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Abstract

In this paper, we consider testing problem of multivariate normality
(MVN). We deal with the kurtosis test statistic based on Mardia’s mul-
tivariate kurtosis as one of MVN tests and give a modified normalizing
transformation (NT) statistic. A standardized statistic based on the NT
statistic is derived by using the exact expectation and variance of Mar-
dia’s multivariate sample kurtosis. Finally, we investigate the accuracy
of the normal approximation of the proposed test statistic by a Monte
Carlo simulation, and we provide a numerical example.

Keywords: Asymptotic expansion; Monte Carlo simulation; Multivari-
ate kurtosis; Normal approximation; Standardized statistic.

1 Introduction

Assessing MVN of the data is an important and complicated problem, and many meth-

ods have been discussed from various perspectives. In particular, in many multivariate

analysis, multivariate normality is assumed as the population distribution and underlies

important techniques. From another perspective, there are discussions on the effect of

non-normality or robustness if the multivariate normality of the population distribution

does not hold, such as the distribution of the test statistic under a non-normal population
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(see e.g., Seo et al. (1994, 1995), Fujikoshi (2001), Wakaki et al. (2002), etc.). One of

the MVN tests is the test using skewness and kurtosis, but an asymptotic result is used.

For multivariate kurtosis, the normal approximation of the test statistic is discussed (see

e.g., Mardia (1970), etc.). There are several definitions of multivariate kurtosis, including

those by Mardia (1970), Srivastava(1984), and Koziol (1989), and their null distributions

are given for large sample. As related to this study, an estimation of the kurtosis parame-

ter, which is the fourth order moment under an elliptical distribution, is given by Seo and

Toyama (1996). In this paper, we focus on the definition by Mardia (1970), which gives

the multivariate sample kurtosis and the standardized test statistics from the expectation

and variance. The asymptotic distributions follow a standard normal distribution, which

are used for the MVN test. Recently, Enomoto et al. (2020) gave the normalizing NT

statistic for Mardia’s sample measure of multivariate kurtosis. In addition, the kurtosis

tests under the assumption of a two-step monotone missing data discussed by Yamada

et al. (2015) and Kurita and Seo (2022). Kurita and Seo (2022) gave a new sample

measure of multivariate kurtosis available for the two-step monotone missing data and

developed a test statistic with good normal approximation by asymptotically evaluating

the expectation and variance using an asymptotic expansion procedure. In this paper,

we give a modified NT statistic, which improves the normal approximation. The mod-

ified statistic is a standardized statistic that uses the exact expectation and variance of

Mardia’s multivariate sample kurtosis. The rest of this paper is organized as follows.

Section 2 provides a definition of the sample measure of multivariate kurtosis and the test

statistics by Mardia (1970). In Section 3, we describe the NT statistic by Enomoto et

al. (2020) in order to derive a modified standardized test statistic by evaluation of the

expectation and variance of the NT statistic. In Section 4, a simulation study is presented

to investigate the accuracy of the normal approximation of the test statistic proposed in

this paper. Section 5 gives a numerical example to illustrate the method, and Section 6

presents concluding remarks.
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2 Multivariate sample kurtosis and kurtosis test statistic

Let x1, . . . ,xN be a random sample from a p-variate population with mean vector µ and

covariance matrix Σ. Then the sample measure of multivariate kurtosis is defined as

b2,p =
1

N

N∑
i=1

{(xi − x)⊤S−1(xi − x)}2,

where

x =
1

N

N∑
i=1

xi, S =
1

N

N∑
i=1

(xi − x)(xi − x)⊤.

This definition is due to Mardia (1970, 1974), and S is defined as the maximum likelihood

of estimator of Σ. In addition to MVN test statistic has been proposed as

ZM∗ =
b2,p − µM

σM

,

where

µM = p(p+ 2)
N − 1

N + 1
, σ2

M = 8p(p+ 2)
(N − 3)(N − p− 1)(N − p+ 1)

(N + 1)2(N + 3)(N + 5)
,

respectively. Note that, under multivariate normality, it holds that E[b2,p] = µM, Var[b2,p] =

σ2
M and ZM∗ test statistic is asymptotically distributed as N(0, 1) (e.g., see Siotani et al.

(1985)). Using the asymptotic result, Mardia (1970) gave that

ZM =

√
N(b2,p − β)

σ

is asymptotically distribution as N(0, 1), where β = p(p+2) and σ2 = 8p(p+2). Note that

as the sample size N increases, µM converges to β, and Nσ2
M converges to σ2, respectively.

