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Abstract

This paper deals with the selection of non-redundant response variables in normality-
assumed multivariate linear regression, where the redundancy of the response variables is
defined by conditional expectation. A sufficient condition for model selection consistency is
obtained using a kick-one-out method based on the generalized information criterion under
a high-dimensional asymptotic framework such that the sample size tends to infinity, and
the number of response variables and explanatory variables does not exceed the sample size
but may tend to infinity. A consistent kick-one-out method using the obtained condition
is proposed. Simulation results show that the proposed method has a high probability of
selecting true non-redundant variables.

1 Introduction

The multivariate linear regression model is fundamental in inferential statistical analysis and

is introduced in many statistics textbooks (e.g., [20, 22]). Suppose that y is a p-dimensional

response vector and x is a k-dimensional explanatory vector. Then, the normality-assumed

multivariate linear regression model with y and x is given by

y ∼ Np(Θ
′x,Σ), (1)

where Θ is a k× p unknown regression coefficients matrix and Σ is a p× p unknown covariance

matrix that is positive definite. In actual empirical contexts, selecting variables for the model

is of key interest. It is generally expected that the accuracy of prediction is improved and that

interpretation of the model is made easier by proper variable selection. In the literature on

multivariate linear regression, numerous papers have dealt with the variable selection problem as

it relates to selecting explanatory variables. On the other hand, it is also important to consider
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the problem of selecting appropriate response variables, as including redundant response variables

in the model will almost certainly lead to an improper understanding of the essential structure of

the model. [8] defined redundancy using conditional expectation. Specifically, a response variable

is determined to be redundant when the conditional expectation of the response variable given

the non-redundant variables does not rely on the explanatory variables. This implies that the

relationship between the redundant variables and the explanatory variables can be expressed

by the relationship between the non-redundant variables and the explanatory variables. Thus,

removing such redundant variables will promote a better understanding of the essential structure

of the model.

As a result of the rapid advances in information technology and database systems in recent

years, efforts to analyze high-dimensional data where not only the sample size but also the

number of variables is large have become commonplace. Although [8] derived a formal Akaike’s

information criterion (AIC) [1, 2] for selecting response variables, the behavior of the formal AIC

is not apparent for high-dimensional data. Moreover, variable selection using criteria such as the

AIC is often performed by minimizing the criterion for all combinations of response variables,

i.e., all subsets of ω, where ω = {1, . . . , p} is defined as the full set of response variable suffixes.

This means that it may be impossible to apply the approach due to its high computational cost

when the number of response variables is large. For this reason, we focus on the practicable

selection method proposed by [12, 24], using the kick-one-out (KOO) method described in [3].

With the KOO method, if the criterion value for the subset with one variable removed from

the full set ω is greater than the criterion value for ω, then the removed variable is selected.

This makes it possible to apply the KOO method for high-dimensional data without the risk of

incurring excessive computational costs.

In this paper, we propose the use of the generalized information criterion (GIC) developed in

[11] as a variable selection criterion to address the redundancy issue described in [8]. Specifically,

we propose a KOO method based on the GIC which has a model selection consistency property

under a high-dimensional asymptotic framework such that the sample size always tends to infin-

ity and the number of response variables and explanatory variables does not exceed the sample

size but may tend to infinity. Consistency here means that the probability that the selected

variables are identical to the true non-redundant variables tends to 1 under a high-dimensional

asymptotic framework. Thus, it can be expected that the proposed method has a high proba-

bility of selecting true non-redundant variables when the sample size is large, regardless of the

number of variables. In several previous works, a consistency property of the KOO method has

been obtained for selection problems under a high-dimensional asymptotic framework in several

multivariate models, e.g., selecting the explanatory variables in a multivariate linear regression

model [3, 15, 16, 18] and selecting redundant variables in discriminant analysis [7, 10, 14, 17].

However, there is no consistent KOO method for selecting response variables in the sense of the

redundancy described in [8].

