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Abstract

In this article, we consider an AIC for a one-sample version of the growth curve model when
the dataset has a monotone pattern of missing observations. It is well known that the AIC can be
regarded as an approximately unbiased estimator of the AIC-type risk de�ned by the expected
(−2) log-predictive likelihood. Here, the likelihood is based on the observed data. First, when
the covariance matrix is known, we derive an AIC, which is an exact unbiased estimator of the
AIC-type risk function. Next, when the covariance matrix is unknown, we derive a conventional
AIC using the estimators based on the complete data set only. Finally, a numerical example is
presented to illustrate our model selection procedure.
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1 Introduction

The growth curve model in the case of one-sample problem introduced by Rao (1959) may be

expressed as

Y = 1nθ
′X ′ + ε, (1)

where Y is an n×p observation matrix, 1n is an n×1 vector with all elements as 1, X is a p×q

within-individuals design matrix, with rank(X) = q, of explanatory variables x1, x2, . . . , xq, θ

is a q × 1 unknown parameter vector, and

ε
n×p

= (ε1, ε2, . . . , εn)
′, εi

i.i.d.∼ Np(0,Σ), i = 1, 2, . . . , n.

If the rows of Y are expressed as

Y
n×p

= (y1,y2, . . . ,yn)
′,
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then

y1,y2, . . . ,yn
i.i.d.∼ Np(µ,Σ), i = 1, 2, . . . , n,

where µ = Xθ. This is a special case of the growth curve model introduced by Pottho� and

Roy (1964). If we consider a polynomial regression of degree q − 1 on time t, then

X
p×q

=


1 t1 t21 · · · tq−1

1

1 t2 t22 · · · tq−1
2

...
...

...
...

1 tp t2p · · · tq−1
p

 .

Speci�cally, matrix X in a �rst- or second-degree polynomial growth curve model is given as

X
p×2

=

1 t1
...

...
1 tp

 , or X
p×3

=

1 t1 t21
...

...
...

1 tp t2p

 ,

respectively. It is important to determine the degree of polynomial growth curve model. In

general, such a problem can be considered a one of selecting a best subset of {x1, x2, . . . , xq}.

One of the approaches is to use a model selection criterion. In this article, we consider the AIC

or its modi�cations. It is well known that the AIC was proposed as an approximately unbiased

estimator of the AIC-type risk de�ned by the expected (−2) log-predictive likelihood (see Akaike,

1973). It is expressed as the sum of (−2) log(likelihood) and the correction term. The latter

term was proposed to be twice the number of independent parameters. Some re�nements of the

correction term in the growth curve model were studied by Satoh et al. (1997) and Fujikoshi,

Enomoto, and Sakurai (2013).

In contrast, a variant of the AIC has been considered by Shimodaira (1994) and Cavanaugh

and Shumway (1998) when the observed data are incomplete. However, such approaches have

not been extended in the growth curve model with missing data. In this article we consider

the construction of an AIC based on the observed data, especially with a monotone pattern of

missing observations. We prove that the AIC is an exact unbiased estimator of the AIC-type

risk function when the covariance matrix is known. When the covariance matrix is unknown,

we propose a conventional AIC that may be applicable in the situation such that the number of

subjects with missing observations is smaller than that of subjects with complete observations.
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The remainder of this article is organized as follows. In Section 2, in the case of two-step

monotone missing data, some preliminary notations, and the de�nition of AIC-type risk are

presented. It is shown that the correction term in AIC-type risk is exactly 2q, where q is the

dimension of θ, when the covariance matrix is known. These results are extended for general

monotone missing data. In Section 3, we derive an AIC when we estimate the covariance matrix

by using the set of complete data. Finally, we present the numerical results in Section 4 and

conclusions in Section 5. It is noteworthy that the AIC's modi�cations proposed herein are

based on an exact theory. Therefore, the proposed criteria are expected to work even in a

high-dimensional case.

2 When Covariance Matrix is Known

2.1 Two-step Monotone Missing Data

Suppose that the observation matrix Y in (1) consists of two-step monotone missing data. Then,

without loss of generality, the �rst n1 samples are complete, and the remainder n2 samples have

been observed for the �rst p1 components only. Speci�cally, let

(Y 11,Y 12) = (y1,y2, . . . ,yn1
)′,

where Y 11 : n1 × p1,Y 12 : n1 × p2 and p = p1 + p2. Here, y1,y2, . . . ,yn1
have a p-dimensional

normal distribution with the mean vector µ = Xθ and covariance matrix Σ, where X is a

p × q (p ≤ q) known design matrix, and θ is a q × 1 unknown parameter vector. Further, let

y21,y22, . . . ,y2n2
have a p1-dimensional normal distribution with mean vector µ1 = X1θ and

covariance matrix Σ11, where µ = (µ′
1, µ′

2)
′, X = (X ′

1,X
′
2)

′, and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, we write Y 21 = (y21,y22, . . . ,y2n2
)′ as an n2 × p1 matrix, and

Y =

(
Y 11 Y 12

Y 21 ∗

)
, (2)

where �∗� indicates a missing part, and we assume that each row of (Y 11 Y 12) and that of Y 21

are mutually independent. For observation matrix Y in (2), our model is summarized as follows:
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M12: Each row of (Y 11 Y 12) and that of Y 21 are mutually independent and normal with the

same mean vectors µ and µ1 and covariance matrices Σ and Σ11, respectively.

