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Abstract

This paper considers a covariance selection problem model which es-

timates the set of nonzero partial correlations. First, we propose a

knock-one-out (KOO) method based on a general information crite-

rion. Next, two KOO methods based on two new model selection

criteria are introduced. It is shown that our KOO methods have

high-dimensional consistency under appropriate assumptions. The

proposed model selection methods are examined for two real datasets.

Some simulation results are also given.
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1. Introduction

Let X = (X1, . . . , Xp)
′ be a p-dimensional random vector following a

multivariate normal distribution Np(µ,Σ) with unknown mean µ and un-

known nonsingular covariance matrix Σ. We are interested in identifying

or estimating the set of nonzero partial correlations. This problem is called

the covariance selection problem (Dempster (1972)) or the Gaussian concen-

tration graph selection problem (Cox and Wermuth (1996), Yuan and Lin

(2007)). Here, the partial correlation of Xi and Xj is defined as the usual

correlation after removing the effects of the other variables.

We often express the j1, j2 components of X by (Xj1 , Xj2) and the j1, j2

components of Σ by σj1j2 . Let ρj1j2·(−j) be the partial correlation between

Xj1 and Xj2 after removing the effects of all the other variables, denoted by

(−j), where j = (j1, j2). Let ω be the full set or model such that it contains

all pairs j = (j1, j2) satisfying ρj1j2·(−j) ̸= 0. Suppose we are interested in

finding the true model defined by

J∗ = {(j1, j2) | ρj1j2·(−j) ̸= 0, j1, j2 ∈ {1, 2, . . . , p}, j1 < j2}. (1.1)

Then, we have k = 2p(p+1)/2 candidate models by considering whether ρj1j2·(−j) ̸=
0 or ρj1j2·(−j) = 0 for each (j1, j2). These candidate models are denoted by

MJ or simply J , which is a subset of ω.

Let S be the sample covariance matrix based on a sample of size n + 1

from a p-variate normal distribution Np(µ,Σ). Then, nS follows the Wishart

distribution Wp(n,Σ). We use AIC and BIC to find the model which mini-

mizes

GICJ,d = −2 logL(Σ̂J) + dgJ , (1.2)

where L(Σ̂J) is the maximum likelihood, dgJ is the penalty term, and gJ is

the number of unknown parameters. The d values for AIC and BIC are 2 and
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log n, respectively, and gJ is equal to p plus the number of nonzero partial

correlations.

However, these direct approaches will not be feasible when p is large,

since the possible number of models becomes large. However, we can use

a knock-one-out (KOO) method based on these model selection approaches.

This idea goes back to Nishii et al. (1988) and Zhao et al. (1986). The

term “KOO” was introduced by Bai et al. (2018). For a review of the KOO

method, see, e.g., Fujikoshi (2022).

The KOO method is specifically as follows. Let Mω or ω be a model

such that all of the partial correlations are nonzero. Further, let Mω\j or

ω\j be a model such that the partial correlation ρj1j2·(−j) is zero but the

other partial correlations are nonzero. Let

Tj1j2,d = GICω\j,d −GICω,d. (1.3)

Then, our KOO method chooses the model given by

ĴG,d = {(j1, j2) | Tj1j2,d > 0, 1 ≤ j1 < j2 ≤ p}. (1.4)

The selection procedure may be stated as follows: if Tj1j2 is positive, (j1, j2)

is selected, and if Tj1j2 is not positive, (j1, j2) is not selected. In this paper,

under a high-dimensional framework, we study consistency of ĴG,d. Further,

we introduce two new model selection criteria, DIC and ZIC. In addition to

ĴG,d, we consider the two other KOO methods ĴD,d and ĴZ,d based on model

selection criteria DIC and ZIC.

For high-dimensional data such that p > n, Lasso and other regularization

methods have been extended. In the case of the Gaussian concentration graph

selection problem, see, e.g., Yuan and Lin (2007), Friedman et al. (2007),

and Hirose et al. (2017).

The present paper is organized as follows. In Section 2, we give a distri-

butional reduction for a key statistic Tj1j2,d or Lj1j2 = Tj1j2,d − d. In Section

3, we present high-dimensional consistency of ĴG,d. In Section 4, we propose

the new two model selection criteria: DIC and ZIC. These are constructed
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based on the same idea as AIC and PEC (Fujikoshi et al. (2011)) by starting

from the sets of partial correlations and their z-transformations. In Section

5, a KOO method based on DIC (ĴD,d) and one based on ZIC (ĴZ,d) are

proposed. High-dimensional consistencies for ĴD,d and ĴZ,d are also shown.

Simulation results are given in Section 6. Numerical examples are given in

Section 7. In Section 8, we briefly discuss our selection criteria. Technical

details are provided in Appendices.

2. Distribution of Key Statistics

The partial correlation ρj1j2·(−j) of Xj1 and Xj2 given X(−j) is defined as

follows:

ρj1j2·(−j) =
σj1j2·(−j)

√
σj1j1·(−j)

√
σj2j2·(−j)

,

where(
σj1j1·(−j) σj1j2·(−j)

σj2j1·(−j) σj2j2·(−j)

)
=

(
σj1j1 σj1j2
σj2j1 σj2j2

)
− σj1j2·(−j)Σ

−1
(−j)(−j)σ

′
j1j2·(−j),

σj1j2·(−j) is the partition matrix of Σ consisting of the (j1, j2) rows after

removing the (j1, j2) columns, and Σ(−j)(−j) is the partition matrix of Σ

after removing the (j1, j2) columns and (j1, j2) rows. Let S = (sj1j2) be

the sample covariance matrix based on a sample of size n + 1. Then, using

partition matrices of S similar to Σ, the sample partial correlation is given

as

rj1j2·(−j) =
sj1j2·(−j)

√
sj1j1·(−j)

√
sj2j2·(−j)

. (2.1)

It is well known that there is a close relationship between the partial corre-

lation coefficients and the coefficients of Σ−1 = (σj1j2), in fact that

ρj1j2·(−j) = (−1)δj1j2+1 ρj1j2√
ρj1j1

√
ρj2j2

. (2.2)

Here, δj1j2 is the Kronecker delta. Thus, the zero of ρj1j2·(−j) is equivalent to

the zero of the (j1, j2) component of Σ−1.
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Here, we note that Tj1j2,d is related to the Likelihood Ratio Criterion