The remainder of the paper is organized as follows: In section 2, we define the redundancy

of response variables and introduce the KOO method based on the GIC. In section 3, we de-

scribe the model selection consistency property of the KOO method based on the GIC under

a high-dimensional asymptotic framework. In section 4, we conduct numerical experiments for

verification purposes. Technical details are relegated to the Appendix.
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2 Framework for selecting response variables

2.1 Redundancy of response variables

We define the redundancy of response variables as in [8]. Let j denote a subset of ω = {1, . . . , p}
containing pj elements and yj denote the pj-dimensional vector consisting of the components of

y indexed by the elements of j. For example, if j = {1, 2, 4}, then yj consists of the first, second,

and fourth elements of y. Without loss of generality, we sort y into y = (y′
j ,y

′
j̄
)′ for a subset j,

where yj̄ is the (p − pj)-dimensional vector and Ā denotes the complement of a set A. Similar

to the division of y, we can express the division of Θ and Σ as follows:

Θ = (Θj ,Θj̄), Σ =

(
Σjj Σjj̄

Σ′
jj̄

Σj̄j̄

)
, (2)

where Θj and Θj̄ are k × pj and k × (p− pj), Σjj and Σj̄j̄ are pj × pj and (p− pj)× (p− pj),

and Σjj̄ is pj × (p− pj). Then, from a property of a multivariate normal distribution (e.g., [21]),

the conditional distribution of yj̄ given yj can be written as

yj̄ |yj ∼ Np−pj

(
(Θj̄ −ΘjΣ

−1
jj Σjj̄)

′x+Σ′
jj̄Σ

−1
jj yj ,Σj̄j̄·j

)
, (3)

where Σj̄j̄·j = Σj̄j̄ −Σ′
jj̄
Σ−1

jj Σjj̄ . From (3), if the equation Θj̄ −ΘjΣ
−1
jj Σjj̄ = Ok,p−pj

holds,

then the conditional distribution of yj̄ given yj does not depend on the explanatory vector x.

In other words, the relationship between yj̄ and x can be described by the relationship between

yj and x. In this sense, the model such that yj̄ is redundant in the relationship between y and

x may be expressed as

Mj : (3) s.t. Θj̄ −ΘjΣ
−1
jj Σjj̄ = Ok,p−pj

. (4)

We note that (4) is also related to selecting response variables in a multivariate inverse regression

(e.g., [5, 6, 13]). In fact, one of the purposes in a multivariate inverse regression is to estimate

an unknown explanatory vector x0 corresponding to an observed response vector y0. Then, if Θ

is full row rank, the classical estimator x̂0 of x0 can be expressed as

x̂0 = argmin
x0

(y0 −Θ′x0)
′Σ−1(y0 −Θ′x0) = (ΘΣ−1Θ′)−1ΘΣ−1y0 = Ξjy0,j +Ξj̄y0,j̄ ,

where (Ξj ,Ξj̄) = (ΘΣ−1Θ′)−1ΘΣ−1 and y0 = (y′
0,j ,y

′
0,j̄

)′. Moreover, it holds that Ξj̄ =

Θj̄ −ΘjΣ
−1
jj Σjj̄ . Hence, the redundancy model (4) can be also regarded as the redundancy of

response variables for estimating the classical estimator x̂0 in a multivariate inverse regression.

2.2 Kick-one-out method based on GIC

We first introduce the generalized information criterion (GIC) for the redundancy model (4).

Let {(y(i),x(i))} (i = 1, . . . , n) be a set of i.i.d. copies from (y,x) and let Y = (y(1), . . . ,y(n))
′

and X = (x(1), . . . ,x(n))
′, where n is the sample size. We assume rank(X) = k < n and

n − p − k − 1 > 0 for the existence of the GIC and our proposed method. Suppose Yj and

Yj̄ are the n × pj and n × (p − pj) partitioned matrices of Y = (Yj ,Yj̄) for the redundancy

3



model (4). The model (4) can be regarded as a redundancy model as in estimating an unknown

explanatory vector x0 by using the classical estimator x̂0 in a multivariate inverse regression.

Hence, in accordance with [13], the maximum log-likelihood of Nn×p(XΘ,Σ ⊗ In) under the

redundant model (4) is given by

np(log 2π + 1) + n log

∣∣∣∣ 1nY ′
j (In − PX)Yj

∣∣∣∣+ n log

∣∣∣∣ 1nY ′
j̄ (In − PYj )Yj̄

∣∣∣∣,
where PA = A(A′A)−1A′ for a square matrix A. Then, the GIC for the model (4) is written as

GIC(j) = np(log 2π + 1) + n log

∣∣∣∣ 1nY ′
j (In − PX)Yj

∣∣∣∣+ n log

∣∣∣∣ 1nY ′
j̄ (In − PYj )Yj̄

∣∣∣∣
+ α

{
1

2
p(p+ 1) + kpj

}
, (5)

where α is a positive constant expressing a penalty for the complexity of the model. Various

variable selection criteria are included in the GIC by specifying α. For example, the AIC [1, 2],

HQC [9], BIC [19], and CAIC [4] are expressed by the GIC for the following α:

α =


2 (AIC)

2 log log n (HQC)

log n (BIC)

1 + log n (CAIC)

.

