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Abstract
The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA
matrix has hindered the wider applicability of Roy’s the largest root test (RLRT) though it was
proposed over six decades ago. Recent progress made by Johnstone (2009), Butler and Paige
(2011) and Chiani (2016) has greatly simplified the approximate and exact computation of the
critical values of RLRT. When datasets are high dimensional (HD), Chiani’s numerical algorithm
of exact computation may not give reliable results due to truncation error, and Johnstone’s ap-
proximation method via Tracy-Widom distribution is likely to give good approximation. In this
paper, we conduct comparative studies to study in which region the exact method gives reliable
numerical values, and in which region Johnstone’s method gives good quality approximation. We
formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies
in high dimensional setting to examine the robustness of RLRT against normality assumption in
populations. Our study provides support of RLRT robustness against non-normality in HD.

Keywords Roy’s largest root test · MANOVA · critical values · high dimension · Tracy-Widom
distribution · Robustness

Mathematics Subject Classification (2010) 62H10 · 62H15 · 62E20

1 Introduction

For 1 ≤ i ≤ q+1, let p-vectors xi,1, . . . ,xi,ni denote a random sample of size ni drawn from the i-th
population with multivariate normal distribution Np(µi,Σ). Let n = n1 + · · · + nq+1 denote the
total sample size. One common form of hypothesis testing involves testing the equality of group
means:

H0 : µ1 = µ2 = ... = µq+1 against H1 : H0 is false.

In the univariate parametric setting, there is essentially only one test, the analysis of variance
(ANOVA) test. However, in multivariate parametric setting, there is no unique test. The different
statistical tests on the equality of mean vectors from populations is broadly referred to as Multi-
variate Analysis of Variance (MANOVA). There are four MANOVA tests that have been given the
most attention: (i) the Wilk’s Lambda (WL) (also known as likelihood ratio test), (ii) the Lawley-
Hotelling trace criterion (LHTC), (iii) the Bartlett-Nanda-Pillai criterion (BNPC), and (iv) Roy’s
largest root test (RLRT) [1, p.334]. These four tests are functions of the non-zero eigenvalues of
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SbS
−1
e or SbS

−1
t , where Sb, Se and St = Sb + Se are respectively matrices of sums of squares and

products due to between-groups, within-groups and total variation. Moreover, these four tests are
also invariant. For a test to be invariant, it is necessary for the test to be a function of the the
non-zero eigenvalues of SbS

−1
e [1, pp.327-328] or [10, p.387]. See [10] for a recent review of “naive”

tests of signicance for high-dimensional mean vectors and covariance matrices.

This paper concerns the exact and approximate computation of the right-tail probability of the
largest eigenvalue of RLRT under the high dimensional (HD) framework; and their robustness
against departure from normality. The right-tail probability gives the p-value of RLRT; and HD
refers to the situation when the total sample size (n) and the number of variables (p) in each
observations of a random sample both tend to infinity such that p/n tends to a constant c ∈ (0, 1).
We shall call p the data dimension. When exact computation becomes impractical or not feasible
(see Section 3.1 for further details), we provide a guideline when the present approximation methods
are reasonably accurate.

MANOVA, and hence RLRT, finds many applications in different areas. A researcher could be
interested if a treatment is effective by comparing the means of several dependent variables between
the (multiple) treatment and control groups, such as differences in beliefs between male and female
high school students [21].

RLRT can also be applied in growth curve analysis; to determine (i) if a linear growth is appropriate,
(ii) if the population is to be stratified into different groups and (iii) if confidence bands can be
obtained from the expected growth curves [27]. RLRT can be used in noise signal detection [15, 22]
as well as calculating the probability that a given information rate is not supported due to variable
channel capacity [16]. RLRT is the preferred test statistic for a few researchers [8]. When the
outcome variables are highly inter-correlated, WL, LHTC and RLRT are more powerful than BNPC
[28, 32]. Simulation studies demonstrated that RLRT is the most powerful when the matrix of mean
vectors [µ1,µ2, . . . ,µq+1] is of rank 1 [23, 30].

