AIC for Growth Curve Model with Monotone Missing Data

Ayaka Yagi*, Takashi Seo* and Yasunori Fujikoshi**

*Department of Applied Mathematics
Tokyo University of Science
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

“*Department of Mathematics
Hiroshima University
Higashi- Hiroshima, Hiroshima 739-0046, Japan
Abstract

In this article, we consider an AIC for a one-sample version of the growth curve model when
the dataset has a monotone pattern of missing observations. It is well known that the AIC can be
regarded as an approximately unbiased estimator of the AIC-type risk defined by the expected
(—2) log-predictive likelihood. Here, the likelihood is based on the observed data. First, when
the covariance matrix is known, we derive an AIC, which is an exact unbiased estimator of the
AIC-type risk function. Next, when the covariance matrix is unknown, we derive a conventional
AIC using the estimators based on the complete data set only. Finally, a numerical example is
presented to illustrate our model selection procedure.

Key Words and Phrases: AlC-type risk; Maximum likelihood estimator, Missing
data, Monotone missing data.

1 Introduction

The growth curve model in the case of one-sample problem introduced by Rao (1959) may be

expressed as

Y =1,0 X' +¢, (1)

where Y is an n X p observation matrix, 1,, is an n x 1 vector with all elements as 1, X isa px q
within-individuals design matrix, with rank(X) = ¢, of explanatory variables x1,z2,..., 24, 0

is a ¢ X 1 unknown parameter vector, and

ii.d. .
e =(e1,€0,...,n), & "' Ny0,%), i=1,2,...,n.
nxp

If the rows of Y are expressed as

Y = (y1,Y2,---:Yn)

nxp



then

i.4.d. .
Yi:Y2,---5Yn K Np(u72)7 1= ].,2,...,717

where p = X 0. This is a special case of the growth curve model introduced by Potthoff and

Roy (1964). If we consider a polynomial regression of degree ¢ — 1 on time ¢, then

1t 2 - 7!

1ty 2 -0 07!
x=| 77 ?
pXq Poron

1oty 2 - 3!

Specifically, matrix X in a first- or second-degree polynomial growth curve model is given as

1 4 1t 8
X =1: : ,or X =|[: : : ,
e Do o R

1t 1 t, t

respectively. It is important to determine the degree of polynomial growth curve model. In
general, such a problem can be considered a one of selecting a best subset of {z1,x2,...,24}.
One of the approaches is to use a model selection criterion. In this article, we consider the AIC
or its modifications. It is well known that the AIC was proposed as an approximately unbiased
estimator of the AIC-type risk defined by the expected (—2) log-predictive likelihood (see Akaike,
1973). It is expressed as the sum of (—2)log(likelihood) and the correction term. The latter
term was proposed to be twice the number of independent parameters. Some refinements of the
correction term in the growth curve model were studied by Satoh et al. (1997) and Fujikoshi,
Enomoto, and Sakurai (2013).

In contrast, a variant of the AIC has been considered by Shimodaira (1994) and Cavanaugh
and Shumway (1998) when the observed data are incomplete. However, such approaches have
not been extended in the growth curve model with missing data. In this article we consider
the construction of an AIC based on the observed data, especially with a monotone pattern of
missing observations. We prove that the AIC is an exact unbiased estimator of the AIC-type
risk function when the covariance matrix is known. When the covariance matrix is unknown,
we propose a conventional AIC that may be applicable in the situation such that the number of

subjects with missing observations is smaller than that of subjects with complete observations.
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The remainder of this article is organized as follows. In Section 2, in the case of two-step
monotone missing data, some preliminary notations, and the definition of AIC-type risk are
presented. It is shown that the correction term in AIC-type risk is exactly 2¢q, where g is the
dimension of @, when the covariance matrix is known. These results are extended for general
monotone missing data. In Section 3, we derive an AIC when we estimate the covariance matrix
by using the set of complete data. Finally, we present the numerical results in Section 4 and
conclusions in Section 5. It is noteworthy that the AIC’s modifications proposed herein are
based on an exact theory. Therefore, the proposed criteria are expected to work even in a

high-dimensional case.

