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Abstract

A variable selection method is put forward for multivariate linear regression models which obey
normality. This method hinges on minimizing a generalized Cp (GCp) criterion which is defined
by adding a positive constant value (the product of α and the number of parameters in the mean
structure) to the minimum value of the multivariate residual sum of squares. The paper seeks to
clarify the sufficient condition for α to simultaneously satisfy asymptotically loss and mean efficient
properties in an asymptotic framework such that the sample size always goes to ∞, but the dimen-
sion of the vector of response variables can be either fixed or infinite. Based on this, we propose
an asymptotically loss and mean efficient GCp criterion by using α which satisfies the obtained
sufficient condition even under high dimensionality of the vector of response variables.
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Selection probability, Variable selection.

E-mail address: yanagi-hiro@hiroshima-u.ac.jp (Hirokazu Yanagihara)

1. Introduction

The multivariate linear regression model is central to theoretical and applied inferential analysis.
This model is introduced in many statistical textbooks (see, e.g., Srivastava, 2002, chap. 9; Timm,
2002, chap. 4), and is widely used in chemometrics, engineering, econometrics, psychometrics, and
many other fields, for the prediction of response variables to a set of explanatory variables. Let
Y = (y1, . . . .yn)′ be an n × p matrix of p response variables, and let X = (x1, . . . ,xn)′ be an n × k

matrix of non-stochastic k explanatory variables, where n is the sample size. To ensure both the
possibility of estimating the model and the existence of variable selection criteria, we assume that
rank(X) = k (< n) and n − p − k − 1 > 0. Let j denote a subset of ω = {1, . . . , k} containing k j

elements and X j denote the n×k j matrix consisting of the columns of X indexed by the elements of
j, where kA denotes the number of elements of a set A, i.e., kA = #(A). For example, if j = {1, 2, 4},
then X j consists of the first, second, and fourth columns of X . For convenience, elements of j are
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arranged in ascending order. We then consider the following multivariate linear regression model
with k j explanatory variables as the candidate model:

Y ∼ Nn×p(X jΘ j,Σ j ⊗ In), (1)

where Θ j is a k j × p unknown matrix of regression coefficients, and Σ j is a p × p unknown covari-
ance matrix with rank(Σ j) = p. We identify the candidate model by set j and denote the candidate
model in (1) as model j. Importantly, the model with Xω (namely X) is called the full model. We
will assume that the data are generated from the following true model:

Y ∼ Nn×p(X j∗Θ∗,Σ∗ ⊗ In), (2)

where j∗ is a set of integers indicating the subset of explanatory variables in the true model, Θ∗
is a k j∗ × p matrix of true regression coefficients, and Σ∗ is a p × p true covariance matrix with
rank(Σ∗) = p. We denote the model in (2) as the true model j∗. Henceforth, for expository pur-
poses, we simply represent X j∗ and k j∗ as X∗ and k∗, respectively.

In what follows, we focus on a variable selection method by minimizing a generalized Cp (GCp)
criterion, when p may be large but still smaller than n. The GCp criterion is defined by adding
a positive constant value to the minimum value of the multivariate residual sum of squares. This
positive value is the product of α and the number of parameters in the mean structure, where α
expresses a penalty for the complexity of the candidate model. The GCp criterion in univariate and
multivariate linear regression model contexts was proposed by Atkinson (1980) and Nagai et al.
(2012), respectively. The family of GCp criteria contains many widely known variable selection
criteria, e.g., Mallows Cp criterion proposed by Sparks et al. (1983) (the original Cp was proposed
by Mallows, 1973, under the univariate linear regression model) and the modified Cp (MCp) crite-
rion proposed by Fujikoshi and Satoh (1997), which is a completely bias-corrected version of the
Cp criterion. Given that our focus is on multivariate linear regression models where the dimension
p may be large, the following asymptotic framework is used for assessing the asymptotic property
of the variable-selection method:

n→ ∞ and p/n→ c0 ∈ [0, 1). (3)

For simplicity, we will use “n → ∞, p/n → c0” to refer to this asymptotic framework. It should be
emphasized that we are not concerned whether p goes to ∞ or not in this asymptotic framework.
If p increases, the columns of Θ∗ and the rows and columns of Σ∗ increase, so it is necessary to
clarify how true parameters increase. We assume that as p increases by 1, a new column is added to
the right of the current Θ∗, and a new column and row are added to the right of and the bottom of
the current Σ∗, respectively.

There are two important properties of variable selection criteria. One is a consistency property
whereby the selection probability of the true model by a variable selection criterion converges to 1
asymptotically. The second is an efficiency property which can be divided into two sub-properties.
The first is asymptotic loss efficiency whereby the ratio of the minimum loss function to the loss
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function of the model selected by a variable selection criterion goes to 1 asymptotically. The second
is asymptotic mean efficiency whereby the ratio of the minimum expected loss function to the ex-
pected loss function of the model selected by a variable selection criterion goes to 1 asymptotically
(see, e.g., Shibata, 1980, 1981; Shao, 1997).

Yanagihara (2016a) clarified the sufficient condition for α in GCp criterion to satisfy a consistency
property under the asymptotic framework in (3), and proposed the high-dimensionality-adjusted
consistent GCp (HCGCp) by using the sufficient condition. Recently An aim of this paper is to
derive the sufficient condition for α in the GCp criterion to simultaneously satisfy loss and mean
efficiency properties under the asymptotic framework in (3). Then, we propose the asymptotically
loss and mean efficient GCp criterion by using α which satisfies the obtained sufficient condition
even under high-dimensionality of the vector of response variables. In our setting, the true model
is included in the set of all possible candidate models. For asymptotic loss efficiency under settings
different from ours, see Imori (2020).

The remainder of the paper is organized as follows. In Section 2, we present the necessary no-
tation and assumptions for assessing the loss and mean efficient properties of the GCp criterion in
model j (1). The main results are shown in Section 3. In Section 4, we present the results of numer-
ical experiments and compare the variable selection performance of the proposed criterion with that
of an existing variable selection criterion. Technical details are provided in the Appendix.

2. Formulation of Loss and Mean Efficiency Properties

First, we describe several classes of j which express subsets of X in the candidate model. Let J
be a set of all possible candidate models denoted by J = ℘(ω), where ℘(A) is the powerset of set A.
We assume the following regarding J :

A1. The true model is included in the set of candidate models, i.e., j∗ ∈ J .

Moreover, we separate J into two sets, one a set of overspecified models wherein the explanatory
variables contain all the explanatory variables of the true model j∗ in (2) and the other a set of
underspecified models, i.e.,

J+ = { j ∈ J| j∗ ⊆ j}, J− = Jc
+ ∩ J , (4)

where Ac denotes the compliment of a set A. We use the terminology “overspecified model” and
“underspecified model” in the same sense as Fujikoshi and Satoh (1997).

Let S j be the unbiased estimator of Σ j in model j (1), i.e.,

S j =
1

n − k
Y ′(In − P j)Y , (5)

where P j is the projection matrix to the subspace spanned by the columns of X j, i.e., P j =

X j(X ′
jX j)−1X ′

j. Let d(A,B) and d̂(A,B) be the squared Mahalanobis’ distances between two
n × p matrices A and B as
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d(A,B) = tr
{
(A −B)Σ−1

∗ (A −B)′
}
= ∥Σ−1/2

∗ (A −B)∥2,

d̂(A,B) = tr
{
(A −B)S−1

ω (A −B)′
}
= ∥S−1/2

ω (A −B)∥2.

