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Abstract

In this paper, we discuss two typical multivariate multiple comparisons procedures among mean vectors: that is,
pairwise comparisons and comparisons with a control. In traditional multivariate analysis, these multivariate mul-
tiple comparisons procedures are constructed based on Hotelling’s T 2 statistic in multivariate normal populations.
However, in high-dimensional settings, such when the dimensions exceed total sample sizes, these methods cannot
be applied. In such cases, Takahashi et al. (2013) proposed asymptotically conservative simultaneous confidence
intervals under the assumption of homogeneity of variance-covariance matrices across groups. Unfortunately, these
simultaneous confidence intervals are not asymptotically conservative when this assumption is violated. Motivated
by this point, we newly obtain asymptotically conservative confidence intervals based on L2-type statistic without
assuming that the variance-covariance matrices are homogeneous across groups. Empirical results indicate that the
proposed simultaneous confidence intervals outperform existing procedures.

AMS 2000 subject classification: Primary 62H15; secondary 62F03.

Key words: Comparisons with a control, Covariance heterogeneity, High-dimensional data, Multiple comparisons,
Pairwise comparisons.

1. Introduction

The study of multiple comparisons under univariate and multivariate analyses has been undertaken by many au-
thors, see, e.g., Hochberg and Tamhane (1987), Hsu (1996) and Bretz et al. (2010). In this paper, we discuss two
typical multivariate multiple comparisons procedures among mean vectors: that is, pairwise comparisons and com-
parisons with a control. When we consider multivariate multiple comparisons among mean vectors, we usually deal
with simultaneous confidence intervals. So, it is well established that constructing simultaneous confidence intervals
among mean vectors is important for this problem.

Let xi j for i ∈ {1, . . . , k} and j ∈ {1, . . . , ni} be independently distributed as the p-dimensional normal distribution
with mean vector µi and covariance matrix Σi, which is denoted as Np(µi,Σi). Besides, let Rp

∗ = Rp \ {0}. Then, we
consider simultaneous confidence intervals for pairwise multiple comparisons among mean vectors, that is, for the set
of all linear combinations of the mean difference a⊤(µℓ − µm) = a⊤δℓm for all a ∈ Rp

∗ and for all ℓ,m ∈ {1, . . . , k}.
Also, letting the first population be a control, we consider simultaneous confidence intervals for comparisons with a
control, that is, for the set of all linear combinations of the mean difference a⊤(µ1 − µm) = a⊤δ1m for all a ∈ Rp

∗ and
for all m ∈ {2, . . . , k}.

In general, it is difficult to construct so-called exact simultaneous confidence intervals in which the nominal con-
fidence level and coverage probability match. Thus, the conservative simultaneous confidence intervals in which
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coverage probability is larger than nominal confidence level is often studied. When Σ1 = · · · = Σk and p ≤ n − k
where n =

∑k
i=1 ni, it is well known that simultaneous confidence intervals for pairwise multiple comparisons and

comparisons with a control among mean vectors are based on Hotelling’s T 2 statistic. That has been extensively stud-
ied by many statisticians, see, e.g., Seo and Siotani (1992), Seo, Mano and Fujikoshi (1994), and Seo and Nishiyama
(2008).

Recently, high-dimensional data are frequently collected in various research and industrial areas. For high-
dimensional settings such as p > n − k, the sample covariance matrix becomes singular, and hence, Hotelling’s
T 2 statistic cannot be defined. In these situations, by changing T 2 statistic to Dempster’s (1958, 1960) statistics,
Hyodo et al. (2014) proposed simultaneous confidence intervals for multiple comparisons among mean vectors in
high-dimensional settings with a balanced sample case. Also, Takahashi et al. (2013) offered an extension of the
results with a balanced sample case by Hyodo et al. (2014) to an unbalanced sample case.

Also, in recent year, testing procedures for high-dimensional data which tests the equality of mean vectors under
covariance heterogeneity have been paid much attention. For example, Chen and Qin (2010) proposed an L2-type
statistic for two sample test without assuming the equality of two covariance matrices, that is, multivariate Behrens-
Fisher problem. Besides, other important testing procedures under covariance heterogeneity have been studied by
many authors, see, e.g., Aoshima and Yata (2011), Nishiyama et al. (2013), Feng et al. (2015), Hu et al. (2017), Ishii
et al. (2019) and Zhang et al. (2021).

In this paper, we discuss multivariate multiple comparisons procedures among mean vectors. For this problem, as
mentioned above, Hyodo et al. (2014) and Takahashi et al. (2013) assumed Σ1 = · · · = Σk to construct simultaneous
confidence intervals. Unfortunately, when Σ1 = · · · = Σk is violated, these simultaneous confidence intervals are not
asymptotically conservative (for details, we state in section 2). Motivated by this point, we newly propose a pairwise
multiple comparisons and comparisons with a control among mean vectors based on the following L2-type statistic
without assuming that Σ1 = · · · = Σk:

H̃ℓm = ∥̂δℓm − δℓm∥2 −
tr(Sℓ)

nℓ
− tr(Sm)

nm
,

where δ̂ℓm = xℓ − xm for ℓ,m ∈ {1, . . . , k}, and xi = n−1
i

∑ni
j=1 xi j is the i-th sample mean vector and Si = (ni −

1)−1 ∑ni
j=1(xi j − xi)(xi j − xi)⊤ is the i-th sample covariance matrix for i ∈ {1, . . . , k}. Chen and Qin (2010) showed

asymptotic normality of this statistic. This fact also provides asymptotic validity to using percentage points of stan-
dard normal distributionN(0, 1) as an approximation for percentage points of the L2-type statistic in high-dimensional
settings. In this paper, we simply call this approximation a ‘normal approximation’. However, the normal approxima-
tion is often too loose or fails to capture the tail behavior of the resulting distribution. For this reason, we newly derive
an Edgeworth expansion and Cornish-Fisher expansion for studentized L2-type statistic and construct a confidence
interval by applying the Cornish-Fisher expansion. We also show that asymptotic coverage probability is greater than
or equal to the nominal confidence level (that is, asymptotically conservative).

The remainder of this paper is organized as follows: In section 2, we investigate the effect of heteroscedastic-
ity after introducing the simultaneous confidence intervals of Takahashi et al. (2013). In section 3, we derive an
Edgeworth expansion and Cornish-Fisher expansion of studentized L2-type statistic. Also, based on these results, we
construct new simultaneous confidence intervals for pairwise multiple comparisons and comparisons with a control
among mean vectors without assuming that Σ1 = · · · = Σk. In section 4, via Monte Carlo simulations, we compare
our proposed simultaneous confidence intervals with existing simultaneous confidence intervals given by Takahashi
et al. (2013) and conclude with advantages of the proposed procedures. Further, to illustrate our results, we present a
real data analysis. Finally, we provide some concluding remarks. Proofs of theorems and lemmas are detailed in the
appendix.
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2. Introduction to previous studies and the effect of covariance heterogeneity

2.1. Introduction to previous studies
Let the pooled sample covariance matrix be

S =
1

n − k

k∑
i=1

ni∑
j=1

(xi j − xi)(xi j − xi)⊤,

where n =
∑k

i=1 ni. Dempster (1958, 1960) proposed the following statistic:

D̃ℓm = w−1
ℓm
∥̂δℓm − δℓm∥2

tr(S)
,

where wℓm = 1/nℓ + 1/nm for ℓ,m ∈ {1, . . . , k}. We note that D̃ℓm can be clearly defined even if p > n − k. When
Σ1 = · · · = Σk = Σ0, the asymptotic mean and asymptotic variance of D̃ℓm are given by

E(D̃ℓm) ≈ 1, var(D̃ℓm) ≈
2tr(Σ2

0)
{tr(Σ0)}2 =: σ2.

To construct simultaneous confidence intervals, Takahashi et al. (2013) defined so-called studentized statistic

Dℓm =
1
σ̂

{
w−1
ℓm
∥̂δℓm − δℓm∥2

tr(S)
− 1

}
,

for ℓ , m, ℓ,m ∈ {1, . . . , k} and

σ̂ =
1

tr(S)

√
2(n − k)2

(n − k + 2)(n − k − 1)

{
tr(S2) − {tr(S)}2

(n − k)

}
.

Let nominal confidence level be 1−α, α ∈ (0, 1). Next, Takahashi et al. (2013) considered simultaneous confidence
intervals for pairwise multiple comparisons and comparisons with a control, respectively, consisting of the following:[

a⊤δ̂ℓm − Dℓmpw, a
⊤δ̂ℓm + Dℓmpw

]
, ∀a ∈ Rp

∗ , ∀ℓ < m, ℓ,m ∈ {1, . . . , k},[
a⊤δ̂1m − D1m

c , a
⊤δ̂1m + D1m

c

]
, ∀a ∈ Rp

∗ , ∀m ∈ {2, . . . , k},

where

Dℓmpw = ∥a∥
√

wℓmtr(S)(1 + σ̂dpw) , D1m
c = ∥a∥

√
w1mtr(S)(1 + σ̂dc) .