M22:

E[(Y 11 Y 12)
n1×p

] = 1n1
n1×1

θ′
1×q

X ′
q×p

, E[ Y 21
n2×p1

] = 1n2
n2×1

θ′
1×q

X ′
1

q×p1

.

Now, we consider the AIC for growth curve model satis�es M12 and M22. Following Akaike

(1973), the AIC-type-risk may be de�ned (e.g., Sugiura (1978), Fujikoshi and Satoh (1997)) as

RIg = EY EY ⋆

[
−2 log f(Y ⋆; θ̂, Σ̂)

]
,

where Y ⋆ is an independent copy of Y and f is a normal density function. We note that the

distribution of Y ⋆ is the same as that of Y . Then, the risk can be written as

RIg = EY EY ⋆ [−2 log f(Y ; θ̂, Σ̂)] + CTg

where

CTg = EY EY ⋆

[
−2 log

f(Y ⋆; θ̂, Σ̂)

f(Y ; θ̂, Σ̂)

]
, (3)

and θ̂ and Σ̂ are maximum likelihood estimators (MLEs) of θ and Σ, respectively. CTg is

called the correction term when we estimate RIg by a naive estimator −2 log f(Y ; θ̂, Σ̂). The

expectation in (3) should be evaluated under the true density of Y . Next, we assume the

following:

A12: The true density of Y is given by f(Y ;θ0,Σ0), where θ0 and Σ0 are given values of θ

and Σ, respectively. The true density is included in the model with M12 and M22.

A22: The covariance matrix Σ is known.

Under A12 and A22, the risk and correction term are written as

RI = EY EY ⋆

[
−2 log f(Y ⋆; θ̂,Σ)

]
, and CT = EY EY ⋆

[
−2 log

f(Y ⋆; θ̂,Σ)

f(Y ; θ̂,Σ)

]
, (4)

respectively. In the following, we write f(Y ; θ̂,Σ) as f̂(Y ) and true density f(Y ;θ0,Σ0) as

f(Y ).
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Note that f̂(Y ⋆) can be written as

f̂(Y ⋆) =f̂(Y ⋆
11)f̂(Y

⋆
12|Y ⋆

11)f̂(Y
⋆
21),

where

f̂(Y ⋆
11) =(2π)−

1
2
n1p1 |Σ11|−

1
2
n1etr

{
−1

2
(Y ⋆

11 − 1n1 θ̂
′
X ′

1)Σ
−1
11 (Y

⋆
11 − 1n1 θ̂

′
X ′

1)
′
}
,

f̂(Y ⋆
12|Y ⋆

11) =(2π)−
1
2
n1p2 |Σ22·1|−

1
2
n1

× etr
{
−1

2
(Y ⋆

12 − 1n1 θ̂
′
(X ′

2 −X ′
1B)− Y ⋆

11B12)

×Σ−1
22·1(Y

⋆
12 − 1n1 θ̂

′
(X ′

2 −X ′
1B)− Y ⋆

11B)′
}
,

f̂(Y ⋆
21) =(2π)−

1
2
n2p1 |Σ11|−

1
2
n2etr

{
−1

2
(Y ⋆

21 − 1n2 θ̂
′
X ′

1)Σ
−1
11 (Y

⋆
21 − 1n2 θ̂

′
X ′

1)
′
}
,

Here, B12 = Σ−1
11 Σ12. Similarly, f(Y ) = f(Y 11)f(Y 12|Y 11)f(Y 21). Therefore, the correction

term in (4) is given by

CT = (A)1 − (B)1 + (A)2 − (B)2,

where

(A)1 = EY EY ⋆

[
trΣ−1

11 (Y
⋆
(12)1 − 1N2 θ̂

′
X ′

1)
′(Y ⋆

(12)1 − 1N2 θ̂
′
X ′

1)
]
,

(B)1 = EY

[
trΣ−1

11 (Y (12)1 − 1N2 θ̂
′
X ′

1)
′(Y (12)1 − 1N2 θ̂

′
X ′

1)
]
,

(A)2 = EY EY ⋆

[
trΣ−1

22·1(Y
⋆
12 − 1n1 θ̂

′
X̃

′
2 − Y ⋆

11B12)
′(Y ⋆

12 − 1n1 θ̂
′
X̃

′
2 − Y ⋆

11B12)
]
,

(B)2 = EY

[
trΣ−1

22·1(Y 12 − 1n1 θ̂
′
X̃

′
2 − Y 11B12)

′(Y 12 − 1n1 θ̂
′
X̃

′
2 − Y 11B12)

]
,

and N2 = n1 + n2, X̃
′
2

q×p2

= X ′
2 −X ′

1B12. Then, it is shown that

(A)1 − (B)1 = 2N2 trΣ
−1
11 X1M

−1X ′
1, (A)2 − (B)2 = 2n1 trΣ

−1
22·1X̃2M

−1X̃
′
2,

and CT = 2q. For the details, see Appendix. Thus, we can obtain the following result:

Theorem 1 Suppose that a two-step monotone data matrix Y in (2) satis�es M12 and M22.