The matrix of regression coefficients Θ j in model j (1) is estimated using the least squares approach;
i.e., Θ j is estimated by minimizing the multivariate RSS, and then, the estimator of Θ j is given by

Θ̂ j = (X ′
jX j)−1X ′

jY = arg min
Θ j∈M(k j,p)

d̂(Y ,X jΘ j),

whereM(k, p) denotes a set of k × p real matrices.
Let a p × p noncentrality matrix be denoted by

∆ j =
1
n
Σ−1/2
∗ Θ′∗X

′
∗(In − P j)X∗Θ∗Σ−1/2

∗ ,

where Θ∗, Σ∗, and X∗ are the matrix of the true regression coefficients, the true covariance matrix,
and the matrix of the true explanatory variables, respectively, given by (2). It is straightforward to
discern from the definition ofJ+ that ∆ j = Op,p if and only if j ∈ J+, where On,p is an n× p matrix
of zeros. For the noncentrality matrix, we assume that

A2. R0 = lim
n→∞

1
n
X ′X exists and is positive definite.

Let
δ j = tr(∆ j). (6)

If Assumption A2 holds, then we have

∀ j ∈ J−, inf
n>p+k,p≥1

δ j > 0.

Even though δ j diverges, we do not assume a specific order of the divergence. Instead, we use the
following assumption:

A3. ∃ϵ ∈ N s.t. ∀ j ∈ J−, lim
n→∞,p/n→c0

1
nϵ

Θ∗Σ
−1
∗ Θ′∗ = Ok∗,k∗ .

If Assumptions A2 and A3 hold, then we have

∃ϵ ∈ N s.t. ∀ j ∈ J−, lim
n→∞,p/n→c0

δ j

nϵ
= 0.

We determine the best subset of ω by minimizing a GCp criterion. The GCp criterion under model
j is defined by

GCp( j|α) = (n − k j)tr(S jS
−1
ω ) + αpk j, (7)

where α is a positive value expressing a penalty for the complexity of the candidate model. A vari-
able selection criterion included in the family of GCp criteria is specified by an individual α. This
family contains the Cp, MCp, and HCGCp criteria as special cases, i.e.,

α =


2 (Cp)
2c−1

M (MCp)
aC(β) (HCGCp)

,
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where cM is a positive value given by

cM =
m − 2
n − k

= 1 − p + 1
n − k

(m = n − k − p + 1), (8)

aC(β) is a positive value expressed as a function of β and defined by

aC(β) =
n

n − p
+ β, (9)

and β is a positive value satisfying

lim
n→∞,p/n→c0

√
pβ = ∞, lim

n→∞,p/n→c0

p
n
β = 0. (10)

The best subset of ω, which is chosen by minimizing the GCp criterion, is written as

ĵα = arg min
j∈J

GCp( j|α). (11)

Herein, the selected model is denoted as ĵα.
The squared loss function between the true mean and the fitted value, i.e., X∗Θ∗ and X jΘ̂ j, is

defined by
L( j) = d(X∗Θ∗,X jΘ̂ j) = nδ j + tr(E′P jE), (12)

where E = (Y −X∗Θ∗)Σ
−1/2
∗ ∼ Nn×p(On,p, Ip ⊗ In). Notice that E[tr(E′P jE)] = pk j. Hence, the

expectation of L( j), denoted by R( j), is given by

R( j) = E
[L( j)

]
= nδ j + k j p. (13)

Subsets of ω minimizing L( j) and R( j) are written as

ĵLE = arg min
j∈J
L( j), jME = arg min

j∈J
R( j), (14)

Next, ĵLE and jME are the loss optimal model and the mean optimal model in the sense of minimiz-
ing the loss function and the mean of the loss function, respectively. By using the loss function, we
formulate the asymptotically loss efficient property.

Definition 1 If the following equation holds, we say that the GCp criterion is asymptotically loss

efficient:

plim
n→∞,p/n→c0

L( ĵα)
L( ĵLE)

= 1,

where plim is a probability limit operator, i.e., denotes a convergence in probability.

It should be kept in mind that

L( ĵα) =
∑
j∈J
L( j)I( ĵα = j), L( ĵLE) =

∑
j∈J
L( j)I( ĵLE = j), (15)

where I(A) is the indicator function, i.e., I(A) = 1 if A is true and I(A) = 0 if A is not true. By using
the mean of the loss function, we formulate the asymptotically mean efficient property.

Definition 2 If the following equation holds, we say that the GCp criterion is asymptotically mean

efficient:

lim
n→∞,p/n→c0

E[L( ĵα)]
R( jME)

= 1.
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3. Main Results

3.1. Asymptotically Loss Efficient Property

To clarify the sufficient condition for α in (7) for loss efficiency, we consider asymptotic behaviors
of the loss function L( j), the loss optimal model ĵLE, and the selected model ĵα, given by (12), (14),
and (11), respectively.

First, we prepare three conditions for α which play an important role in determining whether the
GCp criterion is efficient.

C1. lim
n→∞,p/n→c0

√
p
(
− n

n − p
+ α

)
= ∞.

C2. ∀ j ∈ J−,

lim
n→∞,p/n→c0

p
nδ j

(
− n

n − p
+ α

)
= 0. (16)

C3. lim
n→∞,p/n→c0

p
n
α =

2c0

1 − c0
.

Let θ∗a (a ∈ j∗) be the p-dimensional vector of regression coefficients for the ath explanatory
variable. Then we prepare the following subsets of j∗ and J−:

ξ∗ =
{
a ∈ j∗

∣∣∣ θ∗a′Σ−1
∗ θ∗a = O(1) as p→ ∞

}
, S− =

{
j ∈ J−

∣∣∣ j ⊇ (ξc∗ ∩ j∗)
}
, (17)

where J− is the set of underspecified models given by (4). By using the subsets, the following
lemma concerning the convergence or divergence of δ j given by (6) is derived (the proof is given in
Appendix A.1).

Lemma 1 Suppose that Assumption A2 holds.

(1) When j ∈ S−, δ j converges to a positive value as n→ ∞ and p/n→ c0 ∈ [0, 1), i.e.,

∀ j ∈ S−, ∃δ j,0 > 0 s.t. δ j,0 = lim
n→∞,p/n→c0

δ j.

(2) When j ∈ Sc
− ∩ J−, δ j diverges to∞ as n→ ∞ and p/n→ c0 ∈ [0, 1), i.e.,

∀ j ∈ Sc
− ∩ J−, lim

n→∞,p/n→c0
δ j = ∞.

Lemma 1 indicates that δ j in j ∈ J− is not convergent if ξ∗ = ∅ because S− = ∅ when ξ∗ = ∅. Here,
let δ j,0 = 0 for j ∈ J+, where J+ is the set of overspecified models given by (4). By using Lemma 1
and the definition of L( j), we show that L( j) can converge to a positive value as follows (the proof
is given in Appendix A.2).

Lemma 2 Suppose that Assumption A2 holds. If {ξ∗ , ∅} ∩ {c0 , 0}, L( j) for any j ∈ S− ∪ J+
converges to a positive value as n→ ∞ and p/n→ c0 ∈ [0, 1), i.e.,

∀ j ∈ S− ∪ J+, plim
n→∞,p/n→c0

L( j)
n
= δ j,0 + c0k j = λ( j) > 0. (18)
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Let j0 be the model defined by

j0 =

 arg min
j∈{ j∗}∪S−

λ( j) ({ξ∗ , ∅} ∩ {c0 , 0})

j∗ ({ξ∗ = ∅} ∪ {c0 = 0})
. (19)

By using j0 and Lemma 2, the following lemma concerning behaviors of the loss optimal model is
obtained (the proof is given in Appendix A.3).

Lemma 3 Suppose that Assumptions A1 and A2 hold.

(1) The loss optimal model is the true model or an underspecified model with probability 1, i.e.,

P( ĵLE ∈ { j∗} ∪ J−) = 1.

(2) The probability of ĵLE = j0 converges to 1 as n→ ∞ and p/n→ c0 ∈ [0, 1), i.e.,

lim
n→∞,p/n→c0

P( ĵLE = j0) = 1. (20)

Since equation (20) holds, we call j0 in (19) the asymptotically loss optimal model.
The following key lemma to prove the efficient property of the GCp criterion is obtained (the

proof is given in Appendix A.4).

Lemma 4 Suppose that

∃ℓ ∈ J s.t. lim
n→∞,p/n→c0

P( ĵLE = ℓ) = 1, lim
n→∞,p/n→c0

P( ĵα = ℓ) = 1.