Kritchman and Nadler (2009) derived asymptotic optimality of using the largest sample covariance
eigenvalue in testing the two hypotheses: no signals versus one signal of known strength with
known noise variance. Based on the sample eigenvalues, we can have an indication whether the
rank-one alternative in a given problem is satisfied. Moreover, Johnstone and Nadler (2017) derived
approximate power and sample size calculations for RLRT for rank-one alternatives, and Hou et al.
(2019) improved these approximate power functions to high-dimensional and finite-ranked cases.

When populations are normally distributed, the joint probability density function (pdf) of the
positive eigenvalues is explicitly known. In theory, the cumulative distribution function (CDF) of
the largest eigenvalue is a multiple integration problem. If the CDF of the largest eigenvalue can
be determined, then the desired quantile can be computed. However, when the number of groups,
q+ 1, is not small, the CDF of the largest eigenvalue becomes nontrivial to compute. This problem
has been studied by a number of authors [3, 4, 13] and references therein. Chiani (2016) provided
an algorithm for exact computation of the CDF using the incomplete Beta functions, Butler and
Paige (2011) computed the CDF by summing an infinite series, and Johnstone (2009) established
the Tracy-Widom (TW) approximation of the logit-transformed of the largest root.

In the HD framework, the exact methods proposed by Chiani (2016) and Butler and Paige (2011)
suffer from numerical stability issues. Chiani’s method involves computing the determinant of a
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matrix with very small entries computed from the incomplete beta function. In addition, Butler
and Paige (2011) method may suffer from long computation times. Some computations in Table 1
from Butler and Paige (2011) are reported to take two hours to compute. While Johnstone (2009)
TW approximation is accurate in high dimension, in practice the dimension is finite and thus the
approximation may not be accurate, especially in moderate dimensions.

The first goal is to provide recommendations on which method is appropriate under which condi-
tions; and to inform the reader of telltale signs in which the method fails. The second goal is to
examine the robustness of the critical values against departure from normality in the HD frame-
work. A common assumption is that the distributions of the populations from which the samples are
drawn are normal with a common covariance matrix. While robustness has been studied [23, 30],
these are done under the large sample framework, where p is fixed and n is large. Without assum-
ing normality in the population, Bai, Choi and Fujikoshi (2018) showed that for the WL, LHTC
and BNPC, a finite fourth moment was sufficient to establish robustness under the HD framework.
They proved that the limiting distribution of suitably scaled and centered statistic (WL, LHTC
and BNPC) converges to the same limiting distribution as does the populations that are normally
distributed. To the best of the authors’ knowledge, there is no similar result for RLRT.

One contribution is to provide empirical evidence of the robustness of the critical values of RLRT
against departure of normality under the HD framework. A significant implication of the robustness
is that it broadens the applicability of RLRT under HD to more populations which do not satisfy
the normality assumption. The critical values of the largest root test can be computed based
on Chiani’s (2016) algorithm or Johnstone’s (2009) Tracy-Widom approximation, both methods
assume normality in the populations.

We introduce notation used and two R functions for exact and approximate quantile computation
in Section 2. The methods for exact or approximate computation of the critical values are briefly
sketched in Section 3. Section 4 describes simulation studies for non-normal populations. Section 5
summarizes the results from our comparative studies. The paper ends with recommendation when
to compute exactly or approximately the desired critical values in Section 6.

2 Notation

Recall the notation in the beginning of Section 1, we denote the ith group sample mean vector
by x̄i = 1

ni

∑ni
k=1 xik and the overall sample mean vector by x̄ = 1

n(x̄1 + . . . + x̄n). Let nSb :=∑q+1
i=1 ni(x̄i − x̄)(x̄i − x̄)′ and nSe :=

∑q+1
i=1

∑ni
k=1(xik − x̄i)(xik − x̄i)

′ be the matrices of sums of
squares and products due to between-groups and within-groups respectively. Let St = Sb + Se,
then nSt denote the matrix of sums of squares and products due to the total variation. Apart from
RLRT, WL, LHTC and BNPC respectively are based on − log(|Se|/|St|), tr(SbS

−1
e ) and tr(SbS

−1
t ).