Then, under assumptions A12 and A22, the correction term in (4) is given by

CT ≡ EY EY ⋆

[
−2 log

f(Y ⋆; θ̂,Σ)

f(Y ; θ̂,Σ)

]
= 2q.
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The number 2q equals to 2× (the number of unknown parameters) under A12 and A22. We

can express a usual AIC as

AIC = −2 log f(Y ; θ̂,Σ) + 2q,

and from Theorem 1, the AIC is an exact unbiased estimator of RI.

2.2 k-step Monotone Missing Data

In this section, we consider the case of k-step monotone missing data whose observation matrix

Y is of the form

Y =

p1︷ ︸︸ ︷ p2︷ ︸︸ ︷ pk−i+1︷ ︸︸ ︷ pk−1︷ ︸︸ ︷ pk︷︸︸︷

Y 11 Y 12 · · · Y 1,k−i+1 · · · Y 1,k−1 Y 1k

Y 21 Y 22 · · · Y 2k−i+1 · · · Y 2,k−1 ∗
...

...
...

...
Y i1 Y i,2 · · · Y i,k−i+1 ∗ · · · ∗
...

...
...

Y k−1,1 Y k−1,2 ∗ · · · · · · · · · ∗
Y k1 ∗ · · · · · · · · · · · · ∗



}
n1}
n2}
ni}
nk−1}
nk

, (5)

where �∗� indicates a missing part. Further, let

Y i(12...,k−i+1)
ni×p(12...,k−i+1)

= (Y i1 Y i2 · · ·Y i,k−i+1),
µ(12...,k−i+1)
p(12...,k−i+1)×1

=


µ1

µ2
...

µk−i+1


}p1
}p2

}pk−i+1

,

Σ(12,...,k−i+1)(12,...,k−i+1)
p(12,...,k−i+1)×p(12,...,k−i+1)

=

p1︷ ︸︸ ︷ p2︷ ︸︸ ︷ pk−i+1︷ ︸︸ ︷
Σ11 Σ12 · · · Σ1,k−i+1

Σ21 Σ22 · · · Σ2,k−i+1
...

...
Σk−i+1,1 Σk−i+1,2 · · · Σk−i+1,k−i+1


}
p1}
p2

}
pk−i+1

,

X(12...,k−i+1)
p(12...,k−i+1)×q

=


X1

X2
...

Xk−i+1


}p1
}p2

}pk−i+1

, p(12...,k−i+1) =

k−i+1∑
j=1

pj , i = 1, 2, . . . , k,

µ(12...k) = µ, Σ = Σ(12...k)(12...k), X
p×q

= X(12...k), p = p(12...k),

θ = (θ1, θ2, · · · , θq)′.

For observation matrix Y in (5), our model is summarized as follows:
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M1k: Each row of Y i(12...,k−i+1) is mutually independent and normal with the same mean

vectors µ(12...,k−i+1) and covariance matrices Σ(12,...,k−i+1)(12,...,k−i+1).

M2k:

E[Y i(12...,k−i+1)] = 1niµ
′
(12...,k−i+1), i = 1, 2, . . . , k, (6)

where µ(12...,k−i+1) = X(12...,k−i+1)θ.

Similar to Section 2.1, we assume the following:

A1k: The true density of Y is given by f(Y ;θ0,Σ0), where θ0 and Σ0 are given values of θ

and Σ, respectively. The true density is included in the model with M1k and M2k.

A2k: The covariance matrix Σ is known.

Under A1k and A2k, the risk and correction terms for the k-step monotone missing data are

written as

RI = EY EY ⋆

[
−2 log f(Y ⋆; θ̂,Σ)

]
and CT = EY EY ⋆

[
−2 log

f(Y ⋆; θ̂,Σ)

f(Y ; θ̂,Σ)

]
, (7)

respectively. We note that

f(Y ; θ̂,Σ) =
k∏

i=1

f(Y i(12...,k−i+1); θ̂,Σ)

=

k∏
i=1

f(Y i1; θ̂,Σ)

k∏
i=1

k−i+1∏
j=2

f(Y ij |Y i(12...,j−1); θ̂,Σ)

=f(Y (12...k)1; θ̂,Σ)
k−1∏
i=1

f(Y (12...i)k−i+1|Y (12...i)(12...,k−i); θ̂,Σ)

=f(Y (12...k)1; θ̂,Σ)

k∏
j=2

f(Y (12...,k−j+1)j |Y (12...,k−j+1)(12...,j−1); θ̂,Σ),
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where

f(Y (12...k)1; θ̂,Σ)

