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Abstract

C. R. Rao has made various significant contributions to multivariate

analysis. Among them, we consider the following topics: (i) Rao’s

U -statistic in discriminant analysis, (ii) MANOVA tests, (iii) Asymp-

totic expansion and Rao’s F approximation for Λ statistic, (iv) Growth

curve analysis, and (v) Information criteria for the selection of vari-

ables. Some of these were introduced at the dawn of multivariate

analysis. Under topic (v), we also discuss recent developments on the

selection of variables in discriminant analysis.
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1. Introduction

In this paper we consider some important contributions to multivariate anal-

ysis due to C. R. Rao, and overview associated developments. In Section 2,

we focus on Rao’s U -statistic for additional information in two-group discrim-

inant analysis. This research leads to a development of statistical methods

for the selection of variables. In Section 3, multivariate analysis of variance

(MANOVA) problems are discussed, based on Rao (1948). We note that Rao

developed various types of tests based on real data, which are essentially LR

tests. One of these is to test an additional information hypothesis for a set of

response variables. Section 4 considers the distribution of a Lambda statis-

tic, Λp(q, n − q), which appears as the null distribution for various tests,

including a MANOVA test. It is noted that an asymptotic expansion of

T = −{n − (p + q + 1)/2}Λp(q, n − q) was first obtained by Rao (1948).

Afterwards, Box (1952) gave an asymptotic expansion for a class of statistics

including T . Rao (1952) proposed a highly accurate F approximation for

a transformed version of Λp(q, n − q). Section 5 is concerned with analysis

of growth curve data. Rao (1958, 1965) introduced two types of models for

such data and developed statistical inference of the growth curve models.

It is important to examine whether a set of variables has additional infor-

mation in the presence of a given set of variables. Such notions were discussed

by Rao and others in various models. Applying information criteria such as

AIC and BIC to such models, variable selection methods have been proposed.

After explaining these, in Section 6, we provide more detail on discriminant

analysis.

We note that there have been many other important contributions to

multivariate analysis due to Rao that are not covered in this paper, some of

which are concerned with topics in the following areas: (a) Factor analysis

(Rao (1955), etc.). (b) Principal component analysis (Rao (1964), etc.). (c)

Correspondence analysis (Rao (1997), etc.). (d) Separation theorems and
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reduction of dimensionality (Rao (1979), etc.).

2. Rao’s U-Statistic in Discriminant Analysis

In two-group discriminant analysis, Rao (1946) investigated whether some

variables can be dropped without losing discriminative information. One

of his motivations was to reduce computational problems, in addition to

enabling efficient discrimination. He proposed the following test of an addi-

tional information hypothesis, which determines whether augmenting a given

set of p variables with another set of q variables provides additional discrim-

ination between two populations. Suppose that there are ni samples from

(p+q)-variate populations, and let D2
p+q and D2

p be the squared Mahalanobis

distances based on the (p+ q) variate and the p variate. He proposed a test

statistic

U =
n− (p+ q)− 1

q

n1n2(D
2
p+q −D2

p)

n(n− 2) + n1n2D2
p

. (2.1)

whose null distribution is an F -distribution with degrees of freedom q and

n− (p+ q)− 1, where n = n1 + n2. The statistics U or c(D2
p+q −D2

p)/{n−
2 + cD2

p}, where c = n1n2/n, were named Rao’s U -statistic by Kshirsagar

(1972). The test based on U -statistic is called U -test.

The above additional information hypothesis can be formulated as follows.

In two-group discriminant analysis we have two populations Πi, i = 1, 2, and

ni observations from Πi of p-dimensional variate Y . The mean vectors of Y

when Y ∈ Πi are

E(Y | Πi) = µ(i), i = 1, 2,

where it is assumed that the covariance matrices are the same, i.e., Var(Y |Πi)

= Σ. In discriminant analysis, we are interested in which set of variables are

important, or which set of variables are redundant. Let Y be decomposed as

Y = (Y ′
1 ,Y

′
2 )

′ where Yi; pi× 1. Let us formulate the notion that Y2 provides

no additional information for the discriminant analysis in the presence of Y1,
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or simply that Y1 is sufficient or Y2 is redundant. We refer to such a notion

as the sufficiency of Y1 or the redundancy of Y2.

When the parameters are known, it is natural to classify a new observation

Y into Π1 if

(Y − µ(1))′Σ−1(Y − µ(1)) < (Y − µ(2))′Σ−1(Y − µ(2)) (2.2)

and otherwise classify Y into Π2. This expression (2.2) is equivalent to

L(Y ,µ(1),µ(2),Σ) > 0, where

L(Y ,µ(1),µ(2),Σ) = (µ1 − µ2)
′Σ−1Y − 1

2
(µ1 − µ2)

′Σ−1(µ1 − µ2), (2.3)

which is called the population discriminant function. The coefficients of the

population discriminant function are given by

β = Σ−1(µ(1) − µ(2)) = (β′
1,β

′
2)