(LRC) for the hypothesis ρj1j2·(−j) = 0. In fact, from (1.4) we can express it

as

Tj1j2,d = −2 logL(Σ̂ω\j,d) + dgω\j

−
{
−2 logL(Σ̂ω,d) + dgω

}
= −2 log LRT− d, (2.3)

where LRT is a likelihood ratio statistic for testing the hypothesis ρj1j2·(−j) =

0. It should be noted that the LRC is based on the likelihood of S. We now

consider the term Lj1j2 = −2 log LRT. From Fujikoshi et al. (2010, Theorem

4.3.2), we have

Lj1j2 = −n log(1− r2j1j2·(−j)). (2.4)

Thus, our KOO method can be expressed as

−n log(1− r2j1j2·(−j))− d > 0 ⇔ (j1, j2) ∈ ĴG,d. (2.5)

Next, we consider the distribution of Lj1j2 . Using r2j1j2·(−j) = s2j1j2·(−j)

·{sj1j1·(−j)sj2j2·(−j)}−1, we can use the expression

Lj1j2 = n log(1 +Qj1j2·(−j)), (2.6)

where

Qj1j2·(−j) =
s2j1j2·(−j)

sj1j1·(−j)sj2j2·(−j) − s2j1j2·(−j)

. (2.7)

Thus, it is necessary to study the distribution of Qj1j2·(−j) in order to obtain

the distribution of Lj1j2 . For this purpose, we have the following theorem.

Theorem 2.1. Let Qj1j2·(−j) be the statistic defined by (2.7). Then we can

express it as

Qj1j2·(−j) = χ2
1

(
τ 2
) {
χ2
m−1

}−1
, (2.8)

where m = n − (p − 2), and τ 2 = ρ2j1j2·(−j)(1 − ρ2j1j2·(−j))
−1χ2

m. Here, a

noncentral chi-square variate χ2
1(·) and two chi-square variables χ2

m−1 and

χ2
m are mutually independent. If (j1, j2) /∈ J∗, then we can write Qj1j2·(−j) =

χ2
1

{
χ2
m−1

}−1
.
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Proof of Theorem 2.1. First, note that

n

(
sj1j1·(−j) sj1j2·(−j)

sj2j1·(−j) sj2j2·(−j)

)
∼ W2(m,Σj1j2·(−j)),

where W2(m,Σj1j2·(−j)) denotes the two-dimensional Wishart distribution

with m = n − (p − 2) degrees of freedom and covariance matrix Σj1j2·(−j).

We can express Qj1j2·(−j) as

Qj1j2·(−j) =
w2

j1j2·(−j)

wj1j1·(−j)wj2j2·(−j) − w2
j1j2·(−j)

, (2.9)

where wj1j2·(−j) = nsj1j2·(−j)

{
σj1j1·(−j) · σj2j2·(−j)

}−1/2
. We simply write W

to indicate the two-dimensional random matrix Wj1j2·(−j), which is defined

as follows:

Wj1j2·(−j) =

(
wj1j1·(−j) wj1j2·(−j)

wj2j1·(−j) wj2j2·(−j)

)
.

Then

W ∼ W2

(
m,

(
1 ρj1j2·(−j)

ρj1j2·(−j) 1

))
.

From the definition of the Wishart distribution, we can assert W = U′U,

where

U = (u1 u2) ∼ Nm×2

(
O, Im ⊗

(
1 ρj1j2·(−j)

ρj1j2·(−j) 1

))
,

in which A⊗B means the Kronecker product of the two matrices A and B

(see, e.g., Muirhead, 1982). Then, we can write Qj1j2·(−j) in (2.9) as follows:

Qj1j2·(−j) =
u′

2
1

u′
1u1

u1u
′
1u2

u′
2

(
Im − 1

u′
1u1

u1u′
1

)
u2

. (2.10)

The conditional distribution of u2 given u1 is

u2|u1 ∼ Nm(ρj1j2·(−j)u1, (1− ρ2j1j2·(−j))Im).

Using this conditional distribution, we can claim that

u′
2

(
Im − 1

u′
1u1

u1u
′
1

)
u2 ∼ (1− ρ2j1j2·(−j))χ

2
m−1
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is independent of u1. In general, the numerator and the denominator are

conditionally independent. The conditional distribution of the numerator

u′
2

1
u′
1u1

u1u
′
1u2 given u1 is a noncentral chi-squared distribution such that

the number of degrees of freedom is 1 and the noncentral parameter is τ 2,

where

τ 2 = ρ2j1j2·(−j)

{
1− ρ2j1j2·(−j)

}−1
u′

1u1.

These imply Theorem 2.1.

3. Consistency of KOO Method

3.1. Outline of Proof

In this section, we show the high-dimensional consistency of the KOOmethod

Ĵd in (1.4). Our consistency will be obtained by showing the following two

properties:

[F1] : P1 ≡
∑

(j1,j2)∈J∗

Pr(Tj1j2,d ≤ 0) → 0. (3.1)

[F2] : P2 ≡
∑

(j1,j2)/∈j∗

Pr(Tj1j2,d > 0) → 0. (3.2)

Here, P1 denotes the sum of probabilities that a partial correlation is iden-

tified as zero despite not being zero and P2 denotes the sum of probabilities

that a partial correlation is identified as nonzero despite being zero. Condi-

tions [F1] and [F2] are sufficient to show the consistency, which can be seen

7



from the following inequality:

Pr(Ĵd = J∗) = Pr

 ⋂
(j1,j2)∈J∗

“Tj1j2,d > 0”

 ∩

 ⋂
(j1,j2)/∈J∗

“Tj1j2,d ≤ 0”


= 1− Pr

 ⋃
(j1,j2)∈J∗

“Tj1j2,d ≤ 0”

 ∪

 ⋃
(j1,j2)/∈J∗

“Tj1j2,d > 0”


≥ 1−

∑
(j1,j2)∈J∗

Pr(Tj1,j2,d ≤ 0)−
∑

(j1,j2)/∈J∗

Pr(Tj1,j2,d > 0). (3.3)

If [F1] and [F2] hold, then Pr(Ĵd = J∗) converges to 1, i.e. variable selection

method Ĵd has consistency. This approach has been used in Fujikoshi and

Sakurai (2019), Oda and Yanagihara (2021), and Fujikoshi (2022), as well as

other studies.