This means the both ZM∗ and ZM test statistics are the MVN test statistics using the

fourth-order moment (kurtosis), magnitude of absolute values of these statistics leads to

the rejection of the MVN hypothesis test. Mardia and Kanazawa (1983) used the third-

order moment of multivariate sample kurtosis to give a chi-square approximation using

the Wilson-Hilferty (WH) transformation for its null distribution. On the other hand,

Enomoto et al. (2020) derived the NT statistic ZNT , and numerical comparisons have

been made with ZM , ZM∗, ZNT , and WH transformation statistics.
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3 NT statistic and modified statistic

Consider the distribution function for
√
N(b2,p − β)/σ. Then its asymptotic expansion is

given by

Pr

[√
N(b2,p − β)

σ
≤ z

]
= Φ(z)− 1√

N

{
a1
σ
Φ(1)(z) +

a3
σ3

Φ(3)(z)

}
+O(N−1),

where Φ(z) is the cumulative distribution function of N(0, 1), Φ(j)(z) is the jth derivative

of Φ(z), j = 1, 3, and the coefficients a1, σ
2 and a3 are given by

a1 = −2p(p+ 2), σ2 = 8p(p+ 2), a3 =
32

3
p(p+ 2)(p+ 8),

respectively. We note that a1, σ
2 and a3 are the coefficients corresponding to first, second

and third cumulants of Y =
√
N(b2,p − β) such that

κ1(Y ) =
a1√
N

+O(N− 3
2 ) (= E[Y ]),

κ2(Y ) = σ2 +O(N−1) (= E[Y 2]− {E[Y ]}2),

κ3(Y ) =
6√
N
a3 +O(N− 3

2 ) (= E[Y 3]− 3E[Y 2]E[Y ] + 2{E[Y ]}3),

respectively. This result was given in Enomoto et al. (2020). For a general discussion of an

asymptotic expansion of the distribution function of some statistics and their normalizing

transformations, see Konishi (1981) and others. The NT statistic is derived based on the

result of the asymptotic expansion, and the outline of its derivation is given in order to

obtain a modified NT statistic. Let f(b2,p) be a function of b2,p, then, under appropriate

regularity conditions for a function f(b2,p), the distribution function for
√
N{f(b2,p) −

f(β)}/{f ′(β)σ} can be expanded for large N as

Pr

[√
N{f(b2,p)− f(β)}

f ′(β)σ
≤ z

]
= Φ(z)− 1√

N
{b1Φ(1)(z) + b3Φ

(3)(z)}+O(N−1),

where

bi =
ai
σi

+
σf ′′(β)

2f ′(β)
, i = 1, 3.
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See Siotani et al. (1985). Therefore, if there exists a function f such that the coefficient

of the term of 1/
√
N is zero, then the distribution of the statistic using the function f

converges to a standard normal distribution more quickly. The function that satisfies

b1Φ
(1)(y) + b3Φ

(3)(y) = 0 is given by

f(b2,p) = γ exp

(
1

γ
b2,p

)
,

where γ = −3p(p+ 2)/(p+ 8). Furthermore, by bias correction for the term of 1/
√
N , we

obtain

Pr[ZNT ≤ z] = Φ(z) + O(N−1),

where

ZNT =

√
N

f ′(β)σ

{
f(b2,p)− f(β)− c

N

}
, c = −2

3
(3p2 + 8p+ 16) exp

(
−p+ 8

3

)
.

Thus, we obtain the NT statistic given by

ZNT =

√
N

σ

[
exp{γ(b2,p − β)} − 1

γ
+

2β(1− 2γ)

N

]
.

We note that this result coincides with Theorem 1 in Enomoto et al. (2020). Based on

this result, we give a modified NT statistic by using exact expectation and variance of

Mardia’s multivariate sample kurtosis. For large N , we can assume that b2,p is distributed

as N(µM, σ
2
M), and therefore, approximately, we have

E[f(b2,p)] = γ exp

(
µM

γ
+

σ2
M

2γ2

)
,

Var[f(b2,p)] = exp

(
2µM

γ

){
exp

(
2σ2

M

γ2

)
− exp

(
σ2

M

γ2

)}
.

