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Abstract

We propose a likelihood-based variable selection method for normality-assumed multi-
variate linear regression contexts. The method is reasonably fast, and it exhibits adequate
selection consistency, when the sample size always tends to infinity, but the numbers of
response and explanatory variables do not necessarily have to tend to infinity. It can be
expected that the proposed method has a high probability of selecting a true subset under
a moderate sample size.

1 Introduction

Multivariate linear regression with an n×p response matrix Y and an n×k explanatory matrix

X is one of the fundamental methods of inferential statistical analysis and it is introduced in

many statistical textbooks (e.g., [10, 12]), where n is the sample size, and p and k are the numbers

of response variables and explanatory variables, respectively. Note N = n−p−k+1. We assume

that N − 2 > 0 and rank(X) = k < n. Let ω = {1, . . . , k} be the full set consisting of all the

column indexes of X, and let Xj be an n × kj matrix consisting of columns of X indexed by

the elements of j ⊂ ω, where kj is the number of elements in j, i.e., kj = #(j). From the above

notation, it holds that X = Xω. For a subset j ⊂ ω, the multivariate linear regression model

with Y and Xj is expressed as follows:

Y ∼ Nn×p(XjΘj ,Σj ⊗ In), (1)

where Θj is a kj × p matrix of regression coefficients and Σj is a p × p covariance matrix.

In actual empirical contexts, it is important to examine which of the k explanatory variables

affect the response variables, and this is regarded as the problem of selecting a best model from

(1), in other words, selecting a best subset of ω. To achieve this, it is common to search over

all candidate subsets and a variable selection criterion (SC) is often used to identify an optimal

model following this search. Akaike’s information criterion (AIC) [1, 2] is the most widely applied
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tool in this respect. For j ⊂ ω, let Σ̂j be the maximum likelihood estimator of Σj in (1), which

is defined by

Σ̂j = n−1Y ′(In − Pj)Y ,

where Pj is the projection matrix to the subspace spanned by the columns of Xj , i.e., Pj =

Xj(X
′
jXj)

−1X ′
j . A generalized information criterion (GIC) [7] for j ⊂ ω is defined by

GIC(j) = n log |Σ̂j |+ np(log 2π + 1) + α

{
pkj +

p(p+ 1)

2

}
,

where α is a positive constant and means the strength of the penalty term for j. Specifying the

value of α, the GIC includes several criteria as special cases, e.g., the AIC (α = 2), the Bayesian

information criterion (BIC) [11] (α = log n) and the Hannan-Quinn information criterion (HQC)

[5] (α = 2 log log n).

Recently, there has been significant attention in the literature to statistical methods for high-

dimensional data. In high-dimensional data contexts in which the number of explanatory vari-

ables is substantial, it may take an inordinate amount of time to search for and identify the

best subset by calculating variable selection criteria for all the candidate subsets. For practical

reasons, we focus on a selection method based on an SC. Let ωℓ be the complement set of {ℓ}
for ω, i.e., ωℓ = ω\{ℓ}. Then, the following best subset according to the selection method based

on an SC is presented:

{ℓ ∈ ω | SC(ωℓ) > SC(ω)}, (2)

where SC(j) is the value of an SC for j ⊂ ω. Method (2) is introduced by [13] and is referred to

as the kick-one-out method by [3]. In particular, method (2) based on the GIC is expressed as

ĵ = {ℓ ∈ ω | GIC(ωℓ) > GIC(ω)} = {ℓ ∈ ω | n log |Σ̂ωℓ
Σ̂−1

ω | > pα}. (3)

Method (3) can be regarded as a likelihood-based selection method. In multivariate linear re-

gression contexts, method (3) are also used by [3, 9], and method (2) based on the generalized

Cp (GCp) criterion [6] is used by [3, 8].

In this paper, we focus on the likelihood-based selection method (3). We assume that the data

are generated from the following true model for the true subset j∗:

Y ∼ Nn×p(Xj∗Θ∗,Σ∗ ⊗ In), (4)

where Θ∗ is a kj∗ × p matrix of true regression coefficients wherein the row vectors are not zeros

and Σ∗ is a p × p true covariance matrix which is positive definite. We state that method (3)

has selection consistency if P (ĵ = j∗) → 1 holds. The purpose of this paper is to propose a

variable selection method using (3), which will be reasonably fast and meet the conditions for

the selection consistency P (ĵ = j∗) → 1 under the following high-dimensional (HD) asymptotic

framework:

HD : n → ∞,
p+ k

n
→ c ∈ [0, 1). (5)

The HD asymptotic framework means that n always tends to infinity, but p, k and kj∗ do not

necessarily have to tend to infinity. Hence, it is expected that the proposed method has a high
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probability of selecting the true subset j∗ under moderate sample sizes even when p, k and kj∗ are

large. As related researches in high-dimensional contexts, [8] examined the selection consistency

of (2) based on the GCp criterion under the HD asymptotic framework. When the true model

is generated by a non-normal distribution, [3] also examined a strong selection consistency of

(3) and (2) based on the GCp criterion under the HD asymptotic framework with the exception

that kj∗ → ∞ and c = 0. Note that the strong selection consistency means that P (ĵ → j∗) = 1

holds and is stronger than the selection consistency P (ĵ = j∗) → 1. In this paper, the conditions

for selection consistency P (ĵ = j∗) → 1 under the HD asymptotic framework are derived on the

basis of the method by [8].

The remainder of the paper is organized as follows. In section 2, we obtain the conditions for

selection consistency of (3) and propose a consistent selection method by the obtained condi-

tions under the HD asymptotic framework. In section 3, we conduct numerical experiments for

verification purposes. Technical details are relegated to the Appendix.

2 Proposed Selection Method

First, we prepare notation and assumptions for conditions for the selection consistency of (3)

P (ĵ = j∗) → 1 under the HD asymptotic framework. To obtain the conditions for the selection

consistency of (3), the following three assumptions are prepared:

Assumption A1 The true subset j∗ is included in the full set ω, i.e., j∗ ⊂ ω.

Assumption A2 There exists c1 > 0 such that

n−1 min
ℓ∈j∗

x′
ℓ(In − Pωℓ

)xℓ ≥ c1,

where xℓ is the ℓ-th column vector of X.

Assumption A3 There exist c2 > 0 and c3 ≥ 1/2 such that

n1−c3 min
ℓ∈j∗

θ′
ℓΣ

−1
∗ θℓ ≥ c2,

where θℓ is the ℓ-th row vector of Θ∗.

Assumption A1 is needed to consider the selection consistency. Assumption A2 and Assumption

A3 concern the asymptotic restriction for explanatory variables and parameters for the true

model. These assumptions are also used by [8] and they allow the minimum eigenvalue of

n−1X ′X to be bounded away from 0 and the minimum value of θ′
ℓΣ

−1
∗ θℓ to vanish to 0 at a

slow speed. For ℓ ∈ ω, let a p× p non-centrality matrix and parameter be denoted by

∆ℓ = Σ
−1/2
∗ Θ′

∗X
′
j∗(In − Pωℓ

)Xj∗Θ∗Σ
−1/2
∗ , δℓ = tr(∆ℓ). (6)

It should be emphasized that ∆ℓ = Op,p and δℓ = 0 hold if and only if ℓ /∈ j∗ under Assumption

A1, where Op,p is a p× p matrix of zeros.

Next, we obtain the conditions for the selection consistency of (3). The following lemma is

prepared to examine the distribution of |Σ̂ωℓ
Σ̂−1

ω | (the proof is given in Appendix 1):
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Lemma 1 For ℓ ∈ ω, let uℓ and vℓ be independent random variables distributed according to

uℓ ∼ χ2(p; δℓ) and vℓ ∼ χ2(N), respectively, where δℓ is defined by (6). Then, under Assumption

A1, we have

|Σ̂ωℓ
Σ̂−1

ω | = 1 +
uℓ

vℓ
.

By using Lemma 1, the conditions for the selection consistency of (3) are obtained in Theorem

1 (the proof is given in Appendix 2).

Theorem 1 Suppose that Assumptions A1, A2 and A3 hold. Then, the selection method ĵ

exhibits selection consistency under the HD asymptotic framework (5), i.e., P (ĵ = j∗) → 1

holds, if for some r ∈ N the following conditions are satisfied:

α =
n

p
log

(
1 +

p

N − 2
+ β

p

N − 2

)
, β > 0, s.t.

√
p

k1/2r
β → ∞,

p

nc3
β → 0. (7)

By using the result of Theorem 1, we propose the consistent likelihood-based selection method

ĵ with the following value of α:

α = α̃ =
n

p
log

(
1 +

p

N − 2
+

k1/4
√
p log n

N − 2

)
. (8)

From (7), it is straightforward that the selection method ĵ with α = α̃ has selection consistency

under the HD asymptotic framework when c3 > 3/4.