Here, exact critical values dpw and dc satisfy as follows:

Pr
(

max
1≤ℓ<m≤k

Dℓm ≤ dpw

)
= 1 − α, Pr

(
max
2≤m≤k

D1m ≤ dc

)
= 1 − α.

Because it is difficult to obtain exact critical values for dpw and dc in simultaneous confidence intervals, Bonferroni’s
approximate procedure is discussed by Takahashi et al. (2013). By using Bonferroni’s inequality, coverage probabili-
ties of the two confidence intervals based on Dempster’s statistic can be evaluated as

Pr
(

max
1≤ℓ<m≤k

Dℓm ≤ dpw

)
≥ 1 −

∑
1≤ℓ<m≤k

Pr
(
Dℓm ≥ dpw

)
,

Pr
(

max
2≤m≤k

D1m ≤ dc

)
≥ 1 −

∑
2≤m≤k

Pr (D1m ≥ dc) ,

respectively. Further, Takahashi et al. (2013) constructed an asymptotically conservative simultaneous confidence
interval by choosing dpw and dc so that Pr(Dℓm ≥ dpw) = α/Kpw + o(1) and Pr(D1m ≥ dc) = α/Kc + o(1), where
Kpw = k(k − 1)/2 and Kc = k − 1. The specific forms of these confidence intervals are obtained by following.
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1. Simultaneous confidence intervals for pairwise multiple comparisons among mean vectors are given by

TCIpw1 =
[
a⊤δ̂ℓm − Dℓm1pw, a

⊤δ̂ℓm + Dℓm1pw

]
, ∀a ∈ Rp

∗ , ∀ℓ < m, ℓ,m ∈ {1, . . . , k}, (2.1)

where

Dℓm1pw = ∥a∥
√

wℓmtr(S)(1 + σ̂zαpw ).

Here, αpw = α/Kpw and za denotes the upper 100 × a percentile of the standard normal distribution N(0, 1).

2. Simultaneous confidence intervals for multiple comparisons with a control among mean vectors are given by

TCIc1 =
[
a⊤δ̂1m − D1m

1c , a
⊤δ̂1m + D1m

1c

]
, ∀a ∈ Rp

∗ , ∀m ∈ {2, . . . , k}, (2.2)

where

D1m
1c = ∥a∥

√
w1mtr(S)(1 + σ̂zαc ).

3. Simultaneous confidence intervals for pairwise multiple comparisons among mean vectors are given by

TCIpw2 =
[
a⊤δ̂ℓm − Dℓm2pw, a

⊤δ̂ℓm + Dℓm2pw

]
, ∀a ∈ Rp

∗ , ∀ℓ < m, ℓ,m ∈ {1, . . . , k}, (2.3)

where

Dℓm2pw = ∥a∥
√

wℓmtr(S)
{
1 + σ̂d̂(zαpw )

}
.

Here, d̂(x) is estimated using the Cornish-Fisher expansion, which is defined by

d̂(x) =x +
1
√

p

( √
2̂c3

3
√

ĉ3
2

)
(x2 − 1) +

1
p

{
ĉ4

2̂c2
2

x(x2 − 3) −
2̂c2

3

9̂c3
2

x(2x2 − 5)
}
+

1
2n

x,

where

ĉ1 =
tr(S)

p
, ĉ2 =

n2

(n + 2)(n − 1)p

[
tr(S2) − {tr(S)}2

n

]
,

ĉ3 =
n4

(n + 4)(n + 2)(n − 1)(n − 2)p

[
tr(S3) − 3tr(S2)tr(S)

n
+

2{tr(S)}3
n2

]
,

ĉ4 =
n3

(n + 6)(n + 4)(n + 2)(n + 1)(n − 1)(n − 2)(n − 3)p

×
[
n2(n2 + n + 2)tr(S4) − 4n(n2 + n + 2)tr(S3)tr(S)

− n(2n2 + 3n − 6){tr(S2)}2 + 2n(5n + 6)tr(S2){tr(S)}2 − (5n + 6){tr(S)}4
]
.

4. Simultaneous confidence intervals for multiple comparisons with a control among mean vectors are given by

TCIc2 =
[
a⊤δ̂1m − D1m

2c , a
⊤δ̂1m + D1m

2c

]
, ∀a ∈ Rp

∗ , ∀m ∈ {2, . . . , k}, (2.4)

where

D1m
2c = ∥a∥

√
w1mtr(S)

{
1 + σ̂d̂(zαc )

}
.

Simultaneous confidence intervals given by 1 and 2 are constructed using percentage points of the limit distribution of
Dℓm. Simultaneous confidence intervals given by 3 and 4 are constructed using an estimated Cornish-Fisher expansion
for Dempster statistic Dℓm.
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2.2. The effect of covariance heterogeneity
In this section, we discuss the effect of covariance heterogeneity on simultaneous confidence intervals based on

Dempster’s statistic D̃ℓm when the assumption Σ1 = · · · = Σk is violated. We assume the following two conditions for
asymptotic assessment.

(A1) p→ ∞, n0 = min{n1, . . . , nk} → ∞, limn0,p→∞p/n0 ∈ (0,∞), and limn0→∞ni/n0 ∈ (0,∞) for i ∈ {1, . . . , k}.

(A2) For any i ∈ {1, . . . , k}, the eigenvalues of Σi admit the representation

λr(Σi) = ai(r) pβi(r) , r ∈ {1, . . . , ti}, λr(Σi) = ci(r), r ∈ {ti + 1, . . . , p},

where ai(r), ci(r) and βi(r) are positive and fixed constants and ti is a fixed positive integer. Further, β(1) =

max{β1(1), . . . , βk(1)} < 1/2.

From Takahashi et al. (2013), under (A1), (A2), and Σ1 = · · · = Σk, all simultaneous confidence intervals are
asymptotically conservative. When Σ1 = · · · = Σk is violated, we will show that asymptotic conservatism does not
hold using a simple example. Beforehand, we will prepare the following supplementary lemma.

Lemma 1. Under (A1) and (A2), D̃ℓm = m∗ℓm + op(1) and σ̂ = op(1), where

m∗ℓm =
{

nm

nℓm
tr(Σℓ) +

nℓ
nℓm

tr(Σm)
}
/

k∑
i=1

(ni − 1)/(n − k)tr(Σi).

Here, nℓm = nℓ + nm.

Proof. See, Appendix A.

As a simple example of violating the assumption Σ1 = · · · = Σk, we consider Σi = (k− i+1)Σ0 for all i ∈ {1, . . . , k}.
We also assume ni = n0. Then m∗ℓm = {2(k + 1) − ℓ − m}/(k + 1) and 1 − m∗12 = −(k − 2)/(k + 1). By using Lemma 1,
under (A1) and (A2), for any z ∈ R and any number k > 2,

Pr(D12 ≤ z) =Pr{D̃12 − (2k − 1)/(k + 1) ≤ −(k − 2)/(k + 1) + σ̂z}
≤Pr{|D̃12 − (2k − 1)/(k + 1)| > (k − 2)/(k + 1) − σ̂z}
=Pr{|D̃12 − (2k − 1)/(k + 1)| > (k − 2)/(k + 1)} + o(1) = o(1). (2.5)

Also, coverage probability for each simultaneous confidence intervals TCIpw1 and TCIc1 are evaluated as

Pr
(

max
1≤ℓ<m≤k

Dℓm ≤ zαpw

)
≤ Pr

(
D12 ≤ zαpw

)
, Pr

(
max
2≤m≤k

D1m ≤ zαc

)
≤ Pr

(
D12 ≤ zαc

)
. (2.6)

From (2.5) and (2.6), coverage probability for each confidence interval convergence to 0, that is, asymptotically
conservative, does not hold. From this simple example, we consider that Takahashi et al. (2013)’s simultaneous
confidence intervals do not always become asymptotically conservative when Σ1 = · · · = Σk is violated. Since this
phenomenon is essentially caused by the deviation of asymptotic mean of a Dempster statistic from 1, other statistics
should be considered for the construction of confidence intervals when Σ1 = · · · = Σk is violated.

3. Main results

3.1. Asymptotic results for studentized L2-type statistic
As explained in the previous section, Dempster’s statistic is not suitable when the covariance has heterogeneity.

To deal with a case of covariance heterogeneity, we utilize the L2-type statistic defined below.