′,

where β1 : p1× 1 and β2 : p2× 1. One way to define the redundancy of Y2 is

to define it as β2 = 0. Let δ and δ1 be the population Mahalanobis distances

between Π1 and Π2 based on Y and Y1, respectively. Then,

δ2 = (µ(1) − µ(2))′Σ−1(µ(1) − µ(2)),

δ21 = (µ
(1)
1 − µ

(2)
1 )′Σ−1

11 (µ
(1)
1 − µ

(2)
1 ),

where µ(i) and Σ are partitioned as

µ(i) =

(
µ

(i)
1

µ
(i)
2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (2.4)

µ
(g)
i : pi × 1, g = 1, 2 and Σij : pi × pj. It is also reasonable to define the

redundancy of Y2 as δ2 = δ21. Note that we have

δ2 = δ21 + δ22·1, (2.5)

where

δ22·1 = (µ
(1)
2·1 − µ

(2)
2·1)

′Σ−1
22·1(µ

(1)
2·1 − µ

(2)
2·1),

Σ22·1 = Σ22 −Σ21Σ
−1
11 Σ12,

µ
(i)
2·1 = µ

(i)
2 −Σ21Σ

−1
11 µ

(i)
1 , i = 1, 2.
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This relation is obtained by substituting a well-known inverse matrix formula,

Σ−1 =

(
Σ−1

11 O
O O

)
+

(
−Σ−1

11 Σ12

Ip−k

)
Σ−1

22·1
(
−Σ21Σ

−1
11 Ip−k

)
for Σ−1 in δ2. On the other hand, the coefficient vector of the linear discrim-

inant function is expressed as

β1 = Σ−1
11 (µ

(1)
1 − µ

(2)
1 )−Σ−1

11 Σ12β2, β2 = Σ−1
22·1(µ

(1)
2·1 − µ

(2)
2·1).

From these results, we can see that, as proved by Rao (1970), the following

three statements are equivalent:

(i) δ2 = δ21, (ii) µ
(1)
2·1 = µ

(2)
2·1, (iii) β2 = 0.

The second statement is related to the equality of conditional means. In fact

E(Y
(i)
2 | Y (i)

1 ) = µ
(i)
2 +Σ21Σ

−1
11 (Y

(i)
1 − µ

(i)
1 )

= µ
(i)
2·1 +Σ21Σ

−1
11 Y

(i)
1 , i = 1, 2. (2.6)

Statements (i) and (iii) help in understanding that Y2 provides no addi-

tional information for the discriminant analysis in the presence of Y1. State-

ment (iii) is used for obtaining a likelihood ratio test for (i) or (iii), which

is equivalent to a U -test. Statements (i), (ii) and (iii) and their equivalence

were extended to the case of several groups by Fujikoshi (1982). Gupta et

al. (2006) derive a large sample asymptotic expansion of Rao’s U -statistic

under nonnormality. Pynnönen (1987) extended the notion of redundancy

to the case where the covariance matrices are different.

In general, it is important to formulate that a subset of response or ex-

planatory variables is sufficient, or the set of remainder variables has no

additional information or redundant, as in discriminant analysis. It is also

important to extend statistical inferences for such formulations. For some

of such results, see Fujikoshi (1989, 1992). In section 6, we see that such

formulations are used in variable selection methods.
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3. MANOVA Tests

Rao made many important contributions to MANOVA through the anal-

ysis of various real data. First we note that he gives an example in his

book (1952) where Mahalanobis D2 (or Hotelling T 2) based on two variables

showed no significance between the two populations; whereas two sample t-

tests based on each of the variables were highly significant. This is the first

example of what is called the “curse of dimensionality” in multivariate anal-

ysis, which was named as Rao’s paradox by Healy (1969) and Rencher (2002,

p.116). Rencher (2002) explained this paradox in detail, and also showed

the situation that, conversely, the multivariate test is more powerful in some

situations, despite the univariate tests are not being significant. In general,

the “curse of dimensionality” phrase was introduced by Bellman (1957) for

describing the problem caused by the exponential increase in volume asso-

ciated with adding extra dimensions to the Euclidean space. When we are

concerned with the analysis of a p variate, we might be concerned with the

analysis of various subsets of the p variate. Related to this problem, Rao

(1966a) gave conditions under which additional variables are useful in tests

of significance.

As in a typical MANOVA model, consider a multivariate one-way anal-

ysis of variance model, in which we measure p dependent variables on each

experimental unit instead of just one variable. We consider q treatments

and assign ni subjects to the ith treatment. It is assumed that all of the

n (= n1 + · · · + nq) observations are normally distributed with the com-

mon covariance matrix Σ. Let Yi1, . . . ,Yini
be samples from the ith treat-

ment group Np(µ
(i),Σ). For testing the equality of the mean vectors, i.e.,

H0 : µ
(1) = · · · = µ(q), let B and W be the matrices of sums of squares and

products due to treatments (between groups) and errors (within groups),

respectively. These matrices are defined by

B =

q∑
i=1

ni(Ȳi· − Ȳ··)(Ȳi· − Ȳ··)
′, W =

q∑
i=1

ni∑
j=1

(Yij − Ȳi·)(Yij − Ȳi·)
′
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where Ȳi· = (1/ni)
∑ni

j=1 Yij and Ȳ·· = (1/n)
∑q

i=1

∑ni

j=1 Yij. Then, underH0,

B andW are independently distributed as Wishart distributions Wp(q−1,Σ)

and Wp(n − q,Σ), respectively. Letting T = B + W, an LR test for H0 is

based on Λ = |W|/|T|, whose null distribution does not depend on Σ and is

denoted by Λp(q−1, n− q). Such Λ was called Wilks Lambda in Rao (1948),

based on the underlying theory of Λ due to Wilks (1932).