Next, we introduce the kick-one-out method based on the GIC. Denote by ℓ the subset of ω

satisfying #(ℓ) = p − 1 and, moreover, denote by ℓ̄ the compliment of ℓ. Then, the best subset

decided by the kick-one-out method based on the GIC can be written as

ĵ = {ℓ̄ ∈ ω | GIC(ℓ) > GIC(ω)}, (6)

where GIC(ω) is the GIC for the full set ω and is defined for the model such that all the response

variables are non-redundant, i.e., GIC(ω) is written as

GIC(ω) = np(log 2π + 1) + n log

∣∣∣∣ 1nY ′(In − PX)Y

∣∣∣∣+ α

{
1

2
p(p+ 1) + kp

}
.

3 Model selection consistency of the KOO method based

on GIC

In this section, we demonstrate the model selection consistency property of the KOO method

based on the GIC defined by (6). First, we define the notation used in deriving the consistency

property. Let J+ be the family of sets consisting of the overspecified subsets; that is, J+ is given

by

J+ = {j ⊂ ω | Θj̄ −ΘjΣ
−1
jj Σjj̄ = Ok,p−pj

}.

Then, the true model j∗ is defined as the subset such that the number of elements is smallest for

all the subsets in J+; that is, j∗ is given by j∗ = argminj∈J+
pj . The following assumptions are

made:
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Assumption A1. n → ∞, p/n → c1 ∈ [0, 1), k/n → c2 ∈ [0, 1− c1).

Assumption A2. The true subset j∗ is included in the full set ω, i.e., j∗ ⊂ ω.

Assumption A1 is our high-dimensional asymptotic framework. This assumption means that

n always tends to infinity, but p and k can be fixed or can tend to infinity. Note that pj∗ is

finite because we suppose that the number of non-redundant variables is small. Assumption A2

is needed to consider the model’s selection consistency P (ĵ = j∗) → 1.

Next, we re-form our expression of (6) to obtain the consistency property. For j = ℓ (#(ℓ) =

p− 1), the divisions of Y , Θ and Σ are given by

Y = (Yℓ,yℓ̄), Θ = (Θℓ,θℓ̄), Σ =

(
Σℓℓ σℓℓ̄

σ′
ℓℓ̄

σℓ̄ℓ̄

)
.

By considering a distributional reduction of GIC(ℓ)−GIC(ω), the best subset ĵ can be rewritten

as follows (the proof is given in Appendix 1).

Lemma 1. For ℓ ⊂ ω (#(ℓ) = p − 1), let sℓ be a random variable distributed according to

the chi-squared distribution χ2(n − p − k + 1). Further, let hℓ be a random variable such that

it is conditionally independent of sℓ given Yℓ, and the conditional distribution given Yℓ is the

non-central chi-squared distribution χ2(k; δℓ). Here, the non-centrality parameter δℓ is defined by

δℓ = σ−1
ℓ̄ℓ̄·ℓξ

′
ℓX

′(In − PYℓ
)Xξℓ,

where σℓ̄ℓ̄·ℓ = σℓ̄ℓ̄−σ′
ℓℓ̄
Σ−1

ℓℓ σℓℓ̄ and ξℓ = θℓ̄−ΘℓΣ
−1
ℓℓ σℓℓ̄. Then, the best subset ĵ can be expressed

as

ĵ =

{
ℓ̄ ∈ ω | hℓ

sℓ
> exp

(
k

n
α

)
− 1

}
.

From Lemma 1, we see that the behavior of the non-centrality parameter δℓ plays an important

role in variable selection. Some of the properties of δℓ are described below (the proof is given in

Appendix 4).

Proposition 1. For ℓ ⊂ ω (#(ℓ) = p− 1), the following properties of δℓ hold.

(i) If ℓ̄ /∈ j∗, then ξℓ = 0k, and hence δℓ = 0.

(ii) If ℓ̄ ∈ j∗, then we can express δℓ under Assumption A1 as follows:

δℓ = Op

(
tr(Θj∗Σ

−1
j∗j∗

Θ′
j∗)λmax(X

′X)
)
,

where λmax(A) is the maximum eigenvalue of a square matrix A, and Θj∗ and Σj∗j∗ are

the partition matrices Θj and Σjj in (2) corresponding to j = j∗.

From (i) in Proposition 1, the non-centrality parameter δℓ is 0 when ℓ̄ /∈ j∗. Moreover, from

(ii) it may be expected that δℓ diverges at about the same speed as the maximum eigenvalue of

X ′X when ℓ̄ ∈ j∗. In fact, if λmax(X
′X) = O(n) and λmax(Θ

′
j∗
Θj∗) = O(1), then δℓ = Op(n).

