oo, im  Z2g=o. (10)
n—oco,p/n—cy n—oo,p/n—cy N

The best subset of w, which is chosen by minimizing the GC, criterion, is written as
Jo = argmin GC,(jla). (11)
JET

Herein, the selected model is denoted as f[,.
The squared loss function between the true mean and the fitted value, i.e., X,0, and X0}, is
defined by
L(j) = d(X.0,,X,;0)) = ns; + (& P;E), (12)
where & = (Y - X,0,)2."? ~ Nx,(O,,, I, ® I,)). Notice that E[te(E P;E)] = pk;. Hence, the
expectation of £(j), denoted by R(j), is given by

R(j) = E[L()] = nd; + k;p. (13)
Subsets of w minimizing £(j) and R(j) are written as
Jue = argmin £(j), jme = argminR()), (14)
eI €T

Next, jLE and jyg are the loss optimal model and the mean optimal model in the sense of minimiz-
ing the loss function and the mean of the loss function, respectively. By using the loss function, we
formulate the asymptotically loss efficient property.

Definition 1  If the following equation holds, we say that the GC), criterion is asymptotically loss
efficient:
plim M =1,
n—o.p/n—co LJLE)
where plim is a probability limit operator, i.e., denotes a convergence in probability.

It should be kept in mind that
L) = Y LDIGe = 1y LGie) = Y LDIGLE = ), (15)
jeg €T
where I(A) is the indicator function, i.e., I(A) = 1 if A is true and I(A) = 0 if A is not true. By using
the mean of the loss function, we formulate the asymptotically mean efficient property.

Definition 2  If the following equation holds, we say that the GC), criterion is asymptotically mean
efficient:
E[L(jo)]

n—oo,p/n—cg ﬂ(]ME) a
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3. Main Results

3.1. Asymptotically Loss Efficient Property

To clarify the sufficient condition for « in (7) for loss efficiency, we consider asymptotic behaviors
of the loss function £(}j), the loss optimal model JjLe, and the selected model J,,, given by (12), (14),
and (11), respectively.

First, we prepare three conditions for @ which play an important role in determining whether the

GC,, criterion is efficient.

Cl. lim - +a]|=c
n—oo,p/n—cg \/ﬁ( n—p )
2. Vjedg.,
lim 2 (— + a) -0 (16)
n—oo,p/n—cy I’l6j n—p
2

3. lim  Za= 20

n—oo,p/n—cy N 1- ()

Let 8] (a € j.) be the p-dimensional vector of regression coefficients for the ath explanatory

variable. Then we prepare the following subsets of j. and J_:

&=lac]6)S'60 =0 as p—oof, S ={jeI[j2E N (a7

where J_ is the set of underspecified models given by (4). By using the subsets, the following
lemma concerning the convergence or divergence of d; given by (6) is derived (the proof is given in
Appendix A.1).

Lemma 1 Suppose that Assumption A2 holds.
(1) When j€ S_, §; converges to a positive value as n — oo and p/n — co € [0, 1), i.e.,

jeS., J6;0>0 st o= lim 4,

n—00,p/n—co
(2) When je S NYJ_, 6jdivergestocoasn — coand p/n — ¢y €[0,1), i.e,

jeSng., lim §; = co.
n—o00,p/n—coy
Lemma 1 indicates that §; in j € J_ is not convergent if &, = 0 because S_ = 0 when &, = (0. Here,
let ;0 = O for j € J,, where [, is the set of overspecified models given by (4). By using Lemma 1
and the definition of £(j), we show that £(j) can converge to a positive value as follows (the proof
is given in Appendix A.2).

Lemma 2 Suppose that Assumption A2 holds. If {£. # 0} N {cy # 0}, L(j) forany j € S_-U T,

converges to a positive value as n — oo and p/n — ¢y € [0, 1), i.e.,
YieS_UJ., plim M=(5j,0+c0kj=/1(j)>0. (18)
n

n—co,p/n—cy
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Let jy be the model defined by

19)

) arg min_A(j) (& # 0N {co # 0})
Jo = JeljUS-
J ({& =0} U {co =0})

By using jj and Lemma 2, the following lemma concerning behaviors of the loss optimal model is
obtained (the proof is given in Appendix A.3).

Lemma 3 Suppose that Assumptions Al and A2 hold.

(I) The loss optimal model is the true model or an underspecified model with probability 1, i.e.,
P(jig € (j)UT-) = L.
(2) The probability oijE = jo convergesto 1l asn — oo and p/n — ¢y € [0, 1), i.e.,

lim  P(ig = jo) = L. (20)

n—o0,p/n—co

Since equation (20) holds, we call jj in (19) the asymptotically loss optimal model.
The following key lemma to prove the efficient property of the GC, criterion is obtained (the
proof is given in Appendix A.4).

Lemmad4 Suppose that

e st lim PGg=0=1, lim P(j,=0=1.

n—o0,p/n—co n—oo,p/n—cy
Then, the GC,, criterion is asymptotically loss efficient when n — oo and p/n — cq € [0, 1).

From Lemmas 3 and 4, we can discern that the GC,, criterion is asymptotically loss efficient if
P(j, = jo) — lasn — oo and p/n — cy. Probability convergence is ensured by the following
lemma (the proof is given in Appendix A.5).

Lemma 5 Suppose that Assumptions Al and A2 hold. The selection probability of jo by the GC,

criterion converges to 1 asn — oo and p/n — ¢g € [0, 1), i.e.,

lim  P(j, = jo) =1,

n—co,p/n—cy
if a satisfies Conditions C1 and C2 when {&¢. = 0} U {co = 0}, or Condition C3 when {£. # 0} N {cy #

0}, where jg is the asymptotically loss optimal model given by (19).

From Lemmas 3, 4, and 5, we derive the following main theorem concerning the asymptotically loss

efficient property.