We make the following assumptions:

A1: The high-dimensional asymptotic framework: the sample size n and

the dimensionality p diverge together under the restriction that p/n→
c1 ∈ (0, 1).

A2: The true subset J∗ is included in the full set Ω, i.e., J∗ ⊂ Ω, and the

size of J∗, i.e., #J∗, does not depend on the dimensionality p. That is,

#J∗ is finite on p.

A3: There exist positive constants c, c ∈ (0, 1) so that whenever j = (j1, j2) ∈
J∗, limp→∞ maxj1j2∈J∗ ρ

2
j1j2·(−j) = c and limp→∞ minj1j2∈J∗ ρ

2
j1j2·(−j) = c.

A4: The threshold is set as d = nδ, 1/4 < δ < 1.

Assumption A1 requires that c1 be larger than 0 and smaller than 1, but

when p is finite or very small, we need to consider the case c1 = 0. How-

ever, this case is not considered here. In our proof, we use the condition

n− p > 17, but this will be satisfied under A1. Assumption A2 means that

the number of nonzero partial correlations is fixed instead of growing with

p. From a practical point of view, this case will be important since it makes
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interpretation simple. Further, it can be expected that our model selection

shall be quite accurate in our target situation that only a few partial cor-

relations, relative to the total number of variables, are significant. Related

to Assumption A2, we assume that the limits of nonzero partial correlations

are not 0 or 1.

Note that under A2, P1 is a finite sum, whereas P2 is an infinite sum.

These properties will be used in our proofs of asymptotic consistency.

3.2. Proof of [F2]

When (j1, j2) ̸∈ J∗, from Theorem 2.1 we can write Tj1j2,d = n log
(
1 + χ2

1/χ
2
m−1

)
−

d, and therefore we have

Pr(Tj1j2,d > 0) = Pr

(
n log

(
1 +

χ2
1

χ2
m−1

)
− d > 0

)
.

It is observed that

n log

(
1 +

χ2
1

χ2
m−1

)
− d > 0 ⇐⇒ χ2

1

χ2
m−1

> ed/n − 1.

From this result, by letting U = χ2
1/χ

2
m−1, we have

Pr

(
n log

(
1 +

χ2
1

χ2
m−1

)
− d > 0

)
= Pr

(
U > ed/n − 1

)
.

Further, the following inequalities hold.

Pr(U > ed/n − 1) ≤ Pr(|U | > d/n)

≤ (d/n)−2ℓE(U2ℓ), ℓ ∈ {1, 2, . . .},

where the first inequality follows from the fact that ed/n − 1 > d/n > 0, and

the second inequality is derived as follows: ∀h > 0,

E(U2ℓ) =

∫
u2ℓf(u)du

≥
∫
|u|≥h

u2ℓf(u)du

≥ h2ℓ
∫
|u|≥h

f(u)du = h2ℓ Pr(|U | ≥ h).

9



Above, f(·) is the probability density function of U . Now, we find that

E(U2ℓ) = E[(χ2
1/χ

2
m−1)

2ℓ] = O(m−2ℓ) = O(n−2ℓ).

It can be deduced from the assumption d = nδ that (d/n)−2ℓE(U2ℓ) =

O(n−2ℓδ). From these results, by letting ℓ = 4, we obtain that

Pr(Tj1,j2,d > 0) = Pr(U > ed/n − 1) < (d/n)−8E(U8) = O(n−8δ).

Consequently,

P2 =
∑

(j1,j2)/∈J∗

Pr(Tj1,j2,d > 0) < p2O(n−8δ) = O(n2−8δ) → 0

when 1/4 < δ. Related to setting ℓ = 4, it is necessary that m = n− p > 17

for the moment E(U2ℓ) = E(U8) to exist. However, as mentioned previously,

this condition is satisfied asymptotically under A1.

3.3. Proof of [F1]

When (j1, j2) ∈ J∗, P1 is a finite sum. Looking term-wise, we shall see the

following result:

Pr
(
n log

(
1 + Aj1j2·(−j)

)
− d ≤ 0

)
→ 0,

where

Aj1j2·(−j) = χ2
1

(
ρ2j1j2·(−j)

1− ρ2j1j2·(−j)

χ2
m

){
χ2
m−1

}−1
. (3.4)

Then we can write

1 + Aj1j2·(−j) = 1 +
u′

2
1

u′
1u1

u1u
′
1u2

u′
2

(
Im − 1

u′
1u1

u1u′
1

)
u2

=
u′

2u2

u′
2

(
Im − 1

u′
1u1

u1u′
1

)
u2

.
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Further, the numerator and denominator of the last expression are as follows:

u′
2u2 ∼ χ2

m

u′
2

(
Im − 1

u′
1u1

u1u
′
1

)
u2 ∼ (1− ρ2j1j2·(−j))χ

2
m−1.

These imply

u′
2u2

u′
2

(
Im − 1

u′
1u1

u1u′
1

)
u2

p→ 1

(1− ρ2j1j2·(−j))
.

From the assumption d = nδ, 1/4 < δ < 1, we find that d/n→ 0 as n→ ∞,

and so

1

n
{n log

(
1 + Aj1j2·(−j)

)
− d}

p→ log
1

(1− ρ2j1j2·(−j))
= − log(1− ρ2j1j2·(−j)) > 0. (3.5)

Probability convergence in (3.5) implies that the probability that n log
(
1 + Aj1j2·(−j)

)
−

d is negative or equals zero approaches zero.

4. Derivation of Model Selection Criteria DIC

and ZIC

In the previous section, we considered a KOO criterion based on the GIC

criterion for selecting the set of nonzero partial correlations. This section

gives two model selection criteria in the predictive sense. We name the first

one as DIC and the second one as ZIC. The respective derivations are given

in separate subsections. These criteria were developed based on an idea

similar to AIC and Cp, but our basic statistics are the partial correlations

themselves and the distances between the basic statistics are based on a

Frobenius norm. Thus, these criteria also correspond to PEC (Fujikoshi et

al. (2011)) in multivariate regression models.
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4.1. Derivation of DIC

Let R be the p × p matrix of population partial correlations, i.e., whose

(j1, j2) entry is ρj1j2·(−j). In addition, let R be the matrix of sample partial

correlations which corresponds toR. We measure the goodness of fit between

R and R by the Frobenius norm given by

D(R,R) =
1

2
tr(R−R)2 =

p−1∑
j1=1

p∑
j2=j1+1

(rj1j2·(−j) − ρj1j2·−j)
2.