Then, the GCp criterion is asymptotically loss efficient when n→ ∞ and p/n→ c0 ∈ [0, 1).

From Lemmas 3 and 4, we can discern that the GCp criterion is asymptotically loss efficient if
P( ĵα = j0) → 1 as n → ∞ and p/n → c0. Probability convergence is ensured by the following
lemma (the proof is given in Appendix A.5).

Lemma 5 Suppose that Assumptions A1 and A2 hold. The selection probability of j0 by the GCp

criterion converges to 1 as n→ ∞ and p/n→ c0 ∈ [0, 1), i.e.,

lim
n→∞,p/n→c0

P( ĵα = j0) = 1,

if α satisfies Conditions C1 and C2 when {ξ∗ = ∅} ∪ {c0 = 0}, or Condition C3 when {ξ∗ , ∅} ∩ {c0 ,

0}, where j0 is the asymptotically loss optimal model given by (19).

From Lemmas 3, 4, and 5, we derive the following main theorem concerning the asymptotically loss
efficient property.

Theorem 1 Suppose that Assumptions A1 and A2 hold. The GCp criterion is asymptotically

loss efficient when n → ∞ and p/n → c0 ∈ [0, 1) if α satisfies Conditions C1 and C2 when

{ξ∗ = ∅} ∪ {c0 = 0}, or Condition C3 when {ξ∗ , ∅} ∩ {c0 , 0}.
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3.2. Asymptotically Mean Efficient Property

To clarify the sufficient condition for α in (7) for mean efficiency, asymptotic behaviors of the
mean of the loss function R( j), the mean optimal model jME, and the selected model ĵα, given by
(13), (14), and (11), respectively, are considered.

First, we present a lemma concerning convergence of R( jME)/p (the proof is given in Appendix
A.6).

Lemma 6 Suppose that Assumptions A1 and A2 hold. The minimum of R( j)/p is expanded as

1
p
R( jME) =

1
p
R( j0) + o(1), as n→ ∞, p/n→ c0,

where j0 is the asymptotically loss optimal model given by (19).

We derive the order of the selection probability of some underspecified model by the GCp criterion
(the proof is given in Appendix A.7).

Lemma 7 Suppose that Assumptions A1, A2, and A3 hold. If α satisfies Condition C2,

np−1δ jP( ĵα = j) for any j ∈ J− converges to 0 as n → ∞ and p/n → c0 ∈ [0, 1). If α satisfies

Condition C3, np−1δ jP( ĵα = j) for any j ∈ Sc
−∩J− converges to 0 as n→ ∞ and p/n→ c0 ∈ [0, 1).

By using Lemma 7, the following theorem concerning convergence of E[L( ĵα)]/p is derived (the
proof is given in Appendix A.8).

Lemma 8 Suppose that Assumptions A1, A2, and A3 hold. Then E[L( ĵα)]/p is expanded as

1
p

E
[
L( ĵα)

]
=

1
p
R( j0) + o(1), as n→ ∞, p/n→ c0

if α satisfies Conditions C1 and C2 when {ξ∗ = ∅} ∪ {c0 = 0}, or Condition C3 when {ξ∗ , ∅} ∩ {c0 ,

0}, where j0 is the asymptotically loss optimal model given by (19).

Finally, from Lemmas 6 and 8, we obtain the following main theorem concerning the asymptotically
mean efficient property.

Theorem 2 Suppose that Assumptions A1, A2, and A3 hold. The GCp criterion is asymptotically

mean efficient when n → ∞ and p/n → c0 ∈ [0, 1) if α satisfies Conditions C1 and C2 when

{ξ∗ = ∅} ∪ {c0 = 0} or Condition C3 when {ξ∗ , ∅} ∩ {c0 , 0}.

3.3. A High-dimensionality-adjusted Efficient GCp Criterion

From Theorems 1 and 2, we can discern that sufficient conditions for α to satisfy asymptotic loss
efficiency are equal to those to satisfy asymptotic mean efficiency. By using the α conditions, an
asymptotically loss and mean efficient GCp criterion can be proposed. Unfortunately, the conditions
for α in Theorems 1 and 2 are not verifiable in practical terms because they depend on the true
model. Hence, we attempt to derive sufficient conditions for α that do not depend on the true model.
This is achieved by invoking the following corollary (the proof is given in Appendix A.9).

8



Hirokazu Yanagihara

Corollary 1 Suppose that Assumptions A1, A2, and A3 hold. The GCp criterion is asymptotically

loss and mean efficient when n→ ∞ and p/n→ c0 ∈ [0, 1) if α satisfies Conditions C1 and C3.

Let aE(β) be a positive value expressed as a function of β in (10), which is defined by

aE(β) =
2n

n − p
+ β, (21)

where β is a positive value given by (10). The conditions of β imply that

lim
n→∞,p/n→c0

√
p
(
− n

n − p
+ aE(β)

)
= lim

n→∞,p/n→c0

( √
pn

n − p
+
√

pβ
)
= ∞,

lim
n→∞,p/n→c0

p
n

aE(β) = lim
n→∞,p/n→c0

(
2p

n − p
+

p
n
β

)
=

2c0

1 − c0
.

The above equations indicate that aE(β) satisfies Conditions C1 and C3. This means that the GCp

criterion with α = aE(β) is asymptotically loss and mean efficient under the asymptotic framework
in (3). We call the GCp criterion with α = aE(β) a high-dimensionality-adjusted efficient GCp

(HEGCp) criterion.

4. Numerical Study

In this section, we present the results of a simulation study that compared the performance of
variable selection using the proposed HEGCp criterion as well as four existing criteria. Let bE be a
positive value defined by

bE =

√
n

n − p
log log n
√

p
.

Then, the GCp criterion with α = 2c−1
M +bE is asymptotically loss and mean efficient. This is because

2c−1
M + bC = aE(2rM + bE) and 2rM + bE satisfies conditions in (10), where rM is a positive value

defined by

rM = c−1
M −

n
n − p

=
n + kp

(n − p)(n − k − p − 1)
.

Recall that the GCp criterion with α = 2c−1
M is the MCp criterion. Hence, we specifically refer to the

GCp criterion with α = 2c−1
M + bE as a high-dimensionality-adjusted efficient MCp (HEMCp) cri-

terion. The Bayesian information criterion (BIC)-type Cp (BCp) criterion is the GCp criterion with
α = log n because the penalty term in the BIC is the product of log n and the number of parameters.
Then, we compared the ratios of loss function expectations in selected models according to the five
GCp criteria:

Criterion 1 (HEMCp): α = 2c−1
M + bE, Criterion 2 (Cp): α = 2,

Criterion 3 (MCp) : α = 2c−1
M , Criterion 4 (BCp) : α = log n,

Criterion 5 (HCGCp): α = aC(bC),

where aC(β) is given by (9) and bC is a positive value defined by
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Table 1. Efficiency results

Type of Σ∗ Type of p HEMCp Cp MCp BCp HCGCp

Auto- p < ∞ ⃝ ⃝ ⃝
correlation p→ ∞ ⃝ △ (c0 < 0.5) ⃝ ⃝ ⃝
Uniform p < ∞ ⃝ ⃝ ⃝

correlation p→ ∞ ⃝ △ (c0 = 0) ⃝ △ (c0 = 0) △ (c0 = 0)

Note) The symbol⃝ denotes an efficient criterion, and the symbol △ denotes that the criterion is efficient if and only if the
equation within the brackets is satisfied.

bC =

√
n

n − p
log n
√

p
.