Remark 1 (Relationship with the GCp criterion) The difference between the GCp crite-

rion for ωℓ (ℓ ∈ ω) and that for ω is defined as

GCp(ωℓ)−GCp(ω) = (n− k)tr(Σ̂ωℓ
Σ̂−1

ω )− pγ,

where γ is a positive constant. From Lemma A.1 in [8], it is known that the equation tr(Σ̂ωℓ
Σ̂−1

ω ) =

uℓv
−1
ℓ holds, where uℓ and vℓ are defined in Lemma 1. This fact implies that the likelihood-based

selection method (3) can be regarded as equivalent to (2) based on the GCp criterion when α and

γ are adjusted adequately. Especially, the proposed method (3) with α = α̃ can be regarded as

nearly identical to the method in [8].

Finally, we present an efficient calculation for high-dimensional data. When p and k are large,

|Σ̂ωℓ
Σ̂−1

ω | in (3) should not be calculated simply, because the size of Σ̂ωℓ
is p× p and moreover

Pωℓ
must be calculated to derive Σ̂ωℓ

for each ℓ ∈ ω. For ℓ ∈ ω, let rℓ be the (ℓ, ℓ)-th element of

(X ′X)−1 and let zℓ be the ℓ-th column vector of X(X ′X)−1. In accordance with [8], it holds

that Pω − Pωℓ
= r−1

ℓ zℓz
′
ℓ. Hence, it is straightforward that |Σ̂ωℓ

Σ̂−1
ω | can be expressed as

|Σ̂ωℓ
Σ̂−1

ω | = 1 + n−1r−1
ℓ z′

ℓY Σ̂−1
ω Y ′zℓ. (9)

Therefore, we recommend calculating ĵ using (9).

3 Numerical Studies

We present numerical results to compare the probabilities of selecting the true subset j∗ by

the proposed method (3) with α = α̃ in (8) and the two methods (3) based on the AIC and
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Figure 1: Base-10 logarithm of CPU times associated with executing the proposed method (3)

with α = α̃ in (8)

BIC (α = 2, log n). Moreover, we present the CPU times associated with executing the proposed

method (3) with α = α̃ in (8). The probabilities and CPU times were calculated by Monte

Carlo simulations with 10, 000 iterations executed in MATLAB 9.6.0 on an Intel(R) Core(TM)

i9-9900K CPU @ 3.60GHz 3601 Mhz, 8 cores, 16 logical processors and 64 GB of RAM. We

set the true subset and the number of the true explanatory variables as j∗ = {1, . . . , kj∗} and

kj∗ = k/2. The data Y were generated by the true model (4) and X and the true parameters

were determined as follows:

X ∼ Nn×k(On,k,Ψ⊗ In), Θ∗ = 1kj∗
1′
p, Σ∗ = 0.4{(1− 0.8)Ip + 0.81p1

′
p},

where the (a, b)-th element of Ψ is (0.5)|a−b| and 1p is a p-dimensional vector of ones.

Table 1 shows the selection probabilities. Therein, j− and j+ denote the underspecified and

overspecified subsets of ω satisfying j− ∩ j∗ = ∅ and j+ ⊋ j∗, respectively. From Table 1, we

observe that the proposed method appears to have the selection consistency P (ĵ = j∗) → 1

under the HD asymptotic framework. However, the method (3) based on the AIC tends towards

selecting an overspecified subsets j+. The method (3) based on the BIC seems to exhibit the

selection consistency P (ĵ = j∗) → 1 when only n tends to infinity.

Figure 1 shows the base-10 logarithm of CPU times by the proposed method (3) with α = α̃

in (8). From Figure 1, we observe that the proposed method is fast (about 24 seconds at its

slowest, i.e., when n = 3000, p = 1200, k = 1200).

Appendix 1: Proof of Lemma 1

This proof is based on that of Lemma A.1 in [8]. For ℓ ∈ ω, let Wℓ = Σ
−1/2
∗ Y ′(Pω −

Pωℓ
)Y Σ

−1/2
∗ and W = Σ

−1/2
∗ Y ′(In − Pω)Y Σ

−1/2
∗ . Then, from a property of the non-central
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Table 1: Selection probabilities (%) of j−, j∗ and j+ by the proposed method (3) with α = α̃ in