= (2π)−
1
2
Nkp1 |Σ11|−

1
2
Nk etr

{
−1

2
(Y (12...k)1 − 1Nk

θ̂
′
X ′

1)Σ
−1
11 (Y (12...k)1 − 1Nk

θ̂
′
X ′

1)
′
}
,

f(Y (12...i)j |Y (12...i)(12...,j−1); θ̂,Σ)

= (2π)−
1
2
Nipj |Σjj·12...,j−1|−

1
2
Ni etr

[
−1

2

{
Y (12...i)j − 1Ni θ̂

′
X̃

′
j − Y (12...i)(12...,j−1)B(12...,j−1)j

}
Σ−1

jj·12...,j−1

{
Y (12...i)j − 1Ni θ̂

′
X̃

′
j − Y (12...i)(12...,j−1)B(12...,j−1)j

}′]
,

i = k − j + 1, j = 2, 3, . . . , k,

and

Ni =

i∑
j=1

nj , i = k − j + 1, Σjj·12...,j−1 = Σjj −Σ(12...,j−1)jΣ
−1
(12...,j−1)(12...,j−1)Σ(12...,j−1)j

X̃
′
j = X ′

j −X ′
(12...,j−1)B(12...,j−1)j , B(12...,j−1)j = Σ−1

(12...,j−1)(12...,j−1)Σ(12...,j−1)j ,

Σ(12...,j−1)j
p(12...,j−1)×pj

=

 Σ1j

Σ2j
...
Σj−1,j

 , j = 2, 3, . . . , k.

Similarly, f(Y ⋆; θ̂,Σ) =
∏k

i=1 f(Y
⋆
i(12...,k−i+1); θ̂,Σ). Further, we note that θ̂ is the MLE of θ

when Σ is known (see Yagi, Seo and Fujikoshi (2021)).

Therefore, the correction term in (7) is given by

CT =
k∑

j=1

{(A)j − (B)j},

where

(A)1 =EY EY ⋆

[
trΣ−1

11 (Y
⋆
(12...k)1 − 1Nk

θ̂
′
X ′

1)
′(Y ⋆

(12...k)1 − 1Nk
θ̂
′
X ′

1)
]
,

(B)1 =EY

[
trΣ−1

11 (Y (12...k)1 − 1Nk
θ̂
′
X ′

1)
′(Y (12...k)1 − 1Nk

θ̂
′
X ′

1)
]
,

(A)j =EY EY ⋆

[
trΣ−1

jj·12...,j−1(Y
⋆
(12...,k−j+1)j − 1Nk−j+1

θ̂
′
X̃

′
j − Y ⋆

(12...,k−j+1)(12...,j−1)B(12...,j−1)j)
′

(Y ⋆
(12...,k−j+1)j − 1Nk−j+1

θ̂
′
X̃

′
j − Y ⋆

(12...,k−j+1)(12...,j−1)B(12...,j−1)j)
]
,

(B)j =EY

[
trΣ−1

jj·12...,j−1(Y (12...,k−j+1)j − 1Nk−j+1
θ̂
′
X̃

′
j − Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j)

′

(Y (12...,k−j+1)j − 1Nk−j+1
θ̂
′
X̃

′
j − Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j)

]
, j = 2, 3, . . . , k.

8



Then, it is shown that

(A)1 − (B)1 = 2Nk trA1M
−1,

(A)j − (B)j = 2Nk−j+1 trAjM
−1, j = 2, 3, . . . , k,

where

A1 = X ′
1Σ

−1
11 X1, Aj = X̃

′
jΣ

−1
jj·12...,j−1X̃j , j = 2, 3, . . . , k, M =

k∑
j=1

Nk−j+1Aj .

Hence, we can obtain the following result:

Theorem 2 Suppose that a k-step monotone data matrix Y in (5) satis�es M1k and M2k. Then,

under assumptions A1k and A2k, the correction term in (7) is given by

CT ≡ EY EY ⋆

[
−2 log

f(Y ⋆; θ̂,Σ)

f(Y ; θ̂,Σ)

]
= 2q.

For the proof of Theorem 2, refer to Appendix. From Theorem 2, we can express a usual AIC

as

AIC = −2 log f(Y ; θ̂,Σ) + 2q, (8)

which is an exact unbiased estimator of RI, where Y is given by (5).

3 When all Parameters are Unknown

In this section, we consider the construction of a naive AIC when all the parameters are unknown.

Suppose that a k-step monotone data Y is given as in (5), and let

Y i = (Y i1,Y i2, . . . ,Y i,k−i+1)

= (yi1,yi2, . . . ,yini
)′, i = 1, 2, . . . , k. (9)

Then,

yi1,yi2, . . . ,yini

i.i.d.∼ Nri(X
(i)θ,Σ(i)), i = 1, 2, . . . , k, (10)

9



where ri = p1+p2+ · · ·+pk−i+1, i = 1, 2, . . . , k, X(i) is the upper ri×q matrix of X, and Σ(i) is

the upper left ri×ri matrix ofΣ. The (−2) loglikelihood of observed data Y = {Y 1,Y 2, . . . ,Y k}

can be expressed as

ℓ(θ,Σ;Y ) =

k∑
i=1

{
ni log |Σ(i)|+ niri log(2π)

}
+

k∑
i=1

ni∑
j=1

trΣ(i)−1
(yij −X(i)θ)(yij −X(i)θ)′,

= ℓ1(θ,Σ;Y 1) + ℓ2(θ,Σ;Y d).