RLRT is based on the largest root Θ1 of SbS
−1
t or the largest root `1 of SbS

−1
e . Here, Θ1 > · · · > Θq

and `1 > · · · > `q are the non-zero eigenvalues of SbS
−1
t and SbS

−1
e , respectively. For more details

about these tests, see Anderson (2003) and Fujikoshi, Ulyanov and Shimizu (2010). Let us denote
the largest root test criterion as follows:

T = Θ1(p, q, n, F ), (2.1)
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where Θ1(p, q, n, F ) denotes the largest root of SbS
−1
t for data-dimension p, q+ 1 populations with

total sample size n where individual sample observation is drawn from population distribution F .
When F is multivariate normal, we will sometimes suppress the dependence of Θ1 on F ; and when
the context is clear, we simply refer it as Θ1. Under the normal populations assumption, computing
the exact null distribution of T , i.e. Θ1, for given p, q and n, has been studied by many authors; for
example, Krishnaiah and Chang (1971), Butler and Paige (2011) and Chiani (2016) and references
therein.

It is well-known that under the normal populations assumption, that nSb ∼ Wp(q,Σ), nSe ∼
Wp(n−q−1,Σ), nSt ∼Wp(n−1,Σ), and Sb and Se are independent [1, 7]. We may assume, without
loss of generality, that Σ = I. Denote the non-zero roots of SbS

−1
t by 0 < Θp∧q < · · · < Θ1 < 1,

where p∧q = min(p, q). The exact joint pdf of (Θ1, . . . ,Θp∧q), with support 0 < yp∧q < · · · < y1 < 1,
is given by (Johnstone 2009):

f(y1, . . . , yp∧q) = C1(p ∧ q, a, b)
p∧q∏
k=1

ya−1
k (1− yk)b−1

∏
1≤i<j≤p∧q

(yi − yj), (2.2)

where

p ∧ q 4
= q; (2.3)

a =
|q − p|+ 1

2

4
=
p− q + 1

2
; (2.4)

b =
n− p− q

2
; (2.5)

C1(p ∧ q, a, b) 4
= C1(q, a, b) = πq/2

q∏
i=1

Γ( i+2a+2b+q−2
2 )

Γ( i2)Γ( i+2a−1
2 )Γ( i+2b−1

2 )
, (2.6)

where
4
= is used since we assume that the data dimension (p) is always greater than the number of

groups less 1 (q), i.e., p ≥ q.

Our assumption of p ≥ q is motivated by HD MANOVA consideration. Butler and Paige (2011),
Chiani (2016) and (to a certain extent) Johnstone (2009) assume without loss of generality that
p ≤ q. Either assumption is acceptable as

Θ1(p, q, n)
D
= Θ1(q, p, n)

which can be derived from Equations (2.2) to (2.5). Here
D
= denotes equal in distribution. Another

equivalence links Θp∧q,the smallest root of SbS
−1
t , to Θ1, which states

Θ1(p, q, n)
D
= 1−Θq(n− p− 1, q, n), p ≥ q,
D
= 1−Θp(p, n− q − 1, n), q ≥ p,

which allows us to compute the CDF of Θp∧q. The TW approximation gives a general good
approximation of the left tail of Θp∧q.

Different authors adopt different notations. To assist the reader and facilitate better understanding,
we present the links between our notation and theirs in the Supplementary Appendix Table 2. For
the remaining sections, unless stated otherwise, we always assume p ≥ q.
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3 Comparative Studies

In this section, we compare and contrast the quality of numerical results of methods M1 to M4,
explained in Subsections 3.1-3.4 below, in computing the null distribution of Θ1 under a high-
dimensional asymptotic framework in which p, n→∞ satisfying p/n→ c ∈ (0, 1). From Equation
(2.2), the CDF of Θ1, FΘ1(θ1), is expressed as

FΘ1(θ1) =

∫
. . .

∫
0≤yq<...<y1≤θ1

f(y1, y2, ..., yq) dy1 . . . dyq. (3.7)

It is effectively an integration problem to compute FΘ1(θ1), doable in principle but computationally
non-trivial when q is large.

We focus on the methods of Butler and Paige (2011), Chiani (2016) and Johnstone (2009). Butler
and Paige (2011), and Chiani (2016) provided exact computations by expressing the CDF of Θ1

as a function of the square root of the determinant of a skew-symmetric matrix via de Bruijn’s
identity (1955). To evaluate the terms in the matrix, Butler and Paige (2011) expressed the terms
as a sum of an infinite series while Chiani (2016) used incomplete beta functions. Johnstone (2009)
established the Tracy-Widom (TW) approximation of the logit-transformed of the largest root Θ1.