However, we cannot determine the exact divergence speed of δℓ because δℓ includes the inverse

of a non-central Wishart matrix. Hence, we require the following additional assumption.
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Assumption A3. There exists τ > 0 such that P
(
minℓ̄∈j∗ δℓ > τn

)
→ 1.

Assumption A3 means that n−1δℓ does not tend to 0 asymptotically in the sense of the conver-

gence in probability, and this will be natural from (ii) in Proposition 1. In the selection contexts

for explanatory variables (e.g., [3, 23]), it is assumed that the corresponding non-central pa-

rameters have O(n) and do not converge to 0. Even from that point of view, we consider that

Assumption A3 will be appropriate. Moreover, it is possible to relax Assumption A3 and express

it as P
(
minℓ̄∈j∗ δℓ > τnκ

)
→ 1, where κ is a constant satisfying 1/2 < κ < 1. However, we do not

consider such a relaxation, as it makes conditions for the consistency of the KOO method based

on the GIC stricter; that is, the relaxation and the conditions are related to the transactions.

Finally, we can demonstrate the consistency property of the KOO method ĵ based on the GIC

under Assumptions A1-A3. To do so, we use the following expression for α:

α =
n

k
log

(
1 +

k

N − 2
+ β

)
, β > 0, (7)

where N = n− p− k + 1. Then, from Lemma 1 and the definition of the method (6), the lower

bound of the probability P (ĵ = j∗) can be derived as

P (ĵ = j∗) = P

⋂
ℓ̄ /∈j∗

{GIC(ℓ)−GIC(ω) ≤ 0}

⋂⋂
ℓ̄∈j∗

{GIC(ℓ)−GIC(ω) > 0}


≥ 1− P

⋃
ℓ̄ /∈j∗

{
hℓ

sℓ
> β +

k

N − 2

}− P

⋃
ℓ̄∈j∗

{
hℓ

sℓ
≤ β +

k

N − 2

} , (8)

where hℓ and sℓ are defined in Lemma 1. Therefore, we look for the condition on β such that

the two probabilities in the last expression of (8) tend to 0, in order to have ĵ manifest the

consistency property. Such results are derived in Theorem 1 (the proof is given in Appendix 3).

Theorem 1. Suppose that Assumptions A1-A3 hold. Then, the KOO method based on the GIC

defined by (6) exhibits model selection consistency, i.e., P (ĵ = j∗) → 1 holds, if for some r ∈ N
the following condition on α is satisfied:

α =
n

k
log

(
1 +

k

N − 2
+ β

)
, β > 0 s.t.

n

p1/2rk1/2
β → ∞, β → 0. (9)

Theorem 1 specifies the α condition necessary for the KOO method based on the GIC to have

the consistency property. Thus, we propose a KOO method based on the GIC with α that

satisfies (9). However, we need to decide on a value of α in order to perform variable selection.

An example of α satisfying (9) is given as follows:

α = α̃ =
n

k
log

(
1 +

k

N − 2
+ β

)
, β =

p1/4k1/2(log p)(log n)

n
. (10)

Note that α̃ satisfies condition (9) for r ≥ 2. The value β in (10) may satisfy both nβ/(p1/4k1/2) →
∞ and β → 0 in a well-balanced manner. Although the consistency property in Theorem 1 is

obtained by rewriting α as β, we can derive the consistency property without β if k is fixed.
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Corollary 1. Suppose that Assumptions A1-A3 hold and assume that k is fixed. Then, the KOO

method based on the GIC defined by (6) exhibits consistency, i.e., P (ĵ = j∗) → 1 holds, if for

some r ∈ N the following condition of α is satisfied:

1

p1/2r
α → ∞,

1

n
α → 0. (11)

Moreover, α satisfying condition (9) meets (11) if k is fixed.

The proof of Corollary 1 is omitted since it is similar to the proof of Theorem 1. From Corollary

1, we see that the AIC, HQC, BIC, and CAIC do not satisfy condition (11) unless p is fixed or

p diverges at a very slow speed.

4 Numerical Studies

In this section, we report the numerical results of a simulation experiment in which the proba-

bilities of selecting the true subset j∗ using the KOO method based on the GIC were determined.

Let α̃ be the α given by (10), and note that α̃ satisfies the condition of consistency (9). The

probabilities are calculated using Monte Carlo simulations with 10,000 iterations. For compar-

ison, we calculated the results for several KOO methods based on GICs for specific α values,

including the AIC (α = 2), HQC (α = 2 log log n), BIC (α = log n), and CAIC (α = 1 + log n).