Let MJ be the model corresponding to J = {(j1, j2) | ρj1j2·(−j) ̸= 0, j1, j2 ∈
{1, 2, . . . , p}, j1 < j2}. Then, we consider the minimum distance estimator

under MJ such that

min
R∈MJ

D(R,R) = D(R, R̂MJ
).

Noting that

min
R∈MJ

D(R,R) = min
R∈MJ

 ∑
(j1,j2)∈J

(rj1j2·(−j) − ρj1j2·(−j))
2 +

∑
(j1,j2)∈Jc

r2j1j2·(−j)


=

∑
(j1,j2)∈Jc

r2j1j2·(−j),

we can see that R̂MJ
= A = (aj1j2), where

aj1j2 =

{
rj1j2·(−j), (j1, j2) ∈ J,
0, (j1, j2) /∈ J.

As a criterion for choosing a model MJ based on the point of predictive

inference, we consider

RiskMJ
= E∗

zE
∗
x[D(Rz, R̂MJ

)]. (4.1)

along to AIC and Cp as in Fujikoshi and Satoh (1997). In (4.1), z denotes the

variate for future data, and Rz is a copy of R, i.e., has the same distribution

as R but is independent of R. Further, E∗ denotes the expectation with
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respect to the true model M∗. Our construction method of a model selection

criterion is similar to that of AIC, but we start from R, not the sample

covariance matrix S.

Now we propose a model selection criterion by considering an estimator

for RiskMJ
given in (4.1). Consider a naive estimator D(R, R̂MJ

) which

is obtained from D(Rz, R̂MJ
) by replacing Rz, by R, and consider further

modifying it. More precisely, we can write RiskMJ
as

RiskMJ
= E∗

zE
∗
x[D(R, R̂MJ

)] + BMJ
.

and consider estimating BMJ
, where

BMJ
= E∗

zE
∗
x[D(Rz, R̂MJ

)−D(R, R̂MJ
)].

From Appendix A1,

BMJ
=

kJ
n− p+ 1

−
∑

(j1,j2)∈J∩J∗

(2− ρ2j1j2·(−j))ρ
2
j1j2·(−j)

n− p+ 1
+O(kJn

−2),

where kJ is the number of elements in candidate model MJ . Now assume

that the true model is included in a candidate model. Then, J∗ ∩ J = J∗.

For any model MJ including MJ∗ ,

B2 =
∑

(j1,j2)∈J∩J∗

(2− ρ2j1j2·(−j))ρ
2
j1j2·(−j)

n− p+ 1

takes a definite value. Neglecting B2, which is not effected by a change

in models, and the remainder term, which is O(kJn
−2), we can make the

approximation BMJ
≈ kJ/(n − p + 1). Therefore, we propose the model

selection criterion

DICMJ
= D(R, R̂MJ

) +
kJ

n− p+ 1

=
∑

(j1,j2)∈Jc

r2j1j2·(−j) +
kJ

n− p+ 1
. (4.2)
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4.2. Derivation of ZIC

In this section, we use the Fisher’s z-transforms instead of the sample partial

correlations. Let ζj1j2 and zj1j2 be the Fisher’s z-transforms of the population

partial correlation ρj1j2·(−j) and the sample partial correlation rj1j2·(−j), i.e.,

ζj1,j2 =
1

2
log

1 + ρj1j2·(−j)

1− ρj1j2·(−j)

, zj1,j2 =
1

2
log

1 + rj1j2·(−j)

1− rj1j2·(−j)

.

Further, let us denote Z = (ζj1j2) and Z = (zj1j2). We measure the goodness

of fit between Z and Z by the Frobenius norm given by

D(Z,Z) =
1

2
tr(Z− Z)2

=

p−1∑
j1=1

p∑
j2=j1+1

(zj1j2 − ζj1j2)
2

=

p−1∑
j1=1

p∑
j2=j1+1

[
1

2
log

1 + rj1j2·(−j)

1− rj1j2·(−j)

− 1

2
log

1 + ρj1j2·(−j)

1− ρj1j2·(−j)

]2
.

Let MJ be the model corresponding to J = {(j1, j2) | ρj1j2·(−j) ̸= 0, j1, j2 ∈
{1, 2, . . . , p}, j1 < j2}. As an estimator under MJ , we consider the minimum

distance estimator

min
Z∈MJ

D(Z,Z) = D(Z, ẐMJ
).

Here, the estimator takes the following form:

min
Z∈MJ

D(Z,Z) = min
Z∈MJ

 ∑
(j1,j2)∈J

(zj1j2 − ζj1j2)
2 +

∑
(j1,j2)∈Jc

z2j1j2


=

∑
(j1,j2)∈Jc

z2j1j2 .

Letting ẐMJ
= B = (bj1j2), we have

bj1j2 =

 zj1j2 =
1

2
log

1 + rj1j2·(−j)

1− rj1j2·(−j)

, (j1, j2) ∈ J,

0, (j1, j2) /∈ J.
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By the same consideration as in Section 4.1., we measure the goodness of MJ

from the point of predictive inference. More specifically, we consider

RiskMJ
= E∗

zE
∗
x[D(Zz, ẐMJ

)]. (4.3)

Here, we use the same notation as in (4.1).

We propose a model selection criterion by considering an estimator for

RiskMJ
given in (4.3). Consider the naive estimator D(Z, ẐMJ

) which is

obtained by replacing Zz, by Z, and consider further modifying it. More

precisely, we write RiskMJ
as

RiskMJ
= E∗

zE
∗
x[D(Z, ẐMJ

)] + BMJ
,

and consider estimating BMJ
. Here,

BMJ
= E∗

zE
∗
x[D(Zz, ẐMJ

)−D(Z, ẐMJ
)].

From Appendix A2,

BMJ
=

kJ
n− p+ 1

+O(kJn
−2).