Theorem 1 Suppose that Assumptions Al and A2 hold. The GC), criterion is asymptotically
loss efficient when n — oo and p/n — c¢o € [0,1) if a satisfies Conditions Cl and C2 when
{&. = 0} U {co = 0}, or Condition C3 when {&, # 0} N {cy # O}.
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3.2. Asymptotically Mean Efficient Property

To clarify the sufficient condition for « in (7) for mean efficiency, asymptotic behaviors of the
mean of the loss function R(j), the mean optimal model jyg, and the selected model ja, given by
(13), (14), and (11), respectively, are considered.

First, we present a lemma concerning convergence of R(jmg)/p (the proof is given in Appendix
A.6).

Lemma 6 Suppose that Assumptions Al and A2 hold. The minimum of R(j)/p is expanded as
1 _ . 1.
;R(]ME) = ;R(Jo) +o(l), asn— oo, p/n— co,

where jo is the asymptotically loss optimal model given by (19).

We derive the order of the selection probability of some underspecified model by the GC,, criterion
(the proof is given in Appendix A.7).

Lemma 7 Suppose that Assumptions Al, A2, and A3 hold. If « satisfies Condition C2,
np‘léjP(}a = j) for any j € J_ converges to 0 as n — oo and p/n — cy € [0,1). If a satisfies
Condition C3, np‘léjP(}a = j) forany j € 8 NJ_ convergestoOasn — coand p/n — ¢y € [0, 1).

By using Lemma 7, the following theorem concerning convergence of E[£L(j,)]/p is derived (the
proof is given in Appendix A.8).

Lemma 8 Suppose that Assumptions Al, A2, and A3 hold. Then E[L(},)]/p is expanded as
1 A 1 _ .
SE | £G)] = SRU0) + (L), asn = e, p/n = cy

if a satisfies Conditions C1 and C2 when {&, = 0} U {co = 0}, or Condition C3 when {&, # 0} N{cy #
0}, where jg is the asymptotically loss optimal model given by (19).

Finally, from Lemmas 6 and 8, we obtain the following main theorem concerning the asymptotically
mean efficient property.

Theorem 2 Suppose that Assumptions Al, A2, and A3 hold. The GC, criterion is asymptotically
mean efficient when n — oo and p/n — co € [0,1) if a satisfies Conditions C1 and C2 when
{&. = 0} U {co = 0} or Condition C3 when {&, # 0} N {co # O}.

3.3. A High-dimensionality-adjusted Efficient GC,, Criterion

From Theorems 1 and 2, we can discern that sufficient conditions for « to satisfy asymptotic loss
efficiency are equal to those to satisfy asymptotic mean efficiency. By using the @ conditions, an
asymptotically loss and mean efficient GC), criterion can be proposed. Unfortunately, the conditions
for @ in Theorems 1 and 2 are not verifiable in practical terms because they depend on the true
model. Hence, we attempt to derive sufficient conditions for a that do not depend on the true model.

This is achieved by invoking the following corollary (the proof is given in Appendix A.9).
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Corollary 1  Suppose that Assumptions Al, A2, and A3 hold. The GC, criterion is asymptotically
loss and mean efficient when n — oo and p/n — ¢ € [0, 1) if « satisfies Conditions C1 and C3.
Let ag(B) be a positive value expressed as a function of 8 in (10), which is defined by

2n

n—

ag(B) = +p, 2y
p

where (3 is a positive value given by (10). The conditions of 8 imply that

fp+aE(ﬂ))= lim (\/’7” + \/ﬁﬂ):oo,

lim Vrl-
n—oo,p/n—cg n n—oo,p/n—co \ N — P

2 2
im  Zagp)=  lim ( P +£ﬁ)=l
n

n—oo,p/n—cy N n—oo,p/n—co \ N — p 1- Co ’

The above equations indicate that ag(p) satisfies Conditions C1 and C3. This means that the GC),
criterion with @ = ag(B) is asymptotically loss and mean efficient under the asymptotic framework
in (3). We call the GC,, criterion with @ = ag(B8) a high-dimensionality-adjusted efficient GC),
(HEGC)) criterion.

4. Numerical Study

In this section, we present the results of a simulation study that compared the performance of
variable selection using the proposed HEGC), criterion as well as four existing criteria. Let bg be a

n loglogn
bg = |————.
Nn-p p

Then, the GC), criterion with & = 2ci,[' +bg is asymptotically loss and mean efficient. This is because

positive value defined by

2c1:,[1 + bc = ag(2ry + bg) and 2ry + bg satisfies conditions in (10), where ry is a positive value

defined by
1 n n+kp

™ =Cy — = .
MM T i—pn—k-p-1)

Recall that the GC, criterion with a = ZCK,II is the MC),, criterion. Hence, we specifically refer to the
GC,, criterion with o = 2cl(,[' + bg as a high-dimensionality-adjusted efficient MC, (HEMC)) cri-
terion. The Bayesian information criterion (BIC)-type C,, (BC),) criterion is the GC,, criterion with
a = log n because the penalty term in the BIC is the product of log n and the number of parameters.
Then, we compared the ratios of loss function expectations in selected models according to the five
GC,, criteria:

Criterion | (HEMC,): @ =2cy +bg, Criterion2 (C,):  a =2,
Criterion 3 (MC)) : @ = ZCK,[', Criterion 4 (BC,) : a =logn,
Criterion 5 (HCGC)p): a = ac(bc),

where ac(B) is given by (9) and b¢ is a positive value defined by
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Table 1. Efficiency results

Type of 3, | Type of p | HEMC,, Cp MC), BC)p HCGC,
Auto- p<o | O O O
correlation | p — o0 | O A (co <0.5) O O O
Uniform p<oo | O O O
correlation | p—> o0 | O A (co =0) O A(co=0) A(co=0)

Note) The symbol O denotes an efficient criterion, and the symbol A denotes that the criterion is efficient if and only if the

equation within the brackets is satisfied.
n logn
bc = .
n—p \p

We conducted Monte Carlo simulations based on 10,000 replications, using several values of n and

p. The set of candidate models was J = {ji, ..., jis}, where j, = {1,...,al(a=1,...,15). We gen-
erated zy, ..., 2, independently from U(-1, 1). Using z1, . . ., z,, we constructed an n Xk matrix of ex-
planatory variables X, in which the (a, b)th element was given by zZ‘l (a=1,...,n;b=1,...,15).
The true model was determined by ©, = n*l’p, Jj« = {1,2,3,4,5}, and X, = 0.4P,.(0.8), where
n. = (1,-2,3,-4,5) and 1, is the p-dimensional vector of ones. Thus, ji, ..., j4 were underspeci-
fied models, js, ..., jis were overspecified models, and j. = js. To specify the form of W, (p), two

types of correlation matrices were prepared as follows.