Moreover, we implemented the KOO method based on the GIC for α = n1/2, which, from Corol-

lary 1, is consistent when k is fixed. We set the true subset and the number of true response

variables as j∗ = {1, 2, 3, 4, 5} and pj∗ = 5, respectively. The response matrix Y is generated

from Nn×p(XΘ,Σ⊗ In), where X, Σ and Θ are determined as shown below. The explanatory

matrix X is generated from Nn×k(On,k,Φ⊗ In), where the (a, b)-th element of the k×k matrix

Ψ is (0.5)|a−b|. The covariance matrix Σ is given by Σ = 0.4{(1 − 0.8)Ip + 0.81p1
′
p}. Let the

partition matrices of Θ and Σ be as (2) corresponding to j = j∗; then the partition matrices of

Θ are given by

Θj∗ ∼ Nk×pj∗
(Ok,pj∗

, Ipj∗
⊗ Ik), Θj̄∗ = Θj∗Σ

−1
j∗j∗

Σj∗ j̄∗ .

Tables 1 and 2 show the probabilities for selecting the true subset j∗ by KOO methods based

on the six criteria, AIC, HQC, BIC, CAIC, GIC with α = n1/2, and GIC with α = α̃, where

α̃ is given by (10). It is evident from the tables that the probabilities for the KOO method

based on the GIC with α = α̃ are high in all cases. This supports our assertion that the method

with α = α̃ is consistent under a high-dimensional asymptotic framework. The KOO methods

based on the AIC, HQC, BIC, and CAIC, which do not satisfy (9), have low probabilities in at

least some instances. The probabilities associated with the KOO method based on the GIC with

α = n1/2 are high when k is small, as α = n1/2 satisfies condition (11). Based on these results,

we recommend using α = α̃ to find the true subset.
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Table 1: True subset selection probabilities (%) by the KOO methods based on the six criteria.

n p k AIC HQC BIC CAIC α = n1/2 α = α̃

100 10 10 68.78 98.25 99.97 100.00 100.00 100.00

300 10 10 81.54 99.86 100.00 100.00 100.00 100.00

500 10 10 84.22 99.93 100.00 100.00 100.00 100.00

1000 10 10 85.15 100.00 100.00 100.00 100.00 100.00

3000 10 10 85.84 100.00 100.00 100.00 100.00 100.00

5000 10 10 85.56 100.00 100.00 100.00 100.00 100.00

10000 10 10 86.18 100.00 100.00 100.00 100.00 100.00

100 40 10 0.00 9.98 84.49 97.62 99.79 99.92

300 120 10 0.00 7.19 96.98 99.70 100.00 100.00

500 200 10 0.00 4.61 98.51 99.88 100.00 100.00

1000 400 10 0.00 2.01 99.63 99.94 100.00 100.00

3000 1200 10 0.00 0.13 99.91 100.00 100.00 100.00

5000 2000 10 0.00 0.03 99.93 100.00 100.00 100.00

10000 4000 10 0.00 0.00 99.99 100.00 100.00 100.00

100 10 40 71.86 99.96 100.00 97.78 0.00 99.54

300 10 120 99.80 100.00 100.00 47.78 0.00 100.00

500 10 200 100.00 100.00 99.48 0.82 0.00 100.00

1000 10 400 100.00 100.00 23.00 0.00 0.00 100.00

3000 10 1200 100.00 100.00 0.00 0.00 0.00 100.00

5000 10 2000 100.00 100.00 0.00 0.00 0.00 100.00

10000 10 4000 100.00 100.00 0.00 0.00 0.00 100.00

100 20 20 19.46 96.12 99.99 100.00 37.67 100.00

300 60 60 25.69 100.00 100.00 100.00 0.00 100.00

500 100 100 56.37 100.00 100.00 100.00 0.00 100.00

1000 200 200 95.81 100.00 100.00 100.00 0.00 100.00

3000 600 600 100.00 100.00 100.00 99.98 0.00 100.00

5000 1000 1000 100.00 100.00 100.00 75.95 0.00 100.00

10000 2000 2000 100.00 100.00 100.00 0.00 0.00 100.00
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Table 2: True subset selection probabilities (%) by the KOO methods based on the six criteria.