The comparison study is necessary as Chiani’s method is applicable for moderate a and b whereas
TW approximation is good when a and b are large. We are interested in the upper quantiles of Θ1,
particularly, the 0.9, 0.95, 0.99 quantiles. We consider c = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.6, 0.7, 0.8, 0.9, q = 1, 3, 7, and equal group sample size with ni = 20, 40, 60, 80, 100.

To compare the different methods, two different R functions are used: (i) the doubleWishart(θ1, q, a, b)
function from the rootWishart package written by Turgeon (2018) which implements Chiani’s (2016)
algorithm to provide exact computations; and (ii) the ptw(θ1) function from the RMTstat package
written by Johnstone et al. (2014) which implements his approximations. The doubleWishart

function uses multiple precision library and hence is able to provide more decimal points than base
R, increasing accuracy and reducing round off errors. The ptw function uses a lookup table. The
values were pre-computed at 769 values uniformly spaced between -10 and 6 using MATLAB’s bvp4c
solver to a minimum accuracy of about 3.4×10−08.

3.1 rootWishart

Butler and Paige (2011), and Chiani (2016) show that Equation (3.7) can be rewritten as

FΘ1(θ1) = P (Θ1 ≤ θ1) = C1(q, a, b)
√
|A(θ1)| (3.8)

where C1(q, a, b) is given by Equation (2.6), | · | denotes the determinant of a matrix, and A(θ1) is
a skew-symmetric matrix of order size q × q if q is even, and (q + 1)× (q + 1) if q is odd.

Chiani (2016) gave an efficient algorithm to compute the CDF, from which we can compute the
critical values. The entries of the skew-symmetric matrix A(θ1) involves incomplete beta functions,
B(x; c, d) =

∫ x
0 t

c−1(1− t)d−1 dt. His algorithm assumes the input of incomplete beta function, and
he derives recurrence relations of entries of A(θ1). For more details, see Chiani (2016).
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Figure 1: CDF of Θ1 when ni = 20, c = 0.5, 0 ≤ θ1 ≤ 1

We point out two computational technicalities inherent in the high-dimensional setting. First, the
normalization constant,

C1(q, a, b) = πq/2
q∏

k=1

Γ
(

2a+2b+q+k−2
2

)
Γ
(
k
2

)
Γ
(

2a+k−1
2

)
Γ
(

2b+k−1
2

) ,
poses problem for R software for large a and b. To overcome this technicality, we suggest users first
compute logC1(q, a, b) as the software handles log Γ(x) for very large x well. Second, for large a
and b, as in our high-dimensional case, we need to guard the accuracy of incomplete beta functions
due to truncation because xa−1(1 − x)b−1 will be very small for large a and b. To illustrate our
second point, we plotted the CDF of Θ1 for a fixed ni = 20 and c = 0.5, varying q.

From Figure 1 (also Figure 6 in the supplementary material), the distribution of Θ1 becomes very
“peaked” as q increases. Hence when q is very large, a small error in estimating the quantile leads
to substantial error in estimating the probability, resulting in numerical instability. In addition, in
order to ensure a high accuracy in estimating the quantile, any root finding algorithm would take
a much longer computational time due to the level of precision required. In fact, straightforward
implementation of his algorithm in R leads to false zero entries of A(θ1).

Chiani (2016) implemented his algorithm in Wolfram Mathematica. In his website, https://sites.
google.com/site/marcochianigroup/articles, the codes can be found. As Wolfram Mathemat-
ica allows detailed control over precision, there were no issues in terms of precision to our knowledge.
However, Wolfram Mathematica is not freely available. Implementing Chiani’s (2016) algorithm in
programming languages like Python and R would require multi-precision libraries. For example,
when we tried to compute the 95th percentile for q = 7, ni = 40, p = 32 using Base R, we were
unable to get an estimate using Chiani’s algorithm. Fortunately, Turgeon (2018) created an R
package, rootWishart, implementing Chiani’s (2016) algorithm using multi-precision linear alge-
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bra. As the package only provides the CDF, the uniroot function in R was used to obtain the
percentiles. Using rootWishart gives us an estimate of 0.216909 which agrees with our simulation
results and the Tracy-Widom approximation, both methods are to be described below. We denote
the rootWishart method as M1.