Type 1. Autocorrelation matrix, i.e., the (a, b)th element of W (p) is pl¢~?!.

Type 2. Uniform correlation matrix, i.e., ¥.(p) = (1 —p)I, + plpl’p.
It follows from the equation @, = n*l; that fora=1,...,5,

a*{p(1 - p) +2p)

2
I =1 p* _ a ’ -1 _ 04(1 +p)
6,516, = L1, W.(0)'1, = e

0.4{1 +p(p - D}

Hence, in the simulation models, &, in (17) was

= 0(p) (W.(p)is Type 1)

=0(1) (P.(p)is Type 2)

£ = 0 (P.(p) is Type 1)
" {1,2,3,4,5) (W.(p)is Type 2)

From the conditions stated in Theorems 1 and 2 and ., we can determine whether the GC, criterion
is efficient. Table 1 shows which criteria have been shown to have the properties of asymptotic loss
and mean efficiency in various simulation studies. The symbol O denotes efficiency, and the symbol
A indicates that the criterion is efficient if the equation within the brackets is satisfied.

Tables 2 and 3 give the probabilities that each criterion will select ji g when the true covariance
matrices are Types 1 and 2, respectively. Tables 4 and 5 give the relative expected loss functions
selected by each criterion, i.e., £ [L(J)1/R(jmE), when the true covariance matrices are Types 1 and
2, respectively. In each table, the left-hand side shows the results when p is fixed, the right-hand

side shows the results when p increases with n while maintaining a fixed ratio p/n, and the bottom
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Table 2. Probabilities of selecting }LE by each of the five criteria when the true variance-covariance matrix is an
autocorrelation matrix

Selection Probability (%) Selection Probability (%)
ni| p|HEMC, c, McC, BC, HCGC, p | HEMC), c, McC, BC, HCGC,
100 || 5 97.18 86.66 90.04 98.27 98.19 97.18 86.66 90.04 98.27 98.19
200 || 5 97.98 89.31 90.76  99.99 99.34 10 99.30 9453  96.29 100.00 99.48
5
5

(9]

500 98.25 90.00 90.39 100.00 99.87 || 25 99.95  99.30 99.61 100.00 99.90
1000 98.34 90.39 90.61 100.00 99.89 || 50 100.00  99.98  99.99 100.00 99.98
100 || 10 98.79 90.50 95.58  96.02 98.27 10 98.79  90.50 95.58  96.02 98.27
200 || 10 99.31 9495 96.58 100.00 99.51 || 20 99.79  97.40 99.12 100.00 99.37
500 || 10 99.41 9590 96.36 100.00 99.88 || 50 100.00  99.91 100.00 100.00 99.92
1000 || 10 99.53 9645 96.68 100.00 99.95 || 100 100.00 100.00 100.00 100.00 99.99
100 || 30 99.53 7251  99.09 99.11 92.83 || 30 99.53 7251  99.09 99.11 92.83
200 || 30 99.97 97.56  99.65 100.00 99.23 || 60 100.00 90.84 99.96 100.00 97.53
500 || 30 100.00  99.68 99.86 100.00 99.94 || 150 100.00  99.16 100.00 100.00 99.42
1000 || 30 99.98 99.72  99.79 100.00 99.97 || 300 100.00  99.97 100.00 100.00 99.82
100 || 50 99.36 0.77  99.01 98.07 59.26 || 50 99.36 0.77  99.01  98.07 59.26
200 || 50 100.00  95.39  99.97 100.00 98.49 || 100 99.97 2.66  99.96 100.00 85.09
500 || 50 100.00  99.88  99.99 100.00 99.92 || 250 100.00 6.24 100.00 100.00 94.94
1000 || 50 100.00 100.00 100.00 100.00  100.00 || 500 100.00 8.09 100.00 100.00 97.87
100 || 70 94.77 0.00 9451 L77 0.55{ 70 94.77 0.00 9451 1.77 0.55
200 || 70 99.99  81.38 99.97 100.00 96.14 || 140 99.78 0.00 99.77 80.75 18.80
500 || 70 100.00  99.87  99.99 100.00 99.83 || 350 100.00 0.00 100.00 100.00 61.90
1000 || 70 100.00  99.98 100.00 100.00 99.97 || 700 100.00 0.00 100.00 100.00 78.76

Ave. || [ 9912 8405 9694 9466  9205[ [ 9942 5743 9865 9370  84.09

row denotes the average value of that column. From these tables, it is clear that variable selec-
tion methods based on efficient criteria performed very well. In particular, the selection probability
of the HEMC, criterion was always high, and the relative expected loss function selected by the
HEMC, criterion was always small, under a moderately sized n. By contrast, it is intuitive that the
performance of variable selection methods based on criteria that are not efficient was inferior. The
performance of the variable selection method based on the MC,, criterion was comparable to those
based on the HEMC,, criterion. However, since the MC,, criterion is not asymptotically loss and
mean efficient when p is fixed, the performance of the variable selection method based on the MC),
criterion was slightly inferior to those based on the HEMC), criterion when p was small.

From the results of these simulation studies, we confirmed the superior performance of variable
selection based on the HEMC,, criterion; this held under any true model, regardless of the size of p.
Therefore, we anticipate that the HEMC,, criterion will perform well in empirical contexts.