2 When Covariance Matrix is Known

2.1 Two-step Monotone Missing Data

Suppose that the observation matrix Y in (1) consists of two-step monotone missing data. Then,
without loss of generality, the first ny samples are complete, and the remainder ny samples have

been observed for the first p; components only. Specifically, let

(Y117 Yl?) = (y17 Yo, - - 7yn1)/7

where Y11 : m1 X p1, Y12 : n1 X p2 and p = p1 + p2. Here, yy,9s,...,y,, have a p-dimensional
normal distribution with the mean vector p = X6 and covariance matrix 3, where X is a
p X q (p < q) known design matrix, and 6 is a ¢ x 1 unknown parameter vector. Further, let
Y21,Y22, - - - » Yo, have a pi-dimensional normal distribution with mean vector p; = X160 and
covariance matrix 11, where g = (g, pb)’, X = (X}, X5), and

i1 X

5 — < 11 12 > '

o1 X

Then, we write Y21 = (Ya1,Y22: - - - Y2n,) as an ng X p; matrix, and

Yiu Yoo )7 (2)

Y:<Y21 *

where “#” indicates a missing part, and we assume that each row of (Y11 Y12) and that of Yo

are mutually independent. For observation matrix Y in (2), our model is summarized as follows:
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M1,: Each row of (Y11 Y12) and that of Y91 are mutually independent and normal with the

same mean vectors g and p, and covariance matrices 3 and X1, respectively.

M2y:

E(Y11 Yio)=1, 6 X', E[Yy]=1,, 6 X/|.

nyxp 1 1XGaXPT ngxpr maxd DX gxpy
Now, we consider the AIC for growth curve model satisfies M1y and M25. Following Akaike

(1973), the AIC-type-risk may be defined (e.g., Sugiura (1978), Fujikoshi and Satoh (1997)) as
RI, = Ey By [—QIOg Y+ 0,3,

where Y* is an independent copy of Y and f is a normal density function. We note that the

distribution of Y* is the same as that of Y. Then, the risk can be written as
Rl, = Ey-Ey+[-2log f(Y;6,5)] + CT,

where
f( ).

.0,
) of 6

and 0 and = are maximum likelihood estimators (MLES and X, respectively. CT, is
called the correction term when we estimate RI, by a naive estimator —2log f(Y;/O\, f]) The

expectation in (3) should be evaluated under the true density of Y. Next, we assume the

following:

Aly: The true density of Y is given by f(Y;00,%), where 6y and X are given values of 0

and X, respectively. The true density is included in the model with M1y and M2s.
A25: The covariance matrix X is known.
Under Als and A2s, the risk and correction term are written as

83y -,

RI = Ey Ev+|—2log f(Y*:0,%)|, and CT =Ey Ey~|—2lo _
vEy g /( )} 1 o)

respectively. In the following, we write f(Y;g7 Y) as f(Y) and true density f(Y’;0¢,%0) as

fY).



~

Note that f(Y™) can be written as

o~ -~ ~

FOY) =F(Y1) (Y LIV 1) f(Y3),

where

~

Fviy) =@m)mmsu) e (Y - 1,0 X025 (v - 1,0 X)),
F(Y1a] Y1) =(2m) 7202 [ Sgy [ 72
% etr{—%( 51,0 (X} — X\ B) — Y,Bi»)
X 22_21.1< T2 — 1n1§/(X/2 - X'\B) — Yflg),},
Fvs) =(m)3mem sy et ] - (V3 — 1,6/ X025 (V3 - 1,0 X1)),
Here, By = Eilzlg. Similarly, f(Y) = f(Y11)f(Y12|Y11)f(Y 21). Therefore, the correction
term in (4) is given by

CT = (A)1 - (B)1 + (A)z - (B)zv
where
— -~/ * ~/
(A); = Ey Ey- [trznl(Y?m)l —1n,6 Xll),(Y(12)1 —1n,6 Xll)]a
r ~/ ~/
(B>1 = EY _tI’ 21_11 (Y(12)1 - 1N29 Xll)/(Y(12)1 — 1N20 Xll):|7