3.2 Tracy-Widom Approximation

Under the assumption that p is even and that p, q = q(p), n = n(p)→∞ satisfying limp→∞
q
n > 0

and limp→∞
p

n−q < 1, Johnstone (2009) showed that for a ≥ −1/2, b ≥ 0,

log( Θ1(p,q,n)
1−Θ1(p,q,n))− µ(p, q, n)

σ(p, q, n)
D−→ TW1

where
D−→ denotes convergence in distribution and TW1 is a random variable that follows the Tracy-

Widom (TW) distribution of order 1 (Johnstone, 2009). The parameters µ(p, q, n) and σ(p, q, n)
are given by

µ = 2 log tan (
γ + φ

2
),

σ = 3

√
16

(n− 2)2

1

sin2(γ + φ) sin(γ) sin(φ)
,

γ = arccos(
n− 2q − 1

n− 2
),

φ = arccos(
n− 2p− 1

n− 2
).

Johnstone et al. (2014) created an R package RMTstat to compute the density, distribution and
quantile functions as well as a random number generator for the TW distribution. We compute the
centering and scaling terms according to the expressions above, and the upper percentage point of
TW1 with this package. We refer this as method M2.

3.3 Monte Carlo Method

As computing the CDF of Θ1 is a multi-dimensional integration problem, one possible solution
would be to apply Monte Carlo methods to approximate the integral. We can rewrite the multiple
integral as the expectation of a function of independent Beta random variables as follows

FΘ1(θ1)

=

∫
. . .

∫
0≤yq<...<y1≤θ1

C1(q, a, b)
q∏

k=1

ya−1
k (1− yk)b−1

∏
1≤i<j≤q

(yi − yj) dy1 . . . dyq

= E
[
I{0 ≤ Yq < ... < Y1 ≤ θ1}

(Γ(a)Γ(b)

Γ(a+ b)

)q
C1(q, a, b)

∏
1≤i<j≤q

(Yi − Yj)
]
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where Y1, Y2, . . . , Yq are i.i.d. Beta(a, b) random variables and Γ(·) is the Gamma function.

To approximate the CDF of Θ1, first we generate q i.i.d. Beta(a, b) random variables y1, y2, . . . , yq.

If max1≤i≤q yi > θ1, return 0; else compute
(

Γ(a)Γ(b)
Γ(a+b)

)q
C1(q, a, b)

∏
1≤i<j≤q(yi − yj). We repeat

these steps 10,000 times and take the mean of the estimates to obtain an approximation for the
CDF of Θ1. Similar to M1, the uniroot function in R was used to obtain the percentiles. We
denote the Monte Carlo method as M3.

3.4 Simulation

We also conducted simulations where the underlying populations are simulated under the standard
normal distribution, labelled as M4. Further details can be found in Section 4.

We will use M1 as the benchmark for the comparative studies. We consider M4 because it gives
us a “rough” benchmark to gauge if rootWishart is giving a sensible value. Though in theory
rootWishart gives the accurate value, it may still possibly give erroneous result when a and b are
large due to truncation.

4 Simulation studies for non-normal populations

Motivated by relevance to the MANOVA testing problem, we are interested in how the upper-tail
quantiles differ given different population distributions. We investigate the 90th, 95th and 99th
percentiles of Θ1(p, q, n, F ) for various (p, q, n) in a high-dimensional framework p/n → c ∈ (0, 1).
Seven distributions are considered: (i) N(0,1), (ii) t3, (iii) t4, (iv) t5, (v) χ2

3, (vi) Exponential with
mean 1, and (vii) Poisson with mean 1. Their standardized versions (i.e., mean 0 and variance
1) are referred to as F1, . . . F7 accordingly. Distributions (i) to (iv) are symmetric, whereas (v) to
(vii) are skewed. Moreover, the finite fourth moment assumption in [2] does not hold for F2 and
F3. We shall restrict ourselves to consider equal group sample size, i.e., n1 = n2 = . . . = nq+1;
and hence the total sample size is n = (q + 1)n1. The choice of our simulation parameters are as
follows: c = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, n1 = 20, 40, 60, 80, 100
and q = 1, 3, 7.