We conducted Monte Carlo simulations based on 10,000 replications, using several values of n and
p. The set of candidate models wasJ = { j1, . . . , j15}, where ja = {1, . . . , a} (a = 1, . . . , 15). We gen-
erated z1, . . . , zn independently from U(−1, 1). Using z1, . . . , zn, we constructed an n×k matrix of ex-
planatory variables X , in which the (a, b)th element was given by zb−1

a (a = 1, . . . , n; b = 1, . . . , 15).
The true model was determined by Θ∗ = η∗1′p, j∗ = {1, 2, 3, 4, 5}, and Σ∗ = 0.4Ψ∗(0.8), where
η∗ = (1,−2, 3,−4, 5)′ and 1p is the p-dimensional vector of ones. Thus, j1, . . . , j4 were underspeci-
fied models, j5, . . . , j15 were overspecified models, and j∗ = j5. To specify the form of Ψ∗(ρ), two
types of correlation matrices were prepared as follows.

Type 1. Autocorrelation matrix, i.e., the (a, b)th element of Ψ∗(ρ) is ρ|a−b|.

Type 2. Uniform correlation matrix, i.e., Ψ∗(ρ) = (1 − ρ)Ip + ρ1p1′p.

It follows from the equation Θ∗ = η∗1′p that for a = 1, . . . , 5,

θ∗a
′Σ−1
∗ θ∗a =

a2

0.4
1′pΨ∗(ρ)

−11p =


a2{p(1 − ρ) + 2ρ}

0.4(1 + ρ)
= O(p) (Ψ∗(ρ) is Type 1)

a2 p
0.4{1 + ρ(p − 1)} = O(1) (Ψ∗(ρ) is Type 2)

.

Hence, in the simulation models, ξ∗ in (17) was

ξ∗ =

 ∅ (Ψ∗(ρ) is Type 1)
{1, 2, 3, 4, 5} (Ψ∗(ρ) is Type 2)

.

From the conditions stated in Theorems 1 and 2 and ξ∗, we can determine whether the GCp criterion
is efficient. Table 1 shows which criteria have been shown to have the properties of asymptotic loss
and mean efficiency in various simulation studies. The symbol⃝ denotes efficiency, and the symbol
△ indicates that the criterion is efficient if the equation within the brackets is satisfied.

Tables 2 and 3 give the probabilities that each criterion will select ĵLE when the true covariance
matrices are Types 1 and 2, respectively. Tables 4 and 5 give the relative expected loss functions
selected by each criterion, i.e., E[L( ĵα)]/R( jME), when the true covariance matrices are Types 1 and
2, respectively. In each table, the left-hand side shows the results when p is fixed, the right-hand
side shows the results when p increases with n while maintaining a fixed ratio p/n, and the bottom
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Table 2. Probabilities of selecting ĵLE by each of the five criteria when the true variance-covariance matrix is an
autocorrelation matrix

Selection Probability (%) Selection Probability (%)

n p HEMCp Cp MCp BCp HCGCp p HEMCp Cp MCp BCp HCGCp

100 5 97.18 86.66 90.04 98.27 98.19 5 97.18 86.66 90.04 98.27 98.19
200 5 97.98 89.31 90.76 99.99 99.34 10 99.30 94.53 96.29 100.00 99.48
500 5 98.25 90.00 90.39 100.00 99.87 25 99.95 99.30 99.61 100.00 99.90

1000 5 98.34 90.39 90.61 100.00 99.89 50 100.00 99.98 99.99 100.00 99.98

100 10 98.79 90.50 95.58 96.02 98.27 10 98.79 90.50 95.58 96.02 98.27
200 10 99.31 94.95 96.58 100.00 99.51 20 99.79 97.40 99.12 100.00 99.37
500 10 99.41 95.90 96.36 100.00 99.88 50 100.00 99.91 100.00 100.00 99.92

1000 10 99.53 96.45 96.68 100.00 99.95 100 100.00 100.00 100.00 100.00 99.99

100 30 99.53 72.51 99.09 99.11 92.83 30 99.53 72.51 99.09 99.11 92.83
200 30 99.97 97.56 99.65 100.00 99.23 60 100.00 90.84 99.96 100.00 97.53
500 30 100.00 99.68 99.86 100.00 99.94 150 100.00 99.16 100.00 100.00 99.42

1000 30 99.98 99.72 99.79 100.00 99.97 300 100.00 99.97 100.00 100.00 99.82

100 50 99.36 0.77 99.01 98.07 59.26 50 99.36 0.77 99.01 98.07 59.26
200 50 100.00 95.39 99.97 100.00 98.49 100 99.97 2.66 99.96 100.00 85.09
500 50 100.00 99.88 99.99 100.00 99.92 250 100.00 6.24 100.00 100.00 94.94

1000 50 100.00 100.00 100.00 100.00 100.00 500 100.00 8.09 100.00 100.00 97.87

100 70 94.77 0.00 94.51 1.77 0.55 70 94.77 0.00 94.51 1.77 0.55
200 70 99.99 81.38 99.97 100.00 96.14 140 99.78 0.00 99.77 80.75 18.80
500 70 100.00 99.87 99.99 100.00 99.83 350 100.00 0.00 100.00 100.00 61.90

1000 70 100.00 99.98 100.00 100.00 99.97 700 100.00 0.00 100.00 100.00 78.76

Avg. 99.12 84.05 96.94 94.66 92.05 99.42 57.43 98.65 93.70 84.09

row denotes the average value of that column. From these tables, it is clear that variable selec-
tion methods based on efficient criteria performed very well. In particular, the selection probability
of the HEMCp criterion was always high, and the relative expected loss function selected by the
HEMCp criterion was always small, under a moderately sized n. By contrast, it is intuitive that the
performance of variable selection methods based on criteria that are not efficient was inferior. The
performance of the variable selection method based on the MCp criterion was comparable to those
based on the HEMCp criterion. However, since the MCp criterion is not asymptotically loss and
mean efficient when p is fixed, the performance of the variable selection method based on the MCp

criterion was slightly inferior to those based on the HEMCp criterion when p was small.
From the results of these simulation studies, we confirmed the superior performance of variable

selection based on the HEMCp criterion; this held under any true model, regardless of the size of p.
Therefore, we anticipate that the HEMCp criterion will perform well in empirical contexts.

Acknowledgment The author is grateful to Prof. Hirofumi Wakaki, Hiroshima University, for his
helpful comments on the proof of Lemma A.2. This research was partially supported by the Min-
istry of Education, Science, Sports and Culture, and a Grant-in-Aid for Scientific Research (C),
#18K03415, 2018-2021.
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Table 3. Probabilities of selecting ĵLE by each of the five criteria when the true variance-covariance matrix is a
uniform correlation matrix

Selection Probability (%) Selection Probability (%)

n p HEMCp Cp MCp BCp HCGCp p HEMCp Cp MCp BCp HCGCp

100 5 96.83 86.35 89.94 94.24 97.69 5 96.83 86.35 89.94 94.24 97.69
200 5 97.97 89.62 90.85 99.95 99.34 10 99.39 94.79 96.53 99.05 99.51
500 5 98.00 90.14 90.64 100.00 99.68 25 99.95 99.32 99.70 99.91 99.90

1000 5 98.60 90.95 91.12 100.00 99.94 50 100.00 99.99 100.00 100.00 99.99

100 10 94.31 90.24 94.47 64.00 95.00 10 94.31 90.24 94.47 64.00 95.00
200 10 99.11 94.36 96.00 99.35 99.41 20 99.78 97.30 99.14 65.21 99.48
500 10 99.54 96.18 96.75 100.00 99.86 50 100.00 99.87 100.00 36.43 99.89

1000 10 99.66 96.74 96.95 100.00 99.93 100 100.00 100.00 100.00 11.03 100.00

100 30 37.98 57.56 48.48 13.10 66.70 30 37.98 57.56 48.48 13.10 66.70
200 30 98.96 97.81 99.46 21.78 99.10 60 65.98 89.53 78.84 2.35 94.80
500 30 99.99 99.65 99.88 98.83 99.95 150 86.84 99.24 94.27 0.00 99.46

1000 30 99.98 99.82 99.89 100.00 99.98 300 98.46 99.99 99.74 0.00 99.88

100 50 35.50 0.06 37.27 37.13 9.80 50 35.50 0.06 37.27 37.13 9.80
200 50 82.97 95.23 92.04 3.01 97.92 100 57.47 0.33 53.83 53.18 12.83
500 50 100.00 99.81 99.99 36.14 99.85 250 76.30 0.36 67.13 47.51 6.61