In MANOVA, there are two types of problems. One is the problem of

comparing the mean vectors as in the above one-way MANOVA model. The

other is the problem of comparing within the mean vectors. Rao (1948)

gave various types of MANOVA methods through real data, most of which

can also be formulated as a general testing problem in a multivariate linear

model. A multivariate linear model is given by

Y = AΘ+ E, (3.1)

where A is an n × k given matrix and Θ is a k × p unknown parameter

matrix. It is assumed that the rows of the error matrix E are independently

distributed as a p-variate normal distribution with mean zero and unknown

covariance matrix Σ, i.e., Np(0,Σ). Various hypotheses are expressed as

Hg : CΘD = O, (3.2)

where C and D are given matrices of c × k and p × d with ranks c and d,

respectively. In fact, a relation between the row vectors of Θ and a relation

within the row vectors of Θ are expressed by respectively defining C and D,

as appropriate. The likelihood ratio test is based on

Λ =
|Se|

|Se + Sh|
=

|Se|
|St|

, (3.3)

whose null distribution is Λd(c, n− k), where

Sh = {C(X′X)−1X′YD}′{C(X′X)−1C′}−1C(X′X)−1X′YD,

Se = D′Y′(In −PA)YD,

St = Sh + Sw.
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Rao (1948) proposed a test for whether Y2 = (Yk+1, . . . , Yp)
′ brings out

further differences in q populations when the differences due to Y1 = (Y1, . . . , Yk)
′

are removed. Let us consider this problem in a multivariate one-way MANOVA

or multi-group discriminant model. Such an additional information hypoth-

esis may be defined as

µ
(1)
2·1 = · · · = µ

(q)
2·1, (3.4)

where µ
(i)
2·1 = µ

(i)
2 − Σ21Σ

−1
11 µ

(i)
1 , i = 1, . . . , q. Here, µ(i) and Σ have been

decomposed as in (2.4). Let us decompose B and W as

B =

(
B11 B12

B21 B22

)
, W =

(
W11 W12

W21 W22

)
,

and decompose T similarly. Then, the LR test is based on

Λ2·1 =
|W|/|W11|
|T|/|T11|

=
|W22·1|
|T22·1|

, (3.5)

where W22·1 = W21 −W21W
−1
11 W21 and T22·1 = T21 − T21T

−1
11 T21. The null

distribution is Λp−k(q − 1, n − q − k). For a proof of the result, see, for

example, Fujikoshi et al. (2010, Theorem 3.3.2).

4. Asymptotic expansion and Rao’s F approx-

imation for Λ statistic

We consider the lambda distribution, defined as the distribution of

Λ =
|W|

|W + B|
∼ Λp(q, n− q), (4.1)

where B and W are independently distributed and follow the Wishart dis-

tributions Wp(q,Σ) and Wp(n − q,Σ), respectively. Such Λ appears, for

example, as a likelihood ratio test for testing the equality of mean vectors

µi, i = 1, . . . , q + 1, based on an Ni sample from Np(µi,Σ). In this case,

N = N1+ · · ·+Nq+1 and n = N−1. When we consider the distribution of Λ,
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we may assume Σ = Ip. The likelihood ratio criterion is based on λ = Λn/2.

The hth moment of Λ is given by

E[Λh] =

p∏
j=1

Γ[1
2
(n− q − j + 1) + h]Γ[1

2
(n− j + 1)]

Γ[1
2
(n− q − j + 1)]Γ[1

2
(n− j + 1) + h]

. (4.2)

We consider an asymptotic expansion of the distribution of −2ρ log Λn/2 with

a Bartlett correction factor ρ under a large sample framework:

p, q; fixed, n → ∞.

Here, ρ is chosen as 1− (p+ q + 1)/(2n), and we set

m = nρ = n− 1

2
(p+ q + 1). (4.3)

Then, the characteristic function of V = −m log Λ is expressed as

C(t) = E
[
Λ−mit

]
=

p∏
j=1

Γ[1
2
m(1− 2it) + 1

4
(p− q + 1)− 1

2
(j − 1)]

Γ[1
2
m+ 1

4
(p− q + 1)− 1

2
(j − 1)]

(4.4)

×
Γ[1

2
m+ 1

4
(p+ q + 1)− 1

2
(j − 1)]

Γ[1
2
m(1− 2it) + 1

4
(p+ q + 1)− 1

2
(j − 1)]

.