The simulation steps are as follows: for a fixed j = 1, . . . , 7, n1, q and c, let p = nc. We first
simulate a random matrix Y of size p× n. The entries of the matrix are simulated independently
from Fj (recall that Fj is standardized to mean 0 and variance 1). Let Y = [y1,y2, . . . ,yn].
Compute the overall mean vector ȳ := (y1 +y2 + . . .+yn)/n and the q+1 population mean vectors
ȳi := 1

ni

∑
k∈Group i yk, i = 1, . . . , q + 1. From Y, we compute St = 1

n

∑n
l=1(yl − ȳ)(yl − ȳ)′. We

represent Sb = XX′ where

X =

[√
n1

n
(ȳ1 − ȳ),

√
n2

n
(ȳ2 − ȳ), . . . ,

√
nq+1

n
(ȳq+1 − ȳ)

]

It can be shown that SbS
−1
t and X′S−1

t X have the same set of q positive eigenvalues. However,
computationally it is much easier to deal with the second matrix as it is of order (q + 1)× (q + 1)
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whereas the first is of order p× p (note that p is much greater than q and is increasing with n). We
then extract the largest eigenvalue θ1. We repeat this procedure 10,000 times.

5 Results

In this section, we present the results of the comparison tests among the different methods M1 to
M4. Recall M1 uses the rootWishart package implemented by Turgeon (2018) which is based on
Chaini’s (2016) algorithm. M2 uses the RMTstat package based on the Tracy-Widom approxima-
tion (Johnstone 2009). M3 uses Monte Carlo and M4 uses simulations. We end this section by
presenting the results of our simulations over 7 different distributions.

5.1 Comparison of Method 1 with Butler and Paige

We compared the runtimes for Butler and Paige’s (2011) method against M1. In Butler and Paige
(2011) Table 1, when p = q = 24, n = 55 (our notation) or m = k = 24, n = 30 (Butler and Paige’s
notation), the estimated 95th percentile is 0.99161 with a runtime of almost two hours. Using M1,
the average of ten runtimes is 12.55 seconds (min = 11.12 secs, max = 13.74 secs). The estimated
95th percentile from M1 is 0.9916111, which agrees with Butler and Paige up to the fifth decimal
places.

When q is large, R package rootWishart, even with multi-precision libraries, fails. For example,
warnings are raised when attempting to compute the 95th percentile for q = 127, ni = 100, c = 0.05
using M1.

5.2 Comparison of Methods 1 to 4

We compared the estimation of the 90th, 95th and 99th percentiles using M2 to M4, with M1 as the
benchmark. We considered c = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, q =
1, 3, 7, ni = 20, 40, 60, 80, 100. The absolute percentage errors, 100|θ̂x(p, q, n)−θ̂M1(p, q, n)|/θ̂M1(p, q, n),
are computed. Here θ̂x(p, q, n) is the quantile generated using method M2, M3 or M4. See
Excel v2 Tab 1 chiani_algo in Supplementary Material for the absolute percentage errors.

For M2, when q = 1, the absolute percentage errors were above 1% and increased with c, the
percentile and decreases with ni. The absolute percentage errors decreased when q = 3 compared
to q = 1. When q = 7, almost all the absolute percentage errors were below 1%.

For M3, when q = 1, most of the absolute percentage errors were below 1%. When q = 3, the
absolute percentage errors increased. Particularly, many of the absolute percentage errors for the
99th percentile were very high. When q = 7, M3 suffers even higher absolute percentage errors.
These suggest that M3 should not be used.

Among the three methods, the quantiles obtained from M4 were the most accurate, where most of
the absolute percentage errors were below 1% and all of the absolute percentage errors were below
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3%. For details, refer to Excel v2 Tab 2 Large_q_rootwishart_TW_error in the Supplementary
Material.