Hence, we obtain approximation to E[ZNT ] and Var[ZNT ] as

µZNT =

√
N

σ
exp

(
−β

γ

){
γ exp

(
µM

γ
+

σ2
M

2γ2

)
− γ exp

(
β

γ

)
− c

N

}
,

σ2
ZNT =

Nγ2

σ2
exp

{
2

γ
(µM − β)

}{
exp

(
2σ2

M

γ2

)
− exp

(
σ2

M

γ2

)}
,
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respectively. We note that µZNT = 0 and σ2
ZNT = 1 whenN → ∞. Therefore, by calculating

(ZNT − µZNT)/σZNT, we can propose the following ZNT ∗ test statistic as a modification

of ZNT .

ZNT ∗ =

exp

(
1

γ
b2,p

)
− exp

(
µM

γ
+

σ2
M

2γ2

)
exp

(
µM

γ

){
exp

(
2σ2

M

γ2

)
− exp

(
σ2

M

γ2

)} 1
2

.

We note that ZNT ∗ is also asymptotically distributed as N(0, 1). Furthermore, it seems

that ZNT ∗ is closer to zero and one than ZNT with respect to expectation and variance.

4 A simulation study

In this section, we investigate the accuracy of the normal approximation of ZNT ∗ by a

Monte Carlo simulation. Tables 1 and 2 give empirical expectation, variance, skewness,

and kurtosis for ZM , ZM∗, ZNT , and ZNT ∗ computed through simulation of combi-

nations of p = 2, 4, 5, 7, 10, 15, 20 and N = 20, 50, 100, 200, 300, 500, 1000 over

1,000,000 runs each. As all test statistics are invariant to affine transformation, without

loss of generality, we assume that µ = 0 and Σ = I. Tables 1 and 2 show that in many

cases the expectation of ZNT ∗ is closer to zero than that of ZNT . In particular, we note

that the expectations of all test statistics converge to zero as the sample size N becomes

large. Furthermore, it can be seen from tables that even when N is small, the expectation

of ZNT ∗ is close to zero. Focusing on the size of the dimension p, it can be seen that when

N is fixed, the expectation of ZNT is further away from zero for larger dimensions, while

that of ZNT ∗ is closer to zero for larger dimensions. In addition, we discuss the variance

from Tables 1 and 2. It can be seen from tables that for any dimension, the values of

variances of ZM∗, ZNT and ZNT ∗ converge to one as the sample size N becomes large.

Comparing the variances of ZNT and ZNT ∗, it can be seen from Table 2 that when
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Table 1:

Empirical expectation, variance, skewness and kurtosis for ZM∗, ZNT and ZNT ∗

for p = 2, 4, 5.