Acknowledgment The author is grateful to Prof. Hirofumi Wakaki, Hiroshima University, for his
helpful comments on the proof of Lemma A.2. This research was partially supported by the Min-
istry of Education, Science, Sports and Culture, and a Grant-in-Aid for Scientific Research (C),
#18K03415, 2018-2021.
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Table 3. Probabilities of selecting }'LE by each of the five criteria when the true variance-covariance matrix is a
uniform correlation matrix

Selection Probability (%) Selection Probability (%)
n| p|HEMC), c, Mc, BC, HCGC, p | HEMC), c, MC, BC, HCGC,
100 || 5 96.83 86.35 89.94 94.24 97.69 96.83 86.35 89.94 94.24 97.69
200 || 5 97.97 89.62 90.85 99.95 99.34 10 99.39 9479  96.53  99.05 99.51
5
5

W

500 98.00 90.14 90.64 100.00 99.68 || 25 99.95 9932  99.70  99.91 99.90
1000 98.60 9095 91.12 100.00 99.94 || 50 100.00  99.99 100.00 100.00 99.99
100 || 10 9431 9024 9447 64.00 95.00 || 10 9431 90.24 9447 64.00 95.00
200 || 10 99.11 9436 96.00 99.35 99.41 || 20 99.78 9730 99.14 6521 99.48
500 || 10 99.54 96.18 96.75 100.00 99.86 || 50 100.00  99.87 100.00 36.43 99.89
1000 || 10 99.66 96.74  96.95 100.00 99.93 || 100 100.00 100.00 100.00 11.03  100.00
100 || 30 3798 57.56 4848 13.10 66.70 || 30 3798 57.56 4848 13.10 66.70
200 || 30 98.96 97.81 9946 21.78 99.10 || 60 6598 89.53 78.84 2.35 94.80
500 || 30 99.99 99.65 99.88 98.83 99.95 || 150 86.84 99.24 9427 0.00 99.46
1000 || 30 99.98 99.82  99.89 100.00 99.98 || 300 98.46  99.99  99.74 0.00 99.88
100 || 50 3550 006 3727 37.13 9.80 || 50 35.50 0.06 3727 37.13 9.80
200 || 50 8297 9523 92.04 3.01 97.92 || 100 57.47 0.33 53.83 53.18 12.83
500 || 50 100.00 99.81 99.99 36.14 99.85 || 250 76.30 036 67.13 4751 6.61
1000 || 50 100.00 99.95 100.00 100.00 99.96 || 500 74.62 0.70 6435 18.37 7.84
100 || 70 4237 0.00 40.74 0.10 0.04 || 70 42.37 0.00 40.74 0.10 0.04
200 || 70 46.47 73.04 58.79 6.65 84.41 || 140 45.25 0.00 47.82 15.10 0.56
500 || 70 100.00 99.90 100.00 2.05 99.89 || 350 85.06 0.00 86.43 68.66 0.18
1000 || 70 100.00 99.99 100.00 93.32 99.99 || 700 97.82 0.00 9727 97.09 0.00

Ave. || | 8641 8287 8616 6348  8742[[ | 7970 5578 7980 4612 5951
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Table 4. Relative expected loss function selected by each of the five criteria when the true variance-covariance ma-
trix is an autocorrelation matrix

Relative Expected Loss Relative Expected Loss
n| p|HEMC, c, MC, BC, HCGC, p | HEMC, c, MC, BC, HCGC,
100 || 5 1.021 1.097 1.070 1.026 1.015 5 1.021 1.097 1.070 1.026 1.015
200 || 5 1.017 1.073 1.063 1.003 1.008 || 10 1.005 1.028 1.019 1.001 1.004
500 || 5 1.017 1.070 1.067 1.004 1.005 || 25 1.000 1.003 1.001 1.000 1.000

1000 || 5 1.013 1.066 1.064 1.001 1.002 || 50 0.998 0.998 0.998 0.998 0.998
100 || 10 1.009 1.051 1.024 1.042 1.011 10 1.009 1.051 1.024 1.042 1.011
200 || 10 1.001 1.022 1.014 0.997 1.000 || 20 1.001 1.010 1.004 1.000 1.003
500 || 10 1.002 1.020 1.018 0.999 1.000 || 50 0.998 0.999 0.998 0.998 0.999

1000 || 10 1.000 1.015 1.014 0.997 0.997 || 100 1.001 1.001 1.001 1.001 1.001
100 || 30 1.000 1.158 1.002 1.004 1.026 || 30 1.000 1.158 1.002 1.004 1.026
200 || 30 1.000 1.009 1.001 1.000 1.003 || 60 0.999 1.030 0.999 0.999 1.007
500 || 30 1.000 1.002 1.001 1.000 1.001 || 150 1.000 1.002 1.000 1.000 1.002

1000 || 30 1.000 1.001 1.001 1.000 1.000 || 300 1.000 1.000 1.000 1.000 1.001
100 || 50 1.002 2.825 1.003 1.005 1.305 || 50 1.002 2.825 1.003 1.005 1.305
200 || 50 1.001 1.015 1.001 1.001 1.005 || 100 1.000 2.660 1.000 1.000 1.056
500 || 50 1.000 1.000 1.000 1.000 1.000 || 250 0.999 2451 0.999 0.999 1.013

1000 || 50 1.000 1.000 1.000 1.000 1.000 || 500 1.000 2.333 1.000 1.000 1.005
100 || 70 1.018 2998 1.019 2.747 2.840 || 70 1.018 2998 1.019 2.747 2.840
200 || 70 1.001 1.078 1.001 1.001 1.012 || 140 1.002 3.002 1.002 1.082 2.045
500 || 70 0.999 1.000 0.999 0.999 1.000 || 350 1.000 3.000 1.000 1.000 1.215

1000 || 70 1.000 1.000 1.000 1.000 1.000 || 700 1.000 3.000 1.000 1.000 1.079

Avg | ] 1005 1225 1018 1091  Lui] [ 1003 1732 1.007 1.095 L8l

assumed linear regression with multiple responses. Procedia Computer Science, 96, 1096-1105.
Yanagihara, H. (2016b). Convergence order of the probability of selecting the true set of variables by consistent C,-type
criterion in normal multivariate linear regression models. Sirikaisekikenkyiisho Kokyiiroku, 1999, 72-85 (in Japanese).