We further considered q ∈ {15, 31, 63} for (i) M1 and (ii) M2 with the same c and ni parameters.
We reported the absolute percentage error, defined as 100|θ̂M1(p, q, n) − θ̂M2(p, q, n)|/θ̂M1(p, q, n)
where θ̂M1(p, q, n) and θ̂M2(p, q, n) are respectively the estimated quantile using M1 and M2. M2
returned an estimate for all the possible combinations of our parameters without warnings or errors
but M1 returned errors for some combinations of the parameters.

We observed that when q = 15, the absolute percentage error was always less than 1% except for
1 out of 210 cases, indicating that M2 was good. In that one case, when ni = 20, c = 0.05 and the
99th percentile, the absolute percentage error was 1.36%. When q = 31, the approximation was
good (absolute percentage error was less than 1%) except when c ≥ 0.8. When c ≥ 0.8, M1 returned
either a similar value to M2, a value very different or an error depending on the choice of ni and
c. When q = 63, ni ∈ {20, 40} and c ∈ {0.05, 0.1}, the estimates were very similar although the
absolute percentage error for the 95th and 99th percentiles for q = 63, ni = 40, c = 0.1 were 1.39%
and 2.94% respectively. The absolute percentage error when q = 63, ni = 20, c = 0.15 was also
below 1%. For other choice of parameters when q = 63, M1 was numerically unstable in estimating
the quantiles. Details can be found in Excel v2 Tab 3 quantiles_TW_q2047 in Supplementary
Material.

We tested M2 for values of q up to 2047 = 211−1 and no errors messages or warnings were reported.
For large values of q, the Tracy-Widom distribution was a good approximation.

We end this subsection with a note. Chiani (2016, p.470) described an approximation to the Tracy-
Widom distribution using a shifted-Gamma distribution. We observed that the Tracy-Widom
approximation was very similar to the shifted-Gamma distribution. All the absolute percentage
errors between those two approximations were very similar and decreased as q increased.

5.3 The Normality Assumption

From the simulations described in Section 4, we measure the variations of the quantiles across
different distributions in our simulation studies in two ways: the coefficient of variation (CV) and
the distance between the theoretical quantile and the empirical quantile over seven distributions
for data dimension p, number of populations q + 1 and fixed batch size ni. Let θ̄M4(p, q, n) =∑7
j=1 θ̂M4(p, q, n, Fj)/7. We then computed the CV (or relative standard deviation):

CV(p, q, n) =

{∑7
j=1

[
θ̂M4(p, q, n, Fj)− θ̄M4(p, q, n)

]2
/6

}1/2

θ̄M4(p, q, n)
.

The distance between the theoretical quantile and the empirical quantiles generated by Fj for
1 ≤ j ≤ 7 for data dimension p, number of populations q + 1 and fixed batch size ni is defined by

dj(p, q, n) = |θ̂M4(p, q, n, Fj)− θM1(p, q, n, F1)|,

where θM1(p, q, n, F1) is computed using the rootWishart package.
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Figure 2: Coefficient of Variation computed based on the empirical percentiles generated from the
7 distributions for the 90th, 95th and 99th percentiles.
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Figure 3: Absolute deviation computed based on the 95% empirical percentiles generated from the
7 distributions.
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From Figure (2), we observed that the CV decreases with an increase in ni, q, c and the quan-
tiles. From Figure (3), we plotted the absolute deviations for the 95th percentile. Due to space
consideration, the absolute deviations for the 90th and 99th percentiles were reported in the Sup-
plementary Material. The results were similar across the 3 different percentiles. Similar to the
CV, the absolute deviations decreased with an increase in ni, q, c and the percentiles. We observed
that the percentiles generated by the t3 distribution, which does not have a finite fourth moment,
had the highest absolute deviation in many of the cases. Skewness as in χ2

3 and Exponential with
mean 1 also seemed to affect the absolute error. Expectedly, the percentiles generated from the
N(0,1) distribution had the least absolute deviation in many of the cases since θM1(p, q, n, F1) was
computed assuming the distribution was normal. Nonetheless, we observed that the errors were
very small (except when both ni and q were small) which suggests that Θ1 was robust against the
underlying distribution. A consequence of the robustness was that we could use Chiani’s (2016)
algorithm or the Tracy-Widom approximation to compute the critical values even the underlying
population distribution may not be normal.