Expectation Variance Skewness Kurtosis

N ZM∗ ZNT ZNT ∗ ZM∗ ZNT ZNT ∗ ZM∗ ZNT ,ZNT ∗ ZM∗ ZNT ,ZNT ∗

p = 2

20 (0.000) 0.120 0.033 (1.000) 0.706 0.600 1.109 -0.295 5.164 2.741

50 (0.003) 0.049 0.022 (1.003) 0.814 0.690 1.049 -0.229 5.335 2.854

100 (0.000) 0.020 0.012 (1.000) 0.875 0.788 0.862 -0.147 4.711 2.912

200 (0.001) 0.009 0.006 (1.003) 0.926 0.871 0.653 -0.080 3.999 2.959

300 (-0.001) 0.004 0.003 (0.999) 0.944 0.908 0.547 -0.052 3.693 2.990

500 (0.000) 0.002 0.002 (1.001) 0.966 0.937 0.434 -0.029 3.457 3.000

1000 (0.000) 0.001 0.001 (0.998) 0.980 0.971 0.310 -0.012 3.233 3.010

p = 4

20 (-0.002) 0.010 0.009 (0.998) 0.680 0.808 0.708 -0.151 3.794 2.759

50 (0.001) 0.014 0.009 (0.999) 0.836 0.838 0.697 -0.119 3.970 2.881

100 (0.000) 0.006 0.003 (1.001) 0.904 0.892 0.581 -0.073 3.734 2.939

200 (-0.001) 0.002 0.001 (0.998) 0.944 0.934 0.444 -0.038 3.440 2.977

300 (0.001) 0.002 0.000 (1.000) 0.961 0.952 0.381 -0.021 3.344 3.001

500 (0.000) 0.000 0.001 (1.002) 0.978 0.973 0.302 -0.010 3.210 3.001

1000 (-0.001) 0.000 0.001 (0.999) 0.987 0.984 0.213 -0.007 3.115 3.010

p = 5

20 (-0.001) -0.038 0.007 (0.999) 0.646 0.856 0.617 -0.100 3.562 2.752

50 (0.002) 0.002 0.007 (1.002) 0.833 0.869 0.621 -0.090 3.749 2.884

100 (0.001) 0.003 0.003 (0.998) 0.902 0.910 0.521 -0.052 3.567 2.946

200 (0.000) 0.001 0.002 (0.999) 0.946 0.947 0.398 -0.030 3.357 2.983

300 (0.000) 0.000 0.002 (1.001) 0.965 0.965 0.336 -0.018 3.251 2.988

500 (0.000) 0.000 0.001 (1.000) 0.978 0.976 0.265 -0.012 3.163 3.004

1000 (0.000) 0.000 0.001 (1.000) 0.988 0.988 0.196 -0.001 3.089 3.004
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Table 2:

Empirical expectation, variance, skewness and kurtosis for ZM∗, ZNT and ZNT ∗

for p = 7, 10, 15, 20.

Expectation Variance Skewness Kurtosis

N ZM∗ ZNT ZNT ∗ ZM∗ ZNT ZNT ∗ ZM∗ ZNT ,ZNT ∗ ZM∗ ZNT ,ZNT ∗

p = 7

20 (0.002) -0.146 0.002 (1.002) 0.558 0.905 0.529 -0.009 3.369 2.771

50 (0.001) -0.025 0.003 (1.003) 0.814 0.909 0.525 -0.049 3.498 2.884

100 (0.000) -0.008 0.002 (1.000) 0.898 0.938 0.442 -0.033 3.384 2.952

200 (0.001) -0.001 -0.001 (1.000) 0.947 0.960 0.341 -0.018 3.238 2.976

300 (0.001) -0.001 0.001 (1.001) 0.964 0.975 0.290 -0.011 3.186 2.994

500 (0.000) -0.001 0.001 (1.000) 0.978 0.981 0.233 -0.003 3.124 3.002

1000 (0.000) 0.000 -0.001 (1.000) 0.988 0.992 0.168 -0.001 3.069 3.006

p = 10

20 (0.000) -0.360 0.001 (0.998) 0.400 0.938 0.498 0.130 3.326 2.845

50 (-0.001) -0.074 0.001 (0.999) 0.767 0.933 0.448 -0.012 3.336 2.895

100 (0.000) -0.024 0.001 (1.002) 0.884 0.955 0.381 -0.017 3.283 2.952

200 (0.000) -0.008 0.001 (1.001) 0.940 0.971 0.300 -0.005 3.179 2.975

300 (0.000) -0.005 0.000 (1.001) 0.961 0.979 0.248 -0.008 3.120 2.987

500 (0.001) -0.001 0.000 (1.001) 0.976 0.987 0.200 -0.002 3.079 2.989

1000 (0.001) 0.000 0.001 (1.002) 0.989 0.994 0.147 0.002 3.041 2.994

p = 15

20 (-0.001) -0.875 0.000 (0.998) 0.134 0.961 0.703 0.525 3.772 3.338

50 (0.000) -0.182 0.001 (1.001) 0.676 0.954 0.385 0.035 3.217 2.904

100 (-0.001) -0.061 -0.001 (1.002) 0.847 0.968 0.333 0.008 3.187 2.946

200 (0.000) -0.021 0.000 (1.001) 0.926 0.978 0.253 -0.006 3.120 2.973

300 (0.001) -0.010 0.000 (0.999) 0.948 0.986 0.220 0.000 3.096 2.985

500 (0.000) -0.005 -0.001 (1.000) 0.970 0.992 0.171 -0.004 3.056 2.991

1000 (0.000) -0.001 0.000 (1.001) 0.986 0.996 0.129 0.002 3.036 2.998

p = 20

20 — — — — — — — — — —

50 (-0.001) -0.333 0.001 (1.001) 0.568 0.968 0.369 0.089 3.192 2.927

100 (-0.001) -0.110 0.000 (1.002) 0.804 0.972 0.302 0.020 3.141 2.943

200 (0.000) -0.037 0.001 (1.001) 0.906 0.983 0.241 0.008 3.103 2.977

300 (0.001) -0.019 0.000 (1.000) 0.938 0.989 0.202 0.003 3.068 2.979

500 (-0.001) -0.010 0.000 (0.998) 0.962 0.991 0.159 -0.001 3.047 2.991

1000 (0.000) -0.003 0.001 (0.997) 0.979 0.996 0.114 -0.001 3.016 2.988
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p = 2, the variance of ZNT is closer to one for all cases of N . In the case of p = 4, it can

be seen that the variance of ZNT is closer to one when N ≥ 100. In the case of p = 5, it

can be seen that the variance ZNT is closer to one when N ≥ 300. Furthermore, when