We can derive an expansion for C(t) by using the generalized version of

Stirling’s formula for the gamma function

log Γ(z + h) = log
√
2π +

(
z + h− 1

2

)
log z − z

−
m∑
r=1

(−1)r
Br+1

r(r + 1)zr
+Rm+1(z),

where Rm+1(z) = O
(
z−(m+1)

)
and Br(h) is the Bernoulli polynomial of degree

r defined by
τehτ

eτ − 1
=

∞∑
r=0

τ r

r!
Br(h).
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The first three of these are B0(h) = 1, B1(h) = h− 1
2
, B2(h) = h2 − h+ 1

6
.

The final result is given as follows:

C(t) = (1− 2it)−f/2
[
1 +

γ2
m2

{(1− 2it)−2 − 1}

+
1

m4

{
γ4((1− 2it)−4 − 1)− γ2

2((1− 2it)−2 − 1)
}]

+O(m−5), (4.5)

where f = pq, γ2 = pq(p2 + q2 − 5)/48, and

γ4 = pq{3p4 + 3q4 + 10p2q2 − 50(p2 + q2) + 159}/1920.

Inverting the above characteristic function formally, we have an asymptotic

expansion:

P(−m log Λ ≤ x) = Gf (x) +
γ2
m2

[Gf+4(x)−Gf (x)]

+
1

m4
[γ4{Gf+8(x)−Gf (x)} − γ2

2{Gf+4(x)−Gf}] + O(m−5), (4.6)

where Gf (x) is the distribution function of χ2
f .

It may be noted that result (4.6) was first derived by Rao (1948), based

on an expression due to Wald and Brookner (1941). On the other hand, Box

(1949) obtained the result as a special case of a general asymptotic expansion

of the distribution of a random variable whose moments belong to a class of

Box-type moments.

Rao (1951) proposed a better F approximation of the distribution of

another function of Λ = Λp(q, n− q). The approximation is to consider

1− Λ1/s

Λ1/s
· ms+ 2λ

pq
(4.7)

as an F approximation with pq and ms+ 2λ degrees of freedom, where

λ = −1

4
pq +

1

2
, s =

(
p2q2 − 4

p2 + q2 − 5

)1/2

. (4.8)

For p = 1 or 2 (or q = 1 or 2) the F-distribution is exactly as given. If

ms + 2λ is not an integer, interpolation between two integer values can be
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used. The F approximation may be also written as a beta approximation

β(1
2
(ms+2λ), 1

2
pq) for Y = Λ1/s which was obtained in Rao (1951) as follows.

From (4.6) the density function of V = −m log Λ can be expressed as

fV (v) = gr(v)

[
1 +

γ2
m2

{
v2

r(r + 2)
− 1

}
+O(m−3)

]
, (4.9)

where r = pq and gr(v) is the density function of χ2
r, by using gr+2(v) =

(v/r)gr(v). Rao considered a better approximation for

Y = Λ1/s = e−V/(sm), (4.10)

introducing a constant s. The density function of Y is expressed as

fY (y) = fV (sm(− log y))
sm

y

=
1

Γ(r/2)2r/2
(ms)r/2y(ms)/2+λ−1y−λ(− log y)r/2−1 (4.11)

×
{
1 +

γ2s
2

r(r + 2)
(− log y)2 + o(m−2) + o((1− y)2)

}
,

introducing a constant λ. Now we use

y−λ = {1− (1− y)}−λ

= 1 + λ(1− y) +
1

2
λ(1 + λ)(1− y)2 + · · · ,

(− log y)r/2−1 = [− log {1− (1− y)}]r/2−1

= (1− y)r/2−1

[
1 +

1

2

(
1

2
r − 1

)
(1− y)

+

{
1

3

(
1

2
r − 1

)
+

1

8

(
1

2
r − 1

)(
1

2
r − 2

)}
(1− y)2 + · · ·

]
.

Substituting the above expansions to the density of Y given by (4.11), we

have

fY (y) =
1

Γ(r/2)2r/2
(ms)r/2y(ms)/2+λ−1(1− y)r/2−1

×
{
1 + a1(1− y) + a2(1− y)2 + o(m−2) + o((1− y)2)

}
, (4.12)
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where

a1 = λ+
1

2

(
1

2
r − 1

)
,

a2 =
1

2
λ(1 + λ) +

(
1

2
r − 1

){
1

2
λ+

1

3
+

1

8

(
1

2
r − 2

)
+

γ2s
2

r(r + 2)

}
.

Here, we note that the defining s and λ as the ones in (4.8) is equivalent

to the defining a1 and a2 as zero. Further, using the generalized version of

Stirling’s formula for the gamma function, we can see that

Γ(1
2
ms+ λ+ 1

2
r)

Γ(1
2
ms+ λ)Γ(1

2
r)

=
1

Γ(1
2
r)2r/2

(ms)r/2 +O(m−1).