1000 50 100.00 99.95 100.00 100.00 99.96 500 74.62 0.70 64.35 18.37 7.84

100 70 42.37 0.00 40.74 0.10 0.04 70 42.37 0.00 40.74 0.10 0.04
200 70 46.47 73.04 58.79 6.65 84.41 140 45.25 0.00 47.82 15.10 0.56
500 70 100.00 99.90 100.00 2.05 99.89 350 85.06 0.00 86.43 68.66 0.18

1000 70 100.00 99.99 100.00 93.32 99.99 700 97.82 0.00 97.27 97.09 0.00

Avg. 86.41 82.87 86.16 63.48 87.42 79.70 55.78 79.80 46.12 59.51
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Table 4. Relative expected loss function selected by each of the five criteria when the true variance-covariance ma-
trix is an autocorrelation matrix

Relative Expected Loss Relative Expected Loss

n p HEMCp Cp MCp BCp HCGCp p HEMCp Cp MCp BCp HCGCp

100 5 1.021 1.097 1.070 1.026 1.015 5 1.021 1.097 1.070 1.026 1.015
200 5 1.017 1.073 1.063 1.003 1.008 10 1.005 1.028 1.019 1.001 1.004
500 5 1.017 1.070 1.067 1.004 1.005 25 1.000 1.003 1.001 1.000 1.000

1000 5 1.013 1.066 1.064 1.001 1.002 50 0.998 0.998 0.998 0.998 0.998

100 10 1.009 1.051 1.024 1.042 1.011 10 1.009 1.051 1.024 1.042 1.011
200 10 1.001 1.022 1.014 0.997 1.000 20 1.001 1.010 1.004 1.000 1.003
500 10 1.002 1.020 1.018 0.999 1.000 50 0.998 0.999 0.998 0.998 0.999

1000 10 1.000 1.015 1.014 0.997 0.997 100 1.001 1.001 1.001 1.001 1.001

100 30 1.000 1.158 1.002 1.004 1.026 30 1.000 1.158 1.002 1.004 1.026
200 30 1.000 1.009 1.001 1.000 1.003 60 0.999 1.030 0.999 0.999 1.007
500 30 1.000 1.002 1.001 1.000 1.001 150 1.000 1.002 1.000 1.000 1.002

1000 30 1.000 1.001 1.001 1.000 1.000 300 1.000 1.000 1.000 1.000 1.001

100 50 1.002 2.825 1.003 1.005 1.305 50 1.002 2.825 1.003 1.005 1.305
200 50 1.001 1.015 1.001 1.001 1.005 100 1.000 2.660 1.000 1.000 1.056
500 50 1.000 1.000 1.000 1.000 1.000 250 0.999 2.451 0.999 0.999 1.013

1000 50 1.000 1.000 1.000 1.000 1.000 500 1.000 2.333 1.000 1.000 1.005

100 70 1.018 2.998 1.019 2.747 2.840 70 1.018 2.998 1.019 2.747 2.840
200 70 1.001 1.078 1.001 1.001 1.012 140 1.002 3.002 1.002 1.082 2.045
500 70 0.999 1.000 0.999 0.999 1.000 350 1.000 3.000 1.000 1.000 1.215

1000 70 1.000 1.000 1.000 1.000 1.000 700 1.000 3.000 1.000 1.000 1.079

Avg. 1.005 1.225 1.018 1.091 1.111 1.003 1.732 1.007 1.095 1.181

assumed linear regression with multiple responses. Procedia Computer Science, 96, 1096–1105.
Yanagihara, H. (2016b). Convergence order of the probability of selecting the true set of variables by consistent Cp-type

criterion in normal multivariate linear regression models. Sūrikaisekikenkyūsho Kōkyūroku, 1999, 72–85 (in Japanese).

Appendix

A. Proofs of Lemmas and Theorems

A.1. Proof of Lemma 1

Let Θ∗j
′ for j ⊆ j∗ be a p × k j matrix of which the ith column vector consists of θ∗ai

, where ai is
the ith element of j, and Φ∗j for j ⊆ j∗ be a k j × k j matrix defined by Φ∗j = Θ∗jΣ

−1
∗ Θ∗j

′. By using
this notation, for any j ∈ J−, δ j is rewritten as

δ j =
1
n

tr
{
Φ∗jc∩ j∗X

′
jc∩ j∗ (In − P j)X jc∩ j∗

}
. (A.1)

To assess which elements of Φ∗j are convergent or divergent for j ⊆ j∗, we prepare the following
lemma.

Lemma A.1 Let ap = (a1, . . . , ap)′ and bp = (b1, . . . , bp)′ be p-dimensional real vectors and let

Sp be a p × p positive definite real matrix. Moreover, we define sequences {cp}, {dp}, and {hp} as
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Table 5. Relative expected loss function selected by each of the five criteria when the true variance-covariance ma-
trix is a uniform correlation matrix

Relative Expected Loss Relative Expected Loss

n p HEMCp Cp MCp BCp HCGCp p HEMCp Cp MCp BCp HCGCp

100 5 1.024 1.099 1.071 1.069 1.020 5 1.024 1.099 1.071 1.069 1.020
200 5 1.014 1.070 1.061 1.001 1.005 10 1.006 1.028 1.019 1.016 1.005
500 5 1.010 1.062 1.058 0.996 0.999 25 1.001 1.003 1.002 1.002 1.001

1000 5 1.014 1.065 1.064 1.005 1.005 50 1.001 1.001 1.001 1.001 1.001

100 10 1.028 1.050 1.026 1.213 1.024 10 1.028 1.050 1.026 1.213 1.024
200 10 1.006 1.028 1.020 1.010 1.004 20 1.000 1.010 1.002 1.229 1.001
500 10 1.002 1.018 1.015 0.999 1.000 50 1.000 1.000 1.000 1.428 1.000

1000 10 1.005 1.019 1.018 1.002 1.003 100 1.000 1.000 1.000 1.633 1.000

100 30 1.060 1.161 1.040 1.152 1.037 30 1.060 1.161 1.040 1.152 1.037
200 30 1.003 1.007 1.001 1.303 1.002 60 1.032 1.028 1.020 1.220 1.008
500 30 1.001 1.002 1.001 1.015 1.001 150 1.014 1.002 1.006 1.303 1.002

1000 30 1.000 1.001 1.000 1.000 1.000 300 1.001 1.000 1.000 1.466 1.000

100 50 1.045 2.970 1.043 1.045 1.375 50 1.045 2.970 1.043 1.045 1.375
200 50 1.028 1.016 1.014 1.261 1.007 100 1.026 2.740 1.022 1.049 1.086
500 50 1.000 1.001 1.000 1.430 1.001 250 1.006 2.527 1.010 1.105 1.041

1000 50 1.001 1.001 1.001 1.001 1.001 500 1.004 2.381 1.007 1.194 1.022

100 70 1.032 3.353 1.035 3.070 3.170 70 1.032 3.353 1.035 3.070 3.170
200 70 1.027 1.075 1.019 1.168 1.012 140 1.033 3.255 1.033 1.162 2.231
500 70 0.999 0.999 0.999 1.411 0.999 350 1.015 3.245 1.013 1.027 1.321

1000 70 0.999 0.999 0.999 1.073 0.999 700 1.002 3.225 1.003 1.003 1.155

Avg. 1.015 1.250 1.024 1.211 1.133 1.016 1.804 1.018 1.269 1.225

cp = a′pS
−1
p ap, dp = b′pS

−1
p bp, hp = a′pS

−1
p bp.

Then, if cp = O(1) and dp = O(1) hold as p→ ∞, sequences {cp}, {dp} and {hp} are convergent, and

sequences {cp} and {dp} converge to positive values.