N is fixed and p is larger, it can be seen that the variance of ZNT goes away from one,

while that of ZNT ∗ is closer to one. In summary, except the case of p = 2, when both

the dimension and the sample size are small, the variance of ZNT ∗ is closer to one, and

when the dimension is moderately large (specifically, when p ≥ 7), the variance of ZNT ∗

is always close to one. As for skewness and kurtosis, if the statistic is distributed as a

standard normal distribution, then its skewness and kurtosis are zero and three, and we

can see that the values of skewness and kurtosis of ZNT ∗ are close to zero and three in

all cases.

Next, we discuss the normal approximation of the proposed ZNT ∗ statistic. According

to the simulation results of Enomoto et al. (2020), the type I error shows that ZM∗ is

much better than ZNT . The reason may be that the expectation and variance of ZM∗

are exactly zero and one, respectively. However, the skewness and kurtosis are not close

to zero and three, respectively. Therefore, the lower and upper percentiles of ZM∗ are

probably shifted from these of N(0, 1). For example, when p = 5, N = 20 and α = 0.05,

the empirical type I error of ZM∗ is 0.045. However, since ZM∗
1−α/2 = −1.651 > −1.96

and ZM∗
α/2 = 2.233 > 1.96, the normal approximation to the percentiles is not good,

where ZM∗
1−α/2 and ZM∗

α/2 are the simulated values of the lower and upper 100(α/2)

percentiles of ZM∗, respectively. Therefore, the following criterion is hereby introduced to

show that the ZNT ∗ improves on ZM∗ under this criterion. As a criterion, the probability

evaluation for the difference of percentiles is given by the following definition. For U =

ZM∗, ZNT, ZNT ∗, we define

δ =


∣∣Pr(U < −zα

2
) + Pr(U > zα

2
)− α

∣∣ for (1), (2),∣∣Pr(U < −zα
2
)− Pr(U > zα

2
)
∣∣ for (3), (4),
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where

(1) u1−α
2
> −zα

2
, uα

2
< zα

2
, (2) u1−α

2
< −zα

2
, uα

2
> zα

2
,

(3) u1−α
2
> −zα

2
, uα

2
> zα

2
, (4) u1−α

2
< −zα

2
, uα

2
< zα

2
,

u1−α/2 and uα/2 are the lower and upper 100(α/2) percentile of U , respectively. We note

that the value of δ is non-negative, and the closer it is to zero, the better the normal

approximation is. That is, the magnitude of values of δ is the measure of evaluation for

the accuracy of normal approximation based on the lower and upper 100(α/2) percentiles

of the test statistic. From Tables 3 and 4, it may be noted that the value of δ for ZNT is

close to zero for p = 2, but that for ZNT ∗ is close to zero for other large dimensions. In

particular, when N is moderately large, the value of δ is almost zero, indicating that the

accuracy of the normal approximation of ZNT ∗ is good. For the value of δ, the reason

why ZNT ∗ is larger than ZM∗ for p = 2 probably that the variance for ZNT ∗ does not

improve when the dimension is small (see, Table 1).

Figures 1 ∼ 4 present histograms for ZM∗, ZNT and ZNT ∗ from the results of

1, 000, 000 simulations in order to see the shape of the distribution of these test statistics

as a normal approximation, where the curve in the figures indicates a standard normal

density. Figures 1 through 4 show the results for p = 2, 4, 10 and 15, respectively, and

for sample sizes of N = 20, 50 and 100 for each dimension. As can be seen from the

figures, all cases fit the standard normal density as the sample size N becomes large.

In particular, in all cases, the histogram for ZNT ∗ seems to overlap exactly with the

standard normal density most often.

5 A numerical example

In this section, a numerical example is given to illustrate the use of the proposed test

statistic. The head dimension data in millimeters handled here presents the six variables

which were measured on heads of the members of army. This data is from Table 1.2 in
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Table 3:

Value of δ for ZM , ZM∗, ZNT and ZNT ∗ (p = 2, 4, 5).