This shows that the distribution of Y = Λ1/s has an expansion whose leading

term is a Beta distribution β(1
2
(ms+ 2λ), 1

2
pq) with a smaller error.

Now we note there have been developments related to asymptotic approx-

imations of Λ. A computable error bound for large-sample approximations

was derived based on an error bound in the L1-norm for a multivariate scale

mixture; see Fujikoshi and Ulyanov (2006). A high-dimensional approxi-

mation and its error bound have been studied under p/n → c ∈ (0, 1) by

Fujikoshi et al. (2010) and Wakaki (2007). The distribution of Λ is called

the nonnull distribution of Λ when B is distributed as a noncentral Whishart

distribution Wp(q,Σ;Ω). An extension of (4.6) up-to the order m−2 to the

nonnull case was given by Sugiura and Fujikoshi (1969). Kulp and Na-

garsenker (1984) gave an asymptotic expansion of the nonnull distribution

of Y = Λ1/s.

5. Growth Curve Analysis

Research of growth curve analysis dates back to Wishart (1938), who com-

pared the growth curves of animals under different treatments. In particular,

the weight of each animal under each treatment was ascertained each week
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for a number of weeks. For the original measurements of weekly weights

(y1, . . . , yp), Wishart (1938) fitted orthogonal polynomials, for example,

a+ b1ϕ1(t) + b2ϕ2(t)

to each growth curve dataset and replaced the original measurements of

weekly weights (y1, . . . , yp) by (y1, b1, b2). Then, a univariate analysis of vari-

ance on b1 or b2 was considered, using y1 as a concomitant.

Rao (1959) proposed to analyze such growth curve data by considering

a multivariate structure in addition to a growth curve structure. In general,

suppose that a single variable Y is measured at p time points t1, . . . , tp (or

different conditions) on n subjects, chosen at random from a group. One

way to analyze such repeated measures is to specify a polynomial regression

for Y on the time variable t, and to assume that the covariance matrix of

Y = (Y1, . . . , Yp)
′ is unknown and positive definite.

Let the observations Yi1, . . . , Yip of the ith subject be denoted by

Yi = (Yi1, . . . , Yip)
′, i = 1, . . . , n.

Then, in the growth curve model, it is assumed that for i = 1, . . . , n,

E(Yi) = µ = Xθ, (5.1)

and Var(Yi) = Σ, where X is a given p × q matrix with rank q, θ =

(θ1, . . . , θq)
′ is an unknown parameter vector, and Σ is unknown positive

and definite. The matrix X is called a within-design matrix. In the growth

curve model (5.1), Rao (1959) proposed and developed the following theory:

(1) Is the specification (5.1) adequate?

(2) How can estimators of θ1, . . . , θq be obtained and the precision of the

estimators be expressed?

(3) How can general linear hypotheses concerning θ1, . . . , θq be tested?

(4) How can simultaneous confidence limits for a class of linear functions of

θ1, . . . , θq be obtained?
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In addition, Rao (1987) proposed approaches to the following problem.

(5) Suppose that the measurements of growth at the time points t1, . . . , tp,

tp+1 are available for n individuals and only at t1, . . . , tp for an (n +

1)−th individual. How do we predict the measurement at tp+1 for the

(n+ 1)−th individual?

The growth curve model for above one-group data was extended by Pot-

thoff and Roy (1964) as follows. Suppose that the rows of Y are indepen-

dently distributed as p-dimensional normal distributions with a common co-

variance matrix Σ, and

E(Y) = AΘX′, (5.2)

where A is the n × k between-group design matrix, X is the p × q within

design matrix, and Θ is the k × q unknown parameter matrix. A general

testing problem is to test

Hg : CΘD = O, against Kg : CΘD ̸= O. (5.3)

Here, C is a given c × k matrix with rank c, and D is a given q × d matrix

with rank d. The growth curve model (5.2) is reduced to a MANOVA model

when the within-individual design matrix X is Ip. In this sense, the growth

curve model is a generalized MANOVA model.

In order to relate the growth curve model to a multivariate linear model,

consider the transformation from Y to (U V):

(U V) = Y(G1 G2), (5.4)

where G1 and G2 are the same matrices as in the group, G1 = X(X′X)−1,

G2 = X̃, and X̃ is a p× (p− q) matrix satisfying X̃
′
X = O and X̃

′
X̃ = Ip−q.

Then, the rows of (U V) are independently distributed as p-dimensional

normal distributions with means

E[(U V)] = (AΘ O)
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and the common covariance matrix

Ψ = G′ΣG =

(
G′

1ΣG1 G′
1ΣG2

G′
2ΣG1 G′

2ΣG2

)
=

(
Ψ11 Ψ12

Ψ21 Ψ22

)
,

where G = (G1 G2). This transformation can be regarded as one from

Y = (Y1, . . . , Yp)
′ to a q-dimensional main variable U = (U1, . . . , Uq)

′ and a

(p−q)-dimensional auxiliary variable V = (V1, . . . , Vp−q)
′. The growth curve

model is equivalent to the following two models:

(1) The conditional distribution of U given V is

U | V ∼ Nn×q(A
∗Ξ, Ψ11·2). (5.5)

(2) The marginal distribution of V is

V ∼ Nn×(p−q)(O, Ψ22), (5.6)

where

A∗ = (A V), Ξ =

(
Θ
Γ

)
,

Γ = Ψ−1
22 Ψ21, Ψ11·2 = Ψ11 −Ψ12Ψ

−1
22 Ψ21.