It follows that we can approximate the bias term BMJ
by kJ/(n − p + 1),

omitting the terms of O(kJn
−2). Based on this approximation, we propose

the following model selection criterion:

ZICMJ
= D(Z, ẐMJ

) +
kJ

n− p+ 1

=
∑

(j1,j2)∈Jc

(
1

2
log

1 + rj1j2·(−j)

1− rj1j2·(−j)

)2

+
kJ

n− p+ 1
. (4.4)

5. Consistency of KOO Methods based on

DIC and ZIC

Define two generalization criteria for DIC and ZIC, which include the

15



threshold term d = nδ, as follows:

DICJ,d =
∑

(j1,j2)∈Jc

r2j1j2·(−j) +
dkJ
m

,

ZICJ,d =
∑

(j1,j2)∈Jc

z2j1j2·(−j) +
dkJ
m

,

where m = n−p. By letting d = 1 and neglecting the term of o(m−1), DICJ,d

and ZICJ,d coincide with DICMJ
and ZICMJ

, respectively. Let the statistics

Uj1j2,d and Vj1j2,d be defined as follows:

Uj1j2,d = DICω\j,d −DICω,d

= r2j1j2·(−j) −
d

m
,

Vj1j2,d = ZICω\j,d − ZICω,d

= z2j1j2·(−j) −
d

m
.

Then, our KOO methods choose the model by

ĴD,d = {(j1, j2) | Uj1j2,d > 0, 1 ≤ j1 < j2 ≤ p},

ĴZ,d = {(j1, j2) | Vj1j2,d > 0, 1 ≤ j1 < j2 ≤ p}.

Thus, we find that

(n− p)r2j1j2·(−j) − d > 0 ⇔ (j1, j2) ∈ ĴD,d, (5.1)

(n− p)

(
1

2
log

1 + rj1j2·(−j)

1− rj1j2·(−j)

)2

− d > 0 ⇔ (j1, j2) ∈ ĴZ,d. (5.2)

We show the high-dimensional consistencies of KOO methods ĴD,d and

ĴZ,d by using the same derivation as in Section 3.1.. Since the proofs for

ĴD,d and ĴZ,d are quite similar, we only give that for ĴZ,d. High-dimensional

consistency for ĴZ,d holds if the following two properties are satisfied.

[F3] : P3 ≡
∑

(j1,j2)∈J∗

Pr(Vj1j2,d ≤ 0) → 0.

[F4] : P4 ≡
∑

(j1,j2)/∈j∗

Pr(Vj1j2,d > 0) → 0.
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5.1. Proof of [F4]

The following equivalences hold:

∞ > z2j1j2 > d/m

⇐⇒ 1 > r2j1j2·(−j) > tanh2(
√
d/m)

⇐⇒ 1

1− tanh2(
√
d/m)

<
1

1− r2j1j2·(−j)

<∞,

where tanh2(x) = (tanh(x))2 and tanh(x) = (ex − e−x)/(ex + e−x). When

(j1, j2) ̸∈ J∗, we can write (1− r2j1j2·(−j))
−1 = 1+χ2

1/χ
2
m−1 from Theorem 2.1,

and therefore we have

Pr
(
z2j1j2 > d/m

)
= Pr

(
1

1− tanh2(
√
d/m)

<
1

1− r2j1j2·(−j)

)

= Pr

(
1

1− tanh2(
√
d/m)

< 1 +
χ2
1

χ2
m−1

)

= Pr

(
χ2
1

χ2
m−1

>
tanh2(

√
d/m)

1− tanh2(
√
d/m)

)
.

Using the same derivation as in Section 3.2., we have

Pr
(
z2j1j2 > d/m

)
<

{
tanh2(

√
d/m)

1− tanh2(
√
d/m)

}−2ℓ

E(U2ℓ),

where U = χ2
1/χ

2
m−1. Note that tanh(x)/x→ 1 as x→ 0. If 0 < δ < 1, then

d/m = O(nδ−1) → 0 as n → ∞, and so tanh(
√
d/m)/

√
d/m → 1. This

implies that{
tanh2(

√
d/m)

1− tanh2(
√
d/m)

}−2ℓ

= O((d/m)−2ℓ) = O(n−2ℓ(δ−1)).

Recalling that E(U2ℓ) = O(n−2ℓ), we find that

Pr
(
z2j1j2 > d/m

)
<

{
tanh2(

√
d/m)

1− tanh2(
√
d/m)

}−2ℓ

E(U2ℓ) = O(n−2ℓδ).
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Therefore, by letting ℓ = 4,

P4 =
∑

(j1,j2)/∈J∗

Pr(Vj1,j2,d > 0) ≤ p2O(n−8δ) = O(n2−8δ) → 0

for the case 1/4 < δ.

5.2. Proof of [F3]

When (j1, j2) ∈ J∗, P3 is a finite sum, and so we shall check the convergence

term-wise as follows:

Pr
(
z2j1j2 − d/m ≤ 0

)
→ 0. (5.3)

From Section 5.1., we find that z2j1j2 − d/m ≤ 0 is equivalent to {1 −
tanh2(

√
d/m)}−1 ≥ (1− r2j1j2·(−j))

−1, and so the probability in (5.3) is equal

to

Pr

(
1

1− r2j1j2·(−j)

− 1

1− tanh2(
√
d/m)

≤ 0

)
.

By virtue of Theorem 2.1, the convergence (5.3) holds if

Pr

(
1 + Aj1j2·(−j) −

1

1− tanh2(
√
d/m)

≤ 0

)
→ 0,

where Aj1j2·(−j) is defined by (3.4). From Section 3.3., we have that

1 + Aj1j2·(−j)
p→ 1

1− ρ2j1j2·(−j)

> 1.

From the assumption d = nδ, 1/4 < δ < 1, we obtain that (1−tanh2(
√
d/m))−1 →

1 as n→ ∞, and thus

1 + Aj1j2·(−j) −
1

1− tanh2(
√
d/m)

p→
ρ2j1j2·(−j)

1− ρ2j1j2·(−j)

> 0. (5.4)

Consequently, the probability convergence in (5.4) implies that the proba-

bility that 1 + Aj1j2·(−j) − {1 − tanh2(
√
d/m)}−1 is negative or equals zero

approaches zero.
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6. Simulation Results

In this section, we look at the actual performance of our methods with regards

to finding the sets of nonzero partial correlations. The methods are given

by (2.5), (5.1), and (5.2). We have shown that each of these methods is

asymptotically consistent within a high-dimensional asymptotic framework

(see Section 3 and Section 5).