6 Recommendations and Concluding Remarks

We recommend using Chiani’s (2016) algorithm with multi-precision libraries to compute the quan-
tiles whenever it is possible. This can be done via the R package rootWishart implemented by
Turgeon (2018). For large parameters (q, a and/or b) resulting from a large sample size and/or
large data dimension, we can use the Tracy-Widom distribution to obtain the quantiles via the R
package RMTstat. Specifically, our recommendations to compute the critical values of RLRT in
MANOVA are

• when q ≤ 15, use rootWishart;

• when 16 ≤ q ≤ 31 and p < 0.8n, use rootWishart;

• when 16 ≤ q ≤ 31 and p ≥ 0.8n, use RMTstat;

• when q ≥ 32, use RMTstat.

In addition, there are some telltale signs we can use to assess whether rootWishart fails to give
sensible values. When these signs happen, we recommend to use the estimate given by RMTstat
instead. The first sign would be to evaluate the CDF at θ1 = 1, which is 1. However, due to
numerical instability, it is possible that 0 or some value greater than 1 is returned. Table 1 shows
some of the problems we encountered when we implemented Chiani’s (2016) algorithm on Base R
without using multi-precision libraries.

Table 1: Issues with numerical stability

p q n θ1 FΘ1(θ1) in Base R FΘ1(θ1) in RootWishart

432 7 481 1 18430.81 1
720 7 801 1 0 1
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The second sign would be to compute the absolute percentage error
100|θ̂M1(p, q, n) − θ̂M2(p, q, n)|/θ̂M1(p, q, n) where θ̂M1(p, q, n) is the estimated quantile using M1
and θ̂M2(p, q, n) is the estimated quantile using M2. For q ≥ 15, our calculations show that the
percentage error should be below 1%. If the percentage error (when q ≥ 15) is greater than 1%, we
think that the Tracy-Widom approximation is more reliable. For large values of q, the Tracy-Widom
distribution is a good approximation.

In conclusion, we are interested in computing the multiple integral of the joint probability density
function of the q non-zero roots of SbS

−1
t . This integration problem is motivated by Roy’s Largest

Root test, where the p-value of the test is the right tail probability of the largest root of SbS
−1
t .

The solution to this problem can be applied to compute the left tail probability of the smallest
root of SbS

−1
t (Johnstone 2009) and leads us to compute the joint probability of the largest and

smallest root of SbS
−1
t . In addition, although we focused on the problem of testing the equality of

the p dimensional mean vectors for q + 1 groups, there are two other hypothesis testing problems
in multivariate analysis where the multiple integral of Equation (2.2) with suitably chosen a and b
is of interest (Pillai 1955), namely,

1. Testing the equality of covariance matrices of two p-variate normal populations: letting a =
(n1 − p)/2 and b = (n2 − p)/2 where n1 and n2 denote sample sizes drawn from the first and
second populations.

2. Testing independence between a p-set and a q-set of variates from a random sample of size n
of a (p+q)-variate normal population with p ≤ q where a = (q−p+1)/2 and b = (n−p−q)/2.

Our simulation results provide support of robustness in the HD MANOVA setting. This leads us
to surmise that the above two problems may also be robust against non-normality assumption,
although further simulation studies is warranted.
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Figure 4: Absolute deviation computed based on the 90% empirical quantiles generated from the
7 distributions
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Figure 5: Absolute deviation computed based on the 99% empirical quantiles generated from the
7 distributions
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Figure 6: CDF of Θ1 when (a) ni = 20, q = 7 , (b) c = 0.5, q = 1

Table 2: Comparison of Notations for MANOVA setting

Ours Butler & Paige Chiani Johnstone

Data dimension p k s p
No. of groups q + 1 m+ 1 2m+ s+ 2 n+ 1

Group size ni - - -

Sample size n =
∑q+1
i=1 ni n+m+ 1 2(m+ n+ s+ 1) + 1 m+ n+ 1

Shape Parameter a (p− q + 1)/2 (m− k + 1)/2 m+ 1 (n− p+ 1)/2
Shape Parameter b (n− p− q)/2 (n− k + 1)/2 n+ 1 (m− p+ 1)/2

Assumption p ≥ q k ≤ m −1/2 ≤ m p ≤ n
n− q − 1 ≥ p k ≤ n −1/2 ≤ n p ≤ m
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