Here,

ℓ1(θ,Σ;Y 1) = n1 log |Σ|+ n1p log(2π) +

n1∑
j=1

trΣ−1(y1j −Xθ)(y1j −Xθ)′,

ℓ2(θ,Σ;Y d) =

k∑
i=2

{
ni log |Σ(i)|+ niri log(2π)

}
+

k∑
i=2

ni∑
j=1

trΣ(i)−1
(yij −X(i)θ)(yij −X(i)θ)′,

where Y d = {Y 2,Y 3, . . . ,Y k}.

When n1 is large and (n2 + n3 + · · ·+ nk)/n1 is small, we shall be able to obtain reasonable

estimators for θ and Σ by considering the MLEs based on the likelihood of Y 1 only. From

the result on the MLEs for complete data, such quasi MLEs are expressed (see, e.g. Fujikoshi,

Ulyanov, and Shimizu (2010)) as

θ̃ = (X ′S̃
−1

1 X)−1X ′S̃
−1

1 ȳ1, Σ̃ = S̃1 + (ȳ1 −Xθ̃)(ȳ1 −Xθ̃)′,

where

y1 =
1

n1

n1∑
j=1

y1j , S̃1 =
1

n1

n1∑
j=1

(y1j − ȳ1)(y1j − ȳ1)
′.

Let Y ⋆ be an independent copy of Y , and decompose Y ⋆ as in (9). Then,

Y ⋆
i = (Y ⋆

i1,Y
⋆
i2, . . . ,Y

⋆
i,k−i+1)

= (y⋆
i1,y

⋆
i2, . . . ,y

⋆
ini

)′, i = 1, 2, . . . , k,

and

y⋆
i1,y

⋆
i2, . . . ,y

⋆
ini

i.i.d.∼ Nri(X
(i)θ,Σ(i)), i = 1, 2, . . . , k,

Using observed data set Y and quasi MLEs θ̃ and Σ̃, we consider the following AIC-type risk:

R̃I = EY EY ⋆ [ℓ(θ̃, Σ̃;Y ⋆)]

= EY [ℓ(θ̃, Σ̃;Y )] + C̃T, (11)

10



where

C̃T = EY EY ⋆ [ℓ(θ̃, Σ̃;Y ⋆)− ℓ(θ̃, Σ̃;Y )].

Let correction term C̃T decompose as

C̃T = C̃T1 + C̃T2,

where C̃Ti = EY EY ⋆ [ℓi(θ̃, Σ̃;Y ⋆)− ℓi(θ̃, Σ̃;Y )], i = 1, 2. It is clear that

C̃T1 =

n1∑
j=1

EY EY ⋆

[
tr Σ̃

−1
{
(y⋆

1j −Xθ̃)(y⋆
1j −Xθ̃)′ − (y1j −Xθ̃)(y1j −Xθ̃)′

}]
.

Considering expectation with respect to y⋆
1j and using (17), we note that

C̃T1 = EY

[
tr Σ̃

−1
{
n1Σ+ n1

{
X(θ̃ − θ)

}{
X(θ̃ − θ)

}′
− n1Σ̃

}]
Further, the above C̃T1 can be reduced to the following (see, e.g., Fujikoshi et al. (2010, pp.371-

372)):

C̃T1 =− n1p+
(p− q)n2

1

n1 − p+ q − 1
+

qn1(n1 − 2)(n1 + 1)

(n1 − p− 2)(n1 − p+ q − 2)

≡C̃0. (12)

Second correction term C̃T2 is expressed as

C̃T2 =
k∑

i=2

ni∑
j=1

EY EY ⋆

[
tr Σ̃

(i)−1 {
(y⋆

ij −Xθ̃)(y⋆
ij −Xθ̃)′ − (yij −Xθ̃)(yij −Xθ̃)′

}]
.

Here, note that if i ≥ 2, {y⋆
ij} and {yij} are independent of θ̃ and Σ̃, implying that C̃T2 = 0.

Thus, we can obtain the following result:

Theorem 3 For a general k-step monotone data Y in (5), assume a growth curve model (10).

Let R̃I and C̃T in (11) be the AIC-type risk and correction terms based on the quasi MLEs in

(17). Let

ÃIC = ℓ(θ̃, Σ̃;Y ) + C̃0, (13)

where C̃0 is given by (12). Assume that the true model is included in a growth curve model (10).

Then, ÃIC is an exact unbiased estimator for R̃I.
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When n1 is large, correction term C̃0 can be expanded as

C̃0 = 2

{
q +

1

2
p(p+ 1)

}
+O(n−1

1 ),

whose �rst term is twice the number of unknown parameters.