(Proof of Lemma A.1) From the definitions of cp and dp, we can observe that {cp} and {dp} are
positive sequences. Let

ap+1 =

 ap

ap+1

 , bp+1 =

 bp

bp+1

 , Sp+1 =

 Sp rp+1

r′p+1 sp+1

 . (A.2)

It follows from the general formula for the inverse of a block matrix, e.g., th. 8.5.11 in Harville
(1997), that

S−1
p+1 =

 S−1
p 0p

0′p 0

 + 1
wp+1

up+1u
′
p+1, (A.3)

where 0p is the p-dimensional vector of zeros, and wp+1 and up+1 are given by

wp+1 = sp+1 − r′p+1S
−1
p rp+1, up+1 =

 S−1
p rp+1

−1

 .
It should kept in mind that wp+1 > 0 because we assume that Sp+1 is also a positive definite real
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matrix. By using (A.2) and (A.3), we derive

cp+1 = a′p+1S
−1
p+1ap+1 = a′pS

−1
p ap +

1
wp+1

(
a′p+1up+1

)2
= cp +

1
wp+1

(
a′p+1up+1

)2
. (A.4)

This means that {cp} is a monotonically increasing sequence. On the other hand, the assumption
indicates that sequence {cp} is bounded from above. Hence, {cp} converges to a positive value. By a
similar method, {dp} also converges to a positive value. Let us define u1 = −1 and w1 = s1. From
(A.4), we can see that sequences {cp}, {dp}, and {hp} are expressed as

cp =

p∑
i=1

(
a′iui√
wi

)2

, dp =

p∑
i=1

(
b′iui√
wi

)2

, hp =

p∑
i=1

(
a′iui√
wi

) (
b′iui√
wi

)
,

It follows from the relationship between the arithmetic mean and geometric mean that

h+p =
p∑

i=1

∣∣∣∣∣∣
(
a′iui√
wi

) (
b′iui√
wi

)∣∣∣∣∣∣ = p∑
i=1

√(
a′iui√
wi

)2 (
b′iui√
wi

)2

≤ 1
2

p∑
i=1


(
a′iui√
wi

)2

+

(
b′iui√
wi

)2
 = 1

2
(cp + dp).

It is straightforward to see that {h+p} is a monotonically increasing sequence. Since {cp} and {dp} are
bounded from above, sequence {h+p} is also bounded from above. Hence, {h+p} converges to a posi-
tive value. This implies that {h+p} converges to a positive value. Since h+p is the absolute convergent
series, hp is the convergent series. Hence, hp is also convergent.

It follows from Lemma A.1 that Φ∗ξ∗ converges to some positive semidefinite matrix, where ξ∗ is
given in (17). Since X ′X/n is convergent, X ′

jc∩ j∗
(In − P j)X jc∩ j∗/n is also convergent. Therefore,

δ j is convergent for any j ∈ S−. When j ∈ Sc
− ∩ J−, we have

∃a ∈ ξ∗ ∩ j∗ s.t. a < j.

Then, by using the above result and θ∗a
′Σ−1
∗ θ∗a → ∞ as p→ ∞, δ j in (A.1) is rewritten as

δ j ≥
1
n

tr
{
Φ∗jc∩ j∗X

′
jc∩ j∗ (In − Pω\{a})X jc∩ j∗

}
=

1
n
θ∗a
′Σ−1
∗ θ∗aX

′
{a}(In − Pω\{a})X{a} → ∞.

Hence, δ j is divergent for any j ∈ Sc
− ∩ J−. Consequently, Lemma A.1 is proved.

A.2. Proof of Lemma 2

When c0 , 0, p → ∞ holds. Notice that tr(E′P jE)/p
p
−→ k j as p → ∞ because tr(E′P jE) is

distributed according to a chi-square distribution with pk j degrees of freedom. From the result and
Lemma 1, Lemma 2 is proved.

A.3. Proof of Lemma 3

Suppose that j1 ⊂ j2 for j1, j2 ∈ J+. Then, P(tr(E′P j2E) − tr(E′P j1E) > 0) = 1 holds be-
cause P j2 − P j1 is positive semidefinite and the distribution of E is continuous. This implies that
P( ĵLE ∈ J+\{ j∗}) = 0. Since (J+\{ j∗})c = { j∗} ∪ J−, Lemma 3 (1) is proved.

Next, we show the proof of Lemma 3 (2). Notice that
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1
n

tr(E′P jE) =
p
n
· 1

p
tr(E′P jE)

p
−→ k jc0,

as n→ ∞ and p/n→ c0. By using this result, we show the following basic results used for proving
Lemma 3 (2):

∀ j ∈ J−,
1

nδ j
{L( j) − L( j∗)} = 1 +

1
δ j

{
1
n

tr(E′P jE) − 1
n

tr(E′P j∗E)
}

= 1 +
1
δ j

(k j − k∗)c0 + op(1), as n→ ∞, p/n→ c0.

(A.5)

Recall that P( ĵLE ∈ J+\{ j∗}) = 0. Hence, to prove Lemma 3 (2), it is sufficient to show that the
following equation is satisfied:

∀ j ∈ {{ j∗} ∪ J−}\{ j0}, plim
n→∞,p/n→c0

1
h j
{L( j) − L( j0)} = τ j > 0, (A.6)

(see, e.g., the result in Yanagihara, 2015), where j0 is the asymptotically loss optimal model given
by (19), and h j is some positive constant depending on model j, which does not converge to 0. First,
we give the proof when {ξ∗ , ∅} ∩ {c0 , 0}. From Lemma 2 (1) and (19), we have

∀ j ∈ {{ j∗} ∪ S−}\{ j0}, plim
n→∞,p/n→c0

1
n
{L( j) − L( j0)} = λ( j) − λ( j0) > 0, (A.7)

where λ( j) is given by (18). On the other hand, from Lemma 2, for any j ∈ S− ∩ J−, δ j goes to ∞
as n→ ∞ and p/n→ c0. Then, from (A.7), we can see that {L( j∗) − L( j0)}/(nδ j) is 0 or converges
to 0 in probability as n → ∞ and p/n → c0. It follows from this result, the divergence of δ j and
(A.5) that ∀ j ∈ Sc

− ∩ J−,

plim
n→∞,p/n→c0

1
nδ j
{L( j) − L( j0)}

= plim
n→∞,p/n→c0

1
nδ j
{L( j) − L( j∗)} + plim

n→∞,p/n→c0

1
nδ j
{L( j∗) − L( j0)} = 1 > 0.

Therefore, (A.6) is proved when {ξ∗ , ∅}∩{c0 , 0}. Next, we give the proof when {ξ∗ = ∅}∪{c0 = 0}.
Recall that ξ∗ = ∅ ⇔ δ j → ∞ for any j ∈ J−. Hence, substituting δ j → ∞ or c0 = 0 into (A.5)
yields

∀ j ∈ J−, plim
n→∞,p/n→c0

1
nδ j
{L( j) − L( j∗)} = 1 > 0.

Recall that j0 = j∗ when {ξ∗ = ∅} ∪ {c0 = 0}. Hence, (A.6) is proved when {ξ∗ = ∅} ∪ {c0 = 0}.
Consequently, Lemma 3 (2) is proved.

A.4. Proof of Lemma 4

We first give the lemma required for proving Lemma 4.

Lemma A.2 Let X be a Bernoulli random variable with probability of success θ, and let h be a

positive value such that
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lim
n→∞,p/n→c0

h = ∞.

Suppose that

lim
n→∞,p/n→c0

θ = 0.

Then, without depending on the order of divergence of h, hX
p
−→ 0 as n→ ∞ and p/n→ c0 ∈ [0, 1).

(Proof of Lemma A.2) Notice that hX is a non-negative random variable. For any η > 0, we have

P(hX > η) =

 θ (when η ≤ h)
0 (when η > h)

.

From the above result and the θ assumption, it follows that

P(hX > η) ≤ θ → 0,

as n→ ∞ and p/n→ c0. This means that hX
p
−→ 0 as n→ ∞ and p/n→ c0 ∈ [0, 1). Hence, Lemma

A.2 is proved.