~)—~—/ ~—~/
(A)y = Ey Ey~ [tr o1 (Yo — 10,0 Xy — Y11 B12) (Y, — 1,0 X, — YI1BI2)]7

r I —~1 )~
(B)2 = EY tr 22_21.1(Y12 — 1n19 X2 — YllBlQ)/(Y12 — 1n10 X2 — YllBlQ):|7

.y
and No = ny +no, Xy = X, — X Bi2. Then, it is shown that
qxXp2

—~ —~
(A), — (B), =2Na tr 2/ X 1M ' XY, (A), — (B)y = 2n;1 tr 2oy, XoM ' X,

and CT = 2q. For the details, see Appendix. Thus, we can obtain the following result:

Theorem 1 Suppose that a two-step monotone data matriz'Y in (2) satisfies M1la and M2s.

Then, under assumptions Aly and A2s, the correction term in (4) is given by

CT =EyEy+|-2log

F(Y*;9, 2>]
f(Y;6,%)



The number 2q equals to 2x (the number of unknown parameters) under Aly and A25. We
can express a usual AIC as

AIC = —2log f(Y;0,%) + 2¢,
and from Theorem 1, the AIC is an exact unbiased estimator of RI.
2.2 k-step Monotone Missing Data

In this section, we consider the case of k-step monotone missing data whose observation matrix

Y is of the form

P1 P2 Pr—i+1 Prk—1 Pk
—— —~ ——
Yu Yo oo Yigeizni o Yigr Y \Jm

Yo Y2 oo Yopiy1 0 Yopoq| % bna

)

Y=l Yo Y - Yiew|x - S DR

Yia1 Yei2|* - * Pre—s

)

where “*” indicates a missing part. Further, let

I’l’l }pl
) = Ko
Yiaz. k—iv1) = (Ya Y- Yk 1), H(z.. k=i+1) : us

Pa2... . k—i+1) X1
i XP(12...,k—i41) ( “

Pg—it1 Ipi-ita

pP1 P2 Prk—i+1
—
2 PP R e }on
_ by by D D P2
Y12, kit 1)(12, kit 1) = 21 22 2,k—it1 }
D(12,....k—i4+1) XP(12,...,k—i+1)
Shoitil Theit12 o Skeitlk—itl /) pPrein
Xl }Pl
x X2 } k—i+1
(12, k—i+1) = b2 b= Y P i=12.. .k
POz, k—it1) X4 . ) p(lQ...,k‘—Z-i—l) ! p]7 ) 4y 5 vy
J:

iniJrl }pk7i+1
Haz.k) = B 2= X012 k)312..k) p)X(q = X2k P=DP012..k)

0 = (61,02, ,6,).

For observation matrix Y in (5), our model is summarized as follows:
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Mly: Each row of Y2, x—+1) is mutually independent and normal with the same mean

vectors t(ia. k—it1) and covariance matrices 2(12 ..... k—it1)(12,... k—it1)-
M2,
BY (2. pmitn) = Lniig girn)y 0= 1,2k, (6)
where p(1o. p—it1) = X 2. k—it1)0.
Similar to Section 2.1, we assume the following:

Aly: The true density of Y is given by f(Y;600,%0), where 8y and X are given values of 0

and X, respectively. The true density is included in the model with M1; and M2.
A2;.: The covariance matrix X is known.