Appendix
A. Proofs of Lemmas and Theorems

A.1. Proof of Lemma 1

Let @j.’ for j C j. be a p X k; matrix of which the ith column vector consists of 8}, where a; is
the ith element of j, and ®’ for j C j. be a k; X k; matrix defined by ®7 = @*;2;1@’;’. By using
this notation, for any j € J_, ¢; is rewritten as

1 . ,
S = ;tr{@ S X, Ly = P X o} (A.1)

F0j.

To assess which elements of @j are convergent or divergent for j C j., we prepare the following

lemma.

LemmaA.1 Leta, = (ai,...,ap) and b, = (by,...,by,) be p-dimensional real vectors and let

S, be a p X p positive definite real matrix. Moreover, we define sequences {c,}, {d,}, and {h,} as
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Table 5. Relative expected loss function selected by each of the five criteria when the true variance-covariance ma-
trix is a uniform correlation matrix

Relative Expected Loss Relative Expected Loss
n| p|HEMC, c, MC, BC, HCGC, p | HEMC, c, MC, BC, HCGC,
100 || 5 1.024 1.099 1.071 1.069 1.020 5 1.024 1.099 1.071 1.069 1.020
200 || 5 1.014 1.070 1.061 1.001 1.005 || 10 1.006 1.028 1.019 1.016 1.005
500 || 5 1.010 1.062 1.058 0.996 0.999 || 25 1.001 1.003 1.002 1.002 1.001

1000 || 5 1.014 1.065 1.064 1.005 1.005 || 50 1.001 1.001 1.001 1.001 1.001
100 || 10 1.028 1.050 1.026 1.213 1.024 10 1.028 1.050 1.026 1.213 1.024
200 || 10 1.006 1.028 1.020 1.010 1.004 || 20 1.000 1.010 1.002 1.229 1.001
500 || 10 1.002 1.018 1.015 0.999 1.000 || 50 1.000 1.000 1.000 1.428 1.000

1000 || 10 1.005 1.019 1.018 1.002 1.003 || 100 1.000 1.000 1.000 1.633 1.000
100 || 30 1.060 1.161 1.040 1.152 1.037 || 30 1.060 1.161 1.040 1.152 1.037
200 || 30 1.003 1.007 1.001 1.303 1.002 || 60 1.032 1.028 1.020 1.220 1.008
500 || 30 1.001 1.002 1.001 1.015 1.001 || 150 1.014 1.002 1.006 1.303 1.002

1000 || 30 1.000 1.001 1.000 1.000 1.000 || 300 1.001 1.000 1.000 1.466 1.000
100 || 50 1.045 2970 1.043 1.045 1.375 || 50 1.045 2970 1.043 1.045 1.375
200 || 50 1.028 1.016 1.014 1.261 1.007 || 100 1.026 2.740 1.022 1.049 1.086
500 || 50 1.000 1.001 1.000 1.430 1.001 || 250 1.006 2.527 1.010 1.105 1.041

1000 || 50 1.001 1.001 1.001 1.001 1.001 || 500 1.004 2381 1.007 1.194 1.022
100 || 70 1.032 3353 1.035 3.070 3.170 || 70 1.032 3353 1.035 3.070 3.170
200 || 70 1.027 1.075 1.019 1.168 1.012 || 140 1.033 3255 1.033 1.162 2.231
500 || 70 0.999 0999 0999 1411 0.999 || 350 1.015 3.245 1.013 1.027 1.321

1000 || 70 0.999 0999 0999 1.073 0.999 || 700 1.002 3.225 1.003 1.003 1.155

Aavg | ] 1015 1250 1024 1211 1133 [ 1016 1804 1018 1269 1225

— o Q-1 _ Q-1 _ a1
cp= apSp a,, d,= bp.S’p b,, h,= apSp b,.

Then, if c, = O(1) and d,, = O(1) hold as p — oo, sequences {c,,}, {d)} and {h),} are convergent, and

sequences {c,} and {d,} converge to positive values.

(Proof of Lemma A.1) From the definitions of ¢, and d,,, we can observe that {c,} and {d,} are

positive sequences. Let

a b S T+l
ap+1=[ b ], bp+1:[ i ], Sp+1=[ ,p br ] (A.2)
Ap+1 bp+l Tp+| Sp+1
It follows from the general formula for the inverse of a block matrix, e.g., th. 8.5.11 in Harville
(1997), that
S-1 0 1
=l T |+ ' A3
r+l [ 0, 0 ] Wp+1 el Uprrs (A3)
where 0, is the p-dimensional vector of zeros, and wy.,; and w, are given by
, _ S-lr p+1
Wptl = Sp+1 — Tp+15p1rp+l7 Upt1 = ( p_11+ ]

It should kept in mind that w,,; > 0 because we assume that S, is also a positive definite real
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matrix. By using (A.2) and (A.3), we derive

1 2 2
7 -1 Q-1 ’ _ ’
Cprl = a’p+lSp+la’P+1 = apSp a, +— (apHupH) =cp+— (amlupﬂ) . (A4)

Wp+1 Wp+1

This means that {c,} is a monotonically increasing sequence. On the other hand, the assumption
indicates that sequence {c,} is bounded from above. Hence, {c,} converges to a positive value. By a
similar method, {d,} also converges to a positive value. Let us define u; = —1 and w; = s;. From
(A.4), we can see that sequences {c,}, {d},}, and {h,} are expressed as

S S -SRI

i=1

It follows from the relationship between the arithmetic mean and geometric mean that