H̃ℓm = ∥̂δℓm − δℓm∥2 −
tr(Sℓ)

nℓ
− tr(Sm)

nm
.
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The mean and variance of this statistic are as follows:

E(H̃ℓm) = 0, var(H̃ℓm) =
∑

g∈{ℓ,m}

2tr(Σ2
g)

ng(ng − 1)
+

4tr(ΣℓΣm)
nℓnm

=: σ2
ℓm.

From this result, we note that H̃ℓm is suitable because the expectation is 0 even when the covariance has heterogeneity,
meaning it is unbiased. We define a so-called studentized statistic with the standard deviation σℓm replaced by an
estimator for application to simultaneous confidence intervals:

Hℓm =
∥̂δℓm − δℓm∥2 − tr(Sℓ)/nℓ − tr(Sm)/nm

σ̂ℓm
,

where

σ̂ℓm =

√√ ∑
g∈{ℓ,m}

2(ng − 1)
ng(ng + 1)(ng − 2)

[
tr(S2

g) −
{tr(Sg)}2
ng − 1

]
+

4tr(SℓSm)
nℓnm

.

First, we derive the Edgeworth expansion of studentized L2-type statistics in the following lemma.

Lemma 2. Under (A1) and (A2), for any x in the compact subset of R,

Pr(Hℓm ≤ x) = Φ(x) +
4bℓm
3σ3
ℓm

(1 − x2)ϕ(x) + o(pβ(1)−1/2), (3.1)

where

bℓm =
∑

g∈{ℓ,m}

(ng − 2)tr(Σ3
g)

n2
g(ng − 1)2 +

3tr(Σ2
ℓΣm)

n2
ℓ
nm

+
3tr(ΣℓΣ2

m)
nℓn2

m
.

Proof. See, Appendix B.

Using Lemma 2, under (A1) and (A2), for any x in the compact subset of R,

Pr(Hℓm ≤ x) = Φ(x) + O(pβ(1)−1/2) = Φ(x) + o(1). (3.2)

Thus, we can see the asymptotic normality of Hℓm and its convergence rate O(pβ(1)−1/2). This also provides asymptotic
validity for using the percentage points of N(0, 1) as an approximation for those of Hℓm in high-dimensional settings.

Next, we consider an approximate percentage point that improves convergence rate O(pβ(1)−1/2). Specifically,
we derive the so-called Cornish-Fisher expansion, which is a correction of normal approximation. We obtain the
Cornish-Fisher expansion:

c fℓm(x) = x +
4bℓm
3σ3
ℓm

(x2 − 1).

By using the result (2.2) in Hall (1983) along with Lemma 2, under (A1) and (A2), for any x in the compact subset of
R,

Pr{Hℓm ≤ c fℓm(x)} = Φ(x) + o(pβ(1)−1/2).

Thus, we confirm that the convergence rate of c fℓm(x) improves the convergence rate of normal approximation. How-
ever, since c fℓm(x) contains unknown parameters σℓm and bℓm, we need to estimate c fℓm(x).

So, finally, we consider estimation of the Cornish-Fisher expansion c fℓm(x). The unbiased estimator of bℓm is
given

b̂ℓm =
∑

g∈{ℓ,m}

(ng − 1)2

(ng − 3)n2
g(ng + 1)(ng + 3)

tr(S3
g) −

3tr(S2
g)tr(Sg)

ng − 1
+

2{tr(Sg)}3

(ng − 1)2


+

3(nℓ − 1)2

(nℓ − 2)n2
ℓ
(nℓ + 1)nm

{
tr(S2

ℓSm) − tr(SℓSm)tr(Sℓ)
nℓ − 1

}
+

3(nm − 1)2

(nm − 2)n2
m(nm + 1)nℓ

{
tr(S2

mSℓ) −
tr(SmSℓ)tr(Sm)

nm − 1

}
.
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Properties of estimators σ̂2
ℓm and b̂ℓm are summarized in the following lemma.

Lemma 3. E(σ̂2
ℓm) = σ2

ℓm and E(̂bℓm) = bℓm. Also, under (A1) and (A2), σ̂2
ℓm/σℓm = 1+op(1) and b̂ℓm/bℓm = 1+op(1).

Proof. See, Appendix C.

By replacing σℓm and bℓm contained in c fℓm(x) with their estimators σ̂ℓm and b̂ℓm, we obtain ĉ f ℓm(x). Also, the
asymptotic property of the estimated Cornish-Fisher expansion ĉ f ℓm(x) is given in the following theorem.

Theorem 1. Under (A1) and (A2), for any point x in the compact subset of R,

Pr{Hℓm ≤ ĉ f ℓm(x)} = Φ(x) + o(pβ(1)−1/2).

Proof. See, Appendix D.

3.2. Simultaneous confidence intervals
In this section, we construct simultaneous confidence intervals based on statistic Hℓm that is valid without assuming

Σ1 = · · · = Σk. We define the nominal confidence level as 1 − α, α ∈ (0, 1). Let hℓmpw and h1m
c be exact critical values

satisfy

Pr

 ⋂
1≤ℓ<m≤k

{
Hℓm ≤ hℓmpw

} = 1 − α, Pr

 ⋂
2≤m≤k

{
H1m ≤ h1m

c

} = 1 − α.

And let

Ppw = Pr

 ⋂
1≤ℓ<m≤k

⋂
a∈Rp

∗

|a⊤ (̂δℓm − δℓm)| ≤ ∥a∥
√

tr(Sℓ)
nℓ
+

tr(Sm)
nm

+ σ̂ℓmhℓmpw


 ,

Pc = Pr

 ⋂
2≤m≤k

⋂
a∈Rp

∗

|a⊤ (̂δ1m − δ1m)| ≤ ∥a∥
√

tr(S1)
n1
+

tr(Sm)
nm

+ σ̂1mh1m
c


 .

Then we can evaluate Ppw as follows.

Ppw =Pr

 ⋂
1≤ℓ<m≤k

max
a∈Rp

∗

|a⊤ (̂δℓm − δℓm)|2
∥a∥2 ≤ tr(Sℓ)

nℓ
+

tr(Sm)
nm

+ σ̂ℓmhℓmpw




=Pr

 ⋂
1≤ℓ<m≤k

{
∥̂δℓm − δℓm∥2 ≤

tr(Sℓ)
nℓ
+

tr(Sm)
nm

+ σ̂ℓmhℓmpw

}
=Pr

 ⋂
1≤ℓ<m≤k

{
Hℓm ≤ hℓmpw

} = 1 − α.

Also, using same strategy, we can evaluate Pc as follows.

Pc =Pr

 ⋂
2≤m≤k

max
a∈Rp

∗

|a⊤ (̂δ1m − δ1m)|2
∥a∥2 ≤ tr(S1)

n1
+

tr(Sm)
nm

+ σ̂1mh1m
c


 = 1 − α.

Therefore, we can obtain simultaneous confidence intervals for pairwise multiple comparisons and comparisons with
a control, respectively, consisting of the following:[

a⊤δ̂ℓm − Hℓmpw, a⊤δ̂ℓm + Hℓmpw

]
, ∀a ∈ Rp

∗ , ∀ℓ < m, ℓ,m ∈ {1, . . . , k}, (3.3)[
a⊤δ̂1m − H1m

c , a
⊤δ̂1m + H1m

c

]
, ∀a ∈ Rp

∗ , ∀m ∈ {2, . . . , k}, (3.4)
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where

Hℓmpw = ∥a∥
√

tr(Sℓ)
nℓ
+

tr(Sm)
nm

+ σ̂ℓmhℓmpw, H1m
c = ∥a∥

√
tr(S1)

n1
+

tr(Sm)
nm

+ σ̂1mh1m
c .

In order to construct exact simultaneous confidence intervals (3.3) and (3.4), we need to find exact values hℓmpw and
h1m

c . However, since it is difficult to find exact values hℓmpw and h1m
c , we give approximations for hℓmpw and h1m

c based on
Bonferroni’s inequality. Here, Ppw and Pc can be rewritten as follows.

Ppw = 1 − Pr

 ⋃
1≤ℓ<m≤k

{
Hℓm ≥ hℓmpw

} , Pc = 1 − Pr

 ⋃
2≤m≤k

{
H1m ≥ h1m

c

} .
So, from Bonferroni’s inequality, we obtain

Ppw ≥ 1 −
∑

1≤ℓ<m≤k

Pr(Hℓm ≥ hℓmpw), Pc ≥ 1 −
∑

2≤m≤k

Pr(H1m ≥ h1m
c ).

By using Lemma 2 and Theorem 1, we construct asymptotically conservative simultaneous confidence intervals
by choosing hℓmpw and h1m

c so that Pr(Hℓm ≥ hℓmpw) = αpw + o(1) and Pr(H1m ≥ h1m
c ) = αc + o(1). The specific forms of

these simultaneous confidence intervals are obtained in the following way.