4 Numerical Example

In this section, we consider the data on the ramus heights of 20 boys, presented in Table 2 of

Elston and Grizzle (1962), to illustrate the results of this article. The ramus heights have been

measured in mm for each boy at 8, 81
2 , 9, and 91

2 years of age. The data are expressed as

y1,y2, . . . ,yn with n = 20. Sample mean vector y and sample covariance matrix S are given as

follows:

y =


48.66
49.63
50.57
51.45

 , S =


6.330 6.189 5.777 5.548
6.189 6.449 6.153 5.923
5.777 6.153 6.918 6.946
5.548 5.923 6.946 7.465

 .

A growth curve model is expressed as

y1,y2, . . . ,yn
i.i.d.∼ Np(µ,Σ), i = 1, 2, . . . , n, (14)

where µ = Xθ, X is a given p × q (≤ p) matrix, and θ is an unknown q × 1 vector. The case

of ramus height data is a special case with p = 4, n = 20, and

X =

1 t1
...

...
1 t4

 , θ =

(
θ1
θ2

)
, or X =

1 t1 t21
...

...
...

1 t4 t24

 , θ =

θ1
θ2
θ3

 ,

with t1 = 8, t2 = 81
2 , t3 = 9, t4 = 91

2 . It is important to determine the degree of polynomial

growth curve model (precisely q = 2 or 3).

Now, to study the case of monotone missing data, let us assume that by discarding some data,

the data will be missing completely at random and consist of a three-step monotone pattern, as

12



follows:

Y 1(123)=



47.8 48.8 49.0 49.7
46.4 47.3 47.7 48.4
46.3 46.8 47.8 48.5
45.1 45.3 46.1 47.2
47.6 48.5 48.9 49.3
52.5 53.2 53.3 53.7
51.2 53.0 54.3 54.5
49.8 50.0 50.3 52.7
48.1 50.8 52.3 54.4
45.0 47.0 47.3 48.3
51.2 51.4 51.6 51.9
48.5 49.2 53.0 55.5
52.1 52.8 53.7 55.0
48.2 48.9 49.3 49.8



, Y 2(12)=

49.6 50.4 51.2
50.7 51.7 52.7
47.2 47.7 48.4

 , Y 31=

53.3 54.6
46.2 47.5
46.3 47.6

 .

For this three-step monotone missing data, we obtain the MLEs of θ and Σ for q = 2 and q = 3

using the methods described by Yagi et al. (2021), as follows:

θ̂ =

(
33.20
1.937

)
, Σ̂ =


6.015 5.881 5.889 5.732
5.881 6.128 6.218 6.097
5.889 6.218 7.032 7.242
5.732 6.097 7.242 7.985

 (q = 2), (15)

θ̂ =

 39.75
0.4005
0.08967

 , Σ̂ =


6.015 5.880 5.887 5.739
5.880 6.127 6.214 6.102
5.887 6.214 7.030 7.257
5.739 6.102 7.257 8.014

 (q = 3). (16)

We are interested in examining whether the growth is linear (q = 2) or quadratic (q = 3).

Related to this problem, consider two models M1 : q = 2 and M2 : q = 3.

First consider the case of Σ being known. Assume that Σ is equal to Σ̂ in (15) or (16).

Then, for two models M1 and M2, the AIC in (8) is presented in Table 1. Table 1 shows that

M1 is better than M2.

Next, consider the case of Σ being unknown. For this case, we proposed a conventional AIC,

ÃIC, which is presented in (13). This criterion is given as follows. Table 1 suggests that M1 is

also better than M2.

Table 1. AIC and ÃIC for the three-step monotone missing data.

AIC ÃIC

M1 202.4 242.1
M2 204.2 245.6

13



To examine an e�ect of missing data on the model selection criterion, we consider a formal

AIC and a corrected AIC, which are denoted by AIC0 and CAIC0, respectively, based on the

density f(Y ;θ,Σ) of Y = (y1,y2, . . . ,yn)
′ in (14). Then, we have

AIC0 = −2 log f(Y ; θ̂, Σ̂) + 2

{
q +

1

2
p(p+ 1)

}
,

where θ̂ and Σ̂ are the MLEs of θ and Σ, satisfying

max
θ,Σ

f(Y ;θ,Σ) = f(Y ; θ̂, Σ̂).

The MLEs are given (e.g., Fujikoshi et al. (2010)) as follows:

θ̂ = (X ′S−1X)−1X ′S−1ȳ, Σ̂ = S + (ȳ −Xθ̂)(ȳ −Xθ̂)′. (17)

Its corrected AIC is given (e.g., Fujikoshi et al. (2010)) as follows:

CAIC0 = −2 log f(Y ; θ̂, Σ̂) + C0,

where

C0 = −np+
(p− q)n2

n− p+ q − 1
+

qn(n− 2)(n+ 1)

(n− p− 2)(n− p+ q − 2)
.

These criteria are presented in Table 2. Both criteria show that M1 is better than M2, similar

to the case of missing data. Although not very signi�cant, the di�erence between CAIC0s is

larger than that between AIC0s.

Table 2. AIC and corrected AIC for the complete data.