Rao (1965) also gave the above reduction, and called V the observation

matrix of concomitant variables. Statistical methods based on likelihood were

introduced by Rao (1959, 1965), Khatri (1966), Gleser and Olkin (1970), and

others. The LR test was first given by Khatri (1966). Gleser and Olkin (1970)

gave the LR test based on a canonical for the testing problem (5.3). The LR

test is based on

Λ = |Se|/|Se + Sh|,

where

Se = D′(X′S−1X)−1D, Sh = (CΘ̂D)(CRC′)−1CΘ̂D

and

R = (A′A)−1 + (A′A)−1A′YS−1{S−X′(XS−1X′)−1X}

× S−1Y′A(A′A)−1.
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Here, Θ̂ and S are given by

Θ̂ = A(A′A)−1A′YS−1X(X′S−1X)−1,

S =
1

m
Y′(In −A(A′A)−1A′)Y, m = n− k.

Further, the null distribution of Λ is Λd(c, n− k − (p− q)).

Rao (1965, 1966) and Grizzle and Allen (1969) discuss the possibility

of using fewer than p − q covariables. Fujikoshi and Rao (1991) proposed

two types of formulation for the hypotheses of redundancy of a given set

of covariables. The likelihood ratio criteria were obtained for testing these

hypotheses. Further, using these results, they proposed information criteria

such as for selection of the best subset of covariables.

In the growth curve models as in (5.1) and (5.2), it is necessary that the

observations be observed at the same time points for each of the subjects,

and that each of the groups have the same within-design matrix X. In order

to resolve the latter assumption, a general growth curve model was proposed

by Rosen (1988), Verbyla and Venables (1988), etc., as follows:

E(Y) =
r∑

i=1

AiΘiX
′
i, (5.7)

which is called the sum-of-profiles model. On the other hand, in order to

incorporate individual effects fully, the following random coefficients model

or mixed effects model was considered:

Yi = Xiβi + ei, i = 1, . . . , n,

βi = θ + bi, i = 1, . . . , n,

where Xi is a pi × k known matrix,

b1, . . . , bn ∼ i.i.d. Nk(0,∆),∆ ≥ O,

e1, . . . , en are independent, ei ∼ Npi(0, σ
2Ini

),

{e1, . . . , en} and {b1, . . . , bn} are independent.
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This model is a special case of mixed effects and random coefficients models

(see Laird and Ware (1982), and Vonesh and carter (1987)). Rao (1965)

considered the above model in the case X1 = · · · = Xr, and developed its

statistical inference.

At the end of this section we consider some topics on discriminant analysis

of growth curve data. Such problems were first discussed by Burnaby (1966).

The paper pointed out a need for a general procedure of eliminating either a

single growth factor or several nuisance factors from discriminant functions

or generalized distances between a number of populations. Some results

were given with the help of Rao’s comments. Rao (1966) and, in his book,

Rao (1973) treated this problem in a more general form which was called

discrimination between composite hypotheses, as follows. Let Y be a p-

variate random vector depending on a parameter vector θ ∈ Θ. Let H1 be

the hypothesis that θ ∈ Θ1 and H2 that θ ∈ Θ2, where Θ1 and Θ2 are two

disjoint subsets of Θ. The problem involves choosing between H1 and H2 on

the basis of an observed value of Y . More concretely, let Y be a p-variate

normal vector such that

E(Y | θi, Hi) = ai +Xθi, Var(Y | θi, Hi) = Σ, i = 1, 2.

Here, X is a given p× k matrix of rank k. Let Z be a p× (p− k) matrix of

rank p− k such that X′Z = O. Then,

E(Z′Y | Hi) = Z′ai, Var(Z′Y | Hi) = Z′ΣZ′, i = 1, 2.

From (2.3), the discriminant function based on Z′Y is given by

(Z′a1 − Z′a2)
′(Z′ΣZ)−1Z = (a1 − a2)

′Z(Z′ΣZ)−1Z′Y ,

which is reduced as

(a1 − a2)
′{Σ−1 −Σ−1X(X′Σ−1X)−1X′Σ−1}Y . (5.8)

Further, it was shown that

sup
X′ℓ=0

[E(ℓ′Y | H1)− E(ℓ′Y | H2)]
2

2−1[Var(ℓ′Y | H1) + Var(ℓ′Y | H2)]
(5.9)
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is attained at

ℓ∗ = {Σ−1 −Σ−1X′(X′Σ−1X)−1XΣ−1}(a1 − a2). (5.10)

The result follows by using the fact that, under the condition X′ℓ = 0,

expression (5.9) is reduced to

sup
X′ℓ=0

[E{ℓ′(a1 − a2)}2]
ℓ′Σℓ

. (5.11)

The discriminant function (5.8) is ℓ′∗Y , where ℓ∗ is as defined in (5.10).