1. Simultaneous confidence intervals for pairwise multiple comparisons among mean vectors are given by

HCIpw1 =
[
a⊤δ̂ℓm − Hℓmpw1, a

⊤δ̂ℓm + Hℓmpw1

]
, ∀a ∈ Rp

∗ , ∀ℓ < m, ℓ,m ∈ {1, . . . , k}, (3.5)

where

Hℓmpw1 = ∥a∥
√

tr(Sℓ)
nℓ
+

tr(Sm)
nm

+ σ̂ℓmzαpw .

2. Simultaneous confidence intervals for multiple comparisons with a control among mean vectors are given by

HCIc1 =
[
a⊤δ̂1m − H1m

c1 , a
⊤δ̂1m + H1m

c1

]
, ∀a ∈ Rp

∗ , ∀m ∈ {2, . . . , k}, (3.6)

where

H1m
c1 = ∥a∥

√
tr(S1)

n1
+

tr(Sm)
nm

+ σ̂1mzαc .

3. Simultaneous confidence intervals for pairwise multiple comparisons among mean vectors are given by

HCIpw2 =
[
a⊤δ̂ℓm − Hℓmpw2, a

⊤δ̂ℓm + Hℓmpw2

]
, ∀a ∈ Rp

∗ , ∀ℓ < m, ℓ,m ∈ {1, . . . , k}, (3.7)

where

Hℓmpw2 = ∥a∥
√

tr(Sℓ)
nℓ
+

tr(Sm)
nm

+ σ̂ℓmĉ f ℓm(zαpw ).

4. Simultaneous confidence intervals for multiple comparisons with a control among mean vectors are given by

HCIc2 =
[
a⊤δ̂1m − H1m

c2 , a
⊤δ̂1m + H1m

c2

]
, ∀a ∈ Rp

∗ , ∀m ∈ {2, . . . , k}, (3.8)

where

H1m
c2 = ∥a∥

√
tr(S1)

n1
+

tr(Sm)
nm

+ σ̂1mĉ f 1m(zαc ).
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Simultaneous confidence intervals given by 1 and 2 are approximations using percentage points of the limit distribution
of Hℓm. Simultaneous confidence intervals given by 3 and 4 are approximations using the Cornish-Fisher expansion
for Hℓm. Also, we note that these four simultaneous confidence intervals (3.5)–(3.8) can be simply expressed when
k = 2. See the following remark for details.

Remark 1. If k = 2, simultaneous confidence intervals (3.5)–(3.8) are unified into the following two confidence
intervals.

HCI1 =
[
a⊤δ̂12 − H12

1 , a⊤δ̂12 + H12
1

]
, ∀a ∈ Rp

∗ ,

HCI2 =
[
a⊤δ̂12 − H12

2 , a⊤δ̂12 + H12
2

]
, ∀a ∈ Rp

∗ ,

where

H12
1 = ∥a∥

√
tr(S1)

n1
+

tr(S2)
n2
+ σ̂12zα , H12

2 = ∥a∥
√

tr(S1)
n1
+

tr(S2)
n2
+ σ̂12ĉ f 12(zα) .

HCI1 and HCI2 are confidence intervals for the set of all linear combinations of two mean difference a⊤(µ1 − µ2) =
a⊤δ12 for all a ∈ Rp

∗ .

With Lemma 1 and Theorem 1, we can obtain the following theorem. This theorem refers to convergence rates of
the lower boundary of coverage probability of the proposed new confidence intervals.

Theorem 2. The lower boundary of coverage probability for each simultaneous confidence intervals HCIpw1, HCIc1,
HCIpw2, and HCIc2 are defined as

Lpw1 = 1 −
∑

1≤ℓ<m≤k

Pr
(
Hℓm ≥ σ̂ℓmzαpw

)
, Lc1 = 1 −

∑
2≤m≤k

Pr
(
H1m ≥ σ̂1mzαc

)
,

Lpw2 = 1 −
∑

1≤ℓ<m≤k

Pr
{
Hℓm ≥ σ̂ℓm f̂ℓm(zαpw )

}
, Lc2 = 1 −

∑
2≤m≤k

Pr
{
H1m ≥ σ̂1m f̂1m(zαc )

}
.

Under (A1) and (A2), it holds that

Lpw1 = 1 − α + O(pβ(1)−1/2), Lc1 = 1 − α + O(pβ(1)−1/2),

Lpw2 = 1 − α + o(pβ(1)−1/2), Lc2 = 1 − α + o(pβ(1)−1/2).

Proof. See, Appendix E.

From this theorem, it can be confirmed that asymptotic conservatism is established for any proposed method.
Also, we recommend the estimated Cornish-Fisher expansion-based simultaneous confidence intervals HCIpw2 and
HCIc2 since Lpw2 and Lc2 converge toward nominal confidence 1 − α faster than Lpw1 and Lc1.

4. Empirical simulation studies

In this section, we perform Monte Carlo simulations with 10, 000 trials in order to verify the superiority of pro-
posed approximations and evaluate the accuracy of approximations in terms of coverage probability. Also, we show
the robustness of proposed approximations under non-normality.

4.1. Empirical comparisons
In this section, we compare proposed simultaneous confidence intervals for pairwise comparisons HCIpw1 and

HCIpw2 and for comparison with a control HCIc1 and HCIc2, introduced in (3.5)–(3.8), with Takahashi et al. (2013)’s
simultaneous confidence intervals for pairwise comparisons TCIpw1 and TCIpw2 and for comparison with a control
TCIc1 and TCIc2 that were introduced in (2.1)–(2.4).

We calculate empirical coverage probabilities for these confidence intervals and compare them to nominal con-
fidence levels 1 − α, α ∈ {0.1, 0.05, 0.01}. Here, it is desirable that empirical coverage probabilities are equal to or
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higher than the nominal confidence level 1 − α. In this simulation, we set the dimensions as p ∈ {100, 300, 500, 700}
and the sample sizes for each k ∈ {3, 5} were set as follows.

(I) (n1, n2, n3) ∈ {(60, 60, 60), (40, 60, 80)}
(II) (n1, n2, n3, n4, n5) ∈ {(60, 60, 60, 60, 60), (20, 40, 60, 80, 100)}

We also set the covariance structures as follows.

(I) Σ1 = 5(0.5|l−m|), Σ2 = 3(0.3|l−m|), Σ3 = (0.1|l−m|)

(II) Σ1 = 5(0.5|l−m|), Σ2 = 4(0.4|l−m|), Σ3 = 3(0.3|l−m|), Σ4 = 2(0.2|l−m|), Σ5 = (0.1|l−m|)

(I) represents the setting at k = 3 and (II) represents the setting at k = 5.
Tables 1 and 2 summarize empirical coverage probabilities for each simultaneous confidence intervals for pair-

wise comparisons. In addition, Tables 3 and 4 summarize empirical coverage probabilities for each simultaneous
confidence intervals for comparisons with a control.

First, we focus on a case of simultaneous confidence intervals for pairwise comparisons. From Tables 1 and 2, it
can be seen that coverage probabilities of TCIpw1 and TCIpw2 are extremely smaller than nominal confidence level
1−α, even though coverage probabilities should be greater than or equal to 1−α. Therefore, Takahashi et al (2013)’s
method is not recommended for use when homogeneity of variance-covariance matrices across groups is violated. On
the other hand, it is obvious that proposed simultaneous confidence intervals HCIpw1 and HCIpw2 are close to nominal
level 1 − α. However, the normal approximation-based method HCIpw1 is often not conservative. It can be seen that
coverage probability of the Cornish-Fisher expansion-based method HCIpw2 is close to nominal confidence level 1−α
and is often conservative.

The same consideration can be applied to the control case as for pairwise. In fact, the same tendency as in the case
of pairwise comparisons can be confirmed from Tables 3 and 4. To summarize, we recommend the Cornish-Fisher
expansion-based simultneous confidence intervals HCIpw2 and HCIc2.

4.2. Robustness of the proposed approximation
In this subsection, we evaluate the robustness of the proposed simultaneous confidence intervals under non-

normality in terms of coverage probability. We consider the following data generation model:

xi j = Σ
1/2
i zi j, i ∈ {1, 2, 3}, j ∈ {1, . . . , ni},

where Σ1 = 5(0.5|l−m|), Σ2 = 3(0.3|l−m|), Σ3 = (0.1|l−m|), n1 = n2 = n3 = 60 and the random vector zi j =
(
zi jk

)
has the

following distributions:

(D1) zi j
iid∼ N(0, Ip),

(D2) zi jk = ui jk/
√

5/4, where ui jk
iid∼ T10,

(D3) zi j =
√

4/5ui j, where ui j
iid∼ T (10, 0, Ip),

(D4) zi jk =

(
1 − 9

5π

)−1/2 (
ui jk +

3
√

5π

)
, where ui jk

iid∼ SN(−3).