- SN AR O =2 () (8] e

i=1
It is straightforward to see that {h;;} is a monotonically increasing sequence. Since {c,} and {d,} are

p

2

i=

—

bounded from above, sequence {,} is also bounded from above. Hence, {#;} converges to a posi-
tive value. This implies that {/},} converges to a positive value. Since /,, is the absolute convergent

series, h,, is the convergent series. Hence, A, is also convergent. B

It follows from Lemma A.1 that <I>* converges to some positive semidefinite matrix, where &, is

given in (17). Since X’ X /n is convergent, X', .. (I, — Pj)X jnj, /n is also convergent. Therefore,

.
d; is convergent for any j € S_. When j € 8¢ N J_, we have

aeén, stoag]
Then, by using the above result and HZ’E;' 0; — coas p — oo, d; in (A.1) is rewritten as
1 * ’ */ ’
5> ;tr{‘I) i X e, I = Poyia) X jenj. | = 0 270X, (I — Poyia) X — .
Hence, ¢; is divergent for any j € S¢ N J_. Consequently, Lemma A.1 is proved.

A.2. Proof of Lemma 2

When ¢y # 0, p — oo holds. Notice that tr((&' P;E)/p 2 kj as p — oo because tr(E P;E) is
distributed according to a chi-square distribution with pk; degrees of freedom. From the result and
Lemma 1, Lemma 2 is proved.

A.3. Proof of Lemma 3
Suppose that j; C j, for ji, j» € J4+. Then, P(tr(& P;,E) — (&' P;,E) > 0) = 1 holds be-

cause P;, — P; is positive semidefinite and the dlstnbutlon of & is continuous. This implies that

P(jie € J-\{j.}) = 0. Since (T, \{j.)¢ = {j.} U J-, Lemma 3 (1) is proved.
Next, we show the proof of Lemma 3 (2). Notice that

15



Asymptotic Loss and Mean Efficiency of a GC),

1 1
“u@PE) =L @ Pe) S ke,
n nop

asn — oo and p/n — cy. By using this result, we show the following basic results used for proving

Lemma 3 (2):

Ved. LGy LG =1+~ {1tr<8'P,»8> - 1tr(S'P,-ﬁ)}
n(5_,- 6j n n

| (A.5)
=1+ (S_(kj —k.)co +0,(1), asn — oo, p/n — cy.
J

Recall that P(}LE € J:\{j<}) = 0. Hence, to prove Lemma 3 (2), it is sufficient to show that the
following equation is satisfied:

1
Yj e i v I-N\iol, plim = {L(j) = L(jo)} =7, > O, (A.6)

n—oo,p/n—cottj

(see, e.g., the result in Yanagihara, 2015), where jj is the asymptotically loss optimal model given
by (19), and /; is some positive constant depending on model j, which does not converge to 0. First,
we give the proof when {£. # 0} N {cy # 0}. From Lemma 2 (1) and (19), we have

j e i uS- o, plim  —{L()) - L(jo)} = A()) — A(jo) > 0, (A7)
n—oo,p/n—cq
where A(j) is given by (18). On the other hand, from Lemma 2, for any j € S_ N J_, §; goes to oo
asn — oo and p/n — co. Then, from (A.7), we can see that {L(j,) — L(jo)}/(nd;) is O or converges
to 0 in probability as n — oo and p/n — ¢o. It follows from this result, the divergence of ¢; and
(AS5S)that'je S nJ_,
1

plim
n—oo,p/n—co §j

1
= plim F{L(j)—.ﬁ(j*)} + plim

n—»oo,p/n—»con J n—00,p/n—coy I’Z(Sj

{L() = Lo}
1
— L) - Lo} =1>0.

Therefore, (A.6) is proved when {&, # 0}N{cy # 0}. Next, we give the proof when {£. = 0}U{cy = 0}.
Recall that &,
yields

0 < 6; — oo forany j € J_. Hence, substituting 6; — oo or ¢y = 0 into (A.5)

1
jeg.,  plim —{LG) = LG} =1>0.

n—wo,p/n—)c‘gn J
Recall that jo = j. when {&, = 0} U {co = 0}. Hence, (A.6) is proved when {£. = 0} U {cy = 0}.
Consequently, Lemma 3 (2) is proved.

A.4. Proof of Lemma 4

We first give the lemma required for proving Lemma 4.

Lemma A.2 Let X be a Bernoulli random variable with probability of success 0, and let h be a

positive value such that
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lim & =oco.
n—oco,p/n—cy
Suppose that
lim 6=0.
n—oo,p/n—cy
Then, without depending on the order of divergence of h, hX 2 0asn — oo and p/n— co€[0,1).

(Proof of Lemma A.2) Notice that 41X is a non-negative random variable. For any n > 0, we have

6 (whenn < h)

h =
PhX>m) {0 (when 7 > h)

From the above result and the 6 assumption, it follows that
PhX >n) <6—0,

asn — oo and p/n — ¢o. This means that hX 2, Oasn — coand p/n — ¢p € [0, 1). Hence, Lemma
A.2 is proved. B

To permit a unified description of proofs for L(}LE) and L(}a), we write the optimal model and
the selected model as j. Notice that I(j = j) is a Bernoulli random variable. It follows from the
assumption that

‘jeg\,  lim  PU(G=j)=1)=0. (A8)

n—oo,p/n—co

This indicates that for any j € J\{¢}, I(} =j)=o0p(1)asn — oo and p/n — cg. From (A.8) and
Lemma A.2, we have

e\, pI1G=p50, Ve T\, ns;-1G=j) D0, (A9)

asn — oo and p/n — cp. Notice that tr(8’Pj8)/p = 0p(1)asn — oo and p/n — ¢p. It follows
from this equation and (A.9) that for any j € J\{¢}

w(E PE) 1 = j) = étr(a'Pja) Ap-1G=p}So. (A.10)
asn — oo and p/n — cp. By using (A.9) and (A.10), we have
Tje I\, LGIG = )50,
asn — oo and p/n — cp. Substituting the above equation into (15) yields
L)) = LWOIG = 0+ 0p(1) = LIO = LWOI # ) + 0,(1), (A1)
asn — oo and p/n — c¢p. Notice that / (} # {) is also a Bernoulli random variable having
. 03%%0 PUI(#6)=1)=0.