Under Al and A2y, the risk and correction terms for the k-step monotone missing data are

written as
~ f(Y*0,%)
RI = EyE *[—zlong*;o,z} and CT = By By [—2log 12 1222 } 7
vEy ( ) Yy F(Y: 0.5 (7)
respectively. We note that

K
[(Y;60,%) = H f(Yiaa. k—it1); 0, %)

Zkl kok—itl
= H f(Yi1;0,%) H H FY451Y 2. j—1); 3
i=1 i=1 j=2
=f(Y (120130, ) [ [ F(Y (2 iphminn |Y (120001205003 0, )
=1

k
Zf(Y(u...k)l; 0,%) H f(Y(12...,k—j+1)j|Y(12...,k;—j+1)(12...,j—1); 0,%),
j=2



where

o~

f(Y(m...k)l; 0,%)

= (2m) 2Ny |2 N ety

—
DO | —

-~/ _ -~/
—=(Y 2.1 — In.0 XD (Y (12,01 — 1,0 Xll)/}:

)

F(Y (12..051Y q2..9012...j-1); 0, 2)

_ 1IN, _1n 1 ~1—/
= (2m) 2 Nibs 3j512....5-1] 2 Vi etr[_i{Y(ll..i)j —1n,0 Xj - Y(12...i)(12...,j—1)B(12...,j—1)j}

~I—/

!
—1
ij.lg.,,,j_l{Y(u...i)j —1y0 X; — Y(12...i)(12...,j71)3(12.,.,j71)j} }7

i=k—j+1, j=2,3,... .k,

and

i

Ny = 2”17 i=k—j+1, Xj. -1 =3 - 2(12---7j—1)j2(12...,j71)(12...,jfl)2(12---7j—1)j
j=1

—~

-1
X;= X;‘ - X/(12..-,jfl)B(l?m,j—l)j7 Bs...j-1); = 2(12...,]'71)(12...,]'71)2(12-~-7J’—1)]”

21]'

PN .
Y2, -1 = : 2j , 7 =2,3,...,k.
P(12...,5—1) XPj -

X1

Similarly, f(Y*;8,%) = [1\; f(Y}1a. s_i41);0,3). Further, we note that 6 is the MLE of 6
when 3 is known (see Yagi, Seo and Fujikoshi (2021)).

Therefore, the correction term in (7) is given by

k
CT =Y {(A), - (B}
where

SN ., .
(A); =Ey Ey~ _tr2111(Y(12...k)1 — 15,6 Xll),(Yﬁz...kn —1x,0 X’l)},

_ ~ 'y
(B); =Ey |tr 211 (Y (12..4)1 — 1n,0 X' (Y (12,61 — 15,0 Xﬁ)}a

~I—1/

[ —1
(A); =By By~ |tr3550, 5 1 (Ve gy = W0 X5 = Yo gjinae. j-nBaz.i-1;)

I ~1
(Y?12...,k7j+1)j - 1Nk—j+10 Xj - Y)(k12...,kfj+1)(12...,jfl)B(lz-w]’—l)j)]’
— ~—~=/
(B); =Ey |tr Ejj%lz...,jq(Y(lz...,k:—j+1)j — 1N, ;1,0 X = Yo kjryaz..j-nBaz..j-1);)
~|—~—/ .
(Y2 k—jr1) — v ;1,0 X — Y(12...,k7j+1)(12...,j71)B(12...,j71)j)]7 J=2,3,...,k
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Then, it is shown that

(A)1 — (B)1 = 2Ngptr A\M 1,
(A); — (B)j = 2Ng—j11 tl“AjMfl, j=2,3,...,k,

where

k
—~ —~ .
A =XZ0 Xy, A =X30, X, §=23k M=) Ni_j1A;

Jj=1

Hence, we can obtain the following result:

Theorem 2 Suppose that a k-step monotone data matriz'Y in (5) satisfies M1y and M2y. Then,

under assumptions Al and A2y, the correction term in (7) is given by

fye
CT = Ey By |—2log 2=
yEy S

For the proof of Theorem 2, refer to Appendix. From Theorem 2, we can express a usual AIC

as

AIC = —2log f(Y;6,%) + 2¢, (8)
which is an exact unbiased estimator of RI, where Y is given by (5).

3 When all Parameters are Unknown

In this section, we consider the construction of a naive AIC when all the parameters are unknown.