Here, T (10, 0, Ip) denotes a multivariate t-distribution with degrees of freedom 10, location 0, and shape matrix Ip. It
should be noted that (D3) belongs to the class of elliptical distributions, whereas (D4) represents a case of asymmetric
distribution.

Table 5 lists empirical coverage probabilities for HCIpw1, HCIpw2, HCIc1, and HCIc2 under settings (D1)–(D4).
The empirical coverage probabilities HCIpw2 and HCIc2 are larger than or equal to nominal confidence level 0.95
except under (D3). Alternatively, the empirical coverage probability under (D3) is extremely large compared to
nominal confidence level 0.95. When assuming an elliptical population like (D3), there is concern that our proposed
methods are not robust. To summarize, we expect that the proposed method is robust under non-normal settings such
that each component of zi j is independent, E(zi jk) = 0, and var(zi jk) = 1.
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Table 1: This table summarizes empirical coverage probabilities for each simultaneous confidence intervals for pairwise comparisons. Row k
specifies the number of groups, row n is where B stands for (n1, n2, n3) = (60, 60, 60) and UB stands for (n1, n2, n3) = (40, 60, 80); row p specifies
the dimension, and row 1 − α specifies the nominal confidence level. When the simultaneous confidence intervals are conservative (empirical
coverage probabilities are greater than or equal to 1 − α), results are highlighted in bold.

k n p 1 − α TCIpw1 TCIpw2 HCIpw1 HCIpw2
0.9 0.505 0.558 0.886 0.914

100 0.95 0.596 0.665 0.931 0.954
0.99 0.744 0.837 0.978 0.990
0.9 0.159 0.180 0.900 0.915

300 0.95 0.232 0.275 0.943 0.955
0.99 0.417 0.508 0.983 0.991

B 0.9 0.047 0.056 0.899 0.914
500 0.95 0.087 0.108 0.945 0.954

0.99 0.221 0.287 0.984 0.990
0.9 0.016 0.019 0.900 0.912

700 0.95 0.034 0.045 0.943 0.952
0.99 0.116 0.155 0.985 0.990

3 0.9 0.093 0.113 0.895 0.915
100 0.95 0.138 0.180 0.931 0.953

0.99 0.254 0.361 0.976 0.990
0.9 0.001 0.002 0.900 0.916

300 0.95 0.004 0.005 0.941 0.953
0.99 0.012 0.021 0.984 0.991

UB 0.9 0.000 0.000 0.904 0.916
500 0.95 0.000 0.000 0.946 0.957

0.99 0.000 0.001 0.984 0.991
0.9 0.000 0.000 0.906 0.914

700 0.95 0.000 0.000 0.946 0.954
0.99 0.000 0.000 0.986 0.991
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Table 2: This table summarizes empirical coverage probabilities for each simultaneous confidence intervals for pairwise comparisons. Row
k specifies the number of groups, row n is where B stands for (n1, n2, n3, n4, n5) = (60, 60, 60, 60, 60), UB stands for (n1, n2, n3, n4, n5) =
(20, 40, 60, 80, 100); row p specifies the dimension, and row 1 − α specifies the nominal confidence level. When the simultaneous confidence
intervals are conservative (empirical coverage probabilities are greater than or equal to 1 − α), results are highlighted in bold.

k n p 1 − α TCIpw1 TCIpw2 HCIpw1 HCIpw2
0.9 0.223 0.295 0.871 0.919

100 0.95 0.289 0.390 0.919 0.956
0.99 0.438 0.596 0.971 0.990
0.9 0.011 0.016 0.892 0.919

300 0.95 0.020 0.031 0.933 0.954
0.99 0.055 0.089 0.977 0.988

B 0.9 0.000 0.001 0.896 0.918
500 0.95 0.001 0.002 0.939 0.958

0.99 0.004 0.008 0.983 0.991
0.9 0.000 0.000 0.898 0.917

700 0.95 0.000 0.000 0.943 0.958
0.99 0.000 0.001 0.984 0.990

5 0.9 0.001 0.002 0.879 0.918
100 0.95 0.002 0.004 0.920 0.956

0.99 0.007 0.017 0.969 0.987
0.9 0.000 0.000 0.902 0.927

300 0.95 0.000 0.000 0.941 0.960
0.99 0.000 0.000 0.981 0.990

UB 0.9 0.000 0.000 0.909 0.927
500 0.95 0.000 0.000 0.946 0.960

0.99 0.000 0.000 0.984 0.991
0.9 0.000 0.000 0.907 0.925

700 0.95 0.000 0.000 0.947 0.963
0.99 0.000 0.000 0.985 0.990
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Table 3: This table summarizes empirical coverage probabilities for each simultaneous confidence intervals for comparisons with a control. Row k
specifies the number of groups, row n is where B stands for (n1, n2, n3) = (60, 60, 60), UB stands for (n1, n2, n3) = (40, 60, 80); row p specifies the
dimension, and row 1−α specifies the nominal confidence level. When the simultaneous confidence intervals are conservative (empirical coverage
probabilities are greater than or equal to 1 − α), results are highlighted in bold.

k n p 1 − α TCIc1 TCIc2 HCIc1 HCIc2
0.9 0.457 0.490 0.903 0.920

100 0.95 0.551 0.605 0.940 0.956
0.99 0.719 0.808 0.979 0.990
0.9 0.123 0.136 0.904 0.914

300 0.95 0.194 0.222 0.944 0.956
0.99 0.376 0.460 0.985 0.991

B 0.9 0.034 0.038 0.909 0.918
500 0.95 0.063 0.077 0.947 0.956

0.99 0.184 0.235 0.985 0.991
0.9 0.010 0.012 0.907 0.914

700 0.95 0.023 0.027 0.948 0.956
0.99 0.088 0.117 0.987 0.991

3 0.9 0.073 0.086 0.907 0.922
100 0.95 0.112 0.147 0.942 0.959

0.99 0.230 0.313 0.979 0.989
0.9 0.000 0.000 0.912 0.922

300 0.95 0.002 0.002 0.948 0.960
0.99 0.008 0.013 0.985 0.991

UB 0.9 0.000 0.000 0.912 0.921
500 0.95 0.000 0.000 0.950 0.958

0.99 0.000 0.000 0.985 0.991
0.9 0.000 0.000 0.911 0.918

700 0.95 0.000 0.000 0.950 0.956
0.99 0.000 0.000 0.988 0.991
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Table 4: This table summarizes empirical coverage probabilities for each simultaneous confidence intervals for comparisons with a control.
Row k specifies the number of groups, row n is where B stands for (n1, n2, n3, n4, n5) = (60, 60, 60, 60, 60), UB stands for (n1, n2, n3, n4, n5) =
(20, 40, 60, 80, 100); row p specifies the dimension, and row 1 − α specifies the nominal confidence level. When the simultaneous confidence
intervals are conservative (empirical coverage probabilities are greater than or equal to 1 − α), results are highlighted in bold.

k n p 1 − α TCIc1 TCIc2 HCIc1 HCIc2

0.9 0.166 0.199 0.901 0.927
100 0.95 0.226 0.286 0.936 0.958

0.99 0.372 0.493 0.976 0.991
0.9 0.006 0.007 0.910 0.927

300 0.95 0.011 0.015 0.945 0.962
0.99 0.036 0.055 0.982 0.990

B 0.9 0.000 0.000 0.916 0.930
500 0.95 0.001 0.001 0.950 0.961

0.99 0.003 0.005 0.987 0.992
0.9 0.000 0.000 0.916 0.927

700 0.95 0.000 0.000 0.952 0.962
0.99 0.000 0.000 0.986 0.990

5 0.9 0.001 0.002 0.920 0.939
100 0.95 0.002 0.003 0.947 0.965

0.99 0.008 0.016 0.979 0.991
0.9 0.000 0.000 0.932 0.943

300 0.95 0.000 0.000 0.957 0.968
0.99 0.000 0.000 0.985 0.990

UB 0.9 0.000 0.000 0.935 0.944
500 0.95 0.000 0.000 0.962 0.971

0.99 0.000 0.000 0.989 0.993
0.9 0.000 0.000 0.933 0.942

700 0.95 0.000 0.000 0.962 0.970
0.99 0.000 0.000 0.989 0.993

Table 5: This table shows empirical coverage probability for each distribution (D1)–(D4). We use the simulation settings p = 500 and (n1, n2, n3) =
(60, 60, 60). The nominal confidence level is 0.95.