n p k AIC HQC BIC CAIC α = n1/2 α = α̃

100 80 10 0.00 0.00 0.00 0.00 2.21 34.80

300 240 10 0.00 0.00 0.00 0.00 91.30 99.94

500 400 10 0.00 0.00 0.00 0.00 99.74 100.00

1000 800 10 0.00 0.00 0.00 0.00 100.00 100.00

3000 2400 10 0.00 0.00 0.00 0.00 100.00 100.00

5000 4000 10 0.00 0.00 0.00 0.00 100.00 100.00

10000 8000 10 0.00 0.00 0.00 0.00 100.00 100.00

100 10 80 0.00 27.91 83.72 4.83 0.00 28.62

300 10 240 0.07 100.00 0.00 0.00 0.00 50.04

500 10 400 0.08 100.00 0.00 0.00 0.00 61.44

1000 10 800 0.28 100.00 0.00 0.00 0.00 73.37

3000 10 2400 0.52 100.00 0.00 0.00 0.00 87.57

5000 10 4000 0.47 100.00 0.00 0.00 0.00 91.32

10000 10 8000 0.38 100.00 0.00 0.00 0.00 94.46

100 40 40 0.00 0.10 81.39 85.35 0.00 70.28

300 120 120 0.00 5.61 98.03 24.26 0.00 99.82

500 200 200 0.00 67.13 87.81 0.52 0.00 100.00

1000 400 400 0.00 99.98 7.78 0.00 0.00 100.00

3000 1200 1200 0.00 100.00 0.00 0.00 0.00 100.00

5000 2000 2000 0.00 100.00 0.00 0.00 0.00 100.00

10000 4000 4000 0.00 100.00 0.00 0.00 0.00 100.00
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Appendix 1: Proof of Lemma 1

From (5), the GIC for j = ℓ (#(ℓ) = p− 1) is written as

GIC(ℓ) =np(log 2π + 1) + n log

∣∣∣∣ 1nY ′
ℓ (In − PX)Yℓ

∣∣∣∣+ n log

{
1

n
y′
ℓ̄(In − PYℓ

)yℓ̄

}
+ α

{
1

2
p(p+ 1) + k(p− 1)

}
.

On the other hand, the GIC for the full set ω can also be expressed as

GIC(ω) =np(log 2π + 1) + n log

∣∣∣∣ 1nY ′
ℓ (In − PX)Yℓ

∣∣∣∣+ n log

{
1

n
y′
ℓ̄(In − P(Yℓ,X))yℓ̄

}
+ α

{
1

2
p(p+ 1) + kp

}
.

Hence, GIC(ℓ)−GIC(ω) is expressed by

GIC(ℓ)−GIC(ω) = n log
y′
ℓ̄
(In − PYℓ

)yℓ̄

y′
ℓ̄
(In − P(Yℓ,X))yℓ̄

− kα

= n log

{
1 +

y′
ℓ̄
(P(Yℓ,X) − PYℓ

)yℓ̄

y′
ℓ̄
(In − P(Yℓ,X))yℓ̄

}
− kα.

Let s̃ℓ = σ−1
ℓ̄ℓ̄·ℓy

′
ℓ̄
(In − P(Yℓ,X))yℓ̄ and h̃ℓ = σ−1

ℓ̄ℓ̄·ℓy
′
ℓ̄
(P(Yℓ,X) − PYℓ

)yℓ̄. We can show that s̃ℓ and

h̃ℓ satisfy the requirements imposed on sℓ and hℓ in Lemma 1, respectively.

First, we consider s̃ℓ. From a property of a conditional distribution of a multivariate normal

distribution (e.g., [21]), yℓ̄ can be expressed as

yℓ̄ = YℓΣ
−1
ℓℓ σℓℓ̄ +Xξℓ + σ

1/2

ℓ̄ℓ̄·ℓuℓ,

where uℓ is independent of Yℓ and uℓ ∼ Nn(0n, In). Since (In − P(Yℓ,X))YℓΣ
−1
ℓℓ σℓℓ̄ = 0n and

(In − P(Yℓ,X))Xξℓ = 0n hold from a property of the projection matrix, we have

s̃ℓ = u′
ℓ(In − P(Yℓ,X))uℓ. (12)

From Cochran’s Theorem (e.g., [8]), we have s̃ℓ ∼ χ2(n− p− k + 1).