(8) and the two methods (3) based on the AIC and BIC

Proposed AIC BIC

n p k j− j∗ j+ j− j∗ j+ j− j∗ j+

100 10 10 0.00 99.84 0.16 0.00 70.05 29.95 0.00 99.97 0.03

300 10 10 0.00 99.98 0.02 0.00 82.10 17.90 0.00 100.00 0.00

500 10 10 0.00 100.00 0.00 0.00 83.66 16.34 0.00 100.00 0.00

800 10 10 0.00 100.00 0.00 0.00 84.94 15.06 0.00 100.00 0.00

1000 10 10 0.00 100.00 0.00 0.00 85.76 14.24 0.00 100.00 0.00

3000 10 10 0.00 100.00 0.00 0.00 86.13 13.87 0.00 100.00 0.00

100 80 10 58.90 29.26 11.84 0.00 0.00 100.00 98.27 1.67 0.06

300 240 10 0.34 94.87 4.79 0.00 0.12 99.88 100.00 0.00 0.00

500 400 10 0.00 97.68 2.32 0.00 0.29 99.71 100.00 0.00 0.00

800 640 10 0.00 99.21 0.79 0.00 0.50 99.50 100.00 0.00 0.00

1000 800 10 0.00 99.42 0.58 0.00 0.60 99.40 100.00 0.00 0.00

3000 2400 10 0.00 99.96 0.04 0.00 0.91 99.09 100.00 0.00 0.00

100 10 80 99.85 0.11 0.04 0.00 0.00 100.00 1.31 0.00 98.69

300 10 240 96.02 3.98 0.00 0.00 0.00 100.00 0.00 0.00 100.00

500 10 400 42.73 57.27 0.00 0.00 0.00 100.00 0.00 0.00 100.00

800 10 640 0.02 99.98 0.00 0.00 0.00 100.00 0.00 0.00 100.00

1000 10 800 0.02 99.98 0.00 0.00 0.00 100.00 0.00 0.00 100.00

3000 10 2400 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 100.00

100 40 40 90.19 8.88 0.93 0.00 0.00 100.00 81.44 15.72 2.84

300 120 120 80.70 19.25 0.05 0.00 0.00 100.00 100.00 0.00 0.00

500 200 200 49.99 50.01 0.00 0.00 0.00 100.00 100.00 0.00 0.00

800 320 320 12.10 87.90 0.00 0.00 0.00 100.00 100.00 0.00 0.00

1000 400 400 4.48 95.52 0.00 0.00 0.00 100.00 100.00 0.00 0.00

3000 1200 1200 0.00 100.00 0.00 0.00 0.00 100.00 100.00 0.00 0.00
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Wishart distribution and Cochran’s Theorem (e.g., [4]), we can see that Wℓ and W are inde-

pendent and Wℓ ∼ Wp(1, Ip;∆ℓ) and W ∼ Wp(n − k, Ip), where ∆ℓ is defined by (6). Since

the rank of ∆ℓ is 1, we decompose ∆ℓ as ∆ℓ = ηℓη
′
ℓ by using a p-dimensional vector ηℓ. By

using ηℓ, we can express Wℓ as Wℓ = (εℓ + ηℓ)(εℓ + ηℓ)
′, where εℓ ∼ Np×1(0p, 1⊗ Ip) and εℓ is

independent of W . Then, we have

|Σ̂ωℓ
Σ̂−1

ω | = |Ip +WℓW
−1| = 1 + (εℓ + ηℓ)

′W−1(εℓ + ηℓ). (10)

Let uℓ and vℓ be constants as follows:

uℓ = (εℓ + ηℓ)
′(εℓ + ηℓ), vℓ =

(εℓ + ηℓ)
′(εℓ + ηℓ)

(εℓ + ηℓ)′W−1(εℓ + ηℓ)
.

Then, from a property of the Wishart distribution, we can state that uℓ and vℓ are independent,

uℓ ∼ χ2(p; δℓ) and vℓ ∼ χ2(N). Using (10), |Σ̂ωℓ
Σ̂−1

ω | is expressed as

|Σ̂ωℓ
Σ̂−1

ω | = 1 +
uℓ

vℓ
.

Therefore, the proof of Lemma 1 is completed. □

Appendix 2: Proof of Theorem 1

To prove Theorem 1, we use the the following results about the divergence orders of central

moments, which is seen in [8, Lemma A.2].

Lemma 1 ([8]) Let δ be a positive constant. And let t1, t2 and v be random variables distributed

according to χ2(p), χ2(p; δ) and χ2(N), respectively, where t1 and t2 are independent of v. Then,

under the HD asymptotic framework (5), for N − 4r > 0 (r ∈ N), we have

E

[(
t1
v

− p

N − 2

)2r
]
= O(prn−2r),

E

[(
t2
v

− p+ δ

N − 2

)2r
]
= O(max{(p+ δ)rn−2r, (p+ δ)2rn−3r}).