(D1) (D2) (D3) (D4)

Pairwise HCIpw1 HCIpw2 HCIpw1 HCIpw2 HCIpw1 HCIpw2 HCIpw1 HCIpw2

0.943 0.954 0.944 0.954 0.998 1.000 0.941 0.953
Control HCIc1 HCIc2 HCIc1 HCIc2 HCIc1 HCIc2 HCIc1 HCIc2

0.950 0.960 0.947 0.955 0.997 0.999 0.947 0.955
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Figure 1: The horizontal axis represents the number corresponding to each molecular descriptor and the vertical axis represents the measured value
corresponding to each molecular descriptor. By setting a to e1, . . . , ep in HCI1, we construct confidence intervals for each molecular descriptor.
The solid lines denote confidence interval HCI1.
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4.3. An example of data analysis

We apply our simultaneous confidence intervals to biodegradability experimental data. In Mansouri et al. (2013),
this data set was used to develop QSAR (Quantitative Structure Activity Relationships) models for the study of re-
lationships between chemical structure and biodegradation of molecules. Biodegradation experimental values of
n = 1055 chemicals were collected from the webpage of the National Institute of Technology and Evaluation of Japan
(NITE). These 1055 chemicals are divided into two groups by biodegradability, n1 = 356 biodegradable organics
(RB) and n2 = 699 non-biodegradable organics (NRB). This data set contains p = 41 molecular descriptors for each
chemical. Specifically, these p = 41 molecular descriptors are given by Mansouri et al. (2013).

By applying the test for equality of covariance matrices proposed by Li and Qin (2014), homogeneity of variance-
covariance matrices across groups Σ1 = Σ2 is rejected at a significance level of 0.05. Thus, using proposed confidence
intervals HCIpw1 and HCIpw2, that is, HCI1 and HCI2 stated in Remark 1, we construct simultaneous confidence
intervals for each molecular descriptor without assuming that variance-covariance matrices are homogeneous across
groups. Fig. 1 and Fig. 2 represent each simultaneous confidence intervals. As shown, there is a significant difference
only in 8) Percentage of C atoms and no significant difference in other molecular descriptors. From this result, it is
expected that Percentage of C atoms is related to the presence or absence of biodegradability.

5. Conclusions

In this study, we proposed a new procedure for pairwise multiple comparisons and multiple comparisons with a
control among mean vectors under covariance heterogeneity in high-dimensional settings. Our main contribution is
an extension of multiple comparisons procedures under assumption of homoscedasticity by Takahashi et al. (2013).
For approximate interval estimation, we used the studentized L2-type statistic, which is robust even if the assumption
of homoscedasticity is not true. In order to derive a valid approximate simultaneous confidence intervals in high-
dimensional settings, it is necessary to derive an accurate approximate percentage point for the studentized L2-type
statistic. A simple method is to use the normal approximation for studentized L2-type statistic proposed by Chen and
Qin (2010). However, it is empirically known that simultaneous confidence intervals applying normal approximation
are often too loose or fail to capture the tail behavior of the resulting distribution (see, e.g., results of empirical studies
by Nishiyama et al. (2013) and Hyodo et al. (2014)). Motivated by this point, we derived a Cornish-Fisher expansion
of the studentized L2-type statistic and proposed an approximate simultaneous confidence intervals. We also showed
that the lower boundary of coverage probabilities of proposed new simultaneous confidence intervals convergence
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Figure 2: The horizontal axis represents the number corresponding to each molecular descriptor and the vertical axis represents the measured value
corresponding to each molecular descriptor. By setting a to e1, . . . , ep in HCI2, we construct confidence intervals for each molecular descriptor.
The solid lines denote confidence interval HCI2.
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with the nominal confidence level; that is, our proposed simultaneous confidence intervals were asymptotically con-
servative. In addition, we compared empirical coverage probability of the two proposed simultaneous confidence
intervals based on normal approximation and a Cornish-Fisher expansion with Takahashi et al (2013)’s simultaneous
confidence intervals in numerical simulations, finding that Cornish-Fisher expansion-based confidence intervals are
accurate and conservative, and perform better than others. Even in some non-normal settings, the proposed simulta-
neous confidence intervals generally work.

Appendix

A. Proof of Lemma 1
The mean and variance of D̃ℓm are obtained by

E(D̃ℓm) =
nm

nℓm
tr(Σℓ) +

nℓ
nℓm

tr(Σm),

var(D̃ℓm) =2tr


(

nm

nℓm
Σℓ +

nℓ
nℓm
Σm

)2
 = O(p).

Combining these results and from Markov inequality, under (A1) and (A2),

D̃ℓm/
k∑

i=1

(ni − 1)/(n − k)tr(Σi) = m∗ℓm + op(1). (A. 1)

The mean and variance of tr(S) are obtained by

E{tr(S)} = 1
n − k

k∑
i=1

(ni − 1)tr(Σi), var{tr(S)} = 2
(n − k)2

k∑
i=1

(ni − 1)tr(Σ2
i ) = O(1).

Combining these results and from Markov inequality, under (A1) and (A2),

tr(S)/
k∑

i=1

(ni − 1)/(n − k)tr(Σi) = 1 + op(1). (A. 2)
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Combining (A. 1), (A. 2), and from Slutsky’s theorem, D̃ℓm/tr(S) = m∗ℓm + op(1).
From (A. 2), under (A1) and (A2),

σ̂ = tr(S)σ̂/
k∑

i=1

(ni − 1)/(n − k)tr(Σi){1 + op(1)}. (A. 3)

The expectation of σ̂2 is given by

E[{tr(S)}2σ̂2] =
2

(n − k + 2)(n − k − 1)

 k∑
i=1

{
(ni − 1) − (ni − 1)2

n − k

}
{tr(Σi)}2

+

k∑
i=1

{
(ni − 1)ni −

2(ni − 1)
n − k

}
tr(Σ2

i ) +
k∑

i, j

(ni − 1)(n j − 1)tr(ΣiΣ j)

−
k∑

i, j

(ni − 1)(n j − 1)
n − k

tr(Σi)tr(Σ j)

 = O(p).

Combining these results and from Markov inequality, under (A1) and (A2),

tr(S)σ̂ = Op(p1/2) = op(p). (A. 4)

Combining tr(Σi) = O(p), p = O{tr(Σi)}, (A. 3), and (A. 4), σ̂ = op(1).

B. Proof of Lemma 2

We define the following mutually independent random variables:

z ∼ Np(0, Ip), Z1 ∼ MN p,ni−1(O, Ip, Ini−1), Z2 ∼ MN p,n j−1(O, Ip, In j−1).

Using z, Z1, and Z2, we can write Hi j as

nℓm

{
∥̂δℓm − δℓm∥2 −

tr(Sℓ)
nℓ
− tr(Sm)

nm

}
L
= Y, (A. 5)

where

Y = z⊤Λℓmz −
nℓmtr(ΣℓZ1Z⊤1 )

(nℓ − 1)nℓ
−

nℓmtr(ΣmZ2Z⊤2 )
(nm − 1)nm

.

Here, A L
= B means that A and B have the same distribution and

Λ =
nℓm
nℓ
Σℓ +

nℓm
nm
Σm.

Let σ̃ℓm = nℓmσℓm. From E(n2
ℓmσ̂

2
ℓm − σ̃2

ℓm) = 0 and E{(n2
ℓmσ̂

2
ℓm − σ̃2

ℓm)2} = O(n−1
ℓm p1+2β(1) ),

Eℓm =
n2
ℓmσ̂

2
ℓm − σ̃2

ℓm

σ̃2
ℓm

= Op(n−1/2
ℓm pβ(1)−1/2). (A. 6)

Combining (A. 5) and (A. 6),

Hℓm
L
=

Y
σ̃ℓm

(1 + Eℓm)−1/2 =
Y
σ̃ℓm

(1 − Eℓm/2) + op(n−1/2
ℓm pβ(1)−1/2). (A. 7)
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Using the expression (A. 7), the first to third moments can be evaluated as following:

E (Hℓm) =8σ̃−3
ℓm

 ∑
g∈{ℓ,m}

n3
ℓmtr(Σ3

g)

n2
g(ng − 1)2 +

n3
ℓmtr(Σ2

ℓΣm)

(nℓ − 1)n2
ℓ
nm
+

n3
ℓmtr(Σ2

mΣℓ)
(n j − 1)n2

mnℓ

 + o(n−1/2
ℓm pβ(1)−1/2)

=O(n−1
ℓm pβ(1)−1/2) + o(n−1/2

ℓm pβ(1)−1/2) = o(pβ(1)−1/2), (A. 8)

E
(
H2
ℓm

)
=1 − 32σ̃−4

ℓm

 ∑
g∈{ℓ,m}

3n4
ℓmtr(Σ4

g)

n3
g(ng − 1)3

+
2n4
ℓmtr(Σ3

ℓ
Σm)

(nℓ − 1)2n3
ℓ
nm
+

2n4
ℓmtr(Σ2

ℓΣ
2
m)

(nℓ − 1)n2
ℓ
(nm − 1)n2

m

+
2n4
ℓmtr(Σ3

mΣℓ)

(nm − 1)2n3
mnℓ

 + o(n−1/2
ℓm pβ(1)−1/2)

=1 + O(n−2
ℓm p2β(1)−1) + o(n−1/2

ℓm pβ(1)−1/2) = 1 + o(pβ(1)−1/2), (A. 9)

E
(
H3
ℓm

)
=8σ̃−3

ℓmbℓm + O(n−1
ℓm pβ(1)−1/2) + o(n−1/2

ℓm pβ(1)−1/2) = 8σ̃−3
ℓmbℓm + o(pβ(1)−1/2). (A. 10)

From (A. 8)–(A. 10), the first to third cumulants are obtained as

κ1 (Hℓm) = o(pβ(1)−1/2), κ2 (Hℓm) = 1 + o(pβ(1)−1/2), κ3 (Hℓm) =
8bℓm
σ̃ℓm

+ o(pβ(1)−1/2).