Next, we consider h̃ℓ. From a property of the projection matrix, (P(Yℓ,X)−PYℓ
)YℓΣ

−1
ℓℓ σℓℓ̄ = 0n

holds. Hence, h̃ℓ can be expressed as

h̃ℓ = σ−1
ℓ̄ℓ̄·ℓ(Xξℓ + σ

1/2

ℓ̄ℓ̄·ℓuℓ)
′(P(Yℓ,X) − PYℓ

)(Xξℓ + σ
1/2

ℓ̄ℓ̄·ℓuℓ). (13)

Since Yℓ and uℓ are independent, the conditional distribution of h̃ℓ given Yℓ is the non-central

chi-squared distribution χ2(k; δℓ) from Cochran’s Theorem, where δℓ is expressed as

δℓ = σ−1
ℓ̄ℓ̄·ℓξ

′
ℓX

′(P(Yℓ,X) − PYℓ
)Xξℓ = σ−1

ℓ̄ℓ̄·ℓξ
′
ℓX

′(In − PYℓ
)Xξℓ.

Finally, we see that s̃ℓ and h̃ℓ are conditionally independent given Yℓ from (12), (13) and

Cochran’s Theorem because (In − P(Yℓ,X))(P(Yℓ,X) − PYℓ
) = On,n holds. Therefore, the proof

of Lemma 1 is completed. □

10



Appendix 2: Proof of Proposition 1

First, we show (i). Without loss of generality, we can rewrite y by y = (y′
j∗
,y′

j̄∗
)′ =

(y′
j∗
,y′

j̄∗∩ℓ
, yℓ̄)

′ for ℓ̄ /∈ j∗. Then, the proof of (i) is completed by letting Θ1 = Θj∗ in the

following lemma (the proof is given in Appendix 4).

Lemma A.1. Suppose that the divisions of Θ and Σ are given by

Θ = (Θ1,Θ2,Θ3) = (Θ1,Θ(23)) = (Θ(12),Θ3),

Σ =

Σ11 Σ12 Σ13

Σ′
12 Σ22 Σ23

Σ′
13 Σ′

23 Σ33

 =

(
Σ11 Σ1(23)

Σ′
1(23) Σ(23)(23)

)
=

(
Σ(12)(12) Σ(12)3

Σ′
(12)3 Σ33

)
.

If Θ(23) = Θ1Σ
−1
11 Σ1(23), then we have Θ3 = Θ(12)Σ

−1
(12)(12)Σ(12)3.

Next, we show (ii). Without loss of generality, we can rewrite y by y = (y′
j̄∗
,y′

j∗
)′ =

(y′
j̄∗
,y′

j∗∩ℓ, yℓ̄)
′ for ℓ̄ ∈ j∗. Let the partition matrix of Θ and Σ corresponding to the true

subset j∗ be as follows:

Θ = (Θj̄∗ ,Θj∗), Σ =

(
Σj̄∗ j̄∗ Σ′

j∗ j̄∗

Σj∗ j̄∗ Σj∗j∗

)
.

Then, we set the matrices Ψℓ, Γℓ, Ψ, and Γ as follows:

Ψℓ = Γ′
ℓΘ

′ΘΓℓ, Γℓ =

(
Σ

−1/2
ℓℓ −σ

−1/2

ℓ̄ℓ̄·ℓ Σ−1
ℓℓ σℓℓ̄

0′
p−1 σ

−1/2

ℓ̄ℓ̄·ℓ

)
,

Ψ = Γ′Θ′ΘΓ, Γ =

(
Σ

−1/2

j̄∗ j̄∗·j∗
Op−pj∗ ,pj∗

−Σ−1
j∗j∗

Σj∗ j̄∗Σ
−1/2

j̄∗ j̄∗·j∗
Σ

−1/2
j∗j∗

)
.

Note that the (p, p)-th element of Ψℓ is σ−1
ℓ̄ℓ̄·ℓξ

′
ℓξℓ, and Σ = (Γ′

ℓ)
−1Γ−1

ℓ = (Γ′)−1Γ−1 holds.

Moreover, Ψ can be calculated as

Ψ =

(
Op−pj∗ ,p−pj∗

Op−pj∗ ,pj∗

Opj∗ ,p−pj∗
Σ

−1/2
j∗j∗

Θ′
j∗
Θj∗Σ

−1/2
j∗j∗

)
.

Then, we have

δℓ ≤ σ−1
ℓ̄ℓ̄·ℓξ

′
ℓξℓλmax(X

′X)

≤ tr(Ψℓ)λmax(X
′X)

= tr{ΨΓ−1ΓℓΓ
′
ℓ(Γ

′)−1}λmax(X
′X)

= tr{ΨΓ−1Σ−1(Γ′)−1}λmax(X
′X)

= tr(Ψ)λmax(X
′X)

= tr(Θj∗Σ
−1
j∗j∗

Θ′
j∗)λmax(X

′X).