Suppose that a k-step monotone data Y is given as in (5), and let

Y, =Y, Yo, .., Yipit1)

= (yi17yi27“'7yini)/7 1:1,27,k (9)
Then,
Yits Uiz -1 Ui, = Ny (XD, 20) i =1,2,.. .k, (10)



where 7, = p1+p2+- -+ Pk—iv1, ¢t =1,2,...,k, X @ is the upper r; X ¢ matrix of X, and @ ig
the upper left 7; xr; matrix of 3. The (—2) loglikelihood of observed dataY = {Y1,Y,,..., Y}

can be expressed as

k
0,2:Y)=%" {n log S| + nyr; log(27) } ZZHE“ (y;; — XD0)(y,; — X0,
=1 i=1 j=1

- 61(07 27 Yl) + EQ(Ga 27 Yd)
Here,

ni
01(0, ;Y1) = my log |B| + miplog(2m) + Y tr 7 (y,; — X0)(y,; — X0)',
j=1
k

05(0,%;Y ) = Z {nZ log |=®| 4 n;r; log(27 } ZZtr »®~ (yi; — X(i)O)(yij —xWgy,
=2 =2 j=1

where Y ={Y2,Y3,..., Y}
When n; is large and (ng + n3 + - - - + ng)/n1 is small, we shall be able to obtain reasonable
estimators for @ and ¥ by considering the MLEs based on the likelihood of Y only. From

the result on the MLEs for complete data, such quasi MLEs are expressed (see, e.g. Fujikoshi,

Ulyanov, and Shimizu (2010)) as
0=(X'S; X)'x'S,'g,, £=581+ (g —X0)(y, — X8),

where
ni

L c 1 , _
1= E Yi;» S =— E (ylj - yl)(ylj - yl)/'
™MD ™S4
Let Y* be an independent copy of Y, and decompose Y™ as in (9). Then,

Yf = ( ﬁa ?2, RRE Zkﬂ'ﬂ)
=Y Um) s =120k,
and
Y Y Yl NN (XD0,20), =12,k
Using observed data set Y and quasi MLEs 6 and f], we consider the following AIC-type risk:
Rl = Ey Ey-[(6,%;Y*)]

— By [((0,%;Y)] + CT, (11)
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where

CT = Ey Ey+[0(8,%;Y™*) — £(8,%;Y)).
Let correction term CT decompose as
CT = CTy + CTy,
where CT; = Ey Ey~ [&;(5, P Y™) - Zi(é, 3 Y)], ¢=1,2. It is clear that

ni
—~— ,-Vi]_ ~ ~ ~ ~
CT; = ZEYEy* [UE {(yfj - X0)(y1;, — X0)' — (y1; — X0)(yy, — XH)’}] .
=1

Considering expectation with respect to y{j and using (17), we note that

CT, = Ey [trfl_l {n;[E +m {X@-0)} {x(6- 9)}' _ nlf:H

Further, the above éi“l can be reduced to the following (see, e.g., Fujikoshi et al. (2010, pp.371-
372)):
(p—q@)ni qni(n1 —2)(n1 +1)

n—p+q—1 (ni—p—2)(n1—p+q—2)

CNT1=—7”L1P+

Second correction term C"—/I‘Q is expressed as
N ko ny ~ (i) _ B _ _
CTy = Z Z Ey Ey [tr P {(y;j — X0)(y}; — X0) — (y;; — X6)(y;; — XO)’}} .
i=2 j=1
Here, note that if i > 2, {y};} and {y,;} are independent of 6 and X, implying that CT, = 0.

Thus, we can obtain the following result:

Theorem 3 For a general k-step monotone dataY in (5), assume a growth curve model (10).
Let RI and CT in (11) be the AIC-type risk and correction terms based on the quasi MLEs in
(17). Let

AIC = 0(6,%;Y) + Co, (13)

where Cy is given by (12). Assume that the true model is included in a growth curve model (10).