Thus the Edgeworth expansion of Hℓm is given by (3.1).

C. Proof of Lemma 3

The estimator σ̂2
ℓm can be expressed as σ̂2

ℓm = A1 + A2 + A3, where

A1 =
2(nℓ − 1)

nℓ(nℓ + 1)(nℓ − 2)

[
tr(S2

ℓ ) −
{tr(Sℓ)}2
nℓ − 1

]
,

A2 =
2(nm − 1)

nm(nm + 1)(nm − 2)

[
tr(S2

m) − {tr(Sm)}2
nm − 1

]
,

A3 =
4tr(SℓSm)

nℓnm
.

The expectation of each term in σ̂2
ℓm can be evaluated as follows.

E(A1) =
2tr(Σ2

ℓ )
nℓ(nℓ − 1)

, E(A2) =
2tr(Σ2

m)
nm(nm − 1)

, E(A3) =
4tr(ΣℓΣm)

nℓnm
.
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Thus E(σ̂2
ℓm) = σ2

ℓm. The variance of each term in σ̂2
ℓm can be evaluated as follows.

var(A1) =16

 {tr(Σ2
ℓ )}2

(nℓ − 2)(nℓ − 1)2n2
ℓ
(nℓ + 1)

+

(
2n2
ℓ − nℓ − 7

)
tr(Σ4

ℓ )

(nℓ − 2)(nℓ − 1)3n2
ℓ
(nℓ + 1)


=O

{
(p2β(1) + p)2

p6

}
+ O

(
p4β(1) + p

p5

)
= O(p4β(1)−5) + O(p−4), (A. 11)

var(A2) =16

 {tr(Σ2
m)}2

(nm − 2)(nm − 1)2n2
m(nm + 1)

+

(
2n2

m − nm − 7
)

tr(Σ4
m)

(nm − 2)(nm − 1)3n2
m(nm + 1)


=O

{
(p2β(1) + p)2

p6

}
+ O

(
p4β(1) + p

p5

)
= O(p4β(1)−5) + O(p−4), (A. 12)

var(A3) =16
 {tr(ΣℓΣm)}2

(nℓ − 1)n2
ℓ
(nm − 1)n2

m
+

tr(Σ2
ℓ )tr(Σ

2
m)

(nℓ − 1)n2
ℓ
(nm − 1)n2

m

+
nℓmtr(Σ2

ℓΣ
2
m)

(nℓ − 1)n2
ℓ
(nm − 1)n2

m
+

(nℓm − 2)tr{(ΣℓΣm)2}
(nℓ − 1)n2

ℓ
(nm − 1)n2

m


=O

{
(p2β(1) + p)2

p6

}
+ O

(
p4β(1) + p

p5

)
= O(p4β(1)−5) + O(p−4). (A. 13)

From Hölder’s inequality,

(σ̂2
ℓm − σ2

ℓm)2 =

 3∑
i=1

{Ai − E(Ai)}


2

≤ 3
3∑

i=1

{Ai − E(Ai)}2.

By combining this result with (A. 11)–(A. 13), we have

var(σ̂2
ℓm) ≤ 3

3∑
i=1

var(Ai) = O(p4β(1)−5) + O(p−4). (A. 14)

Note that σ2 = O(p−1) under (A1) and (A2). Thus var(σ̂2
ℓm)/σ4 = O(p4β(1)−3) + O(p−2) = o(1). That is, the ratio

consistency of σ̂2
ℓm is shown.

The estimator b̂2
ℓm can be expressed as σ̂2

ℓm = B1 + B2 + B3 + B4, where

B1 =
(nℓ − 1)2

(nℓ − 3)n2
ℓ
(nℓ + 1)(nℓ + 3)

tr(S3
ℓ ) −

3tr(S2
ℓ )tr(Sℓ)

nℓ − 1
+

2{tr(Sℓ)}3
(nℓ − 1)2

 ,
B2 =

(nm − 1)2

(nm − 3)n2
m(nm + 1)(nm + 3)

[
tr(S3

m) − 3tr(S2
m)tr(Sm)

nm − 1
+

2{tr(Sm)}3
(nm − 1)2

]
,

B3 =
3(nℓ − 1)2

(nℓ − 2)n2
ℓ
(nℓ + 1)nm

{
tr(S2

ℓSm) − tr(SℓSm)tr(Sℓ)
nℓ − 1

}
,

B4 =
3(nm − 1)2

(nm − 2)n2
m(nm + 1)nℓ

{
tr(S2

mSℓ) −
tr(SmSℓ)tr(Sm)

nm − 1

}
.

The expectation of each term in σ̂2
ℓm can be evaluated as follows.

E(B1) =
(nℓ − 2)tr(Σ3

ℓ
)

n2
ℓ
(nℓm − 1)2

, E(B2) =
(nm − 2)tr(Σ3

m)
n2

m(nm − 1)2 ,

E(B3) =
3tr(Σ2

ℓΣm)

n2
ℓ
nm

, E(B4) =
3tr(ΣℓΣ2

m)
nℓn2

m
.
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Thus E(̂bℓm) = bℓm. The variance of each term in bℓm can be evaluated as follows.

E(B1) =
6(nℓ − 2){tr(Σ2

ℓ )}3

(nℓ − 3)(nℓ − 1)3n4
ℓ
(nℓ + 1)(nℓ + 3)

+
18(nℓ − 2){tr(Σ3

ℓ
)}2

(nℓ − 1)4n4
ℓ
(nℓ + 1)

+
18(nℓ − 2)

(
n2
ℓ + nℓ − 14

)
tr(Σ4

ℓ )tr(Σ
2
ℓ )

(nℓ − 3)(nℓ − 1)4n4
ℓ
(nℓ + 1)(nℓ + 3)

+
6(nℓ − 2)

(
3n4
ℓ + 3n3

ℓ
− 47n2

ℓ − 47nℓ + 248
)

tr(Σ6
ℓ
)

(nℓ − 3)(nℓ − 1)5n4
ℓ
(nℓ + 1)(nℓ + 3)

=O(p6β(1)−7) + O(p−6), (A. 15)

E(B2) =
6(nm − 2){tr(Σ2

m)}3
(nm − 3)(nm − 1)3n4

m(nm + 1)(nm + 3)
+

18(nm − 2){tr(Σ3
m)}2

(nm − 1)4n4
m(nm + 1)

+
18(nm − 2)

(
n2

m + nm − 14
)

tr(Σ4
m)tr(Σ2

m)

(nm − 3)(nm − 1)4n4
m(nm + 1)(nm + 3)

+
6(nm − 2)

(
3n4

m + 3n3
m − 47n2

m − 47nm + 248
)

tr(Σ6
m)

(nm − 3)(nm − 1)5n4
m(nm + 1)(nm + 3)

=O(p6β(1)−7) + O(p−6), (A. 16)

E(B3) =
9{tr(Σ2

ℓ )}2tr(Σ2
m)

(nℓ − 2)n4
ℓ
(nℓ + 1)(nm − 1)n2

m
+

9tr(Σ2
ℓ ){tr(ΣℓΣm)}2

(nℓ − 2)n4
ℓ
(nℓ + 1)(nm − 1)n2

m

+
18tr(Σ3

ℓ
)tr(ΣℓΣ2

m)

(nℓ − 1)n4
ℓ
(nm − 1)n2

m
+

18
(
n2
ℓ + nℓnm − 2nℓ − nm − 1

)
{tr(Σ2

ℓΣm)}2

(nℓ − 2)(nℓ − 1)n4
ℓ
(nℓ + 1)(nm − 1)n2

m

+
9tr(Σ2

ℓ )tr{(ΣℓΣm)2}
(nℓ − 2)n4

ℓ
(nℓ + 1)n2

m
+

9
(
n2
ℓ + nℓnm + nℓ − nm − 6

)
tr(Σ2

ℓ )tr(Σ
2
ℓΣ

2
m)