On the other hand, the usual discriminant method and its modifications

have been studied for some growth curve models. For example, assume that

Y is observed at two populations Πi, i = 1, 2, and

Y | Πi ∼ Np(µi,Σ), i = 1, 2,

where µ(i) = Xθi, i = 1, 2. Further, let θ̂i, i = 1, 2 and Σ̂ be the MLEs

of θi, i = 1, 2 and Σ, based on ni samples from Πi, i = 1, 2. Then, there

is a situation to decide which a new observation Y belongs to Π1 and Π2.

A natural method is to discriminate Y based on the discriminant function

L(Y , µ̂(1), µ̂(2), Σ̂) in (2.3). As another example, Lee (1982) considered the

classification of growth curves from a non-Bayesian and Baysian viewpoint,

under the case where Σ is arbitrary positive definite and is of Rao’s simple

structure (Rao (1967)). In some cases, it will be necessary to evaluate the

expected probabilities of misclassification. However, this subject has not

been much well researched.

6. Information Criteria for Selection of Vari-

ables

Related to the selection of variables in multivariate analysis, Rao stated the

following in the foreword of Multivariate Analysis IV (R. R. Krishnaiah, ed.,

1977, North-Holland Publishing Company):
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“While refinement of Fisherian methods continue to be made, relatively

few new lines of investigations are started. New extensions of univariate

methods to multiple measurement are being made, which are no doubt use-

ful, but there has not been adequate discussion of the number or choice of

variables. In spite of the enormous increase in the multivariate methods,

they do not seem to be rich enough to meet all practical demands...”

As we have seen in Section 2, Rao proposed a U -statistic for testing a hy-

pothesis that Y2 provides no additional information to a discriminant analysis

in the presence of Y1, where Y = (Y ′
1 ,Y2)

′ and Y : pi×1. However, if several

other specifications are considered, we need to decide upon the best specifica-

tion. One approach is to apply model selection criteria such as AIC, BIC and

Cp. In order to represent these approaches, it is standard to formulate the

notions of sufficiency or redundancy of a subset of variables such that its like-

lihood is obtained in a computable form. Before describing it in detail in the

case of two-group discriminant analysis, here we note that such an approach

has been extended for the selection of variables in various multivariate mod-

els. Corresponding results have been obtained for, for example, the selection

of the response variables and the explanatory variables in multivariate lin-

ear models, the selection of the main variables and the covariables in growth

curve models, the selection of variables in canonical correlation analyses, and

the selection of dimensionality in principal component analyses.

In the following we state a more detailed two-group discriminant analysis,

following Fujikoshi and Sakurai (2020). Suppose that j denotes a subset of

ω = {1, . . . , p} containing pj elements, and Yj denotes the pj vector consist-

ing of the elements of Y , indexed by the elements of j. We use the notation

Dj and Dω for D based on Yj and Yω(= Y ), respectively. Let Mj be a

variable selection model, defined by

Mj : βi ̸= 0 if i ∈ j, and βi = 0 if i ̸∈ j. (6.1)

The model Mj is equivalent to ∆j = ∆ω, i.e., the Mahalanobis distance

based on Yj is the same as the one based on the full set of variables, Y . We

identify the selection of Mj with the selection of Yj . Let AICj be the AIC
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for Mj . Then, it is known (see, e.g., Fujikoshi (1985)) that

Aj = AICj − AICω (6.2)

= n log

{
1 +

g2(D2
ω −D2

j)

n− 2 + g2D2
j

}
− 2(p− pj),

where g =
√
(n1n2)/n. Similarly, let BICj be the BIC for Mj , and we have

that Bj = BICj − BICω is the one replaced 2 in Aj by log n.

The variable selection methods based on AIC and BIC are given as

minj AICj and minj BICj , respectively. Therefore, such criteria become com-

putationally onerous when p is large. To circumvent this issue, we can use a

test-based method (TM, see Fujikoshi and Sakurai (2020)) or KOO method

(Zhao et al. (1986), Nishii et al. (1988), Bai et al. (2018)), drawing on

the significance of each variable. A critical region for “βi = 0” based on the

likelihood ratio principle is expressed (see, e.g., Rao (1946, 1973)) as

Td,i = n log

{
1 +

g2(D2
ω −D2

(−i))

n− 2 + g2D2
(−i)

}
− d > 0, (6.3)

where (−i), i = 1, . . . , p is the subset of ω = {1, . . . , p} obtained by omitting

the i from ω, and d is a positive constant that may depend on p and n. Note

that

T2,i > 0 ⇐⇒ AIC(−i) − AICω > 0.

A test-based method or KOO method is defined by selecting the set of suffixes

or the set of variables given by

TMd = {i ∈ ω | Td,i > 0}, (6.4)

or {Yi ∈ {Y1, . . . , Yp} | Td,i > 0}. The notation ĵTMd
is also used for TMd.