N ZM ZM∗ ZNT ZNT ∗

p = 2

20 0.045 0.044 0.039 0.043

50 0.031 0.040 0.024 0.035

100 0.021 0.035 0.015 0.025

200 0.016 0.030 0.009 0.015

300 0.014 0.026 0.006 0.010

500 0.012 0.021 0.004 0.007

1000 0.009 0.016 0.002 0.003

p = 4

20 0.047 0.036 0.037 0.025

50 0.030 0.033 0.020 0.020

100 0.018 0.028 0.012 0.013

200 0.010 0.022 0.007 0.008

300 0.007 0.019 0.005 0.005

500 0.004 0.016 0.003 0.003

1000 0.002 0.011 0.001 0.002

p = 5

20 0.043 0.033 0.039 0.020

50 0.025 0.031 0.020 0.016

100 0.015 0.026 0.012 0.011

200 0.010 0.020 0.007 0.006

300 0.009 0.017 0.004 0.004

500 0.006 0.014 0.002 0.003

1000 0.004 0.011 0.002 0.001
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Table 4:

Value of δ for ZM , ZM∗, ZNT and ZNT ∗ (p = 7, 10, 15, 20).

N ZM ZM∗ ZNT ZNT ∗

p = 7

20 0.033 0.030 0.043 0.014

50 0.039 0.027 0.022 0.012

100 0.032 0.023 0.012 0.008

200 0.024 0.018 0.006 0.005

300 0.020 0.015 0.004 0.003

500 0.011 0.009 0.001 0.001

1000 0.011 0.009 0.001 0.001

p = 10

20 0.203 0.027 0.047 0.010

50 0.092 0.024 0.026 0.009

100 0.064 0.020 0.013 0.006

200 0.045 0.016 0.007 0.004

300 0.037 0.013 0.005 0.002

500 0.029 0.011 0.003 0.002

1000 0.020 0.008 0.001 0.001

p = 15

20 0.982 0.036 0.050 0.029

50 0.273 0.021 0.032 0.006

100 0.142 0.018 0.017 0.004

200 0.088 0.014 0.009 0.003

300 0.068 0.012 0.006 0.002

500 0.052 0.009 0.003 0.001

1000 0.035 0.007 0.001 0.001

p = 20

50 0.596 0.020 0.036 0.001

100 0.266 0.017 0.021 0.004

200 0.144 0.013 0.011 0.002

300 0.107 0.011 0.007 0.001

500 0.077 0.009 0.004 0.001

1000 0.051 0.006 0.002 0.000
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Figure 1: Histogram of ZM∗, ZNT and ZNT ∗ for p = 2 and N = 20, 50, 100.
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Figure 2: Histogram of ZM∗, ZNT and ZNT ∗ for p = 4 and N = 20, 50, 100.
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Figure 3: Histogram of ZM∗, ZNT and ZNT ∗ for p = 10 and N = 20, 50, 100.
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Figure 4: Histogram of ZM∗, ZNT and ZNT ∗ for p = 15 and N = 20, 50, 100.
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Table 5: Value of test statistics, empirical and simulated p-value, and decision on MVN at
significance level 0.05, p=6, N=20.

Statistic Value Empirical p-value Decision δ

ZM -1.684 0.092 NR 0.034

ZM∗ -1.253 0.210 NR 0.031

ZNT -1.154 0.249 NR 0.040

ZNT ∗ -1.284 0.199 NR 0.016

Note. NR: Does not reject MVN, Simulated p-value is 0.179.

Flury (1997), where the sample size is N=200. Then, since p-values of all test statistics

have almost one in this case, a numerical example was conducted here with N=20. Table

5 gives the values of the test statistics for ZM , ZM∗, ZNT and ZNT ∗, their empirical

and simulated p-values, and the test decision at significance level 0.05. It can be seen

from Table 5 that the absolute values of all test statistics are less than 1.96, hence the

MVN is not rejected. Furthermore, the p-values of the test statistics in Table 5 indicate

that the empirical p-value of ZNT ∗ is closest to the simulated p-value.

6 Concluding remarks

In this study, we discussed the testing problem of multivariate normality based on Mardia’s

multivariate kurtosis. We proposed a modified normalizing transformation statistic by

evaluating the expectation and variance of the normalizing transformation statistic. The

null distribution of ZNT ∗ proposed in this paper has considerably good approximation

to the standard normal distribution.
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