AIC0 CAIC0

M1 248.6 259.1
M2 250.4 261.9

5 Conclusion

In this article, we considered an AIC for selecting a set of explanatory variables or a degree

of polynomial regression in a growth curve model when the dataset has a monotone pattern

of missing observations. We noted that a formal AIC is an exact unbiased estimator of the

14



AIC-type risk function de�ned by the expected log-predictive likelihood when the covariance

matrix is known. When the covariance matrix is unknown, we considered a quasi AIC-type risk

based on the estimators obtained from a set of complete data only and not all of the dataset.

We proposed a quasi AIC, which is an exact unbiased estimator for the quasi AIC-type risk.

Through a numerical experiment, it was shown that the proposed AICs work well for monotone

missing data.

When all the parameters are unknown, we proposed a conventional ÃIC in (13). It will be

interesting to consider a model selection criterion as an estimator of the AIC-type risk based on

the exact MLEs. We considered the case of one group. It is also important to extend to the case

of several groups of growth data. Further, it is interesting to examine similar modi�cations for

other model selection criteria such as Cp.

Acknowledgment

The �rst and second authors' research is partly supported by a Grant-in-Aid for Young Scientists

(JSPS KAKENHI Grant Number JP19K20225) and a Grant-in-Aid for Scienti�c Research (C)

(JSPS KAKENHI Grant Number JP17K00058), respectively. The third author's research is

partially supported by the Ministry of Education, Science, Sports, and Culture, a Grant-in-Aid

for Scienti�c Research (C) (JSPS KAKENHI Grant Number JP16K00047), 2016-2018.

References

[1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.

In 2nd International Symposium on Information Theory (eds. B. N. Petrov and F. Csáki),
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Appendix

Proof of Theorem 1

First, we calculate (A)1. Because (Y
⋆
(12)1−1N2θ

′X ′
1) and (1N2θ

′X ′
1−1N2 θ̂

′
X ′

1) are independent,

(A)1 can be written as

(A)1 =N2p1 + trΣ−1
11 EY

[
(1N2θ

′X ′
1 − 1N2 θ̂

′
X ′

1)
′(1N2θ

′X ′
1 − 1N2 θ̂

′
X ′

1)
]

=N2p1 +N2 trA1M
−1,

where

M = N2A1 +N1A2, A1 = X ′
1Σ

−1
11 X1, A2 = X̃

′
2Σ

−1
22·1X̃2.

We note that E
[
(θ̂ − θ)(θ̂ − θ)′

]
= Var(θ̂) = M−1, EY ⋆

[
(Y ⋆

(12)1 − 1N2θ
′X ′

1)
′(Y ⋆

(12)1 −

1N2θ
′X ′

1)
]
= N2Σ11, and EY ⋆

[
Y ⋆

(12)1 − 1N2θ
′X ′

1

]
= 0. Similar to the calculation of (A)1,

we have

(B)1 =N2p1 +N2 trA1M
−1 − 2EY

[
tra1(θ̂ − θ)′

]
,

where

θ̂ = M−1(a1 + a2), a1 = X ′
1Σ

−1
11 Y

′
(12)11N2 ∼ Nq(N2A1θ, N2A1),

a2 = X̃
′
2Σ

−1
22·1(Y 12 − Y 11B12)

′1N1 ∼ Nq(N1A2θ, N1A2),

and a1 and a2 are independent (for the details, refer to Yagi et al. (2021)). Because E[a1a
′
1] =

N2A1 +N2
2A1θθ

′A1 and E[a1a
′
2] = N1N2A1θθ

′A2, it can be inferred that

EY

[
tra1(θ̂ − θ)′

]
= N2 trA1M

−1.

Therefore, we can obtain

(A)1 − (B)1 = 2N2 trA1M
−1.

Next, for the calculation of (A)2 − (B)2, because E[Y ⋆
12|Y ⋆

11] = 1N1θ
′X̃

′
2 + Y ⋆

11B12,

Y ⋆
12 − 1N1 θ̂

′
X̃

′
2 − Y ⋆

11B12 = (Y ⋆
12 − 1N1θ

′X̃
′
2 − Y ⋆

11B12)− 1N1(θ̂ − θ)′X̃
′
2. (18)
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Further, because the �rst and second terms on the right side of equation (18) are independent,

(A)2 =EY EY ⋆

[
trΣ−1

22·1(Y
⋆
12 − 1N1θ

′X̃
′
2 − Y ⋆

11B12)
′(Y ⋆

12 − 1N1θ
′X̃

′
2 − Y ⋆

11B12)

+N1 trΣ
−1
22·1X̃2(θ̂ − θ)(θ̂ − θ)′X̃

′
2

]
=N1p2 +N1 trA2M

−1.