In general, if d is large, a small number of variables are selected. On the

other hand, if d is small, a large number of variables are selected. Ideally,

we want to select only the true variables whose discriminant coefficients are

not zero. Consistency properties of AIC, BIC, and TMd have been studied

under a large-sample framework (n → ∞) and a high-dimensional framework
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(n/p → c ∈ (0, 1)); see Fujikoshi (1985), Nishii et al.(1988), and Fujikoshi

and Sakurai (2020). In general, we note that the conclusions of asymptotic

consistencies of model selection criteria may be reversed. For example, in

the selection of the explanatory variables in a multivariate regression model,

it is known (Nishii et al. (1988)) that under a large-sample framework, BIC

is consistent, but AIC is not consistent. On the other hand, it is known

(Yanagihara et al. (2015), Bai et al. (2018)) that under a high-dimensional

framework, AIC is consistent, but BIC is not consistent.

For high-dimensional data such that p > n, Lasso and other regularization

methods have been extended. For such studies, see, e.g., Clemmensen et al.

(2011), Wtten and Tibshirani (2011), and Hao and Dong (2015).
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[35] Rao, C. R. (1965). The theory of least squares when the parameters

are stochastic and its application to the analysis of growth curves.

Biometrika, 52, 447–458.

[36] Rao, C. R. (1966a). Covariance adjustment and related problems in

multivariate analysis. In Multivariate Analysis-I(P. R. Krishnaiah, ed.),

87–103, Academic Press, Inc., New York.

[37] Rao, C. R. (1966b). Discriminant function between composite hypothe-

ses and related problems. Biometrika, 53, 315–321.

[38] Rao, C. R. (1967). Least squares theory using an estimated disper-

sion matrix and its application to measurement of signals. Proc. Fifth

Berkerley Symp. Math. Statist. and Prob., 1, 355–372.

[39] Rao, C. R. (1970). Inference on discriminant function coefficients. In

Essays in Prob. and Statist. (R. C. Bose et al., eds.), 587–602.

[40] Rao, C. R. (1973). Linear Statistical Inference and Its Applications(2nd

ed.). John Wiley & Sons, New York.

[41] Rao, C. R. (1977). Foreword in Multivariate Analysis IV (P. R. Krish-

naia, ed.). North Holland.

[42] Rao, C. R. (1979). Separation theorems for singular values of matrices

and their applications in multivariate analysis. J. Multivariate Anal.,

9, 362–377.

[43] Rao, C. R. (1987). Prediction of future observations in growth curve

type models. J. Statist. Sci., 2, 434–471.

[44] Rao, C. R. (1997). An alternative to correspondence analysis using

Hellinger distance. Proc. Int. Symp. on Contemporary Multivariate

Analysis and Its Applications, A11–A29, Hong Kong.

25



[45] Rencher, A. C. (2002). Methods of Multivariate Analysis, 2nd ed.,

John Wiley & Sons, New York.

[46] Verbyla, A. P. and Venables, W. N. (1988). An extension of the

growth curve models. Biometrika, 75, 129–138.

[47] von Rosen, D. (1991). Maximum likelihood estimators in multivariate

linear normal models. J. Multivariate Anal., 31, 187–200.

[48] Vonesh, E. F. and Carter, R. L. (1987). Efficient inference for

random-coefficient growth curve models with unbalanced data. Bio-

metrics, 43, 617–628.

[49] Sugiura, N. and Fujikoshi, Y. (1969). Asymptotic expansions of

the non-null distributions of the likelihood ratio criteria for multivariate

linear hypothesis and independence. Ann. Math. Statist., 40, 942–952.

[50] Wakaki, H. (2007). An error bound for high-dimensional Edgeworth

expansion for Wilks’ Lambda distribution. Hiroshima Statistical Re-

search Group, TR; 07-03.

[51] Wald, A. and Brookner, R., J. (1941). On the distribution of Wilks’

statistic for testing the independence of several groups of variates. Ann.

Math. Statist., 12, 137–152.

[52] Wilks, S. S. (1932). Certain generalization in the analysis of variance.

Biometrika, 27, 471–494.

[53] Wishart, J. (1938). Growth rate determination in nutrition studies

with the bacon pig, and their analysis. Biometrika, 30, 16–28.

[54] Witten, D. W. and Tibshirani, R. (2011). Penalized classification

using Fisher’s linear discriminant. J. Roy. Statist. Soc.: Series B, 73,

753–772.

26



[55] Yanagihara, H., Wakaki, H. and Fujikoshi, Y. (2015). A consis-

tency property of the AIC for multivariate linear models when the di-

mension and the sample size are large. Electronic Journal of Statistics,

9, 869–897.

[56] Zhao, L. C. , Krishnaiah, P. R. and Bai, Z. D. (1986). On determina-

tion of the number of signals in presence of white noise. J. Multivariate

Anal., 20, 1-25.

27