Then, AIC is an evact unbiased estimator for RL
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When n; is large, correction term 60 can be expanded as
~ 1 .
Co=2qq+ ip(lﬂ‘l) +0(ny ),
whose first term is twice the number of unknown parameters.
4 Numerical Example

In this section, we consider the data on the ramus heights of 20 boys, presented in Table 2 of
Elston and Grizzle (1962), to illustrate the results of this article. The ramus heights have been

measured in mm for each boy at 8, 8%, 9, and 9% years of age. The data are expressed as

Y1,Y2, - -, Y, with n = 20. Sample mean vector y and sample covariance matrix S are given as
follows:
48.66 6.330 6.189 5.777 5.548
—149.63 g _ 6.189 6.449 6.153 5.923
Y= 15057 - | 5.777 6.153 6.918 6.946
51.45 5.548 5.923 6.946 7.465

A growth curve model is expressed as

i.4.d. .
ylay27"-)ynlk Np(“72)7 22172)-'-7717 (14)

where p = X0, X is a given p X ¢ (< p) matrix, and 6 is an unknown ¢ x 1 vector. The case

of ramus height data is a special case with p =4, n = 20, and

1t ; 1t 2 0,
X=|: : ,9:<91>, oo X=1|: : |, 0=[6],
2
1 4 1 ty t?l 03

with t; = 8, to = 8%, t3 =9, t4 = 9%. It is important to determine the degree of polynomial
growth curve model (precisely ¢ = 2 or 3).
Now, to study the case of monotone missing data, let us assume that by discarding some data,

the data will be missing completely at random and consist of a three-step monotone pattern, as

12



follows:

47.8 48.8 49.0 49.7
46.4 473 477 484
46.3 46.8 47.8 48.5
45.1 45.3 46.1 472
476 48.5 48.9 49.3
52.5 53.2 53.3 53.7

49.6 50.4 51.2 93.3 54.6
51.2 53.0 54.3 54.5
’ ’ ) ’ 472 477 484 46.3 47.6

48.1 50.8 52.3 544
45.0 47.0 47.3 48.3
51.2 514 51.6 51.9
48.5 49.2 53.0 55.5
52.1 52.8 53.7 55.0
48.2 48.9 49.3 49.8

For this three-step monotone missing data, we obtain the MLEs of 8 and X for ¢ =2 and ¢ = 3
using the methods described by Yagi et al. (2021), as follows:

6.015 5.881 5.889 5.732

S (3320 o [5.881 6.128 6.218 6.097
6"(1.937)’ = 5880 6218 7032 7242 (172 (1)
5.732 6.097 7.242 7.985
20,75 6.015 5.880 5.887 5.739
- ' o |5880 6.127 6.214 6.102
6= {04005 |, = (q=3) (16)
008067 5.887 6.214 7.030 7.257

5.739 6.102 7.257 8.014

We are interested in examining whether the growth is linear (¢ = 2) or quadratic (¢ = 3).
Related to this problem, consider two models M; : ¢ =2 and My : q¢ = 3.

First consider the case of ¥ being known. Assume that ¥ is equal to S in (15) or (16).
Then, for two models M; and Ma, the AIC in (8) is presented in Table 1. Table 1 shows that
M is better than M.

Next, consider the case of X being unknown. For this case, we proposed a conventional AIC,
AIVC, which is presented in (13). This criterion is given as follows. Table 1 suggests that M; is

also better than M.

Table 1. AIC and AIC for the three-step monotone missing data.

AIC  AIC
My 202.4 242.1
Mo 204.2 245.6
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To examine an effect of missing data on the model selection criterion, we consider a formal
AIC and a corrected AIC, which are denoted by AICy and CAICy, respectively, based on the

density f(Y;0,%) of Y = (y1,Ys,---,¥,) in (14). Then, we have

~ & 1

AICy = —2log f(Y;60,%) + 2 {q + ip(p—k 1)} )
where 6 and 3 are the MLEs of 8 and 3, satisfying
max f(Y;6,%) = f(Y;6,%).
D i ) = f( )
The MLEs are given (e.g., Fujikoshi et al. (2010)) as follows:
0=(X'S'X)'X'S'y, S=8+(y-X0)(y— X86). (17)
Its corrected AIC is given (e.g., Fujikoshi et al. (2010)) as follows:
CAICy = —2log f(Y;0,3) + Cy,

where

(p— q)n? N gn(n —2)(n +1)
n—p+q-1 (n-p-2)(n—p+q—-2)

Co = —np +

These criteria are presented in Table 2. Both criteria show that M, is better than My, similar
to the case of missing data. Although not very significant, the difference between CAICys is

larger than that between AICqs.