To permit a unified description of proofs for L( ĵLE) and L( ĵα), we write the optimal model and
the selected model as ĵ. Notice that I( ĵ = j) is a Bernoulli random variable. It follows from the
assumption that

∀ j ∈ J\{ℓ}, lim
n→∞,p/n→c0

P(I( ĵ = j) = 1) = 0. (A.8)

This indicates that for any j ∈ J\{ℓ}, I( ĵ = j) = op(1) as n → ∞ and p/n → c0. From (A.8) and
Lemma A.2, we have

∀ j ∈ J\{ℓ}, p · I( ĵ = j)
p
−→ 0, ∀ j ∈ J−\{ℓ}, nδ j · I( ĵ = j)

p
−→ 0, (A.9)

as n → ∞ and p/n → c0. Notice that tr(E′P jE)/p = Op(1) as n → ∞ and p/n → c0. It follows
from this equation and (A.9) that for any j ∈ J\{ℓ}

tr(E′P jE) · I( ĵ = j) =
1
p

tr(E′P jE) ·
{
p · I( ĵ = j)

} p
−→ 0, (A.10)

as n→ ∞ and p/n→ c0. By using (A.9) and (A.10), we have

∀ j ∈ J\{ℓ}, L( j)I( ĵ = j)
p
−→ 0,

as n→ ∞ and p/n→ c0. Substituting the above equation into (15) yields

L( ĵ) = L(ℓ)I( ĵ = ℓ) + op(1) = L(ℓ) − L(ℓ)I( ĵ , ℓ) + op(1), (A.11)

as n→ ∞ and p/n→ c0. Notice that I( ĵ , ℓ) is also a Bernoulli random variable having

lim
n→∞,p/n→c0

P(I( ĵ , ℓ) = 1) = 0.

Therefore, from Lemma A.2, we can see that
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L(ℓ)I( ĵ , ℓ)
p
−→ 0,

as n→ ∞ and p/n→ c0. Substituting the above equations into (A.11) yields

L( ĵ) = L(ℓ) + op(1),

as n → ∞ and p/n → c0. It follows from the above equation that L( ĵLE) = L(ℓ) + op(1) and
L( ĵα) = L(ℓ)+op(1) as n→ ∞ and p/n→ c0. These equations imply thatL( ĵLE)/L( ĵα) = 1+op(1)
as n→ ∞ and p/n→ c0. Hence, Lemma 4 is proved.

A.5. Proof of Lemma 5

We first give lemmas required for proving Lemma 5 (see Yanagihara, 2016a, for the proof).

Lemma A.3 Suppose that Assumptions A1 and A2 hold. The GCp criterion is consistent when

n→ ∞ and p/n→ c0 ∈ [0, 1) if α satisfies Conditions C1 and C2.

Lemma A.4 Suppose that Assumptions A1 and A2 hold. When {ξ∗ , ∅} ∩ {c0 , 0}, statis-

tics based on transformed tr(S jS
−1
ω ) converge to positive values in probability as n → ∞ and

p/n→ c0 ∈ [0, 1), i.e.,

∀ j ∈ S− ∪ J+, plim
n→∞,p/n→c0

1
n

{
(n − k j)tr(S jS

−1
ω ) − (n − k)p

}
=
δ j,0 + (k − k j)c0

1 − c0
,

∀ j ∈ Sc
− ∩ J−, plim

n→∞,p/n→c0

1
nδ j

{
(n − k j)tr(S jS

−1
ω ) − (n − k)p

}
= 1,

where S j is given by (5).

To prove Lemma 5, it suffices to show that the following equation is satisfied:

∀ j ∈ {{ j∗} ∪ J−}\{ j0}, plim
n→∞,p/n→c0

1
h j

{
GCp( j|α) −GCp( j0|α)

}
= τ j > 0, (A.12)

(see, e.g., the result in Yanagihara, 2015), where h j is some positive value depending on the model
j, which does not converge to 0. Recall that j0 = j∗ when {ξ∗ = ∅} ∪ {c0 = 0}, j0 = j∗. Hence, when
{ξ∗ = ∅} ∪ {c0 = 0}, the equations in (A.12) hold if α satisfies the conditions for consistency given in
Lemma A.3, i.e., Conditions C1 and C2.

Next, we consider the case of {ξ∗ , ∅} ∩ {c0 , 0}. Although it is stated in (19) that λ( j0) is the
minimum among all j ∈ { j∗} ∪ S−, we know that

∀ j ∈ {S− ∪ J+}\{ j0}, λ( j0) < λ( j), (A.13)

where λ( j) is given by (18). This is because λ( j) = k jc0 and k∗ < k j holds for any j ∈ J+\{ j∗}. It
follows from the above result, (A.13), Lemma A.4, and Condition C3 that

∀ j ∈ {S− ∪ J+}\{ j0}, plim
n→∞,p/n→c0

1
n

{
GCp( j|α) −GCp( j0|α)

}
=
λ( j) − λ( j0)

1 − c0
> 0,

∀ j ∈ Sc
− ∩ J−, plim

n→∞,p/n→c0

1
nδ j

{
GCp( j|α) −GCp( j0|α)

}
= 1 > 0.

Consequently, Lemma 5 is proved.
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A.6. Proof of Lemma 6

We first give a lemma required for proving Lemmas 6 and 8.

Lemma A.5 Let X be a Bernoulli random variable with probability of success θ satisfying

lim
n→∞,p/n→c0

θ = 0.

Then, for any j ∈ J , E[L( j)X]/p can be expanded as

1
p

E[L( j)X] =
n
p
δ jθ + o(1),

as n→ ∞ and p/n→ c0.

(Proof of Lemma A.5) Notice that

E
[
p−1L( j)

]
= p−1nδ j + k j, E[X] = θ,

Var
[
p−1L( j)

]
= Var

[
p−1tr(E′P jE)

]
= 2p−1k j, Var[X] = θ(1 − θ).

From the above equations and the θ assumption, it follows that∣∣∣∣E [
p−1L( j)X

]
− E

[
p−1L( j)

]
E[X]

∣∣∣∣ = ∣∣∣∣Cov
[
p−1L( j), X

]∣∣∣∣
≤

√
Var

[
p−1L( j)

]
Var[X] =

√
2p−1k jθ(1 − θ)→ 0,

as n→ ∞ and p/n→ c0. Hence, we derive

1
p

E
[L( j)X

]
=

1
p

E
[L( j)

]
E[X] + o(1) =

(
n
p
δ j + k j

)
θ + o(1) =

n
p
δ jθ + o(1),

as n→ ∞ and p/n→ c0. Consequently, Lemma A.5 is proved.

Since R( jME) is the minimum value of R( j) among j ∈ J , R( jME) ≤ R( j0) holds. On the other
hand, L( ĵLE) is the minimum value of L( j) among j ∈ J , L( ĵLE) ≤ L( jME) holds. This implies that
E[L( ĵLE)] ≤ E[L( jME)] = R( jME). Therefore, we have

E
[
L( ĵLE)

]
≤ R( jME) ≤ R( j0). (A.14)

By using the equation in (15) and j0 in (19), we derive

L( j0) ≥ L( ĵLE) =
∑
j∈J
L( j)I( ĵLE = j).