Therefore, from Lemma A.2, we can see that
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LOIG# 650,
asn — oo and p/n — cp. Substituting the above equations into (A.11) yields
L)) = LEO) +0p(D),

asn — oo and p/n — c¢y. It follows from the above equation that L) = LO + op(1) and
Lo = L(6)+o0p(1)asn — oo and p/n — cp. These equations imply that LOe)/ LUa) = 1+o0p,(1)

asn — oo and p/n — ¢y. Hence, Lemma 4 is proved.

A.5. Proof of Lemma 5

We first give lemmas required for proving Lemma 5 (see Yanagihara, 2016a, for the proof).

Lemma A.3 Suppose that Assumptions Al and A2 hold. The GC), criterion is consistent when
n — oo and p/n — cg € [0, 1) if @ satisfies Conditions CI and C2.

Lemma A4 Suppose that Assumptions Al and A2 hold. When (£, # 0} N {co # 0}, statis-
tics based on transformed tr(S jS;l) converge to positive values in probability as n — oo and
p/n—co€l0,1), ie,

0j0+ (k—kjco

s

"ieS_UJ., plim l{(n—kj)tr(.S’j.S’;l)—(n—k)p} =

n—oco,p/n—cy 1- o
. . 1
ieS nyg., plim  — {(n - kpte(S;8;") - (n = kyp) = 1,
n—oo,p/n—cy M0 j
where S| is given by (5).
To prove Lemma 3, it suffices to show that the following equation is satisfied:
; . . . 1 ) .
JE VT Nk plim = {GCy(jle) = GCyjol)} = 7, > 0, (A.12)
n—oo,p/n—cottj
(see, e.g., the result in Yanagihara, 2015), where h; is some positive value depending on the model
J» which does not converge to 0. Recall that jy = j,. when {£, = 0} U {co = 0}, jo = j.. Hence, when
{&. = 0} U {co = 0}, the equations in (A.12) hold if « satisfies the conditions for consistency given in
Lemma A.3, i.e., Conditions C1 and C2.
Next, we consider the case of {£&. # 0} N {co # 0}. Although it is stated in (19) that A(jp) is the
minimum among all j € {j.} US_, we know that

Yje{S-UIT Mok AGjo) < A0 (A.13)

where A(j) is given by (18). This is because A(j) = kjco and k. < k; holds for any j € S, \{j.}. It
follows from the above result, (A.13), Lemma A.4, and Condition C3 that

A = AGo)

; . . 1 ) ,
TJElS_UT Nk plim =~ {GCy(jle) - GC,(jola)) = 0,
n—oo,p/n—co 1 -co
L e . 1 ; .
ieSng., plim  — {GC,(jla) - GC,)(jola)} = 1 > 0.

n—oo,p/n—co N0 j

Consequently, Lemma 5 is proved.
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A.6. Proof of Lemma 6

We first give a lemma required for proving Lemmas 6 and 8.

Lemma A.5 Let X be a Bernoulli random variable with probability of success 0 satisfying

lim 6=0.

n—co,p/n—cy

Then, for any j € J, E[L(j)X]/p can be expanded as
1 . n
—E[L()X] = —6,;0 +0(1),
4 4

asn — ooand p/n — c.

(Proof of Lemma A.5) Notice that

E[p™'£()| = p7'ns; + k;, E[X] =6,
Var [p*u:( j)] = Var [p’ltr(a'})ja)] =2p7'kj, Var[X] =61 -6).

From the above equations and the € assumption, it follows that

|E[p™ £()x| - E [ £G)] E1X1| = |Cov [ p7' £0i). X]|

< \/Var [p~' L()] VarlX] = \/Zp‘lkjﬁ(l -6) -0,

asn — oo and p/n — cy. Hence, we derive
—E[L(HX] = —E[LD]EX]+0(1) ={=6; +k;j|0+0o(1) = =6,;6 + o(1),
14 P p p

asn — oo and p/n — cy. Consequently, Lemma A.5 is proved. B

Since R(jmg) is the minimum value of R(j) among j € J, R(jme) < R(jo) holds. On the other
hand, L(}LE) is the minimum value of £(j) among j € 7, L(}LE) < L(jme) holds. This implies that
E[L(ip)] < E[L(me)] = R(jme). Therefore, we have

E|L(ie)| < RGive) < R(jo)- (A.14)
By using the equation in (15) and jj in (19), we derive

LGo) = LGie) = Y. LGIGiE = j).
€T
This implies that
LG {1 = 1Gie = jo)} = Do LWIGLe = ))
JEIT\Lo}

= LO)IGie # jo) = Y. LDIGLe = j)- (A.15)
JET\jo}
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It follows from Theorem 3 that P(jig # jo) — O asn — oo and p/n — ¢o. Since I(jig # jo) ~
B(1, P(ie # jo))s by using Lemma A.5, we have

1 ” ”
CE[LG0IGue # )] = Z60 PG # o) + o),

asn — oo and p/n — ¢(. Notice that

1.
ﬁ5j0 _ ) o dipoto(l) (& # 0} Nico # 0 (A.16)
p 0 ({& =0} U {co =0})
Since 0 < ¢;'6,0 < o0, we have
1 o
SE[LGniGie # ] = 0 (A.17)

asn — oo and p/n — c¢p. It follows from (A.15) and (A.17) that

LS E[2()iGis = ] -0,
J€IT\o}

asn — oo and p/n — co. This implies that
1 . 1 . o) .
;E [L(JLE)] = ;E [L(JO)I(JLE = Jo)] +o(1)
1 . 1 e .
= SEILG0] = ZE[ LG G # jo)] + o)
., .
= —R(jo) + o(1),
p
asn — oo and p/n — cp. By using the above result and (A.14), Lemma 6 is proved.