From Lemma 1, it holds that |Σ̂ωℓ
Σ̂−1

ω | = 1 + uℓv
−1
ℓ , where uℓ and vℓ are independent random

variables distributed according to uℓ ∼ χ2(p; δℓ) and vℓ ∼ χ2(N), respectively. The upper bound

of P (ĵ ̸= j∗) is expressed as

P (ĵ ̸= j∗) ≤
∑
ℓ/∈j∗

P (n log |Σ̂ωℓ
Σ̂−1

ω | ≥ pα) +
∑
ℓ∈j∗

P (n log |Σ̂ωℓ
Σ̂−1

ω | ≤ pα).

Hence, we should prove that the right-hand side of the above inequality tends to 0 under the HD

asymptotic framework. First, we consider the case of ℓ /∈ j∗. Note that ∆ℓ = Op,p, i.e., δℓ = 0

for ℓ /∈ j∗. Let ρβ = pβ(N − 2)−1. Then, using Markov’s inequality and (7), for any r ∈ N, we
have ∑

ℓ/∈j∗

P (n log |Σ̂ωℓ
Σ̂−1

ω | ≥ pα) =
∑
ℓ/∈j∗

P

(
uℓ

vℓ
− p

N − 2
≥ ρβ

)

≤ (k − kj∗)P

(∣∣∣∣u1

v1
− p

N − 2

∣∣∣∣ ≥ ρβ

)
≤ kρ−2r

β E

[(
u1

v1
− p

N − 2

)2r
]
.
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From Lemma 1, the moment in the above inequality has O(prn−2r). Hence, we have∑
ℓ/∈j∗

P (n log |Σ̂ωℓ
Σ̂−1

ω | ≥ pα) = O(kp−rβ−2r) = o(1). (11)

Next, we consider the case of ℓ ∈ j∗. Note that δℓ > 0 for ℓ ∈ j∗. Let δmin = minℓ∈j∗ δℓ.

Then, from Assumption A2 and Assumption A3, the inequality n−c3δmin ≥ c1c2 holds because

of δmin ≥ minℓ∈j∗ x
′
ℓ(In −Pωℓ

)xℓθ
′
ℓΣ

−1
∗ θℓ. Hence, we have ρβδ

−1
min = o(1) from (7). Then, using

Markov’s inequality, for sufficiently large N and any r ∈ N, we have∑
ℓ∈j∗

P (n log |Σ̂ωℓ
Σ̂−1

ω | ≤ pα) =
∑
ℓ∈j∗

P

(
uℓ

vℓ
− p+ δℓ

N − 2
≤ ρβ − δℓ

N − 2

)

≤
∑
ℓ∈j∗

P

(∣∣∣∣uℓ

vℓ
− p+ δℓ

N − 2

∣∣∣∣ ≥ −ρβ +
δℓ

N − 2

)

≤ kj∗ max
ℓ∈j∗

(
−ρβ +

δℓ
N − 2

)−2r

E

[(
uℓ

vℓ
− p+ δℓ

N − 2

)2r
]
. (12)

From Lemma 1, the maximum value except for constant parts of the above moment is (p +

δℓ)
rn−2r or (p+ δℓ)

2rn−3r. Hence, for sufficiently large r ∈ N, we have

kj∗ max
ℓ∈j∗

(
−ρβ +

δℓ
N − 2

)−2r

{( p+ δℓ)
rn−2r + (p+ δℓ)

2rn−3r}

≤ kj∗ max
ℓ∈j∗

(
1− ρβ

N − 2

δℓ

)−2r {(
1 + pδ−1

min

)r
δ−r
min +

(
1 + pδ−1

min

)2r
n−r

}
= O(kj∗δ

−r
min) +O(kj∗p

rδ−2r
min ) +O(kj∗n

−r) +O(kj∗p
2rn−rδ−2r

min ). (13)

We can see that (13) tends to 0 under the HD asymptotic framework if c3 > (1 + r−1)/2. Since

r is arbitrary, the inequality c3 > (1 + r−1)/2 is equivalent to c3 ≥ 1/2. Hence, from (12) and

(13), we have ∑
ℓ∈j∗

P (n log |Σ̂ωℓ
Σ̂−1

ω | ≤ pα) = o(1). (14)

Therefore, (11) and (14) completes the proof of Theorem 1. □
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