Our simulation dataset has been constructed as follows. Suppose that Z

is distributed as Np(0,Σ). The covariance matrix is set to be

Σ = diag(Σ1, . . . ,Σk, Ip−3k), Σi =

 1 a b
a a2 + 1 ab
b ab b2 + 1

 . (6.1)

Then, the partial correlation matrix of Σi is obtained as 1 ρ12·3 ρ13·2
ρ12·3 1 0
ρ13·2 0 1

 ,

where

ρ12·3 =
a√

a2 + b2 + 1
, ρ13·2 =

b√
a2 + b2 + 1

,

and the partial correlation ρ23·1 is zero. Such structure is, for example, given

by the following relation:
Z1 = e1, e1 ∼ N(0, 1),

Z2 = aZ1 + e2, e2 ∼ N(0, 1), e2⊥e1, e2⊥e3,
Z3 = bZ1 + e3, e3 ∼ N(0, 1), e3⊥e1, e3⊥e2.

In general, it is known that

ρij·rest = 0 ⇐⇒ ρij = 0 (6.2)

(see, e.g., Fujikoshi et al. (2010), p.84, (4.3.7)). Therefore, the number of

nonzero partial correlations is equal to the number of nonzero off-diagonal

elements of Σ−1 = diag(Σ−1
1 , . . . ,Σ−1

k , Ip−3k). Note that

Σ−1
i =

a2 + b2 + 1 −a −b
−a 1 0
−b 0 1

 .

19



Therefore, the number of nonzero off-diagonal elements is equal to 4k. In this

case, it is assumed that all components of Z = (Z1, . . . , Zp)
′ are independent

with mean 0 and variance 1, and X = Σ1/2Z.

We carried out the simulation with 104 repetitions. In accordance with

assumption A4, the threshold is set to d = nδ, where δ is set as δ =

1/2, 1/3, 1/4. Note that δ ∈ {1/2, 1/3} satisfies assumption A4, whereas

δ = 1/4 does not. We referred to Fujikoshi (2022) for the candidates of δ.

Keeping the simulation settings simple, we set k = 1 and a = b, so that all

nonzero partial correlations are equal and are ρ̃ ∈ {0.3, 0.5, 0.696}. The set-

tings of the other parameter are as follows: n ∈ {100, 200, 500, 1000, 10000},
p1 = 6, and p2 = p − 6 ∈ {10, 30, 60}. The results of the simulation are

shown in Table 1, from which we made the following observations:

• The proportion of the true model, i.e., the proportion of selection for

sets of all nonzero partial correlations, approaches 1 as the sample

size increases for each of the variable selection criteria based on KOO,

((2.5), (5.1), and (5.2)).

– In order to get a good estimator for the set of nonzero partial

correlations, it seems that a very large sample size n is required,

in comparison to the dimensionality p.

– The smaller p2 is, the faster the proportion converges to 1.

– The closer the nonzero partial correlation is to 1, the faster the

proportion converges to 1.

• For the case that the proportion is less than 1, the proportion of the

true model for each of (5.1) and (5.2) is larger than the one for (2.5).

This can be checked, for example, for the case in which ρ̃ = 0.696,

n = 200, p2 = 60.

• In our simulation setting, the accuracy in selecting the true model is

good for the case in which δ = 1/2 among the three settings of δ.
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• In our simulation setting, consistency seems not to hold numerically

for the case in which δ = 1/4.
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Table 1: Proportion of selecting all nonzero partial correlations
ρ̃ = 0.3 d = n1/2 d = n1/3 d = n1/4

n p1 p2 ĴG,d ĴD,d ĴZ,d ĴG,d ĴD,d ĴZ,d ĴG,d ĴD,d ĴZ,d
100 6 10 0.01 0.00 0.00 0.07 0.07 0.07 0.02 0.03 0.03
200 6 10 0.13 0.08 0.11 0.42 0.47 0.46 0.11 0.14 0.13
500 6 10 0.91 0.89 0.91 0.81 0.83 0.83 0.31 0.34 0.33
1000 6 10 1.00 1.00 1.00 0.94 0.95 0.94 0.51 0.52 0.52
10000 6 10 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.95 0.94
100 6 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
200 6 30 0.10 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00
500 6 30 0.90 0.84 0.86 0.07 0.14 0.13 0.00 0.00 0.00
1000 6 30 1.00 1.00 1.00 0.46 0.52 0.51 0.00 0.00 0.00
10000 6 30 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.52 0.52
100 6 60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
200 6 60 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
500 6 60 0.87 0.75 0.79 0.00 0.00 0.00 0.00 0.00 0.00
1000 6 60 1.00 1.00 1.00 0.02 0.07 0.07 0.00 0.00 0.00
10000 6 60 1.00 1.00 1.00 0.99 0.99 0.99 0.06 0.06 0.06

ρ̃ = 0.5 d = n1/2 d = n1/3 d = n1/4

n p1 p2 ĴG,d ĴD,d ĴZ,d ĴG,d ĴD,d ĴZ,d ĴG,d ĴD,d ĴZ,d
100 6 10 0.83 0.82 0.83 0.26 0.39 0.35 0.05 0.10 0.09
200 6 10 0.99 1.00 0.99 0.53 0.60 0.58 0.14 0.19 0.18
500 6 10 1.00 1.00 1.00 0.82 0.84 0.83 0.35 0.38 0.37
1000 6 10 1.00 1.00 1.00 0.94 0.95 0.95 0.53 0.54 0.54
10000 6 10 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.94 0.94
100 6 30 0.05 0.36 0.33 0.00 0.00 0.00 0.00 0.00 0.00
200 6 30 0.80 0.95 0.92 0.00 0.00 0.00 0.00 0.00 0.00
500 6 30 1.00 1.00 1.00 0.08 0.15 0.13 0.00 0.00 0.00
1000 6 30 1.00 1.00 1.00 0.46 0.53 0.52 0.00 0.00 0.00
10000 6 30 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.53 0.53
100 6 60 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
200 6 60 0.08 0.80 0.71 0.00 0.00 0.00 0.00 0.00 0.00
500 6 60 0.98 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 6 60 1.00 1.00 1.00 0.02 0.07 0.07 0.00 0.00 0.00
10000 6 60 1.00 1.00 1.00 0.99 0.99 0.99 0.06 0.07 0.07
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ρ̃ = 0.696 d = n1/2 d = n1/3 d = n1/4