This implies that

L( j0)
{
1 − I( ĵLE = j0)

}
≥

∑
j∈J\{ j0}

L( j)I( ĵLE = j)

⇐⇒ L( j0)I( ĵLE , j0) ≥
∑

j∈J\{ j0}
L( j)I( ĵLE = j). (A.15)
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It follows from Theorem 3 that P( ĵLE , j0) → 0 as n → ∞ and p/n → c0. Since I( ĵLE , j0) ∼
B(1, P( ĵLE , j0)), by using Lemma A.5, we have

1
p

E
[
L( j0)I( ĵLE , j0)

]
=

n
p
δ j0 P( ĵLE , j0) + o(1),

as n→ ∞ and p/n→ c0. Notice that

n
p
δ j0 =

 c−1
0 δ j0,0 + o(1) ({ξ∗ , ∅} ∩ {c0 , 0})

0 ({ξ∗ = ∅} ∪ {c0 = 0})
. (A.16)

Since 0 < c−1
0 δ j0,0 < ∞, we have

1
p

E
[
L( j0)I( ĵLE , j0)

]
→ 0, (A.17)

as n→ ∞ and p/n→ c0. It follows from (A.15) and (A.17) that

1
p

∑
j∈J\{ j0}

E
[
L( j)I( ĵLE = j)

]
→ 0,

as n→ ∞ and p/n→ c0. This implies that

1
p

E
[
L( ĵLE)

]
=

1
p

E
[
L( j0)I( ĵLE = j0)

]
+ o(1)

=
1
p

E
[L( j0)

] − 1
p

E
[
L( j0)I( ĵLE , j0)

]
+ o(1)

=
1
p
R( j0) + o(1),

as n→ ∞ and p/n→ c0. By using the above result and (A.14), Lemma 6 is proved.

A.7. Proof of Lemma 7

We first give a lemma required for proving Lemma 7.

Lemma A.6 LetW− be a set of underspecified models which satisfy equation (16), i.e.,

W− =

{
j ∈ J−

∣∣∣∣∣∣ lim
n→∞,p/n→c0

p
nδ j

(
− n

n − p
+ α

)
= 0

}
.

Suppose that Assumptions A1 and A2 hold. The order of the selection probability of j ∈ W− by the

GCp is given by

P( ĵα = j) = O(n−r),

where r is any positive integer.

(Proof of Lemma A.6) Let q j = k jc∩ j∗ for any j ∈ J−, and let V,U1, . . . ,Uq j be mutually indepen-
dent random variables defined by V ∼ χ2

m and Ui ∼ χ2(nδ j,i), where δ j,i is a positive value satisfying
δ j,1 + · · · + δ j,q j = δ j and δi, j ≥ δ j/q2

j for all i ∈ {1, . . . , q j}. Here, m is given in (8) and δ j is given
by (6). Suppose that Assumption A1 holds. Then, from Yanagihara (2016b) or Oda and Yanagihara
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(2019), the probability of selecting j ∈ J− by a GCp is bounded as

P( ĵα = j) ≤
q j∑

i=1

P(Ui/V ≤ pα/(n − k)). (A.18)

Let γ j,i be a constant defined by

γ j,i =
1
δ j,i

(
p + nδ j,i

m − 2
− pα

n − k

)
( j ∈ J−, i = 1, . . . , q j).

From a simple calculation, we have

γ j,i =
n

m − 2
+

p(n + kp)
(m − 2)(n − k)(n − p)δ j,i

− p
(n − k)δ j,i

(
− n

n − p
+ α

)
. (A.19)

It follows from the relations δ j,i ≥ δ j/q2
j and q j ≤ k∗, the boundedness of 1/δ j, and the definition of

W− that

lim
n→∞,p/n→c0

p(n + kp)
(m − 2)(n − k)(n − p)δ j,i

= 0, lim
n→∞,p/n→c0

p
(n − k)δ j,i

(
− n

n − p
+ α

)
= 0. (A.20)

Using equations (A.19) and (A.20) yields

lim
n→∞,p/n→c0

γ j,i =
1

1 − c0
> 0.

Hence, γ j,i is positive for sufficiently large n or large n and p. This implies that for sufficiently large
n or large n and p

P
(Ui

V
≤ pα

n − k

)
= P

(
1
δ j,i

(
Ui

V
−

p + nδ j,i

m − 2

)
≤ −γ j,i

)
≤ P

(
1
δ j,i

∣∣∣∣∣Ui

V
−

p + nδ j,i

m − 2

∣∣∣∣∣ ≥ γ j,i

)
≤ 1

(γ j,iδ j,i)2r E

(Ui

V
−

p + nδ j,i

m − 2

)2r , (A.21)

where r is any positive integer. The results in Oda and Yanagihara (2019) indicate that

E

(Ui

V
−

p + nδ j,i

m − 2

)2r = O
(
n−rδ2r

j,i

)
. (A.22)

Substituting (A.21) and (A.22) into (A.18) yields P( ĵα = j) = O(n−r). Consequently, Lemma A.6 is
proved.

If α satisfies Condition C2, W− = J− holds. On the other hand, when α satisfies Condition C3,
for equation (16) to hold, it must be the case that δ j = ∞. Hence, if α satisfies Condition C3,
W− = Sc

− ∩ J− holds. Recall that r in Lemma A.6 is any positive integer. From Lemma A.6, the
selection probability of j ∈ W− can be expressed as

P( ĵα = j) =
M j

nϵ+1 ,

where M j is a constant independent of n and p, and ϵ is the positive integer defined in Assumption
A3. This implies that

n
p
δ jP( ĵα = j) =

1
p
δ j

nϵ
M j = 0,

as n→ ∞ and p/n→ c0. Consequently, Lemma 7 is proved.
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A.8. Proof of Lemma 8

From Lemma 5, if α satisfies Conditions C1 and C2 when {ξ∗ = ∅} ∪ {c0 = 0}, or Condition C3
when {ξ∗ , ∅} ∩ {c0 , 0}, the following equations are satisfied:

lim
n→∞,p/n→c0

P( ĵα , j0) = 0, lim
n→∞,p/n→c0

P( ĵα = j) = 0 (∀ j ∈ J\{ j0}),

where j0 is the asymptotically loss optimal model given by (19). Notice that

I( ĵα , j0) ∼ B
(
1, P( ĵα , j0)

)
, I( ĵα = j) ∼ B

(
1, P( ĵα = j)

)
, (∀ j ∈ J\{ j0}).

By using Lemma A.5 and (A.16), we have

1
p

E
[
L( j0)I( ĵα , j0)

]
=

n
p
δ j0 P( ĵα , j0) + o(1) = o(1) as n→ ∞, p/n→ c0. (A.23)

Recall that δ j = 0 holds for any j ∈ J+, or np−1δ j = O(1) as n → ∞ and p/n → c0 for any j ∈ S−
when c0 , 0, From these equations and Lemma 7, we can see that

n
p
δ jP( ĵα = j) =


0 (∀ j ∈ J+\{ j0})

o(1)


∀ j ∈ S−\{ j0} when c0 , 0
∀ j ∈ Sc

− ∩ J− when c0 , 0
∀ j ∈ J− when c0 = 0


=

 0 (∀ j ∈ J+\{ j0})
o(1) (∀ j ∈ J−\{ j0})

,

as n→ ∞ and p/n→ c0. It follows from the equation and Lemma A.5 that for any j ∈ J\{ j0}
1
p

E
[
L( j)I( ĵα = j)

]
=

n
p
δ jP( ĵα = j) + o(1) = o(1), (A.24)

as n→ ∞ and p/n→ c0. Notice that

1
p

E
[
L( ĵα)

]
=

1
p

∑
j∈J

E
[
L( j)I( ĵα = j)

]
=

1
p
R( j0) − 1

p
E

[
L( j0)I( ĵα , j0)

]
+

1
p

∑
j∈J\{ j0}

E
[
L( j)I( ĵα = j)

]
.

By substituting (A.23) and (A.24) into the above equation, Lemma 8 is proved.

A.9. Proof of Corollary 1

To prove Corollary 1, it is sufficient to show that α satisfying Condition C3 satisfies Condition C2
when {ξ∗ = ∅} ∪ {c0 = 0}. Recall that ξ∗ = ∅ ⇔ δ j → ∞ for any j ∈ J−. Notice that p/(nδ j) and
pα/(nδ j) converge to 0 when δ j → ∞ or c0 = 0. These convergences to 0 and n/(n− p)→ 1/(1−c0)
imply that

lim
n→∞,p/n→c0

p
nδ j

(
− n

n − p
+ α

)
= 0.

This indicates that Condition C2 holds when {ξ∗ = ∅} ∪ {c0 = 0}. Consequently, Corollary 1 is
proved.
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