Table 2. AIC and corrected AIC for the complete data.

AICy CAICy
My 248.6 259.1
My 2504 261.9

5 Conclusion

In this article, we considered an AIC for selecting a set of explanatory variables or a degree
of polynomial regression in a growth curve model when the dataset has a monotone pattern

of missing observations. We noted that a formal AIC is an exact unbiased estimator of the
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AIC-type risk function defined by the expected log-predictive likelihood when the covariance
matrix is known. When the covariance matrix is unknown, we considered a quasi AIC-type risk
based on the estimators obtained from a set of complete data only and not all of the dataset.
We proposed a quasi AIC, which is an exact unbiased estimator for the quasi AIC-type risk.
Through a numerical experiment, it was shown that the proposed AICs work well for monotone
missing data.

When all the parameters are unknown, we proposed a conventional AIC in (13). It will be
interesting to consider a model selection criterion as an estimator of the AIC-type risk based on
the exact MLEs. We considered the case of one group. It is also important to extend to the case
of several groups of growth data. Further, it is interesting to examine similar modifications for

other model selection criteria such as Cp,.
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Appendix

Proof of Theorem 1

First, we calculate (A)1. Because (Y5 —1n; 0’ X)) and (15,0’ X' — 1, 5/X'1) are independent,

(A); can be written as

(A) =Nop1 + tr BBy | (1n,0/ X1 — 13,0 XY (13,0 X1 — 1,8 X1)

=Nop1 + Natr 141]\4717

where

M = NyAy + NiAy, A= X\ 301 X1, Ay = X,550 X,

We note that E[(@ — 6)(8 — 8)] = Var(d) = M~!, Ey~ [(Y;m — 13,0 X)) (Y, —
1 Nza’X’l)} — Ny, and Ey- [Y{m —1 NQO’X’J = 0. Similar to the calculation of (A)r,

we have
(B)1 =Nap1 + Ny tr A M — 2Ey [tr a1(§ — 9)'} ,
where

/9\ = Mﬁl(al + ag), a; = Xllzl_llYl(m)llNQ ~ Nq(N2A10, N2A1),

—~
as = X355 (Yia — Y11B12)'1n, ~ Ny(N1A26, N1 Ay),

and a; and ag are independent (for the details, refer to Yagi et al. (2021)). Because Ela1a)] =

NyA; + N2A1060' A, and Elaial] = N1 N2A106’ Ay, it can be inferred that
Ey [tra;(6 —0)| = Nptr A;M "
Therefore, we can obtain
(A); — (B); =2Notr A M 1.
Next, for the calculation of (A)s — (B)2, because E[Y1,|Y 7] = 1N, 9':5?/2 + Y7, B2,

I~ —~ ~ —
Yi,—1ny0 Xy — Y] Bio= (Y], — 180X, — Y] Bi2) — 15,(6 — 6)' X, (18)
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Further, because the first and second terms on the right side of equation (18) are independent,

— —~/
(A)2 =Ey Ey~ [tr 22_21.1(Y’1k2 — 130X, — Y711 B12) (Y1 — 13, 0'X, — Y7, Buo)
+ Ny tr 25, X5(0 — 0)(6 - 9)”)2’2}

=Nips + Ny tr AoM 1,

We note that Ey-+ [( 1N, 0 Xy — Y Bio) (Y — 15, 0 Xy — Y{lslg)} — NiXoo1. Similar

to the calculation of (A)a, we have

— -~/
(B)2 :EY |:tI“ 22721_1(Y12 - 1N10/X2 - Y11812)/(Y12 - 1N10/X2 - YllBlg)
~ o~ o~ —~ —~/ -~ -~/
+ N1 tr 35, X2(0 —0)(0 —0) X, —2tr 25 (Vi — 13,0’ Xy — Y11B12) 1n, (0 — 0)' X,

=Nips + Nytr ApM ' — 2E[tr ag(b\ —0)'].
Then, after some calculations, we obtain E[tr az(6 — 6)] = Ny tr A;M ', Thus,
(A)y — (B)y = 2Ny tr ApM L,
Finally, we can obtain the following result:

CT = (A>1 - (B)1 + (A)2 - (B)z
= 2Ny tr 141]\4'_1 + 2Ny tr AQM_l
= 2tI‘<N2A1 + NlAQ)Mil

= 2q.