(nℓ − 2)(nℓ − 1)n4
ℓ
(nℓ + 1)(nm − 1)n2

m

+
9
(
n2
ℓ − 5

)
tr(Σ4

ℓ )tr(Σ
2
m)

(nℓ − 2)(nℓ − 1)n4
ℓ
(nℓ + 1)(nm − 1)n2

m
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+
18

(
n2
ℓ − 5

)
tr(ΣℓΣm)tr(Σ3

ℓ
Σm)

(nℓ − 2)(nℓ − 1)n4
ℓ
(nℓ + 1)(nm − 1)n2

m

+
18

(
2n2
ℓnm − n2

ℓ − nℓnm − 7nm + 5
)

tr(Σ3
ℓ
ΣmΣℓΣm)

(nℓ − 2)(nℓ − 1)n4
ℓ
(nℓ + 1)(nm − 1)n2

m

+
9
(
n3
ℓ
+ n2
ℓnm + 2n2

ℓ − nℓ − 5nm − 14
)

tr(Σ4
ℓΣ

2
m)

(nℓ − 2)(nℓ − 1)n4
ℓ
(nℓ + 1)(nm − 1)n2

m

+
9
(
n3
ℓ
+ 3n2

ℓnm − 4n2
ℓ − 2nℓnm + 3nℓ − 9nm + 4

)
tr{(Σ2

ℓΣm)2}
(nℓ − 2)(nℓ − 1)n4

ℓ
(nℓ + 1)(nm − 1)n2

m

=O(p6β(1)−7) + O(p−6), (A. 17)

E(B4) =
9tr(Σ2

m){tr(ΣℓΣm)}2

(nℓ − 1)n2
ℓ
(nm − 2)n4

m(nm + 1)
+

9tr(Σ2
ℓ ){tr(ΣℓΣm)}2

(nℓ − 1)n2
ℓ
(nm − 2)n4

m(nm + 1)

+
18tr(Σ3

m)tr(Σ2
ℓΣm)

(nℓ − 1)n2
ℓ
(nm − 1)n4

m
+

18
(
nℓnm − nℓ + n2

m − 2nm − 1
)
{tr(ΣℓΣ2

m)}2

(nℓ − 1)n2
ℓ
(nm − 2)(nm − 1)n4

m(nm + 1)

+
9tr(Σ2

m)tr{(ΣℓΣm)2}
n2
ℓ
(nm − 2)n4

m(nm + 1)
+

18
(
n2

m − 5
)

tr(ΣℓΣ3
m)tr(ΣℓΣm)

(nℓ − 1)n2
ℓ
(nm − 2)(nm − 1)n4

m(nm + 1)

+
9
(
nℓnm − nℓ + n2

m + nm − 6
)

tr(Σ2
m)tr(Σ2

ℓΣ
2
m)

(nℓ − 1)n2
ℓ
(nm − 2)(nm − 1)n4

m(nm + 1)

+
9
(
n2

m − 5
)

tr(Σ2
ℓ )tr(Σ

4
m)

(nℓ − 1)n2
ℓ
(nm − 2)(nm − 1)n4

m(nm + 1)

+
18

(
2nℓn2

m − nℓnm − 7nℓ − n2
m + 5

)
tr(ΣℓΣmΣℓΣ

3
m)

(nℓ − 1)n2
ℓ
(nm − 2)(nm − 1)n4

m(nm + 1)

+
9
(
nℓn2

m − 5nℓ + n3
m + 2n2

m − nm − 14
)

tr(Σ2
ℓΣ

4
m)

(nℓ − 1)n2
ℓ
(nm − 2)(nm − 1)n4

m(nm + 1)

+
9
(
3nℓn2

m − 2nℓnm − 9nℓ + n3
m − 4n2

m + 3nm + 4
)

tr{(ΣℓΣ2
m)2}

(nℓ − 1)n2
ℓ
(nm − 2)(nm − 1)n4

m(nm + 1)

=O(p6β(1)−7) + O(p−6). (A. 18)

From Hölder’s inequality,

(̂bℓm − bℓm)2 =

 4∑
i=1

{Bi − E(Bi)}


2

≤ 4
4∑

i=1

{Bi − E(Bi)}2.

By combining this result with (A. 15)–(A. 18), we have

var(̂bℓm) ≤ 4
4∑

i=1

var(Bi) = O(p6β(1)−7) + O(p−6). (A. 19)

Note that bℓm = O(p−2 + p3β(1)−3) under (A1) and (A2). Thus var(̂bℓm)/b2
ℓm = O(p6(β(1)−1/2)) + O(p−2) = o(1). That is,

the ratio consistency of b̂ℓm is shown.

21



D. Proof of Theorem 1
This proof is proved in the same manner of Theorem 1 in Hall (1983). For any x ∈ [−λ, λ] and any ε > 0,

Pr
{
Hℓm ≤ f̂ℓm(x)

}
≤Pr

{
Hℓm ≤ f̂ℓm(x), |̂bℓm/σ3

ℓm − bℓm/σ3
ℓm| < ε, |σ̂2

ℓm/σ
2
ℓm − 1| < ε

}
+ Pr

(
|̂bℓm/σ3

ℓm − bℓm/σ3
ℓm| ≥ ε

)
+ Pr

(
|σ̂2
ℓm/σ

2
ℓm − 1| ≥ ε

)
. (A. 20)

If |̂bℓm/σ3
ℓm − bℓm/σ3

ℓm| < ε and |σ̂2
ℓm/σ

2
ℓm − 1| < ε hold,∣∣∣∣∣∣∣ b̂ℓm

σ̂3
ℓm

− bℓm
σ3
ℓm

∣∣∣∣∣∣∣ < η(ε) = max
{∣∣∣∣∣∣ b − σ3ε

σ3(1 + ε)3/2 −
b
σ3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ b + σ3ε

σ3(1 − ε)3/2 −
b
σ3

∣∣∣∣∣∣
}
. (A. 21)

Combining (A. 20) and (A. 21), for any x ∈ [−λ, λ] and any ε > 0,

Pr
{
Hℓm ≤ f̂ℓm(x)

}
≤Pr

{
Hℓm ≤ fℓm(x) + (4/3)η(ε)(λ2 + 1)

}
+ Pr

(
|̂bℓm/σ3

ℓm − bℓm/σ3
ℓm| ≥ ε

)
+ Pr

(
|σ̂2
ℓm/σ

2
ℓm − 1| ≥ ε

)
. (A. 22)

From Markov inequality, (A. 14), and (A. 19), under (A1) and (A2),

Pr


∣∣∣∣∣∣∣ b̂ℓm
σ3
ℓm

− bℓm
σ3
ℓm

∣∣∣∣∣∣∣ ≥ ε
 ≤ Var(̂bℓm)

ε2σ6
ℓm

= O(ε−2 p−3) + O(ε−2 p−4+6β(1) ), (A. 23)

Pr
∣∣∣∣∣∣ σ̂2

ℓm

σ2
ℓm

− 1

∣∣∣∣∣∣ ≥ ε
 ≤ Var(σ̂2

ℓm)

ε2σ4
ℓm

= O(ε−2 p−2) + O(ε−2 p−3+4β(1) ). (A. 24)

Let ε = pβ(1)−1/2−θ, 0 < θ < 1/4. By using Lemma 2, under (A1) and (A2),

Pr
{
Hℓm ≤ fℓm(x) + (4/3)η(ε)(λ2 + 1)

}
= Φ(x) + o(pβ(1)−1/2).

By combining this result with (A. 22)–(A. 24), under (A1) and (A2),

Pr
{
Hℓm ≤ f̂ℓm(x)

}
≤Pr

{
Hℓm ≤ fℓm(x) + (4/3)η(ε)(λ2 + 1)

}
+ Pr

(
|̂bℓm/σ3

ℓm − bℓm/σ3
ℓm| ≥ ε

)
+ Pr

(
|σ̂2
ℓm/σ

2
ℓm − 1| ≥ ε

)
=Φ(x) + o(pβ(1)−1/2).

A lower bound may be obtained in the same way, and so the theorem is proved.

E. Proof of Theorem 2
From Lemma 1 and Theorem 1, for each ℓ and m, under (A1) and (A2),

Pr
(
Hℓm ≥ σ̂ℓmzαpw

)
= αpw + O(pβ(1)−1/2), Pr

{
Hℓm ≥ σ̂ℓm f̂ℓm(zαpw )

}
= αpw + o(pβ(1)−1/2),

Pr
(
H1m ≥ σ̂1mzαc

)
= αc + O(pβ(1)−1/2), Pr

{
H1m ≥ σ̂1m f̂1m(zαc )

}
= αc + o(pβ(1)−1/2).

Substituting these asymptotic results into Lpw1, Lpw2, Lc1, and Lc2 proves the theorem.
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