n p1 p2 ĴG,d ĴD,d ĴZ,d ĴG,d ĴD,d ĴZ,d ĴG,d ĴD,d ĴZ,d
100 6 10 0.92 0.97 0.95 0.34 0.45 0.42 0.09 0.16 0.14
200 6 10 0.99 0.99 0.99 0.59 0.65 0.63 0.20 0.24 0.23
500 6 10 1.00 1.00 1.00 0.85 0.86 0.86 0.42 0.44 0.43
1000 6 10 1.00 1.00 1.00 0.95 0.95 0.95 0.58 0.60 0.59
10000 6 10 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95
100 6 30 0.07 0.69 0.53 0.00 0.00 0.00 0.00 0.00 0.00
200 6 30 0.81 0.95 0.93 0.00 0.01 0.00 0.00 0.00 0.00
500 6 30 1.00 1.00 1.00 0.09 0.16 0.15 0.00 0.00 0.00
1000 6 30 1.00 1.00 1.00 0.47 0.54 0.53 0.00 0.00 0.00
10000 6 30 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.53 0.53
100 6 60 0.00 0.38 0.12 0.00 0.00 0.00 0.00 0.00 0.00
200 6 60 0.08 0.83 0.73 0.00 0.00 0.00 0.00 0.00 0.00
500 6 60 0.98 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 6 60 1.00 1.00 1.00 0.03 0.08 0.07 0.00 0.00 0.00
10000 6 60 1.00 1.00 1.00 0.99 0.99 0.99 0.07 0.07 0.07

7. Applications

This section presents two real examples, and we apply our variable selection

based on the KOO method. The first example regards the scores on an

examination covering five subjects and comes from Mardia et al. (1979).

The second example regards Kaggle housing data, which are available at

“https://www.kaggle.com/c/house-prices-advanced-regression-techniques”.

7.1. Scores on five subjects

Consider the scores on an examination covering five subjects for n = 88

students given in Mardia et al. (1979). The five scores are X1 (mechanics),

X2 (vectors), X3 (algebra), X4 (analysis), and X5 (statistics). The partial

correlation coefficients betweenXi andXj given the remaining three variables

are given in Table 2. From these coefficients, one may conjecture the following
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Table 2: Partial correlation matrix of five subjects
X1 −
X2 0.33 −
X3 0.23 0.28 −
X4 0.00 0.08 0.43 −
X5 0.02 0.02 0.36 0.25 −

model:

M: ρ14·(−{2,3,5}) = ρ24·(−{1,3,5}) = ρ15·(−{2,3,4}) = ρ25·(−{1,3,4}) = 0, (7.1)

which is equivalent to

X1⊥X4 | (X2, X3, X5), X1⊥X5 | (X2, X3, X4),

X2⊥X4 | (X1, X3, X5), X2⊥X5 | (X1, X3, X4).

Here, the notation Xi⊥Xj | (Xk1 , Xk2 , Xk3) indicates the conditional inde-

pendence of Xi and Xj under the condition that (Xk1 , Xk2 , Xk3) is given.

Based on the simulation results, the methods based on GIC, DIC, and

ZIC have almost the same precision for selecting the true model; thus, we

use (5.1) for this dataset. For comparison, we perform a hypothesis test for

the null hypothesis that H0 : ρj1j2·(−j) = 0. The likelihood ratio statistic is

based on

T =
rj1j2·(−j)

√
n− p− 2√

1− r2j1j2·(−j)

.

Under null hypothesis H0, T follows a t distribution with n−p−2 degrees of

freedom, and so H0 is rejected at significance level α if the observed value of

|T | is larger than the upper α/2 percentile of the t distribution. We computed

statistics for T and Uj1j2,d based on the values in Table 2 to construct Table

3. The p-values for testing H0 are also shown. The δ columns give the values

of Uj1j2,d for d = nδ/(n− p). Values in bold are non-negative statistics with

p-values less than 0.05. We observed that the result of variable selection with

δ = 1/3 matches the ones of testing H0 with significance level 0.05.
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Table 3: Variable selection and hypothesis testing results for scores on five
subjects

rj1j2·(−j) T p-value δ = 1/2 δ = 1/3
X3-X4 0.43 4.313 0.000 0.071 0.131
X3-X5 0.36 3.494 0.001 0.016 0.076
X1-X2 0.33 3.166 0.002 -0.005 0.055
X2-X3 0.28 2.641 0.010 -0.035 0.024
X4-X5 0.25 2.338 0.022 -0.051 0.008
X2-X4 0.08 0.727 0.469 -0.107 -0.048
X1-X5 0.02 0.181 0.857 -0.113 -0.054
X1-X5 0.02 0.181 0.857 -0.113 -0.054
X1-X4 0.00 0.000 1.000 -0.114 -0.054

7.2. Kaggle housing data

The Kaggle housing dataset, which was obtained at “https://www.kaggle.com/c/house-

prices-advanced-regression-techniques”, consists of p = 37 observations for

n = 2930 houses. Here, observations are, for example, “SalePrice”, “MS.SubClass”,

and “Lot.Frontage”. We applied our model selection method ĴD,d to this

dataset. Of p(p − 1)/2 = 666 partial correlations, 246 partial correlations

were observed to be nonzero when δ = 1/2 and 345 partial correlations were

observed to be nonzero when δ = 1/3.

8. Discussion

In this study, we considered the Gaussian concentration graph selection prob-

lem, i.e., the problem for selecting partial correlation under normality. We

proposed a knock-one-out (KOO) method based on a general information cri-

terion (GIC). In addition, we proposed two alternative KOO methods based

on two distance criteria (DIC, ZIC). Consistency was shown for each of the

KOO methods. Based on a simulation study, the KOO methods in this paper

have good precision for selecting the true model.
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In this paper, we do not consider how to select the δ in the threshold

d = nδ. It is important to determine δ so that the true model shall be se-

lected. It is also important to study high-dimensional consistency properties

of the model selection criteria when the size of the true model is large. More

precisely, we want to examine such problems when

p/n→ c1 ∈ (0, 1), #J∗ = O(p).