Proof of Theorem 2

In the derivation, we use the MLE of 8 when X is known with k-step monotone missing data

given by Yagi et al., (2021), that is,

k
5 = Mﬁlza]‘,
=1
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where

k
M :ZNkfjHAj? ay = Xllzl_llYI(IQ...k)l]‘Nk’ A= X/121_11X17
j=1

— _1
aj =X.3

/
j ]j.12m,j_1(Y(IQ...,kfjJrl)j - Y(12...,kfj+1)(12...,jfl)B(lz..,jfl)j) 1N, i1

— _1 — .
Aj =X ;3500 X 7=23,.. k.

For the calculation of (A); (j =2,3,...,k), because

—~
E[Y,((12,..,k7j+1)j’Y*12...,kfj+1)(12‘..,j—1)] = 1Nk—j+10/Xj + Y?12...,kfj+1)(12...,j71)6(12--~7j—1)]'7

o~~~/
Y?12...,k—j+1)j - 1Nk—j+10 Xj - Y?12..,,kfj+1)(12...,j71)B(12~-~J—1)j
-~ —~/

—~
= ( le...,k—jH)j - 1Nk—j+10/Xj - YE(IQ...,k7j+1)(12...,j71)8(12--,]'—1)]') - 1Nk—j+l(0 - g)lXj’
(19)
the first and second terms on the right side of equation (19) are independent, and it holds that

E[6] = 6, Var(6) = M,

—~

o~

(A)j =Np—jp1pj + B[Ny tr S50, X;(6—0)(0 - 0)'X,
=Ny js1Pj + Np—jpr tr A;M L
As for (B); (j =2,3,...,k), because
E[Y 12, k0¥ 2. p—jr1)(2...j-1)) = 1Nk,j+19,35; +Y (12 k—jrn2..j—nBaz.j-1)j
Y 2. k—jr1)j — 1N,€_j+15/35; =Y 2. k—jrn(2..5-1)Baz..j-1);
=Y 2. k—j+1)j — 1Nk_]-+19/35; =Y 2. k—jrn(2...j-1)Baz..j-1); — 1Nk_j+1(§ - 9)/35]' (20)
but the first and second terms on the right side of equation (20) are not independent. Therefore

(B)] = Nkfj+1pj + Nk,jJrl tr AjM_l — QE[U' aj(§ — 0)/]

As for the calculation of E [tr aj(a — 0)’},
E[tr aj(a —0)] =Eltr{aj(a1 +as+ - +ap) M~ '} —tra;0]
k
=E {Z traja, M+ tr aja;M_l —tr ajH’} .
i=1
i#]
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Then, using Lemma 1 of Yagi et al. (2021),

k k
> wrElaja]lM ™ =Y Ny 1 Np_iy1tr A;00' A,M ",
i=1 i=1
i#j i#£]j

tr E[aja;»]M_l = Nk‘—j—i—l tr z4j]\4_1 + ng—j-i-l tr AjGB'AjM_l,

tr E[aj]e' = Nk—j+1 tr AJ-BB’.
Therefore, E[tr a; 6—06)] = Nj—j+1tr AjM ™! and we can obtain
(A)J - (B)] = 2Nk—j+1 tI‘AjMil, j = 2,3, ey k.
Similarly, for the case of 7 = 1, it can also be confirmed that
(A)l - (B)l = 2Nk tI‘AlM_l.
Thus,
k
CTy = > {(4); - (B);}
j=1

k
= 2tr Z NkfjJrlAjMil
j=1
= 2q.
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