Therefore, the proof of (ii) in Proposition 1 is completed. □

11



Appendix 3: Proof of Theorem 1

First, we show P (∪ℓ̄ /∈j∗{hℓs
−1
ℓ > β + k/(N − 2)}) → 0 in (8). Since δℓ = 0 for ℓ̄ /∈ j∗ from

Proposition 1, we see that hℓ ∼ χ2(k) and, moreover, sℓ is independent of hℓ. Then, for any

r ∈ N we have

P

⋃
ℓ̄ /∈j∗

{
hℓ

sℓ
> β +

k

N − 2

} ≤
∑
ℓ̄ /∈j∗

P

(
hℓ

sℓ
− k

N − 2
> β

)

≤ (p− pj∗)β
−2rE

[(
hℓ

sℓ
− k

N − 2

)2r
]
.

Then, the order of the moment of the above equation is O(krn−2r) from [15, Lemma A.2]. Hence,

we have P (∪ℓ̄ /∈j∗{hℓs
−1
ℓ > β + k/(N − 2)}) = O(pkrβ−2rn−2r) → 0.

Next, we show P (∪ℓ̄∈j∗{hℓs
−1
ℓ ≤ β+k/(N−2)}) → 0 in (8). From a property of the non-central

chi-squared distribution, hℓ can be expressed as follows:

hℓ = δℓ + tℓ + 2δ
1/2
ℓ vℓ,

where tℓ and vℓ are random variables, and the conditional distributions of those given Yℓ are

tℓ|Yℓ ∼ χ2(k) and vℓ|Yℓ ∼ N (0, 1). Let E = {minℓ̄∈j∗ δℓ > τn}, where τ is given by Assumption

A3. Then, we have

P

⋃
ℓ̄∈j∗

{
hℓ

sℓ
≤ β +

k

N − 2

} = P

⋃
ℓ̄∈j∗

{
hℓ

sℓ
≤ β +

k

N − 2

} ∩ (E ∪ Ec)


≤ P

⋃
ℓ̄∈j∗

{
hℓ

sℓ
≤ β +

k

N − 2

} ∩ E

+ P (Ec)

≤
∑
ℓ̄∈j∗

P

(
τ + n−1tℓ + 2τ1/2n−1/2vℓ ≤ n−1sℓ

(
β +

k

N − 2

))
+ P (Ec).

By calculating the variances of tℓ, vℓ and (N −2)−1sℓ, we see that tℓ = k+Op(k
1/2), vℓ = Op(1),

and (N − 2)−1sℓ = 1 + Op(n
−1/2) hold. Moreover, P (Ec) = o(1) holds from Assumption A3.

Hence, we have P (∪ℓ̄∈j∗{hℓs
−1
ℓ ≤ β + k/(N − 2)}) → 0. Therefore, the proof of Theorem 1 is

completed. □

Appendix 4: Proof of Lemma A.1

From the assumption of Lemma A.1, the following equations hold:

Θ2 = Θ1Σ
−1
11 Σ12, Θ3 = Θ1Σ

−1
11 Σ13. (14)

12



By using (14) and the general formula for the inverse of a block matrix, Θ(12)Σ
−1
(12)(12)Σ(12)3 is

expanded as

Θ(12)Σ
−1
(12)(12)Σ(12)3 = (Θ1,Θ2)

(
Σ−1

11 +Σ−1
11 Σ12Σ

−1
22·1Σ

′
12Σ

−1
11 −Σ−1

11 Σ12Σ
−1
22·1

−Σ−1
22·1Σ

′
12Σ

−1
11 Σ−1

22·1

)(
Σ13

Σ23

)
= Θ1Σ

−1
11 Σ13 +Θ1Σ

−1
11 Σ12Σ

−1
22·1Σ

′
12Σ

−1
11 Σ13 −Θ2Σ

−1
22·1Σ

′
12Σ

−1
11 Σ13

−Θ1Σ
−1
11 Σ12Σ

−1
22·1Σ23 +Θ2Σ

−1
22·1Σ23

= Θ1Σ
−1
11 Σ13 +Θ1Σ

−1
11 Σ12Σ

−1
22·1Σ

′
12Σ

−1
11 Σ13 −Θ1Σ

−1
11 Σ12Σ

−1
22·1Σ

′
12Σ

−1
11 Σ13

−Θ1Σ
−1
11 Σ12Σ

−1
22·1Σ23 +Θ1Σ

−1
11 Σ12Σ

−1
22·1Σ23

= Θ1Σ
−1
11 Σ13

= Θ3,

where Σ22·1 = Σ22 −Σ′
12Σ

−1
11 Σ12. Therefore, the proof of Lemma A.1 is completed. □
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