These are left as future problems.

Appendix A1. Reduction of BMJ
in Section 4.1

The bias term BMJ
can be expressed as follows:

BMJ
= E∗

zE
∗
x[D(Rz, R̂MJ

)−D(R, R̂MJ
)]

= E∗
zE

∗
x

[
1

2
tr(Rz − R̂MJ

)2 − 1

2
tr(R− R̂MJ

)2
]

= E∗
zE

∗
x

[
1

2
trR2

z − trRzR̂MJ
− 1

2
trR2 + trRR̂MJ

]
= E∗

zE
∗
x

[
−trRzR̂MJ

+ trRR̂MJ

]
= E∗

x

[
trR̂MJ

(R−Ψ∗)
]
.

Here, Ψ∗ = (ψ∗
j1j2

), where

ψ∗
j1j2

= E∗(rj1j2·(−j))

=
2

n− p+ 1

{
Γ(n−p+2

2
)

Γ(n−p+1
2

)

}2

ρj1j2·(−j)

× 2F1

(
1

2
,
1

2
;
1

2
(n− p+ 1) + 1; ρ2j1j2·(−j)

)
.

Note that ψ∗
j1j2

= 0 for (j1, j2) /∈ J∗. In general, it is known that the distri-

butional results on partial correlations are obtained from the ones on ordinal

correlations by transforming n to n − p + 1. For the above expression for
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ψ∗
j1j2

, see, for example, Muirhead (1982). Therefore, we have

trR̂MJ
(R−Ψ∗) =

∑
(j1,j2)∈J∩J∗

rj1j2·(−j)(rj1j2·(−j) − ψ∗
j1j2

) +
∑

(j1,j2)∈J∩Jc
∗

r2j1j2·(−j).

Then, we have

E∗
x

[
trR̂MJ

(R−Ψ∗)
]

=
∑

(j1,j2)∈J∩J∗

[
E∗
x(r

2
j1j2·(−j))− (ψ∗

j1j2
)2
]
+

∑
(j1,j2)∈J∩Jc

∗

E∗
x(r

2
j1j2·(−j))

=
∑

(j1,j2)∈J∩J∗

[
V∗

x(rj1j2·(−j))
]
+

∑
(j1,j2)∈J∩Jc

∗

E∗
x(r

2
j1j2·(−j)).

Note (see, e.g., Muirhead (1982)) that for (j1, j2) ∈ J∗,

E(r2j1j2·(−j)) = 1− n− p

n− p+ 1
(1−ρ2j1j2·(−j))2F1

(
1, 1;

1

2
(n− p+ 1) + 1; ρ2j1j2·(−j)

)
.

These imply that when n, p→ ∞, p/n→ c1 ∈ (0, 1),

V∗
x(rj1j2·(−j)) =

(1− ρ2j1j2·(−j))
2

n− p+ 1
+O(n−2)

=
1− (2− ρ2j1j2·(−j))ρ

2
j1j2·(−j)

n− p+ 1
+O(n−2).

On the other hand, when (j1, j2) /∈ J∗, ρj1j2·(−j) = 0 and hence

E(r2j1j2·(−j)) =
1

n− p+ 1
.

From the above, we have

E∗
x

[
trR̂MJ

(R−Ψ∗)
]

=
∑

(j1,j2)∈J∩J∗

[
V∗

x(rj1j2·(−j))
]
+

∑
(j1,j2)∈J∩Jc

∗

E∗
x(r

2
j1j2·(−j))

=
kJ

n− p+ 1
−

∑
(j1,j2)∈J∩J∗

(2− ρ2j1j2·(−j))ρ
2
j1j2·(−j)

n− p+ 1
+O(kJn

−2),

where kJ is the number of elements in a candidate model MJ .
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Appendix A2. Reduction of BMJ
in Section 4.2

The bias term BMJ
can be expressed as follows;

BMJ
= E∗

zE
∗
x[D(Zz, ẐMJ

)−D(Z, ẐMJ
)]

= E∗
zE

∗
x

[
1

2
tr(Zz − ẐMJ

)2 − 1

2
tr(Z− ẐMJ

)2
]

= E∗
zE

∗
x

[
1

2
trZ2

z − trZzẐMJ
− 1

2
trZ2 + trZẐMJ

]
= E∗

zE
∗
x

[
−trZzẐMJ

+ trZẐMJ

]
= E∗

x

[
trẐMJ

(Z−M∗)
]
.

Here, M∗ = (µ∗
j1j2

), where

µ∗
j1j2

= E∗
x(zj1j2) =

1

2
E∗
x

[
log(1 + rj1j2·(−j))− log(1− rj1j2·(−j))

]
.

Therefore, we have

trẐMJ
(Z−M∗) =

∑
(j1,j2)∈J

zj1j2(zj1j2 − µ∗
j1j2

).

It follows that

E∗
x

[
trẐMJ

(Z−M∗)
]

=
∑

(j1,j2)∈J

[
E∗
x(z

2
j1j2

)− (µ∗
j1j2

)2
]

=
∑

(j1,j2)∈J

V∗
x(zj1j2).

From Hotelling (1953), under assumption A1, we find that

µj1j2 = E(zj1j2) = ζj1j2 +
ρj1j2·(−j)

2(n− p+ 1)
+O(n−2),

E[(zj1j2 − ζj1j2)
2] =

1

n− p+ 1
+

8− ρ2j1j2·(−j)

4(n− p+ 1)2
+O(n−3).

28



These imply that

V∗
x(zj1j2) = E∗

x[(zj1j2 − ζ∗j1j2)
2]− (µ∗

j1j2
− ζ∗j1j2)

2

=
1

n− p+ 1
+

4− (ρ∗j1j2·(−j))
2

2(n− p+ 1)2
+O(n−3),

and so it holds that

E∗
x

[
trẐMJ

(Z−M∗)
]
=

∑
(j1,j2)∈J

V∗
x(zj1j2) =

kJ
n− p+ 1

+O(kJn
−2),

where kJ is the number of elements in candidate model MJ .
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