We note that EY ⋆

[
(Y ⋆

12−1N1θ
′X̃

′
2−Y ⋆

11B12)
′(Y ⋆

12−1N1θ
′X̃

′
2−Y ⋆

11B12)
]
= N1Σ22·1. Similar

to the calculation of (A)2, we have

(B)2 =EY

[
trΣ−1

22·1(Y 12 − 1N1θ
′X̃

′
2 − Y 11B12)

′(Y 12 − 1N1θ
′X̃

′
2 − Y 11B12)

+N1 trΣ
−1
22·1X̃2(θ̂ − θ)(θ̂ − θ)′X̃

′
2 − 2 trΣ−1

22·1(Y 12 − 1N1θ
′X̃

′
2 − Y 11B12)

′1N1(θ̂ − θ)′X̃
′
2

]
=N1p2 +N1 trA2M

−1 − 2E[tra2(θ̂ − θ)′].

Then, after some calculations, we obtain E[tra2(θ̂ − θ)′] = N1 trA2M
−1. Thus,

(A)2 − (B)2 = 2N1 trA2M
−1.

Finally, we can obtain the following result:

CT = (A)1 − (B)1 + (A)2 − (B)2

= 2N2 trA1M
−1 + 2N1 trA2M

−1

= 2 tr(N2A1 +N1A2)M
−1

= 2q.

Proof of Theorem 2

In the derivation, we use the MLE of θ when Σ is known with k-step monotone missing data

given by Yagi et al., (2021), that is,

θ̂ = M−1
k∑

j=1

aj ,
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where

M =
k∑

j=1

Nk−j+1Aj , a1 = X ′
1Σ

−1
11 Y

′
(12...k)11Nk

, A1 = X ′
1Σ

−1
11 X1,

aj =X̃
′
jΣ

−1
jj·12...,j−1

(
Y (12...,k−j+1)j − Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j

)′
1Nk−j+1

,

Aj =X̃
′
jΣ

−1
jj·12...,j−1X̃j , j = 2, 3, . . . , k.

For the calculation of (A)j (j = 2, 3, . . . , k), because

E[Y ⋆
(12...,k−j+1)j |Y

⋆
(12...,k−j+1)(12...,j−1)] = 1Nk−j+1

θ′X̃
′
j + Y ⋆

(12...,k−j+1)(12...,j−1)B(12...,j−1)j ,

Y ⋆
(12...,k−j+1)j − 1Nk−j+1

θ̂
′
X̃

′
j − Y ⋆

(12...,k−j+1)(12...,j−1)B(12...,j−1)j

= (Y ⋆
(12...,k−j+1)j − 1Nk−j+1

θ′X̃
′
j − Y ⋆

(12...,k−j+1)(12...,j−1)B(12...,j−1)j)− 1Nk−j+1
(θ̂ − θ)′X̃

′
j ,

(19)

the �rst and second terms on the right side of equation (19) are independent, and it holds that

E[θ̂] = θ, Var(θ̂) = M−1,

(A)j =Nk−j+1pj + E
[
Nk−j+1 trΣ

−1
jj·12...,j−1X̃j(θ̂ − θ)(θ̂ − θ)′X̃

′
j

]
=Nk−j+1pj +Nk−j+1 trAjM

−1.

As for (B)j (j = 2, 3, . . . , k), because

E[Y (12...,k−j+1)j |Y (12...,k−j+1)(12...,j−1)] = 1Nk−j+1
θ′X̃

′
j + Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j ,

Y (12...,k−j+1)j − 1Nk−j+1
θ̂
′
X̃

′
j − Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j

= Y (12...,k−j+1)j − 1Nk−j+1
θ′X̃

′
j − Y (12...,k−j+1)(12...,j−1)B(12...,j−1)j − 1Nk−j+1

(θ̂ − θ)′X̃
′
j (20)

but the �rst and second terms on the right side of equation (20) are not independent. Therefore

(B)j = Nk−j+1pj +Nk−j+1 trAjM
−1 − 2E[traj(θ̂ − θ)′]

As for the calculation of E
[
traj(θ̂ − θ)′

]
,

E[traj(θ̂ − θ)′] = E[tr{aj(a1 + a2 + · · ·+ ak)
′M−1} − trajθ

′]

= E
[ k∑
i=1
i̸=j

traja
′
iM

−1 + traja
′
jM

−1 − trajθ
′
]
.
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Then, using Lemma 1 of Yagi et al. (2021),

k∑
i=1
i̸=j

tr E[aja
′
i]M

−1 =

k∑
i=1
i̸=j

Nk−j+1Nk−i+1 trAjθθ
′AiM

−1,

tr E[aja
′
j ]M

−1 = Nk−j+1 trAjM
−1 +N2

k−j+1 trAjθθ
′AjM

−1,

tr E[aj ]θ
′ = Nk−j+1 trAjθθ

′.

Therefore, E[traj(θ̂ − θ)′] = Nk−j+1 trAjM
−1, and we can obtain

(A)j − (B)j = 2Nk−j+1 trAjM
−1, j = 2, 3, . . . , k.

Similarly, for the case of j = 1, it can also be con�rmed that

(A)1 − (B)1 = 2Nk trA1M
−1.

Thus,

CTk =
k∑

j=1

{(A)j − (B)j}

= 2 tr

k∑
j=1

Nk−j+1AjM
−1

= 2q.
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