A.7. Proof of Lemma 7

We first give a lemma required for proving Lemma 7.

Lemma A.6 Let W_ be a set of underspecified models which satisfy equation (16), i.e.,

’W_={jej_

lim L(— " +a')=0}.
n—o0,p/n—co I’l5j n—p
Suppose that Assumptions Al and A2 hold. The order of the selection probability of j € ‘W_ by the
GC, is given by
P(jo = ) = O™,

where r is any positive integer.

(Proof of Lemma A.6) Let g; = kjen;, forany j € J_, and let V, Uy, ..., Uy, be mutually indepen-
dent random variables defined by V ~ x2, and U; ~ x*(nd;), where 6 ; is a positive value satisfying
Oj1+ - +0j4 =0;and 0;; > 6j/q3 forall i € {1,...,q;}. Here, m is given in (8) and §; is given
by (6). Suppose that Assumption A1l holds. Then, from Yanagihara (2016b) or Oda and Yanagihara
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(2019), the probability of selecting j € J_- by a GC,, is bounded as

qj
P(jo = ) < D P(U/V < par/(n = k). (A.18)
i=1

Let ;; be a constant defined by

1 (p+né;;  pa
= —— - = jegJ_,i=1,...,q9).
Yi. %( 5 g V€I q))
From a simple calculation, we have
n p(n+ kp) p n
= + - - + . A.19
Y= =2 T =)=k - p)s;  (n—-koy ( n—p “) (A.19)

It follows from the relations 6;; > ¢,/ q? and g; < k., the boundedness of 1/6;, and the definition of
W_ that

. p(n + kp) . p n
li =0, lim - + =0. A.20
n—oco,p/n—cy (m — 2)(1’[ — k)(]’l - p)(SN n—o0,p/n—co (n — k)6j,z ( n—p (Y) ( )
Using equations (A.19) and (A.20) yields
1
lim i = > 0.
n—eo,p/n—cy 1 -c¢o

Hence, v/, is positive for sufficiently large n or large n and p. This implies that for sufficiently large

n or large n and p

P(Z <2 ):P(i(ﬂ—ernd"’i)S—yj,i)

\% n—k 6J"i \% m-—2
1|U; +n6;; 1 U +n6;;\>
<P(—|Z 2T >vji| < ——E Gi_PEMEN D (Aa2D)
(5_]",‘ V m — 2 ’ ()/j,,'dj’,')zr V m — 2
where 7 is any positive integer. The results in Oda and Yanagihara (2019) indicate that
Ui p+ I’l&j,i o _ —r 2r
E l(v - W = O(l’l 6j,i) . (A22)

Substituting (A.21) and (A.22) into (A.18) yields P(}a = j) = O(n™"). Consequently, Lemma A.6 is
proved. &

If « satisfies Condition C2, ‘W_ = J_ holds. On the other hand, when « satisfies Condition C3,
for equation (16) to hold, it must be the case that 6; = co. Hence, if @ satisfies Condition C3,
W_ =8 NnJ_ holds. Recall that r in Lemma A.6 is any positive integer. From Lemma A.6, the
selection probability of j € W_ can be expressed as

~ . Mj
P(jo=)) = el

where M; is a constant independent of n and p, and € is the positive integer defined in Assumption
A3. This implies that

n N . 106;
~6;P(Ja = J) = ——M; =0,
p pn

asn — oo and p/n — ¢y. Consequently, Lemma 7 is proved.
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A.8. Proof of Lemma 8
From Lemma 5, if « satisfies Conditions C1 and C2 when {£. = 0} U {cy = 0}, or Condition C3

when {&, # 0} N {cy # 0}, the following equations are satisfied:

lim P, # jo) =0, lim PG, =) =0("jeI\joh),

n—00,p/n—co n—00,p/n—co

where jj is the asymptotically loss optimal model given by (19). Notice that
IGo # jo) ~ B(L,PGa # j0))»  1Ge = ) ~ B(1, PGa = ), (" € T\LjoD-
By using Lemma A.5 and (A.16), we have
1 . A . n A .
;E | LG IGa # jo)] = ;%P(Ja # jo) +o(1) = o(l) as n — co, p/n — co. (A.23)

Recall that 6; = 0 holds for any j € 7, or np‘léj = O0(l)asn — co and p/n — ¢y for any j € S_
when ¢y # 0, From these equations and Lemma 7, we can see that

0 (jeT\lUoh
YieS_\{jo} whency#0
o(1) "ieS NJ. whency#0
jeJ- when co = 0
_{0 (j € T\joh)
o) (YjeI\oh

asn — oo and p/n — cp. It follows from the equation and Lemma A.5 that for any j € J\{jo}

n A .
—0iP(jo = J) =
p

1 oy h . n A .
P |£hiGa = i) = S8iPUa = )+ o(1) = (1), (A.24)
asn — oo and p/n — cy. Notice that
1 A 1 IR .
~E[LG)] = = D E[LGD)Ga = )]
p P i
| 1 A . 1 SR .
= —R(jo) = —E [ LG a # jo)] + — Z E[LDIGa = ))]-
P p el
By substituting (A.23) and (A.24) into the above equation, Lemma 8 is proved.

A.9. Proof of Corollary 1

To prove Corollary 1, it is sufficient to show that « satisfying Condition C3 satisfies Condition C2
when {£, = 0} U {cop = 0}. Recall that &, = 0 & 6; — oo for any j € J_. Notice that p/(nd;) and
pa/(nd;) converge to 0 when ¢; — oo or ¢g = 0. These convergences to 0 and n/(n—p) — 1/(1—co)

imply that

A (_

n—o0,p/n—co n6j n—p
This indicates that Condition C2 holds when {£, = 0} U {cy = 0}. Consequently, Corollary 1 is

+a/):0.

proved.
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